Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.269
      1 /* $NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 static struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 static struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 static int interrupt_config_threads = 8;
    200 static struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 static int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_lock __cacheline_aligned;
    222 static devgen_t alldevs_gen = 1;
    223 static int alldevs_nread = 0;
    224 static int alldevs_nwrite = 0;
    225 static bool alldevs_garbage = false;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static bool detachall = false;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 int no_devmon_insert(const char *, prop_dictionary_t);
    244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    245 
    246 typedef int (*cfdriver_fn)(struct cfdriver *);
    247 static int
    248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    250 	const char *style, bool dopanic)
    251 {
    252 	void (*pr)(const char *, ...) __printflike(1, 2) =
    253 	    dopanic ? panic : printf;
    254 	int i, error = 0, e2 __diagused;
    255 
    256 	for (i = 0; cfdriverv[i] != NULL; i++) {
    257 		if ((error = drv_do(cfdriverv[i])) != 0) {
    258 			pr("configure: `%s' driver %s failed: %d",
    259 			    cfdriverv[i]->cd_name, style, error);
    260 			goto bad;
    261 		}
    262 	}
    263 
    264 	KASSERT(error == 0);
    265 	return 0;
    266 
    267  bad:
    268 	printf("\n");
    269 	for (i--; i >= 0; i--) {
    270 		e2 = drv_undo(cfdriverv[i]);
    271 		KASSERT(e2 == 0);
    272 	}
    273 
    274 	return error;
    275 }
    276 
    277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    278 static int
    279 frob_cfattachvec(const struct cfattachinit *cfattachv,
    280 	cfattach_fn att_do, cfattach_fn att_undo,
    281 	const char *style, bool dopanic)
    282 {
    283 	const struct cfattachinit *cfai = NULL;
    284 	void (*pr)(const char *, ...) __printflike(1, 2) =
    285 	    dopanic ? panic : printf;
    286 	int j = 0, error = 0, e2 __diagused;
    287 
    288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    290 			if ((error = att_do(cfai->cfai_name,
    291 			    cfai->cfai_list[j])) != 0) {
    292 				pr("configure: attachment `%s' "
    293 				    "of `%s' driver %s failed: %d",
    294 				    cfai->cfai_list[j]->ca_name,
    295 				    cfai->cfai_name, style, error);
    296 				goto bad;
    297 			}
    298 		}
    299 	}
    300 
    301 	KASSERT(error == 0);
    302 	return 0;
    303 
    304  bad:
    305 	/*
    306 	 * Rollback in reverse order.  dunno if super-important, but
    307 	 * do that anyway.  Although the code looks a little like
    308 	 * someone did a little integration (in the math sense).
    309 	 */
    310 	printf("\n");
    311 	if (cfai) {
    312 		bool last;
    313 
    314 		for (last = false; last == false; ) {
    315 			if (cfai == &cfattachv[0])
    316 				last = true;
    317 			for (j--; j >= 0; j--) {
    318 				e2 = att_undo(cfai->cfai_name,
    319 				    cfai->cfai_list[j]);
    320 				KASSERT(e2 == 0);
    321 			}
    322 			if (!last) {
    323 				cfai--;
    324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    325 					;
    326 			}
    327 		}
    328 	}
    329 
    330 	return error;
    331 }
    332 
    333 /*
    334  * Initialize the autoconfiguration data structures.  Normally this
    335  * is done by configure(), but some platforms need to do this very
    336  * early (to e.g. initialize the console).
    337  */
    338 void
    339 config_init(void)
    340 {
    341 
    342 	KASSERT(config_initialized == false);
    343 
    344 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    345 
    346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    347 	cv_init(&config_misc_cv, "cfgmisc");
    348 
    349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    350 
    351 	frob_cfdrivervec(cfdriver_list_initial,
    352 	    config_cfdriver_attach, NULL, "bootstrap", true);
    353 	frob_cfattachvec(cfattachinit,
    354 	    config_cfattach_attach, NULL, "bootstrap", true);
    355 
    356 	initcftable.ct_cfdata = cfdata;
    357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    358 
    359 	config_initialized = true;
    360 }
    361 
    362 /*
    363  * Init or fini drivers and attachments.  Either all or none
    364  * are processed (via rollback).  It would be nice if this were
    365  * atomic to outside consumers, but with the current state of
    366  * locking ...
    367  */
    368 int
    369 config_init_component(struct cfdriver * const *cfdriverv,
    370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    371 {
    372 	int error;
    373 
    374 	if ((error = frob_cfdrivervec(cfdriverv,
    375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    376 		return error;
    377 	if ((error = frob_cfattachvec(cfattachv,
    378 	    config_cfattach_attach, config_cfattach_detach,
    379 	    "init", false)) != 0) {
    380 		frob_cfdrivervec(cfdriverv,
    381 	            config_cfdriver_detach, NULL, "init rollback", true);
    382 		return error;
    383 	}
    384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    385 		frob_cfattachvec(cfattachv,
    386 		    config_cfattach_detach, NULL, "init rollback", true);
    387 		frob_cfdrivervec(cfdriverv,
    388 	            config_cfdriver_detach, NULL, "init rollback", true);
    389 		return error;
    390 	}
    391 
    392 	return 0;
    393 }
    394 
    395 int
    396 config_fini_component(struct cfdriver * const *cfdriverv,
    397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    398 {
    399 	int error;
    400 
    401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    402 		return error;
    403 	if ((error = frob_cfattachvec(cfattachv,
    404 	    config_cfattach_detach, config_cfattach_attach,
    405 	    "fini", false)) != 0) {
    406 		if (config_cfdata_attach(cfdatav, 0) != 0)
    407 			panic("config_cfdata fini rollback failed");
    408 		return error;
    409 	}
    410 	if ((error = frob_cfdrivervec(cfdriverv,
    411 	    config_cfdriver_detach, config_cfdriver_attach,
    412 	    "fini", false)) != 0) {
    413 		frob_cfattachvec(cfattachv,
    414 	            config_cfattach_attach, NULL, "fini rollback", true);
    415 		if (config_cfdata_attach(cfdatav, 0) != 0)
    416 			panic("config_cfdata fini rollback failed");
    417 		return error;
    418 	}
    419 
    420 	return 0;
    421 }
    422 
    423 void
    424 config_init_mi(void)
    425 {
    426 
    427 	if (!config_initialized)
    428 		config_init();
    429 
    430 	sysctl_detach_setup(NULL);
    431 }
    432 
    433 void
    434 config_deferred(device_t dev)
    435 {
    436 	config_process_deferred(&deferred_config_queue, dev);
    437 	config_process_deferred(&interrupt_config_queue, dev);
    438 	config_process_deferred(&mountroot_config_queue, dev);
    439 }
    440 
    441 static void
    442 config_interrupts_thread(void *cookie)
    443 {
    444 	struct deferred_config *dc;
    445 	device_t dev;
    446 
    447 	mutex_enter(&config_misc_lock);
    448 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    449 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    450 		mutex_exit(&config_misc_lock);
    451 
    452 		dev = dc->dc_dev;
    453 		(*dc->dc_func)(dev);
    454 		if (!device_pmf_is_registered(dev))
    455 			aprint_debug_dev(dev,
    456 			    "WARNING: power management not supported\n");
    457 		config_pending_decr(dev);
    458 		kmem_free(dc, sizeof(*dc));
    459 
    460 		mutex_enter(&config_misc_lock);
    461 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    462 	}
    463 	mutex_exit(&config_misc_lock);
    464 
    465 	kthread_exit(0);
    466 }
    467 
    468 void
    469 config_create_interruptthreads(void)
    470 {
    471 	int i;
    472 
    473 	for (i = 0; i < interrupt_config_threads; i++) {
    474 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    475 		    config_interrupts_thread, NULL, NULL, "configintr");
    476 	}
    477 }
    478 
    479 static void
    480 config_mountroot_thread(void *cookie)
    481 {
    482 	struct deferred_config *dc;
    483 
    484 	mutex_enter(&config_misc_lock);
    485 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    486 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    487 		mutex_exit(&config_misc_lock);
    488 
    489 		(*dc->dc_func)(dc->dc_dev);
    490 		kmem_free(dc, sizeof(*dc));
    491 
    492 		mutex_enter(&config_misc_lock);
    493 	}
    494 	mutex_exit(&config_misc_lock);
    495 
    496 	kthread_exit(0);
    497 }
    498 
    499 void
    500 config_create_mountrootthreads(void)
    501 {
    502 	int i;
    503 
    504 	if (!root_is_mounted)
    505 		root_is_mounted = true;
    506 
    507 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    508 				       mountroot_config_threads;
    509 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    510 					     KM_NOSLEEP);
    511 	KASSERT(mountroot_config_lwpids);
    512 	for (i = 0; i < mountroot_config_threads; i++) {
    513 		mountroot_config_lwpids[i] = 0;
    514 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    515 				     NULL, config_mountroot_thread, NULL,
    516 				     &mountroot_config_lwpids[i],
    517 				     "configroot");
    518 	}
    519 }
    520 
    521 void
    522 config_finalize_mountroot(void)
    523 {
    524 	int i, error;
    525 
    526 	for (i = 0; i < mountroot_config_threads; i++) {
    527 		if (mountroot_config_lwpids[i] == 0)
    528 			continue;
    529 
    530 		error = kthread_join(mountroot_config_lwpids[i]);
    531 		if (error)
    532 			printf("%s: thread %x joined with error %d\n",
    533 			       __func__, i, error);
    534 	}
    535 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    536 }
    537 
    538 /*
    539  * Announce device attach/detach to userland listeners.
    540  */
    541 
    542 int
    543 no_devmon_insert(const char *name, prop_dictionary_t p)
    544 {
    545 
    546 	return ENODEV;
    547 }
    548 
    549 static void
    550 devmon_report_device(device_t dev, bool isattach)
    551 {
    552 	prop_dictionary_t ev, dict = device_properties(dev);
    553 	const char *parent;
    554 	const char *what;
    555 	const char *where;
    556 	device_t pdev = device_parent(dev);
    557 
    558 	/* If currently no drvctl device, just return */
    559 	if (devmon_insert_vec == no_devmon_insert)
    560 		return;
    561 
    562 	ev = prop_dictionary_create();
    563 	if (ev == NULL)
    564 		return;
    565 
    566 	what = (isattach ? "device-attach" : "device-detach");
    567 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    568 	if (prop_dictionary_get_cstring_nocopy(dict, "location", &where)) {
    569 		prop_dictionary_set_cstring(ev, "location", where);
    570 		aprint_debug("ev: %s %s at %s in [%s]\n",
    571 		    what, device_xname(dev), parent, where);
    572 	}
    573 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    574 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    575 		prop_object_release(ev);
    576 		return;
    577 	}
    578 
    579 	if ((*devmon_insert_vec)(what, ev) != 0)
    580 		prop_object_release(ev);
    581 }
    582 
    583 /*
    584  * Add a cfdriver to the system.
    585  */
    586 int
    587 config_cfdriver_attach(struct cfdriver *cd)
    588 {
    589 	struct cfdriver *lcd;
    590 
    591 	/* Make sure this driver isn't already in the system. */
    592 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    593 		if (STREQ(lcd->cd_name, cd->cd_name))
    594 			return EEXIST;
    595 	}
    596 
    597 	LIST_INIT(&cd->cd_attach);
    598 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    599 
    600 	return 0;
    601 }
    602 
    603 /*
    604  * Remove a cfdriver from the system.
    605  */
    606 int
    607 config_cfdriver_detach(struct cfdriver *cd)
    608 {
    609 	struct alldevs_foray af;
    610 	int i, rc = 0;
    611 
    612 	config_alldevs_enter(&af);
    613 	/* Make sure there are no active instances. */
    614 	for (i = 0; i < cd->cd_ndevs; i++) {
    615 		if (cd->cd_devs[i] != NULL) {
    616 			rc = EBUSY;
    617 			break;
    618 		}
    619 	}
    620 	config_alldevs_exit(&af);
    621 
    622 	if (rc != 0)
    623 		return rc;
    624 
    625 	/* ...and no attachments loaded. */
    626 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    627 		return EBUSY;
    628 
    629 	LIST_REMOVE(cd, cd_list);
    630 
    631 	KASSERT(cd->cd_devs == NULL);
    632 
    633 	return 0;
    634 }
    635 
    636 /*
    637  * Look up a cfdriver by name.
    638  */
    639 struct cfdriver *
    640 config_cfdriver_lookup(const char *name)
    641 {
    642 	struct cfdriver *cd;
    643 
    644 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    645 		if (STREQ(cd->cd_name, name))
    646 			return cd;
    647 	}
    648 
    649 	return NULL;
    650 }
    651 
    652 /*
    653  * Add a cfattach to the specified driver.
    654  */
    655 int
    656 config_cfattach_attach(const char *driver, struct cfattach *ca)
    657 {
    658 	struct cfattach *lca;
    659 	struct cfdriver *cd;
    660 
    661 	cd = config_cfdriver_lookup(driver);
    662 	if (cd == NULL)
    663 		return ESRCH;
    664 
    665 	/* Make sure this attachment isn't already on this driver. */
    666 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    667 		if (STREQ(lca->ca_name, ca->ca_name))
    668 			return EEXIST;
    669 	}
    670 
    671 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    672 
    673 	return 0;
    674 }
    675 
    676 /*
    677  * Remove a cfattach from the specified driver.
    678  */
    679 int
    680 config_cfattach_detach(const char *driver, struct cfattach *ca)
    681 {
    682 	struct alldevs_foray af;
    683 	struct cfdriver *cd;
    684 	device_t dev;
    685 	int i, rc = 0;
    686 
    687 	cd = config_cfdriver_lookup(driver);
    688 	if (cd == NULL)
    689 		return ESRCH;
    690 
    691 	config_alldevs_enter(&af);
    692 	/* Make sure there are no active instances. */
    693 	for (i = 0; i < cd->cd_ndevs; i++) {
    694 		if ((dev = cd->cd_devs[i]) == NULL)
    695 			continue;
    696 		if (dev->dv_cfattach == ca) {
    697 			rc = EBUSY;
    698 			break;
    699 		}
    700 	}
    701 	config_alldevs_exit(&af);
    702 
    703 	if (rc != 0)
    704 		return rc;
    705 
    706 	LIST_REMOVE(ca, ca_list);
    707 
    708 	return 0;
    709 }
    710 
    711 /*
    712  * Look up a cfattach by name.
    713  */
    714 static struct cfattach *
    715 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    716 {
    717 	struct cfattach *ca;
    718 
    719 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    720 		if (STREQ(ca->ca_name, atname))
    721 			return ca;
    722 	}
    723 
    724 	return NULL;
    725 }
    726 
    727 /*
    728  * Look up a cfattach by driver/attachment name.
    729  */
    730 struct cfattach *
    731 config_cfattach_lookup(const char *name, const char *atname)
    732 {
    733 	struct cfdriver *cd;
    734 
    735 	cd = config_cfdriver_lookup(name);
    736 	if (cd == NULL)
    737 		return NULL;
    738 
    739 	return config_cfattach_lookup_cd(cd, atname);
    740 }
    741 
    742 /*
    743  * Apply the matching function and choose the best.  This is used
    744  * a few times and we want to keep the code small.
    745  */
    746 static void
    747 mapply(struct matchinfo *m, cfdata_t cf)
    748 {
    749 	int pri;
    750 
    751 	if (m->fn != NULL) {
    752 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    753 	} else {
    754 		pri = config_match(m->parent, cf, m->aux);
    755 	}
    756 	if (pri > m->pri) {
    757 		m->match = cf;
    758 		m->pri = pri;
    759 	}
    760 }
    761 
    762 int
    763 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    764 {
    765 	const struct cfiattrdata *ci;
    766 	const struct cflocdesc *cl;
    767 	int nlocs, i;
    768 
    769 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    770 	KASSERT(ci);
    771 	nlocs = ci->ci_loclen;
    772 	KASSERT(!nlocs || locs);
    773 	for (i = 0; i < nlocs; i++) {
    774 		cl = &ci->ci_locdesc[i];
    775 		if (cl->cld_defaultstr != NULL &&
    776 		    cf->cf_loc[i] == cl->cld_default)
    777 			continue;
    778 		if (cf->cf_loc[i] == locs[i])
    779 			continue;
    780 		return 0;
    781 	}
    782 
    783 	return config_match(parent, cf, aux);
    784 }
    785 
    786 /*
    787  * Helper function: check whether the driver supports the interface attribute
    788  * and return its descriptor structure.
    789  */
    790 static const struct cfiattrdata *
    791 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    792 {
    793 	const struct cfiattrdata * const *cpp;
    794 
    795 	if (cd->cd_attrs == NULL)
    796 		return 0;
    797 
    798 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    799 		if (STREQ((*cpp)->ci_name, ia)) {
    800 			/* Match. */
    801 			return *cpp;
    802 		}
    803 	}
    804 	return 0;
    805 }
    806 
    807 /*
    808  * Lookup an interface attribute description by name.
    809  * If the driver is given, consider only its supported attributes.
    810  */
    811 const struct cfiattrdata *
    812 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    813 {
    814 	const struct cfdriver *d;
    815 	const struct cfiattrdata *ia;
    816 
    817 	if (cd)
    818 		return cfdriver_get_iattr(cd, name);
    819 
    820 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    821 		ia = cfdriver_get_iattr(d, name);
    822 		if (ia)
    823 			return ia;
    824 	}
    825 	return 0;
    826 }
    827 
    828 /*
    829  * Determine if `parent' is a potential parent for a device spec based
    830  * on `cfp'.
    831  */
    832 static int
    833 cfparent_match(const device_t parent, const struct cfparent *cfp)
    834 {
    835 	struct cfdriver *pcd;
    836 
    837 	/* We don't match root nodes here. */
    838 	if (cfp == NULL)
    839 		return 0;
    840 
    841 	pcd = parent->dv_cfdriver;
    842 	KASSERT(pcd != NULL);
    843 
    844 	/*
    845 	 * First, ensure this parent has the correct interface
    846 	 * attribute.
    847 	 */
    848 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    849 		return 0;
    850 
    851 	/*
    852 	 * If no specific parent device instance was specified (i.e.
    853 	 * we're attaching to the attribute only), we're done!
    854 	 */
    855 	if (cfp->cfp_parent == NULL)
    856 		return 1;
    857 
    858 	/*
    859 	 * Check the parent device's name.
    860 	 */
    861 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    862 		return 0;	/* not the same parent */
    863 
    864 	/*
    865 	 * Make sure the unit number matches.
    866 	 */
    867 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    868 	    cfp->cfp_unit == parent->dv_unit)
    869 		return 1;
    870 
    871 	/* Unit numbers don't match. */
    872 	return 0;
    873 }
    874 
    875 /*
    876  * Helper for config_cfdata_attach(): check all devices whether it could be
    877  * parent any attachment in the config data table passed, and rescan.
    878  */
    879 static void
    880 rescan_with_cfdata(const struct cfdata *cf)
    881 {
    882 	device_t d;
    883 	const struct cfdata *cf1;
    884 	deviter_t di;
    885 
    886 
    887 	/*
    888 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    889 	 * the outer loop.
    890 	 */
    891 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    892 
    893 		if (!(d->dv_cfattach->ca_rescan))
    894 			continue;
    895 
    896 		for (cf1 = cf; cf1->cf_name; cf1++) {
    897 
    898 			if (!cfparent_match(d, cf1->cf_pspec))
    899 				continue;
    900 
    901 			(*d->dv_cfattach->ca_rescan)(d,
    902 				cfdata_ifattr(cf1), cf1->cf_loc);
    903 
    904 			config_deferred(d);
    905 		}
    906 	}
    907 	deviter_release(&di);
    908 }
    909 
    910 /*
    911  * Attach a supplemental config data table and rescan potential
    912  * parent devices if required.
    913  */
    914 int
    915 config_cfdata_attach(cfdata_t cf, int scannow)
    916 {
    917 	struct cftable *ct;
    918 
    919 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    920 	ct->ct_cfdata = cf;
    921 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    922 
    923 	if (scannow)
    924 		rescan_with_cfdata(cf);
    925 
    926 	return 0;
    927 }
    928 
    929 /*
    930  * Helper for config_cfdata_detach: check whether a device is
    931  * found through any attachment in the config data table.
    932  */
    933 static int
    934 dev_in_cfdata(device_t d, cfdata_t cf)
    935 {
    936 	const struct cfdata *cf1;
    937 
    938 	for (cf1 = cf; cf1->cf_name; cf1++)
    939 		if (d->dv_cfdata == cf1)
    940 			return 1;
    941 
    942 	return 0;
    943 }
    944 
    945 /*
    946  * Detach a supplemental config data table. Detach all devices found
    947  * through that table (and thus keeping references to it) before.
    948  */
    949 int
    950 config_cfdata_detach(cfdata_t cf)
    951 {
    952 	device_t d;
    953 	int error = 0;
    954 	struct cftable *ct;
    955 	deviter_t di;
    956 
    957 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    958 	     d = deviter_next(&di)) {
    959 		if (!dev_in_cfdata(d, cf))
    960 			continue;
    961 		if ((error = config_detach(d, 0)) != 0)
    962 			break;
    963 	}
    964 	deviter_release(&di);
    965 	if (error) {
    966 		aprint_error_dev(d, "unable to detach instance\n");
    967 		return error;
    968 	}
    969 
    970 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    971 		if (ct->ct_cfdata == cf) {
    972 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    973 			kmem_free(ct, sizeof(*ct));
    974 			return 0;
    975 		}
    976 	}
    977 
    978 	/* not found -- shouldn't happen */
    979 	return EINVAL;
    980 }
    981 
    982 /*
    983  * Invoke the "match" routine for a cfdata entry on behalf of
    984  * an external caller, usually a "submatch" routine.
    985  */
    986 int
    987 config_match(device_t parent, cfdata_t cf, void *aux)
    988 {
    989 	struct cfattach *ca;
    990 
    991 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    992 	if (ca == NULL) {
    993 		/* No attachment for this entry, oh well. */
    994 		return 0;
    995 	}
    996 
    997 	return (*ca->ca_match)(parent, cf, aux);
    998 }
    999 
   1000 /*
   1001  * Iterate over all potential children of some device, calling the given
   1002  * function (default being the child's match function) for each one.
   1003  * Nonzero returns are matches; the highest value returned is considered
   1004  * the best match.  Return the `found child' if we got a match, or NULL
   1005  * otherwise.  The `aux' pointer is simply passed on through.
   1006  *
   1007  * Note that this function is designed so that it can be used to apply
   1008  * an arbitrary function to all potential children (its return value
   1009  * can be ignored).
   1010  */
   1011 cfdata_t
   1012 config_search_loc(cfsubmatch_t fn, device_t parent,
   1013 		  const char *ifattr, const int *locs, void *aux)
   1014 {
   1015 	struct cftable *ct;
   1016 	cfdata_t cf;
   1017 	struct matchinfo m;
   1018 
   1019 	KASSERT(config_initialized);
   1020 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1021 
   1022 	m.fn = fn;
   1023 	m.parent = parent;
   1024 	m.locs = locs;
   1025 	m.aux = aux;
   1026 	m.match = NULL;
   1027 	m.pri = 0;
   1028 
   1029 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1030 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1031 
   1032 			/* We don't match root nodes here. */
   1033 			if (!cf->cf_pspec)
   1034 				continue;
   1035 
   1036 			/*
   1037 			 * Skip cf if no longer eligible, otherwise scan
   1038 			 * through parents for one matching `parent', and
   1039 			 * try match function.
   1040 			 */
   1041 			if (cf->cf_fstate == FSTATE_FOUND)
   1042 				continue;
   1043 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1044 			    cf->cf_fstate == FSTATE_DSTAR)
   1045 				continue;
   1046 
   1047 			/*
   1048 			 * If an interface attribute was specified,
   1049 			 * consider only children which attach to
   1050 			 * that attribute.
   1051 			 */
   1052 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1053 				continue;
   1054 
   1055 			if (cfparent_match(parent, cf->cf_pspec))
   1056 				mapply(&m, cf);
   1057 		}
   1058 	}
   1059 	return m.match;
   1060 }
   1061 
   1062 cfdata_t
   1063 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1064     void *aux)
   1065 {
   1066 
   1067 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1068 }
   1069 
   1070 /*
   1071  * Find the given root device.
   1072  * This is much like config_search, but there is no parent.
   1073  * Don't bother with multiple cfdata tables; the root node
   1074  * must always be in the initial table.
   1075  */
   1076 cfdata_t
   1077 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1078 {
   1079 	cfdata_t cf;
   1080 	const short *p;
   1081 	struct matchinfo m;
   1082 
   1083 	m.fn = fn;
   1084 	m.parent = ROOT;
   1085 	m.aux = aux;
   1086 	m.match = NULL;
   1087 	m.pri = 0;
   1088 	m.locs = 0;
   1089 	/*
   1090 	 * Look at root entries for matching name.  We do not bother
   1091 	 * with found-state here since only one root should ever be
   1092 	 * searched (and it must be done first).
   1093 	 */
   1094 	for (p = cfroots; *p >= 0; p++) {
   1095 		cf = &cfdata[*p];
   1096 		if (strcmp(cf->cf_name, rootname) == 0)
   1097 			mapply(&m, cf);
   1098 	}
   1099 	return m.match;
   1100 }
   1101 
   1102 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1103 
   1104 /*
   1105  * The given `aux' argument describes a device that has been found
   1106  * on the given parent, but not necessarily configured.  Locate the
   1107  * configuration data for that device (using the submatch function
   1108  * provided, or using candidates' cd_match configuration driver
   1109  * functions) and attach it, and return its device_t.  If the device was
   1110  * not configured, call the given `print' function and return NULL.
   1111  */
   1112 device_t
   1113 config_found_sm_loc(device_t parent,
   1114 		const char *ifattr, const int *locs, void *aux,
   1115 		cfprint_t print, cfsubmatch_t submatch)
   1116 {
   1117 	cfdata_t cf;
   1118 
   1119 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1120 		return(config_attach_loc(parent, cf, locs, aux, print));
   1121 	if (print) {
   1122 		if (config_do_twiddle && cold)
   1123 			twiddle();
   1124 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1125 	}
   1126 
   1127 	/*
   1128 	 * This has the effect of mixing in a single timestamp to the
   1129 	 * entropy pool.  Experiments indicate the estimator will almost
   1130 	 * always attribute one bit of entropy to this sample; analysis
   1131 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1132 	 * bits of entropy/sample so this seems appropriately conservative.
   1133 	 */
   1134 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1135 	return NULL;
   1136 }
   1137 
   1138 device_t
   1139 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1140     cfprint_t print)
   1141 {
   1142 
   1143 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1144 }
   1145 
   1146 device_t
   1147 config_found(device_t parent, void *aux, cfprint_t print)
   1148 {
   1149 
   1150 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1151 }
   1152 
   1153 /*
   1154  * As above, but for root devices.
   1155  */
   1156 device_t
   1157 config_rootfound(const char *rootname, void *aux)
   1158 {
   1159 	cfdata_t cf;
   1160 
   1161 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1162 		return config_attach(ROOT, cf, aux, NULL);
   1163 	aprint_error("root device %s not configured\n", rootname);
   1164 	return NULL;
   1165 }
   1166 
   1167 /* just like sprintf(buf, "%d") except that it works from the end */
   1168 static char *
   1169 number(char *ep, int n)
   1170 {
   1171 
   1172 	*--ep = 0;
   1173 	while (n >= 10) {
   1174 		*--ep = (n % 10) + '0';
   1175 		n /= 10;
   1176 	}
   1177 	*--ep = n + '0';
   1178 	return ep;
   1179 }
   1180 
   1181 /*
   1182  * Expand the size of the cd_devs array if necessary.
   1183  *
   1184  * The caller must hold alldevs_lock. config_makeroom() may release and
   1185  * re-acquire alldevs_lock, so callers should re-check conditions such
   1186  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1187  * returns.
   1188  */
   1189 static void
   1190 config_makeroom(int n, struct cfdriver *cd)
   1191 {
   1192 	int ondevs, nndevs;
   1193 	device_t *osp, *nsp;
   1194 
   1195 	KASSERT(mutex_owned(&alldevs_lock));
   1196 	alldevs_nwrite++;
   1197 
   1198 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1199 		;
   1200 
   1201 	while (n >= cd->cd_ndevs) {
   1202 		/*
   1203 		 * Need to expand the array.
   1204 		 */
   1205 		ondevs = cd->cd_ndevs;
   1206 		osp = cd->cd_devs;
   1207 
   1208 		/*
   1209 		 * Release alldevs_lock around allocation, which may
   1210 		 * sleep.
   1211 		 */
   1212 		mutex_exit(&alldevs_lock);
   1213 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1214 		mutex_enter(&alldevs_lock);
   1215 
   1216 		/*
   1217 		 * If another thread moved the array while we did
   1218 		 * not hold alldevs_lock, try again.
   1219 		 */
   1220 		if (cd->cd_devs != osp) {
   1221 			mutex_exit(&alldevs_lock);
   1222 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1223 			mutex_enter(&alldevs_lock);
   1224 			continue;
   1225 		}
   1226 
   1227 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1228 		if (ondevs != 0)
   1229 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1230 
   1231 		cd->cd_ndevs = nndevs;
   1232 		cd->cd_devs = nsp;
   1233 		if (ondevs != 0) {
   1234 			mutex_exit(&alldevs_lock);
   1235 			kmem_free(osp, sizeof(device_t[ondevs]));
   1236 			mutex_enter(&alldevs_lock);
   1237 		}
   1238 	}
   1239 	KASSERT(mutex_owned(&alldevs_lock));
   1240 	alldevs_nwrite--;
   1241 }
   1242 
   1243 /*
   1244  * Put dev into the devices list.
   1245  */
   1246 static void
   1247 config_devlink(device_t dev)
   1248 {
   1249 
   1250 	mutex_enter(&alldevs_lock);
   1251 
   1252 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1253 
   1254 	dev->dv_add_gen = alldevs_gen;
   1255 	/* It is safe to add a device to the tail of the list while
   1256 	 * readers and writers are in the list.
   1257 	 */
   1258 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1259 	mutex_exit(&alldevs_lock);
   1260 }
   1261 
   1262 static void
   1263 config_devfree(device_t dev)
   1264 {
   1265 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1266 
   1267 	if (dev->dv_cfattach->ca_devsize > 0)
   1268 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1269 	if (priv)
   1270 		kmem_free(dev, sizeof(*dev));
   1271 }
   1272 
   1273 /*
   1274  * Caller must hold alldevs_lock.
   1275  */
   1276 static void
   1277 config_devunlink(device_t dev, struct devicelist *garbage)
   1278 {
   1279 	struct device_garbage *dg = &dev->dv_garbage;
   1280 	cfdriver_t cd = device_cfdriver(dev);
   1281 	int i;
   1282 
   1283 	KASSERT(mutex_owned(&alldevs_lock));
   1284 
   1285  	/* Unlink from device list.  Link to garbage list. */
   1286 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1287 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1288 
   1289 	/* Remove from cfdriver's array. */
   1290 	cd->cd_devs[dev->dv_unit] = NULL;
   1291 
   1292 	/*
   1293 	 * If the device now has no units in use, unlink its softc array.
   1294 	 */
   1295 	for (i = 0; i < cd->cd_ndevs; i++) {
   1296 		if (cd->cd_devs[i] != NULL)
   1297 			break;
   1298 	}
   1299 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1300 	if (i == cd->cd_ndevs) {
   1301 		dg->dg_ndevs = cd->cd_ndevs;
   1302 		dg->dg_devs = cd->cd_devs;
   1303 		cd->cd_devs = NULL;
   1304 		cd->cd_ndevs = 0;
   1305 	}
   1306 }
   1307 
   1308 static void
   1309 config_devdelete(device_t dev)
   1310 {
   1311 	struct device_garbage *dg = &dev->dv_garbage;
   1312 	device_lock_t dvl = device_getlock(dev);
   1313 
   1314 	if (dg->dg_devs != NULL)
   1315 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1316 
   1317 	cv_destroy(&dvl->dvl_cv);
   1318 	mutex_destroy(&dvl->dvl_mtx);
   1319 
   1320 	KASSERT(dev->dv_properties != NULL);
   1321 	prop_object_release(dev->dv_properties);
   1322 
   1323 	if (dev->dv_activity_handlers)
   1324 		panic("%s with registered handlers", __func__);
   1325 
   1326 	if (dev->dv_locators) {
   1327 		size_t amount = *--dev->dv_locators;
   1328 		kmem_free(dev->dv_locators, amount);
   1329 	}
   1330 
   1331 	config_devfree(dev);
   1332 }
   1333 
   1334 static int
   1335 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1336 {
   1337 	int unit;
   1338 
   1339 	if (cf->cf_fstate == FSTATE_STAR) {
   1340 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1341 			if (cd->cd_devs[unit] == NULL)
   1342 				break;
   1343 		/*
   1344 		 * unit is now the unit of the first NULL device pointer,
   1345 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1346 		 */
   1347 	} else {
   1348 		unit = cf->cf_unit;
   1349 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1350 			unit = -1;
   1351 	}
   1352 	return unit;
   1353 }
   1354 
   1355 static int
   1356 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1357 {
   1358 	struct alldevs_foray af;
   1359 	int unit;
   1360 
   1361 	config_alldevs_enter(&af);
   1362 	for (;;) {
   1363 		unit = config_unit_nextfree(cd, cf);
   1364 		if (unit == -1)
   1365 			break;
   1366 		if (unit < cd->cd_ndevs) {
   1367 			cd->cd_devs[unit] = dev;
   1368 			dev->dv_unit = unit;
   1369 			break;
   1370 		}
   1371 		config_makeroom(unit, cd);
   1372 	}
   1373 	config_alldevs_exit(&af);
   1374 
   1375 	return unit;
   1376 }
   1377 
   1378 static device_t
   1379 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1380 {
   1381 	cfdriver_t cd;
   1382 	cfattach_t ca;
   1383 	size_t lname, lunit;
   1384 	const char *xunit;
   1385 	int myunit;
   1386 	char num[10];
   1387 	device_t dev;
   1388 	void *dev_private;
   1389 	const struct cfiattrdata *ia;
   1390 	device_lock_t dvl;
   1391 
   1392 	cd = config_cfdriver_lookup(cf->cf_name);
   1393 	if (cd == NULL)
   1394 		return NULL;
   1395 
   1396 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1397 	if (ca == NULL)
   1398 		return NULL;
   1399 
   1400 	/* get memory for all device vars */
   1401 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1402 	    || ca->ca_devsize >= sizeof(struct device),
   1403 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1404 	    sizeof(struct device));
   1405 	if (ca->ca_devsize > 0) {
   1406 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1407 	} else {
   1408 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1409 		dev_private = NULL;
   1410 	}
   1411 
   1412 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1413 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1414 	} else {
   1415 		dev = dev_private;
   1416 #ifdef DIAGNOSTIC
   1417 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1418 #endif
   1419 		KASSERT(dev != NULL);
   1420 	}
   1421 	dev->dv_class = cd->cd_class;
   1422 	dev->dv_cfdata = cf;
   1423 	dev->dv_cfdriver = cd;
   1424 	dev->dv_cfattach = ca;
   1425 	dev->dv_activity_count = 0;
   1426 	dev->dv_activity_handlers = NULL;
   1427 	dev->dv_private = dev_private;
   1428 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1429 
   1430 	myunit = config_unit_alloc(dev, cd, cf);
   1431 	if (myunit == -1) {
   1432 		config_devfree(dev);
   1433 		return NULL;
   1434 	}
   1435 
   1436 	/* compute length of name and decimal expansion of unit number */
   1437 	lname = strlen(cd->cd_name);
   1438 	xunit = number(&num[sizeof(num)], myunit);
   1439 	lunit = &num[sizeof(num)] - xunit;
   1440 	if (lname + lunit > sizeof(dev->dv_xname))
   1441 		panic("config_devalloc: device name too long");
   1442 
   1443 	dvl = device_getlock(dev);
   1444 
   1445 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1446 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1447 
   1448 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1449 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1450 	dev->dv_parent = parent;
   1451 	if (parent != NULL)
   1452 		dev->dv_depth = parent->dv_depth + 1;
   1453 	else
   1454 		dev->dv_depth = 0;
   1455 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1456 	if (locs) {
   1457 		KASSERT(parent); /* no locators at root */
   1458 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1459 		dev->dv_locators =
   1460 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1461 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1462 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1463 	}
   1464 	dev->dv_properties = prop_dictionary_create();
   1465 	KASSERT(dev->dv_properties != NULL);
   1466 
   1467 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1468 	    "device-driver", dev->dv_cfdriver->cd_name);
   1469 	prop_dictionary_set_uint16(dev->dv_properties,
   1470 	    "device-unit", dev->dv_unit);
   1471 	if (parent != NULL) {
   1472 		prop_dictionary_set_cstring(dev->dv_properties,
   1473 		    "device-parent", device_xname(parent));
   1474 	}
   1475 
   1476 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1477 		config_add_attrib_dict(dev);
   1478 
   1479 	return dev;
   1480 }
   1481 
   1482 /*
   1483  * Create an array of device attach attributes and add it
   1484  * to the device's dv_properties dictionary.
   1485  *
   1486  * <key>interface-attributes</key>
   1487  * <array>
   1488  *    <dict>
   1489  *       <key>attribute-name</key>
   1490  *       <string>foo</string>
   1491  *       <key>locators</key>
   1492  *       <array>
   1493  *          <dict>
   1494  *             <key>loc-name</key>
   1495  *             <string>foo-loc1</string>
   1496  *          </dict>
   1497  *          <dict>
   1498  *             <key>loc-name</key>
   1499  *             <string>foo-loc2</string>
   1500  *             <key>default</key>
   1501  *             <string>foo-loc2-default</string>
   1502  *          </dict>
   1503  *          ...
   1504  *       </array>
   1505  *    </dict>
   1506  *    ...
   1507  * </array>
   1508  */
   1509 
   1510 static void
   1511 config_add_attrib_dict(device_t dev)
   1512 {
   1513 	int i, j;
   1514 	const struct cfiattrdata *ci;
   1515 	prop_dictionary_t attr_dict, loc_dict;
   1516 	prop_array_t attr_array, loc_array;
   1517 
   1518 	if ((attr_array = prop_array_create()) == NULL)
   1519 		return;
   1520 
   1521 	for (i = 0; ; i++) {
   1522 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1523 			break;
   1524 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1525 			break;
   1526 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1527 		    ci->ci_name);
   1528 
   1529 		/* Create an array of the locator names and defaults */
   1530 
   1531 		if (ci->ci_loclen != 0 &&
   1532 		    (loc_array = prop_array_create()) != NULL) {
   1533 			for (j = 0; j < ci->ci_loclen; j++) {
   1534 				loc_dict = prop_dictionary_create();
   1535 				if (loc_dict == NULL)
   1536 					continue;
   1537 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1538 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1539 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1540 					prop_dictionary_set_cstring_nocopy(
   1541 					    loc_dict, "default",
   1542 					    ci->ci_locdesc[j].cld_defaultstr);
   1543 				prop_array_set(loc_array, j, loc_dict);
   1544 				prop_object_release(loc_dict);
   1545 			}
   1546 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1547 			    loc_array);
   1548 		}
   1549 		prop_array_add(attr_array, attr_dict);
   1550 		prop_object_release(attr_dict);
   1551 	}
   1552 	if (i == 0)
   1553 		prop_object_release(attr_array);
   1554 	else
   1555 		prop_dictionary_set_and_rel(dev->dv_properties,
   1556 		    "interface-attributes", attr_array);
   1557 
   1558 	return;
   1559 }
   1560 
   1561 /*
   1562  * Attach a found device.
   1563  */
   1564 device_t
   1565 config_attach_loc(device_t parent, cfdata_t cf,
   1566 	const int *locs, void *aux, cfprint_t print)
   1567 {
   1568 	device_t dev;
   1569 	struct cftable *ct;
   1570 	const char *drvname;
   1571 
   1572 	dev = config_devalloc(parent, cf, locs);
   1573 	if (!dev)
   1574 		panic("config_attach: allocation of device softc failed");
   1575 
   1576 	/* XXX redundant - see below? */
   1577 	if (cf->cf_fstate != FSTATE_STAR) {
   1578 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1579 		cf->cf_fstate = FSTATE_FOUND;
   1580 	}
   1581 
   1582 	config_devlink(dev);
   1583 
   1584 	if (config_do_twiddle && cold)
   1585 		twiddle();
   1586 	else
   1587 		aprint_naive("Found ");
   1588 	/*
   1589 	 * We want the next two printfs for normal, verbose, and quiet,
   1590 	 * but not silent (in which case, we're twiddling, instead).
   1591 	 */
   1592 	if (parent == ROOT) {
   1593 		aprint_naive("%s (root)", device_xname(dev));
   1594 		aprint_normal("%s (root)", device_xname(dev));
   1595 	} else {
   1596 		aprint_naive("%s at %s", device_xname(dev),
   1597 		    device_xname(parent));
   1598 		aprint_normal("%s at %s", device_xname(dev),
   1599 		    device_xname(parent));
   1600 		if (print)
   1601 			(void) (*print)(aux, NULL);
   1602 	}
   1603 
   1604 	/*
   1605 	 * Before attaching, clobber any unfound devices that are
   1606 	 * otherwise identical.
   1607 	 * XXX code above is redundant?
   1608 	 */
   1609 	drvname = dev->dv_cfdriver->cd_name;
   1610 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1611 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1612 			if (STREQ(cf->cf_name, drvname) &&
   1613 			    cf->cf_unit == dev->dv_unit) {
   1614 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1615 					cf->cf_fstate = FSTATE_FOUND;
   1616 			}
   1617 		}
   1618 	}
   1619 	device_register(dev, aux);
   1620 
   1621 	/* Let userland know */
   1622 	devmon_report_device(dev, true);
   1623 
   1624 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1625 
   1626 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1627 	    && !device_pmf_is_registered(dev))
   1628 		aprint_debug_dev(dev,
   1629 		    "WARNING: power management not supported\n");
   1630 
   1631 	config_process_deferred(&deferred_config_queue, dev);
   1632 
   1633 	device_register_post_config(dev, aux);
   1634 	return dev;
   1635 }
   1636 
   1637 device_t
   1638 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1639 {
   1640 
   1641 	return config_attach_loc(parent, cf, NULL, aux, print);
   1642 }
   1643 
   1644 /*
   1645  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1646  * way are silently inserted into the device tree, and their children
   1647  * attached.
   1648  *
   1649  * Note that because pseudo-devices are attached silently, any information
   1650  * the attach routine wishes to print should be prefixed with the device
   1651  * name by the attach routine.
   1652  */
   1653 device_t
   1654 config_attach_pseudo(cfdata_t cf)
   1655 {
   1656 	device_t dev;
   1657 
   1658 	dev = config_devalloc(ROOT, cf, NULL);
   1659 	if (!dev)
   1660 		return NULL;
   1661 
   1662 	/* XXX mark busy in cfdata */
   1663 
   1664 	if (cf->cf_fstate != FSTATE_STAR) {
   1665 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1666 		cf->cf_fstate = FSTATE_FOUND;
   1667 	}
   1668 
   1669 	config_devlink(dev);
   1670 
   1671 #if 0	/* XXXJRT not yet */
   1672 	device_register(dev, NULL);	/* like a root node */
   1673 #endif
   1674 
   1675 	/* Let userland know */
   1676 	devmon_report_device(dev, true);
   1677 
   1678 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1679 
   1680 	config_process_deferred(&deferred_config_queue, dev);
   1681 	return dev;
   1682 }
   1683 
   1684 /*
   1685  * Caller must hold alldevs_lock.
   1686  */
   1687 static void
   1688 config_collect_garbage(struct devicelist *garbage)
   1689 {
   1690 	device_t dv;
   1691 
   1692 	KASSERT(!cpu_intr_p());
   1693 	KASSERT(!cpu_softintr_p());
   1694 	KASSERT(mutex_owned(&alldevs_lock));
   1695 
   1696 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1697 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1698 			if (dv->dv_del_gen != 0)
   1699 				break;
   1700 		}
   1701 		if (dv == NULL) {
   1702 			alldevs_garbage = false;
   1703 			break;
   1704 		}
   1705 		config_devunlink(dv, garbage);
   1706 	}
   1707 	KASSERT(mutex_owned(&alldevs_lock));
   1708 }
   1709 
   1710 static void
   1711 config_dump_garbage(struct devicelist *garbage)
   1712 {
   1713 	device_t dv;
   1714 
   1715 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1716 		TAILQ_REMOVE(garbage, dv, dv_list);
   1717 		config_devdelete(dv);
   1718 	}
   1719 }
   1720 
   1721 /*
   1722  * Detach a device.  Optionally forced (e.g. because of hardware
   1723  * removal) and quiet.  Returns zero if successful, non-zero
   1724  * (an error code) otherwise.
   1725  *
   1726  * Note that this code wants to be run from a process context, so
   1727  * that the detach can sleep to allow processes which have a device
   1728  * open to run and unwind their stacks.
   1729  */
   1730 int
   1731 config_detach(device_t dev, int flags)
   1732 {
   1733 	struct alldevs_foray af;
   1734 	struct cftable *ct;
   1735 	cfdata_t cf;
   1736 	const struct cfattach *ca;
   1737 	struct cfdriver *cd;
   1738 	device_t d __diagused;
   1739 	int rv = 0;
   1740 
   1741 	cf = dev->dv_cfdata;
   1742 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1743 		cf->cf_fstate == FSTATE_STAR),
   1744 	    "config_detach: %s: bad device fstate: %d",
   1745 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1746 
   1747 	cd = dev->dv_cfdriver;
   1748 	KASSERT(cd != NULL);
   1749 
   1750 	ca = dev->dv_cfattach;
   1751 	KASSERT(ca != NULL);
   1752 
   1753 	mutex_enter(&alldevs_lock);
   1754 	if (dev->dv_del_gen != 0) {
   1755 		mutex_exit(&alldevs_lock);
   1756 #ifdef DIAGNOSTIC
   1757 		printf("%s: %s is already detached\n", __func__,
   1758 		    device_xname(dev));
   1759 #endif /* DIAGNOSTIC */
   1760 		return ENOENT;
   1761 	}
   1762 	alldevs_nwrite++;
   1763 	mutex_exit(&alldevs_lock);
   1764 
   1765 	if (!detachall &&
   1766 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1767 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1768 		rv = EOPNOTSUPP;
   1769 	} else if (ca->ca_detach != NULL) {
   1770 		rv = (*ca->ca_detach)(dev, flags);
   1771 	} else
   1772 		rv = EOPNOTSUPP;
   1773 
   1774 	/*
   1775 	 * If it was not possible to detach the device, then we either
   1776 	 * panic() (for the forced but failed case), or return an error.
   1777 	 *
   1778 	 * If it was possible to detach the device, ensure that the
   1779 	 * device is deactivated.
   1780 	 */
   1781 	if (rv == 0)
   1782 		dev->dv_flags &= ~DVF_ACTIVE;
   1783 	else if ((flags & DETACH_FORCE) == 0)
   1784 		goto out;
   1785 	else {
   1786 		panic("config_detach: forced detach of %s failed (%d)",
   1787 		    device_xname(dev), rv);
   1788 	}
   1789 
   1790 	/*
   1791 	 * The device has now been successfully detached.
   1792 	 */
   1793 
   1794 	/* Let userland know */
   1795 	devmon_report_device(dev, false);
   1796 
   1797 #ifdef DIAGNOSTIC
   1798 	/*
   1799 	 * Sanity: If you're successfully detached, you should have no
   1800 	 * children.  (Note that because children must be attached
   1801 	 * after parents, we only need to search the latter part of
   1802 	 * the list.)
   1803 	 */
   1804 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1805 	    d = TAILQ_NEXT(d, dv_list)) {
   1806 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1807 			printf("config_detach: detached device %s"
   1808 			    " has children %s\n", device_xname(dev),
   1809 			    device_xname(d));
   1810 			panic("config_detach");
   1811 		}
   1812 	}
   1813 #endif
   1814 
   1815 	/* notify the parent that the child is gone */
   1816 	if (dev->dv_parent) {
   1817 		device_t p = dev->dv_parent;
   1818 		if (p->dv_cfattach->ca_childdetached)
   1819 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1820 	}
   1821 
   1822 	/*
   1823 	 * Mark cfdata to show that the unit can be reused, if possible.
   1824 	 */
   1825 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1826 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1827 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1828 				if (cf->cf_fstate == FSTATE_FOUND &&
   1829 				    cf->cf_unit == dev->dv_unit)
   1830 					cf->cf_fstate = FSTATE_NOTFOUND;
   1831 			}
   1832 		}
   1833 	}
   1834 
   1835 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1836 		aprint_normal_dev(dev, "detached\n");
   1837 
   1838 out:
   1839 	config_alldevs_enter(&af);
   1840 	KASSERT(alldevs_nwrite != 0);
   1841 	--alldevs_nwrite;
   1842 	if (rv == 0 && dev->dv_del_gen == 0) {
   1843 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1844 			config_devunlink(dev, &af.af_garbage);
   1845 		else {
   1846 			dev->dv_del_gen = alldevs_gen;
   1847 			alldevs_garbage = true;
   1848 		}
   1849 	}
   1850 	config_alldevs_exit(&af);
   1851 
   1852 	return rv;
   1853 }
   1854 
   1855 int
   1856 config_detach_children(device_t parent, int flags)
   1857 {
   1858 	device_t dv;
   1859 	deviter_t di;
   1860 	int error = 0;
   1861 
   1862 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1863 	     dv = deviter_next(&di)) {
   1864 		if (device_parent(dv) != parent)
   1865 			continue;
   1866 		if ((error = config_detach(dv, flags)) != 0)
   1867 			break;
   1868 	}
   1869 	deviter_release(&di);
   1870 	return error;
   1871 }
   1872 
   1873 device_t
   1874 shutdown_first(struct shutdown_state *s)
   1875 {
   1876 	if (!s->initialized) {
   1877 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1878 		s->initialized = true;
   1879 	}
   1880 	return shutdown_next(s);
   1881 }
   1882 
   1883 device_t
   1884 shutdown_next(struct shutdown_state *s)
   1885 {
   1886 	device_t dv;
   1887 
   1888 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1889 		;
   1890 
   1891 	if (dv == NULL)
   1892 		s->initialized = false;
   1893 
   1894 	return dv;
   1895 }
   1896 
   1897 bool
   1898 config_detach_all(int how)
   1899 {
   1900 	static struct shutdown_state s;
   1901 	device_t curdev;
   1902 	bool progress = false;
   1903 	int flags;
   1904 
   1905 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1906 		return false;
   1907 
   1908 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1909 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1910 	else
   1911 		flags = DETACH_SHUTDOWN;
   1912 
   1913 	for (curdev = shutdown_first(&s); curdev != NULL;
   1914 	     curdev = shutdown_next(&s)) {
   1915 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1916 		if (config_detach(curdev, flags) == 0) {
   1917 			progress = true;
   1918 			aprint_debug("success.");
   1919 		} else
   1920 			aprint_debug("failed.");
   1921 	}
   1922 	return progress;
   1923 }
   1924 
   1925 static bool
   1926 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1927 {
   1928 	device_t dv;
   1929 
   1930 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1931 		if (device_parent(dv) == ancestor)
   1932 			return true;
   1933 	}
   1934 	return false;
   1935 }
   1936 
   1937 int
   1938 config_deactivate(device_t dev)
   1939 {
   1940 	deviter_t di;
   1941 	const struct cfattach *ca;
   1942 	device_t descendant;
   1943 	int s, rv = 0, oflags;
   1944 
   1945 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1946 	     descendant != NULL;
   1947 	     descendant = deviter_next(&di)) {
   1948 		if (dev != descendant &&
   1949 		    !device_is_ancestor_of(dev, descendant))
   1950 			continue;
   1951 
   1952 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1953 			continue;
   1954 
   1955 		ca = descendant->dv_cfattach;
   1956 		oflags = descendant->dv_flags;
   1957 
   1958 		descendant->dv_flags &= ~DVF_ACTIVE;
   1959 		if (ca->ca_activate == NULL)
   1960 			continue;
   1961 		s = splhigh();
   1962 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1963 		splx(s);
   1964 		if (rv != 0)
   1965 			descendant->dv_flags = oflags;
   1966 	}
   1967 	deviter_release(&di);
   1968 	return rv;
   1969 }
   1970 
   1971 /*
   1972  * Defer the configuration of the specified device until all
   1973  * of its parent's devices have been attached.
   1974  */
   1975 void
   1976 config_defer(device_t dev, void (*func)(device_t))
   1977 {
   1978 	struct deferred_config *dc;
   1979 
   1980 	if (dev->dv_parent == NULL)
   1981 		panic("config_defer: can't defer config of a root device");
   1982 
   1983 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1984 
   1985 	config_pending_incr(dev);
   1986 
   1987 	mutex_enter(&config_misc_lock);
   1988 #ifdef DIAGNOSTIC
   1989 	struct deferred_config *odc;
   1990 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   1991 		if (odc->dc_dev == dev)
   1992 			panic("config_defer: deferred twice");
   1993 	}
   1994 #endif
   1995 	dc->dc_dev = dev;
   1996 	dc->dc_func = func;
   1997 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1998 	mutex_exit(&config_misc_lock);
   1999 }
   2000 
   2001 /*
   2002  * Defer some autoconfiguration for a device until after interrupts
   2003  * are enabled.
   2004  */
   2005 void
   2006 config_interrupts(device_t dev, void (*func)(device_t))
   2007 {
   2008 	struct deferred_config *dc;
   2009 
   2010 	/*
   2011 	 * If interrupts are enabled, callback now.
   2012 	 */
   2013 	if (cold == 0) {
   2014 		(*func)(dev);
   2015 		return;
   2016 	}
   2017 
   2018 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2019 
   2020 	config_pending_incr(dev);
   2021 
   2022 	mutex_enter(&config_misc_lock);
   2023 #ifdef DIAGNOSTIC
   2024 	struct deferred_config *odc;
   2025 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2026 		if (odc->dc_dev == dev)
   2027 			panic("config_interrupts: deferred twice");
   2028 	}
   2029 #endif
   2030 	dc->dc_dev = dev;
   2031 	dc->dc_func = func;
   2032 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2033 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2034 	mutex_exit(&config_misc_lock);
   2035 }
   2036 
   2037 /*
   2038  * Defer some autoconfiguration for a device until after root file system
   2039  * is mounted (to load firmware etc).
   2040  */
   2041 void
   2042 config_mountroot(device_t dev, void (*func)(device_t))
   2043 {
   2044 	struct deferred_config *dc;
   2045 
   2046 	/*
   2047 	 * If root file system is mounted, callback now.
   2048 	 */
   2049 	if (root_is_mounted) {
   2050 		(*func)(dev);
   2051 		return;
   2052 	}
   2053 
   2054 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2055 
   2056 	mutex_enter(&config_misc_lock);
   2057 #ifdef DIAGNOSTIC
   2058 	struct deferred_config *odc;
   2059 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2060 		if (odc->dc_dev == dev)
   2061 			panic("%s: deferred twice", __func__);
   2062 	}
   2063 #endif
   2064 
   2065 	dc->dc_dev = dev;
   2066 	dc->dc_func = func;
   2067 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2068 	mutex_exit(&config_misc_lock);
   2069 }
   2070 
   2071 /*
   2072  * Process a deferred configuration queue.
   2073  */
   2074 static void
   2075 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2076 {
   2077 	struct deferred_config *dc;
   2078 
   2079 	mutex_enter(&config_misc_lock);
   2080 	dc = TAILQ_FIRST(queue);
   2081 	while (dc) {
   2082 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2083 			TAILQ_REMOVE(queue, dc, dc_queue);
   2084 			mutex_exit(&config_misc_lock);
   2085 
   2086 			(*dc->dc_func)(dc->dc_dev);
   2087 			config_pending_decr(dc->dc_dev);
   2088 			kmem_free(dc, sizeof(*dc));
   2089 
   2090 			mutex_enter(&config_misc_lock);
   2091 			/* Restart, queue might have changed */
   2092 			dc = TAILQ_FIRST(queue);
   2093 		} else {
   2094 			dc = TAILQ_NEXT(dc, dc_queue);
   2095 		}
   2096 	}
   2097 	mutex_exit(&config_misc_lock);
   2098 }
   2099 
   2100 /*
   2101  * Manipulate the config_pending semaphore.
   2102  */
   2103 void
   2104 config_pending_incr(device_t dev)
   2105 {
   2106 
   2107 	mutex_enter(&config_misc_lock);
   2108 	config_pending++;
   2109 #ifdef DEBUG_AUTOCONF
   2110 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2111 #endif
   2112 	mutex_exit(&config_misc_lock);
   2113 }
   2114 
   2115 void
   2116 config_pending_decr(device_t dev)
   2117 {
   2118 
   2119 	KASSERT(0 < config_pending);
   2120 	mutex_enter(&config_misc_lock);
   2121 	config_pending--;
   2122 #ifdef DEBUG_AUTOCONF
   2123 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2124 #endif
   2125 	if (config_pending == 0)
   2126 		cv_broadcast(&config_misc_cv);
   2127 	mutex_exit(&config_misc_lock);
   2128 }
   2129 
   2130 /*
   2131  * Register a "finalization" routine.  Finalization routines are
   2132  * called iteratively once all real devices have been found during
   2133  * autoconfiguration, for as long as any one finalizer has done
   2134  * any work.
   2135  */
   2136 int
   2137 config_finalize_register(device_t dev, int (*fn)(device_t))
   2138 {
   2139 	struct finalize_hook *f;
   2140 
   2141 	/*
   2142 	 * If finalization has already been done, invoke the
   2143 	 * callback function now.
   2144 	 */
   2145 	if (config_finalize_done) {
   2146 		while ((*fn)(dev) != 0)
   2147 			/* loop */ ;
   2148 		return 0;
   2149 	}
   2150 
   2151 	/* Ensure this isn't already on the list. */
   2152 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2153 		if (f->f_func == fn && f->f_dev == dev)
   2154 			return EEXIST;
   2155 	}
   2156 
   2157 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2158 	f->f_func = fn;
   2159 	f->f_dev = dev;
   2160 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2161 
   2162 	return 0;
   2163 }
   2164 
   2165 void
   2166 config_finalize(void)
   2167 {
   2168 	struct finalize_hook *f;
   2169 	struct pdevinit *pdev;
   2170 	extern struct pdevinit pdevinit[];
   2171 	int errcnt, rv;
   2172 
   2173 	/*
   2174 	 * Now that device driver threads have been created, wait for
   2175 	 * them to finish any deferred autoconfiguration.
   2176 	 */
   2177 	mutex_enter(&config_misc_lock);
   2178 	while (config_pending != 0)
   2179 		cv_wait(&config_misc_cv, &config_misc_lock);
   2180 	mutex_exit(&config_misc_lock);
   2181 
   2182 	KERNEL_LOCK(1, NULL);
   2183 
   2184 	/* Attach pseudo-devices. */
   2185 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2186 		(*pdev->pdev_attach)(pdev->pdev_count);
   2187 
   2188 	/* Run the hooks until none of them does any work. */
   2189 	do {
   2190 		rv = 0;
   2191 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2192 			rv |= (*f->f_func)(f->f_dev);
   2193 	} while (rv != 0);
   2194 
   2195 	config_finalize_done = 1;
   2196 
   2197 	/* Now free all the hooks. */
   2198 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2199 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2200 		kmem_free(f, sizeof(*f));
   2201 	}
   2202 
   2203 	KERNEL_UNLOCK_ONE(NULL);
   2204 
   2205 	errcnt = aprint_get_error_count();
   2206 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2207 	    (boothowto & AB_VERBOSE) == 0) {
   2208 		mutex_enter(&config_misc_lock);
   2209 		if (config_do_twiddle) {
   2210 			config_do_twiddle = 0;
   2211 			printf_nolog(" done.\n");
   2212 		}
   2213 		mutex_exit(&config_misc_lock);
   2214 	}
   2215 	if (errcnt != 0) {
   2216 		printf("WARNING: %d error%s while detecting hardware; "
   2217 		    "check system log.\n", errcnt,
   2218 		    errcnt == 1 ? "" : "s");
   2219 	}
   2220 }
   2221 
   2222 void
   2223 config_twiddle_init(void)
   2224 {
   2225 
   2226 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2227 		config_do_twiddle = 1;
   2228 	}
   2229 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2230 }
   2231 
   2232 void
   2233 config_twiddle_fn(void *cookie)
   2234 {
   2235 
   2236 	mutex_enter(&config_misc_lock);
   2237 	if (config_do_twiddle) {
   2238 		twiddle();
   2239 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2240 	}
   2241 	mutex_exit(&config_misc_lock);
   2242 }
   2243 
   2244 static void
   2245 config_alldevs_enter(struct alldevs_foray *af)
   2246 {
   2247 	TAILQ_INIT(&af->af_garbage);
   2248 	mutex_enter(&alldevs_lock);
   2249 	config_collect_garbage(&af->af_garbage);
   2250 }
   2251 
   2252 static void
   2253 config_alldevs_exit(struct alldevs_foray *af)
   2254 {
   2255 	mutex_exit(&alldevs_lock);
   2256 	config_dump_garbage(&af->af_garbage);
   2257 }
   2258 
   2259 /*
   2260  * device_lookup:
   2261  *
   2262  *	Look up a device instance for a given driver.
   2263  */
   2264 device_t
   2265 device_lookup(cfdriver_t cd, int unit)
   2266 {
   2267 	device_t dv;
   2268 
   2269 	mutex_enter(&alldevs_lock);
   2270 	if (unit < 0 || unit >= cd->cd_ndevs)
   2271 		dv = NULL;
   2272 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2273 		dv = NULL;
   2274 	mutex_exit(&alldevs_lock);
   2275 
   2276 	return dv;
   2277 }
   2278 
   2279 /*
   2280  * device_lookup_private:
   2281  *
   2282  *	Look up a softc instance for a given driver.
   2283  */
   2284 void *
   2285 device_lookup_private(cfdriver_t cd, int unit)
   2286 {
   2287 
   2288 	return device_private(device_lookup(cd, unit));
   2289 }
   2290 
   2291 /*
   2292  * device_find_by_xname:
   2293  *
   2294  *	Returns the device of the given name or NULL if it doesn't exist.
   2295  */
   2296 device_t
   2297 device_find_by_xname(const char *name)
   2298 {
   2299 	device_t dv;
   2300 	deviter_t di;
   2301 
   2302 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2303 		if (strcmp(device_xname(dv), name) == 0)
   2304 			break;
   2305 	}
   2306 	deviter_release(&di);
   2307 
   2308 	return dv;
   2309 }
   2310 
   2311 /*
   2312  * device_find_by_driver_unit:
   2313  *
   2314  *	Returns the device of the given driver name and unit or
   2315  *	NULL if it doesn't exist.
   2316  */
   2317 device_t
   2318 device_find_by_driver_unit(const char *name, int unit)
   2319 {
   2320 	struct cfdriver *cd;
   2321 
   2322 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2323 		return NULL;
   2324 	return device_lookup(cd, unit);
   2325 }
   2326 
   2327 /*
   2328  * device_compatible_match:
   2329  *
   2330  *	Match a driver's "compatible" data against a device's
   2331  *	"compatible" strings.  If a match is found, we return
   2332  *	a weighted match result, and optionally the matching
   2333  *	entry.
   2334  */
   2335 int
   2336 device_compatible_match(const char **device_compats, int ndevice_compats,
   2337 			const struct device_compatible_entry *driver_compats,
   2338 			const struct device_compatible_entry **matching_entryp)
   2339 {
   2340 	const struct device_compatible_entry *dce = NULL;
   2341 	int i, match_weight;
   2342 
   2343 	if (ndevice_compats == 0 || device_compats == NULL ||
   2344 	    driver_compats == NULL)
   2345 		return 0;
   2346 
   2347 	/*
   2348 	 * We take the first match because we start with the most-specific
   2349 	 * device compatible string.
   2350 	 */
   2351 	for (i = 0, match_weight = ndevice_compats - 1;
   2352 	     i < ndevice_compats;
   2353 	     i++, match_weight--) {
   2354 		for (dce = driver_compats; dce->compat != NULL; dce++) {
   2355 			if (strcmp(dce->compat, device_compats[i]) == 0) {
   2356 				KASSERT(match_weight >= 0);
   2357 				if (matching_entryp)
   2358 					*matching_entryp = dce;
   2359 				return 1 + match_weight;
   2360 			}
   2361 		}
   2362 	}
   2363 	return 0;
   2364 }
   2365 
   2366 /*
   2367  * Power management related functions.
   2368  */
   2369 
   2370 bool
   2371 device_pmf_is_registered(device_t dev)
   2372 {
   2373 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2374 }
   2375 
   2376 bool
   2377 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2378 {
   2379 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2380 		return true;
   2381 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2382 		return false;
   2383 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2384 	    dev->dv_driver_suspend != NULL &&
   2385 	    !(*dev->dv_driver_suspend)(dev, qual))
   2386 		return false;
   2387 
   2388 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2389 	return true;
   2390 }
   2391 
   2392 bool
   2393 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2394 {
   2395 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2396 		return true;
   2397 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2398 		return false;
   2399 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2400 	    dev->dv_driver_resume != NULL &&
   2401 	    !(*dev->dv_driver_resume)(dev, qual))
   2402 		return false;
   2403 
   2404 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2405 	return true;
   2406 }
   2407 
   2408 bool
   2409 device_pmf_driver_shutdown(device_t dev, int how)
   2410 {
   2411 
   2412 	if (*dev->dv_driver_shutdown != NULL &&
   2413 	    !(*dev->dv_driver_shutdown)(dev, how))
   2414 		return false;
   2415 	return true;
   2416 }
   2417 
   2418 bool
   2419 device_pmf_driver_register(device_t dev,
   2420     bool (*suspend)(device_t, const pmf_qual_t *),
   2421     bool (*resume)(device_t, const pmf_qual_t *),
   2422     bool (*shutdown)(device_t, int))
   2423 {
   2424 	dev->dv_driver_suspend = suspend;
   2425 	dev->dv_driver_resume = resume;
   2426 	dev->dv_driver_shutdown = shutdown;
   2427 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2428 	return true;
   2429 }
   2430 
   2431 static const char *
   2432 curlwp_name(void)
   2433 {
   2434 	if (curlwp->l_name != NULL)
   2435 		return curlwp->l_name;
   2436 	else
   2437 		return curlwp->l_proc->p_comm;
   2438 }
   2439 
   2440 void
   2441 device_pmf_driver_deregister(device_t dev)
   2442 {
   2443 	device_lock_t dvl = device_getlock(dev);
   2444 
   2445 	dev->dv_driver_suspend = NULL;
   2446 	dev->dv_driver_resume = NULL;
   2447 
   2448 	mutex_enter(&dvl->dvl_mtx);
   2449 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2450 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2451 		/* Wake a thread that waits for the lock.  That
   2452 		 * thread will fail to acquire the lock, and then
   2453 		 * it will wake the next thread that waits for the
   2454 		 * lock, or else it will wake us.
   2455 		 */
   2456 		cv_signal(&dvl->dvl_cv);
   2457 		pmflock_debug(dev, __func__, __LINE__);
   2458 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2459 		pmflock_debug(dev, __func__, __LINE__);
   2460 	}
   2461 	mutex_exit(&dvl->dvl_mtx);
   2462 }
   2463 
   2464 bool
   2465 device_pmf_driver_child_register(device_t dev)
   2466 {
   2467 	device_t parent = device_parent(dev);
   2468 
   2469 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2470 		return true;
   2471 	return (*parent->dv_driver_child_register)(dev);
   2472 }
   2473 
   2474 void
   2475 device_pmf_driver_set_child_register(device_t dev,
   2476     bool (*child_register)(device_t))
   2477 {
   2478 	dev->dv_driver_child_register = child_register;
   2479 }
   2480 
   2481 static void
   2482 pmflock_debug(device_t dev, const char *func, int line)
   2483 {
   2484 	device_lock_t dvl = device_getlock(dev);
   2485 
   2486 	aprint_debug_dev(dev,
   2487 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2488 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2489 }
   2490 
   2491 static bool
   2492 device_pmf_lock1(device_t dev)
   2493 {
   2494 	device_lock_t dvl = device_getlock(dev);
   2495 
   2496 	while (device_pmf_is_registered(dev) &&
   2497 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2498 		dvl->dvl_nwait++;
   2499 		pmflock_debug(dev, __func__, __LINE__);
   2500 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2501 		pmflock_debug(dev, __func__, __LINE__);
   2502 		dvl->dvl_nwait--;
   2503 	}
   2504 	if (!device_pmf_is_registered(dev)) {
   2505 		pmflock_debug(dev, __func__, __LINE__);
   2506 		/* We could not acquire the lock, but some other thread may
   2507 		 * wait for it, also.  Wake that thread.
   2508 		 */
   2509 		cv_signal(&dvl->dvl_cv);
   2510 		return false;
   2511 	}
   2512 	dvl->dvl_nlock++;
   2513 	dvl->dvl_holder = curlwp;
   2514 	pmflock_debug(dev, __func__, __LINE__);
   2515 	return true;
   2516 }
   2517 
   2518 bool
   2519 device_pmf_lock(device_t dev)
   2520 {
   2521 	bool rc;
   2522 	device_lock_t dvl = device_getlock(dev);
   2523 
   2524 	mutex_enter(&dvl->dvl_mtx);
   2525 	rc = device_pmf_lock1(dev);
   2526 	mutex_exit(&dvl->dvl_mtx);
   2527 
   2528 	return rc;
   2529 }
   2530 
   2531 void
   2532 device_pmf_unlock(device_t dev)
   2533 {
   2534 	device_lock_t dvl = device_getlock(dev);
   2535 
   2536 	KASSERT(dvl->dvl_nlock > 0);
   2537 	mutex_enter(&dvl->dvl_mtx);
   2538 	if (--dvl->dvl_nlock == 0)
   2539 		dvl->dvl_holder = NULL;
   2540 	cv_signal(&dvl->dvl_cv);
   2541 	pmflock_debug(dev, __func__, __LINE__);
   2542 	mutex_exit(&dvl->dvl_mtx);
   2543 }
   2544 
   2545 device_lock_t
   2546 device_getlock(device_t dev)
   2547 {
   2548 	return &dev->dv_lock;
   2549 }
   2550 
   2551 void *
   2552 device_pmf_bus_private(device_t dev)
   2553 {
   2554 	return dev->dv_bus_private;
   2555 }
   2556 
   2557 bool
   2558 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2559 {
   2560 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2561 		return true;
   2562 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2563 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2564 		return false;
   2565 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2566 	    dev->dv_bus_suspend != NULL &&
   2567 	    !(*dev->dv_bus_suspend)(dev, qual))
   2568 		return false;
   2569 
   2570 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2571 	return true;
   2572 }
   2573 
   2574 bool
   2575 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2576 {
   2577 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2578 		return true;
   2579 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2580 	    dev->dv_bus_resume != NULL &&
   2581 	    !(*dev->dv_bus_resume)(dev, qual))
   2582 		return false;
   2583 
   2584 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2585 	return true;
   2586 }
   2587 
   2588 bool
   2589 device_pmf_bus_shutdown(device_t dev, int how)
   2590 {
   2591 
   2592 	if (*dev->dv_bus_shutdown != NULL &&
   2593 	    !(*dev->dv_bus_shutdown)(dev, how))
   2594 		return false;
   2595 	return true;
   2596 }
   2597 
   2598 void
   2599 device_pmf_bus_register(device_t dev, void *priv,
   2600     bool (*suspend)(device_t, const pmf_qual_t *),
   2601     bool (*resume)(device_t, const pmf_qual_t *),
   2602     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2603 {
   2604 	dev->dv_bus_private = priv;
   2605 	dev->dv_bus_resume = resume;
   2606 	dev->dv_bus_suspend = suspend;
   2607 	dev->dv_bus_shutdown = shutdown;
   2608 	dev->dv_bus_deregister = deregister;
   2609 }
   2610 
   2611 void
   2612 device_pmf_bus_deregister(device_t dev)
   2613 {
   2614 	if (dev->dv_bus_deregister == NULL)
   2615 		return;
   2616 	(*dev->dv_bus_deregister)(dev);
   2617 	dev->dv_bus_private = NULL;
   2618 	dev->dv_bus_suspend = NULL;
   2619 	dev->dv_bus_resume = NULL;
   2620 	dev->dv_bus_deregister = NULL;
   2621 }
   2622 
   2623 void *
   2624 device_pmf_class_private(device_t dev)
   2625 {
   2626 	return dev->dv_class_private;
   2627 }
   2628 
   2629 bool
   2630 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2631 {
   2632 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2633 		return true;
   2634 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2635 	    dev->dv_class_suspend != NULL &&
   2636 	    !(*dev->dv_class_suspend)(dev, qual))
   2637 		return false;
   2638 
   2639 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2640 	return true;
   2641 }
   2642 
   2643 bool
   2644 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2645 {
   2646 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2647 		return true;
   2648 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2649 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2650 		return false;
   2651 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2652 	    dev->dv_class_resume != NULL &&
   2653 	    !(*dev->dv_class_resume)(dev, qual))
   2654 		return false;
   2655 
   2656 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2657 	return true;
   2658 }
   2659 
   2660 void
   2661 device_pmf_class_register(device_t dev, void *priv,
   2662     bool (*suspend)(device_t, const pmf_qual_t *),
   2663     bool (*resume)(device_t, const pmf_qual_t *),
   2664     void (*deregister)(device_t))
   2665 {
   2666 	dev->dv_class_private = priv;
   2667 	dev->dv_class_suspend = suspend;
   2668 	dev->dv_class_resume = resume;
   2669 	dev->dv_class_deregister = deregister;
   2670 }
   2671 
   2672 void
   2673 device_pmf_class_deregister(device_t dev)
   2674 {
   2675 	if (dev->dv_class_deregister == NULL)
   2676 		return;
   2677 	(*dev->dv_class_deregister)(dev);
   2678 	dev->dv_class_private = NULL;
   2679 	dev->dv_class_suspend = NULL;
   2680 	dev->dv_class_resume = NULL;
   2681 	dev->dv_class_deregister = NULL;
   2682 }
   2683 
   2684 bool
   2685 device_active(device_t dev, devactive_t type)
   2686 {
   2687 	size_t i;
   2688 
   2689 	if (dev->dv_activity_count == 0)
   2690 		return false;
   2691 
   2692 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2693 		if (dev->dv_activity_handlers[i] == NULL)
   2694 			break;
   2695 		(*dev->dv_activity_handlers[i])(dev, type);
   2696 	}
   2697 
   2698 	return true;
   2699 }
   2700 
   2701 bool
   2702 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2703 {
   2704 	void (**new_handlers)(device_t, devactive_t);
   2705 	void (**old_handlers)(device_t, devactive_t);
   2706 	size_t i, old_size, new_size;
   2707 	int s;
   2708 
   2709 	old_handlers = dev->dv_activity_handlers;
   2710 	old_size = dev->dv_activity_count;
   2711 
   2712 	KASSERT(old_size == 0 || old_handlers != NULL);
   2713 
   2714 	for (i = 0; i < old_size; ++i) {
   2715 		KASSERT(old_handlers[i] != handler);
   2716 		if (old_handlers[i] == NULL) {
   2717 			old_handlers[i] = handler;
   2718 			return true;
   2719 		}
   2720 	}
   2721 
   2722 	new_size = old_size + 4;
   2723 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2724 
   2725 	for (i = 0; i < old_size; ++i)
   2726 		new_handlers[i] = old_handlers[i];
   2727 	new_handlers[old_size] = handler;
   2728 	for (i = old_size+1; i < new_size; ++i)
   2729 		new_handlers[i] = NULL;
   2730 
   2731 	s = splhigh();
   2732 	dev->dv_activity_count = new_size;
   2733 	dev->dv_activity_handlers = new_handlers;
   2734 	splx(s);
   2735 
   2736 	if (old_size > 0)
   2737 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2738 
   2739 	return true;
   2740 }
   2741 
   2742 void
   2743 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2744 {
   2745 	void (**old_handlers)(device_t, devactive_t);
   2746 	size_t i, old_size;
   2747 	int s;
   2748 
   2749 	old_handlers = dev->dv_activity_handlers;
   2750 	old_size = dev->dv_activity_count;
   2751 
   2752 	for (i = 0; i < old_size; ++i) {
   2753 		if (old_handlers[i] == handler)
   2754 			break;
   2755 		if (old_handlers[i] == NULL)
   2756 			return; /* XXX panic? */
   2757 	}
   2758 
   2759 	if (i == old_size)
   2760 		return; /* XXX panic? */
   2761 
   2762 	for (; i < old_size - 1; ++i) {
   2763 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2764 			continue;
   2765 
   2766 		if (i == 0) {
   2767 			s = splhigh();
   2768 			dev->dv_activity_count = 0;
   2769 			dev->dv_activity_handlers = NULL;
   2770 			splx(s);
   2771 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2772 		}
   2773 		return;
   2774 	}
   2775 	old_handlers[i] = NULL;
   2776 }
   2777 
   2778 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2779 static bool
   2780 device_exists_at(device_t dv, devgen_t gen)
   2781 {
   2782 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2783 	    dv->dv_add_gen <= gen;
   2784 }
   2785 
   2786 static bool
   2787 deviter_visits(const deviter_t *di, device_t dv)
   2788 {
   2789 	return device_exists_at(dv, di->di_gen);
   2790 }
   2791 
   2792 /*
   2793  * Device Iteration
   2794  *
   2795  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2796  *     each device_t's in the device tree.
   2797  *
   2798  * deviter_init(di, flags): initialize the device iterator `di'
   2799  *     to "walk" the device tree.  deviter_next(di) will return
   2800  *     the first device_t in the device tree, or NULL if there are
   2801  *     no devices.
   2802  *
   2803  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2804  *     caller intends to modify the device tree by calling
   2805  *     config_detach(9) on devices in the order that the iterator
   2806  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2807  *     nearest the "root" of the device tree to be returned, first;
   2808  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2809  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2810  *     indicating both that deviter_init() should not respect any
   2811  *     locks on the device tree, and that deviter_next(di) may run
   2812  *     in more than one LWP before the walk has finished.
   2813  *
   2814  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2815  *     once.
   2816  *
   2817  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2818  *
   2819  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2820  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2821  *
   2822  * deviter_first(di, flags): initialize the device iterator `di'
   2823  *     and return the first device_t in the device tree, or NULL
   2824  *     if there are no devices.  The statement
   2825  *
   2826  *         dv = deviter_first(di);
   2827  *
   2828  *     is shorthand for
   2829  *
   2830  *         deviter_init(di);
   2831  *         dv = deviter_next(di);
   2832  *
   2833  * deviter_next(di): return the next device_t in the device tree,
   2834  *     or NULL if there are no more devices.  deviter_next(di)
   2835  *     is undefined if `di' was not initialized with deviter_init() or
   2836  *     deviter_first().
   2837  *
   2838  * deviter_release(di): stops iteration (subsequent calls to
   2839  *     deviter_next() will return NULL), releases any locks and
   2840  *     resources held by the device iterator.
   2841  *
   2842  * Device iteration does not return device_t's in any particular
   2843  * order.  An iterator will never return the same device_t twice.
   2844  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2845  * is called repeatedly on the same `di', it will eventually return
   2846  * NULL.  It is ok to attach/detach devices during device iteration.
   2847  */
   2848 void
   2849 deviter_init(deviter_t *di, deviter_flags_t flags)
   2850 {
   2851 	device_t dv;
   2852 
   2853 	memset(di, 0, sizeof(*di));
   2854 
   2855 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2856 		flags |= DEVITER_F_RW;
   2857 
   2858 	mutex_enter(&alldevs_lock);
   2859 	if ((flags & DEVITER_F_RW) != 0)
   2860 		alldevs_nwrite++;
   2861 	else
   2862 		alldevs_nread++;
   2863 	di->di_gen = alldevs_gen++;
   2864 	di->di_flags = flags;
   2865 
   2866 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2867 	case DEVITER_F_LEAVES_FIRST:
   2868 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2869 			if (!deviter_visits(di, dv))
   2870 				continue;
   2871 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2872 		}
   2873 		break;
   2874 	case DEVITER_F_ROOT_FIRST:
   2875 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2876 			if (!deviter_visits(di, dv))
   2877 				continue;
   2878 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2879 		}
   2880 		break;
   2881 	default:
   2882 		break;
   2883 	}
   2884 
   2885 	deviter_reinit(di);
   2886 	mutex_exit(&alldevs_lock);
   2887 }
   2888 
   2889 static void
   2890 deviter_reinit(deviter_t *di)
   2891 {
   2892 
   2893 	KASSERT(mutex_owned(&alldevs_lock));
   2894 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2895 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2896 	else
   2897 		di->di_prev = TAILQ_FIRST(&alldevs);
   2898 }
   2899 
   2900 device_t
   2901 deviter_first(deviter_t *di, deviter_flags_t flags)
   2902 {
   2903 
   2904 	deviter_init(di, flags);
   2905 	return deviter_next(di);
   2906 }
   2907 
   2908 static device_t
   2909 deviter_next2(deviter_t *di)
   2910 {
   2911 	device_t dv;
   2912 
   2913 	KASSERT(mutex_owned(&alldevs_lock));
   2914 
   2915 	dv = di->di_prev;
   2916 
   2917 	if (dv == NULL)
   2918 		return NULL;
   2919 
   2920 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2921 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2922 	else
   2923 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2924 
   2925 	return dv;
   2926 }
   2927 
   2928 static device_t
   2929 deviter_next1(deviter_t *di)
   2930 {
   2931 	device_t dv;
   2932 
   2933 	KASSERT(mutex_owned(&alldevs_lock));
   2934 
   2935 	do {
   2936 		dv = deviter_next2(di);
   2937 	} while (dv != NULL && !deviter_visits(di, dv));
   2938 
   2939 	return dv;
   2940 }
   2941 
   2942 device_t
   2943 deviter_next(deviter_t *di)
   2944 {
   2945 	device_t dv = NULL;
   2946 
   2947 	mutex_enter(&alldevs_lock);
   2948 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2949 	case 0:
   2950 		dv = deviter_next1(di);
   2951 		break;
   2952 	case DEVITER_F_LEAVES_FIRST:
   2953 		while (di->di_curdepth >= 0) {
   2954 			if ((dv = deviter_next1(di)) == NULL) {
   2955 				di->di_curdepth--;
   2956 				deviter_reinit(di);
   2957 			} else if (dv->dv_depth == di->di_curdepth)
   2958 				break;
   2959 		}
   2960 		break;
   2961 	case DEVITER_F_ROOT_FIRST:
   2962 		while (di->di_curdepth <= di->di_maxdepth) {
   2963 			if ((dv = deviter_next1(di)) == NULL) {
   2964 				di->di_curdepth++;
   2965 				deviter_reinit(di);
   2966 			} else if (dv->dv_depth == di->di_curdepth)
   2967 				break;
   2968 		}
   2969 		break;
   2970 	default:
   2971 		break;
   2972 	}
   2973 	mutex_exit(&alldevs_lock);
   2974 
   2975 	return dv;
   2976 }
   2977 
   2978 void
   2979 deviter_release(deviter_t *di)
   2980 {
   2981 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2982 
   2983 	mutex_enter(&alldevs_lock);
   2984 	if (rw)
   2985 		--alldevs_nwrite;
   2986 	else
   2987 		--alldevs_nread;
   2988 	/* XXX wake a garbage-collection thread */
   2989 	mutex_exit(&alldevs_lock);
   2990 }
   2991 
   2992 const char *
   2993 cfdata_ifattr(const struct cfdata *cf)
   2994 {
   2995 	return cf->cf_pspec->cfp_iattr;
   2996 }
   2997 
   2998 bool
   2999 ifattr_match(const char *snull, const char *t)
   3000 {
   3001 	return (snull == NULL) || strcmp(snull, t) == 0;
   3002 }
   3003 
   3004 void
   3005 null_childdetached(device_t self, device_t child)
   3006 {
   3007 	/* do nothing */
   3008 }
   3009 
   3010 static void
   3011 sysctl_detach_setup(struct sysctllog **clog)
   3012 {
   3013 
   3014 	sysctl_createv(clog, 0, NULL, NULL,
   3015 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3016 		CTLTYPE_BOOL, "detachall",
   3017 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3018 		NULL, 0, &detachall, 0,
   3019 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3020 }
   3021