subr_autoconf.c revision 1.270 1 /* $NetBSD: subr_autoconf.c,v 1.270 2020/04/30 03:28:18 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.270 2020/04/30 03:28:18 riastradh Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 static krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 static struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 static struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 static int interrupt_config_threads = 8;
200 static struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 static int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_lock __cacheline_aligned;
222 static devgen_t alldevs_gen = 1;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static bool alldevs_garbage = false;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
360 RND_FLAG_COLLECT_TIME);
361
362 config_initialized = true;
363 }
364
365 /*
366 * Init or fini drivers and attachments. Either all or none
367 * are processed (via rollback). It would be nice if this were
368 * atomic to outside consumers, but with the current state of
369 * locking ...
370 */
371 int
372 config_init_component(struct cfdriver * const *cfdriverv,
373 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
374 {
375 int error;
376
377 if ((error = frob_cfdrivervec(cfdriverv,
378 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
379 return error;
380 if ((error = frob_cfattachvec(cfattachv,
381 config_cfattach_attach, config_cfattach_detach,
382 "init", false)) != 0) {
383 frob_cfdrivervec(cfdriverv,
384 config_cfdriver_detach, NULL, "init rollback", true);
385 return error;
386 }
387 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
388 frob_cfattachvec(cfattachv,
389 config_cfattach_detach, NULL, "init rollback", true);
390 frob_cfdrivervec(cfdriverv,
391 config_cfdriver_detach, NULL, "init rollback", true);
392 return error;
393 }
394
395 return 0;
396 }
397
398 int
399 config_fini_component(struct cfdriver * const *cfdriverv,
400 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
401 {
402 int error;
403
404 if ((error = config_cfdata_detach(cfdatav)) != 0)
405 return error;
406 if ((error = frob_cfattachvec(cfattachv,
407 config_cfattach_detach, config_cfattach_attach,
408 "fini", false)) != 0) {
409 if (config_cfdata_attach(cfdatav, 0) != 0)
410 panic("config_cfdata fini rollback failed");
411 return error;
412 }
413 if ((error = frob_cfdrivervec(cfdriverv,
414 config_cfdriver_detach, config_cfdriver_attach,
415 "fini", false)) != 0) {
416 frob_cfattachvec(cfattachv,
417 config_cfattach_attach, NULL, "fini rollback", true);
418 if (config_cfdata_attach(cfdatav, 0) != 0)
419 panic("config_cfdata fini rollback failed");
420 return error;
421 }
422
423 return 0;
424 }
425
426 void
427 config_init_mi(void)
428 {
429
430 if (!config_initialized)
431 config_init();
432
433 sysctl_detach_setup(NULL);
434 }
435
436 void
437 config_deferred(device_t dev)
438 {
439 config_process_deferred(&deferred_config_queue, dev);
440 config_process_deferred(&interrupt_config_queue, dev);
441 config_process_deferred(&mountroot_config_queue, dev);
442 }
443
444 static void
445 config_interrupts_thread(void *cookie)
446 {
447 struct deferred_config *dc;
448 device_t dev;
449
450 mutex_enter(&config_misc_lock);
451 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
452 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
453 mutex_exit(&config_misc_lock);
454
455 dev = dc->dc_dev;
456 (*dc->dc_func)(dev);
457 if (!device_pmf_is_registered(dev))
458 aprint_debug_dev(dev,
459 "WARNING: power management not supported\n");
460 config_pending_decr(dev);
461 kmem_free(dc, sizeof(*dc));
462
463 mutex_enter(&config_misc_lock);
464 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
465 }
466 mutex_exit(&config_misc_lock);
467
468 kthread_exit(0);
469 }
470
471 void
472 config_create_interruptthreads(void)
473 {
474 int i;
475
476 for (i = 0; i < interrupt_config_threads; i++) {
477 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
478 config_interrupts_thread, NULL, NULL, "configintr");
479 }
480 }
481
482 static void
483 config_mountroot_thread(void *cookie)
484 {
485 struct deferred_config *dc;
486
487 mutex_enter(&config_misc_lock);
488 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
489 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
490 mutex_exit(&config_misc_lock);
491
492 (*dc->dc_func)(dc->dc_dev);
493 kmem_free(dc, sizeof(*dc));
494
495 mutex_enter(&config_misc_lock);
496 }
497 mutex_exit(&config_misc_lock);
498
499 kthread_exit(0);
500 }
501
502 void
503 config_create_mountrootthreads(void)
504 {
505 int i;
506
507 if (!root_is_mounted)
508 root_is_mounted = true;
509
510 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
511 mountroot_config_threads;
512 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
513 KM_NOSLEEP);
514 KASSERT(mountroot_config_lwpids);
515 for (i = 0; i < mountroot_config_threads; i++) {
516 mountroot_config_lwpids[i] = 0;
517 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
518 NULL, config_mountroot_thread, NULL,
519 &mountroot_config_lwpids[i],
520 "configroot");
521 }
522 }
523
524 void
525 config_finalize_mountroot(void)
526 {
527 int i, error;
528
529 for (i = 0; i < mountroot_config_threads; i++) {
530 if (mountroot_config_lwpids[i] == 0)
531 continue;
532
533 error = kthread_join(mountroot_config_lwpids[i]);
534 if (error)
535 printf("%s: thread %x joined with error %d\n",
536 __func__, i, error);
537 }
538 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
539 }
540
541 /*
542 * Announce device attach/detach to userland listeners.
543 */
544
545 int
546 no_devmon_insert(const char *name, prop_dictionary_t p)
547 {
548
549 return ENODEV;
550 }
551
552 static void
553 devmon_report_device(device_t dev, bool isattach)
554 {
555 prop_dictionary_t ev, dict = device_properties(dev);
556 const char *parent;
557 const char *what;
558 const char *where;
559 device_t pdev = device_parent(dev);
560
561 /* If currently no drvctl device, just return */
562 if (devmon_insert_vec == no_devmon_insert)
563 return;
564
565 ev = prop_dictionary_create();
566 if (ev == NULL)
567 return;
568
569 what = (isattach ? "device-attach" : "device-detach");
570 parent = (pdev == NULL ? "root" : device_xname(pdev));
571 if (prop_dictionary_get_cstring_nocopy(dict, "location", &where)) {
572 prop_dictionary_set_cstring(ev, "location", where);
573 aprint_debug("ev: %s %s at %s in [%s]\n",
574 what, device_xname(dev), parent, where);
575 }
576 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
577 !prop_dictionary_set_cstring(ev, "parent", parent)) {
578 prop_object_release(ev);
579 return;
580 }
581
582 if ((*devmon_insert_vec)(what, ev) != 0)
583 prop_object_release(ev);
584 }
585
586 /*
587 * Add a cfdriver to the system.
588 */
589 int
590 config_cfdriver_attach(struct cfdriver *cd)
591 {
592 struct cfdriver *lcd;
593
594 /* Make sure this driver isn't already in the system. */
595 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
596 if (STREQ(lcd->cd_name, cd->cd_name))
597 return EEXIST;
598 }
599
600 LIST_INIT(&cd->cd_attach);
601 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
602
603 return 0;
604 }
605
606 /*
607 * Remove a cfdriver from the system.
608 */
609 int
610 config_cfdriver_detach(struct cfdriver *cd)
611 {
612 struct alldevs_foray af;
613 int i, rc = 0;
614
615 config_alldevs_enter(&af);
616 /* Make sure there are no active instances. */
617 for (i = 0; i < cd->cd_ndevs; i++) {
618 if (cd->cd_devs[i] != NULL) {
619 rc = EBUSY;
620 break;
621 }
622 }
623 config_alldevs_exit(&af);
624
625 if (rc != 0)
626 return rc;
627
628 /* ...and no attachments loaded. */
629 if (LIST_EMPTY(&cd->cd_attach) == 0)
630 return EBUSY;
631
632 LIST_REMOVE(cd, cd_list);
633
634 KASSERT(cd->cd_devs == NULL);
635
636 return 0;
637 }
638
639 /*
640 * Look up a cfdriver by name.
641 */
642 struct cfdriver *
643 config_cfdriver_lookup(const char *name)
644 {
645 struct cfdriver *cd;
646
647 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
648 if (STREQ(cd->cd_name, name))
649 return cd;
650 }
651
652 return NULL;
653 }
654
655 /*
656 * Add a cfattach to the specified driver.
657 */
658 int
659 config_cfattach_attach(const char *driver, struct cfattach *ca)
660 {
661 struct cfattach *lca;
662 struct cfdriver *cd;
663
664 cd = config_cfdriver_lookup(driver);
665 if (cd == NULL)
666 return ESRCH;
667
668 /* Make sure this attachment isn't already on this driver. */
669 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
670 if (STREQ(lca->ca_name, ca->ca_name))
671 return EEXIST;
672 }
673
674 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
675
676 return 0;
677 }
678
679 /*
680 * Remove a cfattach from the specified driver.
681 */
682 int
683 config_cfattach_detach(const char *driver, struct cfattach *ca)
684 {
685 struct alldevs_foray af;
686 struct cfdriver *cd;
687 device_t dev;
688 int i, rc = 0;
689
690 cd = config_cfdriver_lookup(driver);
691 if (cd == NULL)
692 return ESRCH;
693
694 config_alldevs_enter(&af);
695 /* Make sure there are no active instances. */
696 for (i = 0; i < cd->cd_ndevs; i++) {
697 if ((dev = cd->cd_devs[i]) == NULL)
698 continue;
699 if (dev->dv_cfattach == ca) {
700 rc = EBUSY;
701 break;
702 }
703 }
704 config_alldevs_exit(&af);
705
706 if (rc != 0)
707 return rc;
708
709 LIST_REMOVE(ca, ca_list);
710
711 return 0;
712 }
713
714 /*
715 * Look up a cfattach by name.
716 */
717 static struct cfattach *
718 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
719 {
720 struct cfattach *ca;
721
722 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
723 if (STREQ(ca->ca_name, atname))
724 return ca;
725 }
726
727 return NULL;
728 }
729
730 /*
731 * Look up a cfattach by driver/attachment name.
732 */
733 struct cfattach *
734 config_cfattach_lookup(const char *name, const char *atname)
735 {
736 struct cfdriver *cd;
737
738 cd = config_cfdriver_lookup(name);
739 if (cd == NULL)
740 return NULL;
741
742 return config_cfattach_lookup_cd(cd, atname);
743 }
744
745 /*
746 * Apply the matching function and choose the best. This is used
747 * a few times and we want to keep the code small.
748 */
749 static void
750 mapply(struct matchinfo *m, cfdata_t cf)
751 {
752 int pri;
753
754 if (m->fn != NULL) {
755 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
756 } else {
757 pri = config_match(m->parent, cf, m->aux);
758 }
759 if (pri > m->pri) {
760 m->match = cf;
761 m->pri = pri;
762 }
763 }
764
765 int
766 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
767 {
768 const struct cfiattrdata *ci;
769 const struct cflocdesc *cl;
770 int nlocs, i;
771
772 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
773 KASSERT(ci);
774 nlocs = ci->ci_loclen;
775 KASSERT(!nlocs || locs);
776 for (i = 0; i < nlocs; i++) {
777 cl = &ci->ci_locdesc[i];
778 if (cl->cld_defaultstr != NULL &&
779 cf->cf_loc[i] == cl->cld_default)
780 continue;
781 if (cf->cf_loc[i] == locs[i])
782 continue;
783 return 0;
784 }
785
786 return config_match(parent, cf, aux);
787 }
788
789 /*
790 * Helper function: check whether the driver supports the interface attribute
791 * and return its descriptor structure.
792 */
793 static const struct cfiattrdata *
794 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
795 {
796 const struct cfiattrdata * const *cpp;
797
798 if (cd->cd_attrs == NULL)
799 return 0;
800
801 for (cpp = cd->cd_attrs; *cpp; cpp++) {
802 if (STREQ((*cpp)->ci_name, ia)) {
803 /* Match. */
804 return *cpp;
805 }
806 }
807 return 0;
808 }
809
810 /*
811 * Lookup an interface attribute description by name.
812 * If the driver is given, consider only its supported attributes.
813 */
814 const struct cfiattrdata *
815 cfiattr_lookup(const char *name, const struct cfdriver *cd)
816 {
817 const struct cfdriver *d;
818 const struct cfiattrdata *ia;
819
820 if (cd)
821 return cfdriver_get_iattr(cd, name);
822
823 LIST_FOREACH(d, &allcfdrivers, cd_list) {
824 ia = cfdriver_get_iattr(d, name);
825 if (ia)
826 return ia;
827 }
828 return 0;
829 }
830
831 /*
832 * Determine if `parent' is a potential parent for a device spec based
833 * on `cfp'.
834 */
835 static int
836 cfparent_match(const device_t parent, const struct cfparent *cfp)
837 {
838 struct cfdriver *pcd;
839
840 /* We don't match root nodes here. */
841 if (cfp == NULL)
842 return 0;
843
844 pcd = parent->dv_cfdriver;
845 KASSERT(pcd != NULL);
846
847 /*
848 * First, ensure this parent has the correct interface
849 * attribute.
850 */
851 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
852 return 0;
853
854 /*
855 * If no specific parent device instance was specified (i.e.
856 * we're attaching to the attribute only), we're done!
857 */
858 if (cfp->cfp_parent == NULL)
859 return 1;
860
861 /*
862 * Check the parent device's name.
863 */
864 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
865 return 0; /* not the same parent */
866
867 /*
868 * Make sure the unit number matches.
869 */
870 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
871 cfp->cfp_unit == parent->dv_unit)
872 return 1;
873
874 /* Unit numbers don't match. */
875 return 0;
876 }
877
878 /*
879 * Helper for config_cfdata_attach(): check all devices whether it could be
880 * parent any attachment in the config data table passed, and rescan.
881 */
882 static void
883 rescan_with_cfdata(const struct cfdata *cf)
884 {
885 device_t d;
886 const struct cfdata *cf1;
887 deviter_t di;
888
889
890 /*
891 * "alldevs" is likely longer than a modules's cfdata, so make it
892 * the outer loop.
893 */
894 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
895
896 if (!(d->dv_cfattach->ca_rescan))
897 continue;
898
899 for (cf1 = cf; cf1->cf_name; cf1++) {
900
901 if (!cfparent_match(d, cf1->cf_pspec))
902 continue;
903
904 (*d->dv_cfattach->ca_rescan)(d,
905 cfdata_ifattr(cf1), cf1->cf_loc);
906
907 config_deferred(d);
908 }
909 }
910 deviter_release(&di);
911 }
912
913 /*
914 * Attach a supplemental config data table and rescan potential
915 * parent devices if required.
916 */
917 int
918 config_cfdata_attach(cfdata_t cf, int scannow)
919 {
920 struct cftable *ct;
921
922 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
923 ct->ct_cfdata = cf;
924 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
925
926 if (scannow)
927 rescan_with_cfdata(cf);
928
929 return 0;
930 }
931
932 /*
933 * Helper for config_cfdata_detach: check whether a device is
934 * found through any attachment in the config data table.
935 */
936 static int
937 dev_in_cfdata(device_t d, cfdata_t cf)
938 {
939 const struct cfdata *cf1;
940
941 for (cf1 = cf; cf1->cf_name; cf1++)
942 if (d->dv_cfdata == cf1)
943 return 1;
944
945 return 0;
946 }
947
948 /*
949 * Detach a supplemental config data table. Detach all devices found
950 * through that table (and thus keeping references to it) before.
951 */
952 int
953 config_cfdata_detach(cfdata_t cf)
954 {
955 device_t d;
956 int error = 0;
957 struct cftable *ct;
958 deviter_t di;
959
960 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
961 d = deviter_next(&di)) {
962 if (!dev_in_cfdata(d, cf))
963 continue;
964 if ((error = config_detach(d, 0)) != 0)
965 break;
966 }
967 deviter_release(&di);
968 if (error) {
969 aprint_error_dev(d, "unable to detach instance\n");
970 return error;
971 }
972
973 TAILQ_FOREACH(ct, &allcftables, ct_list) {
974 if (ct->ct_cfdata == cf) {
975 TAILQ_REMOVE(&allcftables, ct, ct_list);
976 kmem_free(ct, sizeof(*ct));
977 return 0;
978 }
979 }
980
981 /* not found -- shouldn't happen */
982 return EINVAL;
983 }
984
985 /*
986 * Invoke the "match" routine for a cfdata entry on behalf of
987 * an external caller, usually a "submatch" routine.
988 */
989 int
990 config_match(device_t parent, cfdata_t cf, void *aux)
991 {
992 struct cfattach *ca;
993
994 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
995 if (ca == NULL) {
996 /* No attachment for this entry, oh well. */
997 return 0;
998 }
999
1000 return (*ca->ca_match)(parent, cf, aux);
1001 }
1002
1003 /*
1004 * Iterate over all potential children of some device, calling the given
1005 * function (default being the child's match function) for each one.
1006 * Nonzero returns are matches; the highest value returned is considered
1007 * the best match. Return the `found child' if we got a match, or NULL
1008 * otherwise. The `aux' pointer is simply passed on through.
1009 *
1010 * Note that this function is designed so that it can be used to apply
1011 * an arbitrary function to all potential children (its return value
1012 * can be ignored).
1013 */
1014 cfdata_t
1015 config_search_loc(cfsubmatch_t fn, device_t parent,
1016 const char *ifattr, const int *locs, void *aux)
1017 {
1018 struct cftable *ct;
1019 cfdata_t cf;
1020 struct matchinfo m;
1021
1022 KASSERT(config_initialized);
1023 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1024
1025 m.fn = fn;
1026 m.parent = parent;
1027 m.locs = locs;
1028 m.aux = aux;
1029 m.match = NULL;
1030 m.pri = 0;
1031
1032 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1033 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1034
1035 /* We don't match root nodes here. */
1036 if (!cf->cf_pspec)
1037 continue;
1038
1039 /*
1040 * Skip cf if no longer eligible, otherwise scan
1041 * through parents for one matching `parent', and
1042 * try match function.
1043 */
1044 if (cf->cf_fstate == FSTATE_FOUND)
1045 continue;
1046 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1047 cf->cf_fstate == FSTATE_DSTAR)
1048 continue;
1049
1050 /*
1051 * If an interface attribute was specified,
1052 * consider only children which attach to
1053 * that attribute.
1054 */
1055 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1056 continue;
1057
1058 if (cfparent_match(parent, cf->cf_pspec))
1059 mapply(&m, cf);
1060 }
1061 }
1062 return m.match;
1063 }
1064
1065 cfdata_t
1066 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1067 void *aux)
1068 {
1069
1070 return config_search_loc(fn, parent, ifattr, NULL, aux);
1071 }
1072
1073 /*
1074 * Find the given root device.
1075 * This is much like config_search, but there is no parent.
1076 * Don't bother with multiple cfdata tables; the root node
1077 * must always be in the initial table.
1078 */
1079 cfdata_t
1080 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1081 {
1082 cfdata_t cf;
1083 const short *p;
1084 struct matchinfo m;
1085
1086 m.fn = fn;
1087 m.parent = ROOT;
1088 m.aux = aux;
1089 m.match = NULL;
1090 m.pri = 0;
1091 m.locs = 0;
1092 /*
1093 * Look at root entries for matching name. We do not bother
1094 * with found-state here since only one root should ever be
1095 * searched (and it must be done first).
1096 */
1097 for (p = cfroots; *p >= 0; p++) {
1098 cf = &cfdata[*p];
1099 if (strcmp(cf->cf_name, rootname) == 0)
1100 mapply(&m, cf);
1101 }
1102 return m.match;
1103 }
1104
1105 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1106
1107 /*
1108 * The given `aux' argument describes a device that has been found
1109 * on the given parent, but not necessarily configured. Locate the
1110 * configuration data for that device (using the submatch function
1111 * provided, or using candidates' cd_match configuration driver
1112 * functions) and attach it, and return its device_t. If the device was
1113 * not configured, call the given `print' function and return NULL.
1114 */
1115 device_t
1116 config_found_sm_loc(device_t parent,
1117 const char *ifattr, const int *locs, void *aux,
1118 cfprint_t print, cfsubmatch_t submatch)
1119 {
1120 cfdata_t cf;
1121
1122 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1123 return(config_attach_loc(parent, cf, locs, aux, print));
1124 if (print) {
1125 if (config_do_twiddle && cold)
1126 twiddle();
1127 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1128 }
1129
1130 /*
1131 * This has the effect of mixing in a single timestamp to the
1132 * entropy pool. Experiments indicate the estimator will almost
1133 * always attribute one bit of entropy to this sample; analysis
1134 * of device attach/detach timestamps on FreeBSD indicates 4
1135 * bits of entropy/sample so this seems appropriately conservative.
1136 */
1137 rnd_add_uint32(&rnd_autoconf_source, 0);
1138 return NULL;
1139 }
1140
1141 device_t
1142 config_found_ia(device_t parent, const char *ifattr, void *aux,
1143 cfprint_t print)
1144 {
1145
1146 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1147 }
1148
1149 device_t
1150 config_found(device_t parent, void *aux, cfprint_t print)
1151 {
1152
1153 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1154 }
1155
1156 /*
1157 * As above, but for root devices.
1158 */
1159 device_t
1160 config_rootfound(const char *rootname, void *aux)
1161 {
1162 cfdata_t cf;
1163
1164 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1165 return config_attach(ROOT, cf, aux, NULL);
1166 aprint_error("root device %s not configured\n", rootname);
1167 return NULL;
1168 }
1169
1170 /* just like sprintf(buf, "%d") except that it works from the end */
1171 static char *
1172 number(char *ep, int n)
1173 {
1174
1175 *--ep = 0;
1176 while (n >= 10) {
1177 *--ep = (n % 10) + '0';
1178 n /= 10;
1179 }
1180 *--ep = n + '0';
1181 return ep;
1182 }
1183
1184 /*
1185 * Expand the size of the cd_devs array if necessary.
1186 *
1187 * The caller must hold alldevs_lock. config_makeroom() may release and
1188 * re-acquire alldevs_lock, so callers should re-check conditions such
1189 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1190 * returns.
1191 */
1192 static void
1193 config_makeroom(int n, struct cfdriver *cd)
1194 {
1195 int ondevs, nndevs;
1196 device_t *osp, *nsp;
1197
1198 KASSERT(mutex_owned(&alldevs_lock));
1199 alldevs_nwrite++;
1200
1201 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1202 ;
1203
1204 while (n >= cd->cd_ndevs) {
1205 /*
1206 * Need to expand the array.
1207 */
1208 ondevs = cd->cd_ndevs;
1209 osp = cd->cd_devs;
1210
1211 /*
1212 * Release alldevs_lock around allocation, which may
1213 * sleep.
1214 */
1215 mutex_exit(&alldevs_lock);
1216 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1217 mutex_enter(&alldevs_lock);
1218
1219 /*
1220 * If another thread moved the array while we did
1221 * not hold alldevs_lock, try again.
1222 */
1223 if (cd->cd_devs != osp) {
1224 mutex_exit(&alldevs_lock);
1225 kmem_free(nsp, sizeof(device_t[nndevs]));
1226 mutex_enter(&alldevs_lock);
1227 continue;
1228 }
1229
1230 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1231 if (ondevs != 0)
1232 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1233
1234 cd->cd_ndevs = nndevs;
1235 cd->cd_devs = nsp;
1236 if (ondevs != 0) {
1237 mutex_exit(&alldevs_lock);
1238 kmem_free(osp, sizeof(device_t[ondevs]));
1239 mutex_enter(&alldevs_lock);
1240 }
1241 }
1242 KASSERT(mutex_owned(&alldevs_lock));
1243 alldevs_nwrite--;
1244 }
1245
1246 /*
1247 * Put dev into the devices list.
1248 */
1249 static void
1250 config_devlink(device_t dev)
1251 {
1252
1253 mutex_enter(&alldevs_lock);
1254
1255 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1256
1257 dev->dv_add_gen = alldevs_gen;
1258 /* It is safe to add a device to the tail of the list while
1259 * readers and writers are in the list.
1260 */
1261 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1262 mutex_exit(&alldevs_lock);
1263 }
1264
1265 static void
1266 config_devfree(device_t dev)
1267 {
1268 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1269
1270 if (dev->dv_cfattach->ca_devsize > 0)
1271 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1272 if (priv)
1273 kmem_free(dev, sizeof(*dev));
1274 }
1275
1276 /*
1277 * Caller must hold alldevs_lock.
1278 */
1279 static void
1280 config_devunlink(device_t dev, struct devicelist *garbage)
1281 {
1282 struct device_garbage *dg = &dev->dv_garbage;
1283 cfdriver_t cd = device_cfdriver(dev);
1284 int i;
1285
1286 KASSERT(mutex_owned(&alldevs_lock));
1287
1288 /* Unlink from device list. Link to garbage list. */
1289 TAILQ_REMOVE(&alldevs, dev, dv_list);
1290 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1291
1292 /* Remove from cfdriver's array. */
1293 cd->cd_devs[dev->dv_unit] = NULL;
1294
1295 /*
1296 * If the device now has no units in use, unlink its softc array.
1297 */
1298 for (i = 0; i < cd->cd_ndevs; i++) {
1299 if (cd->cd_devs[i] != NULL)
1300 break;
1301 }
1302 /* Nothing found. Unlink, now. Deallocate, later. */
1303 if (i == cd->cd_ndevs) {
1304 dg->dg_ndevs = cd->cd_ndevs;
1305 dg->dg_devs = cd->cd_devs;
1306 cd->cd_devs = NULL;
1307 cd->cd_ndevs = 0;
1308 }
1309 }
1310
1311 static void
1312 config_devdelete(device_t dev)
1313 {
1314 struct device_garbage *dg = &dev->dv_garbage;
1315 device_lock_t dvl = device_getlock(dev);
1316
1317 if (dg->dg_devs != NULL)
1318 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1319
1320 cv_destroy(&dvl->dvl_cv);
1321 mutex_destroy(&dvl->dvl_mtx);
1322
1323 KASSERT(dev->dv_properties != NULL);
1324 prop_object_release(dev->dv_properties);
1325
1326 if (dev->dv_activity_handlers)
1327 panic("%s with registered handlers", __func__);
1328
1329 if (dev->dv_locators) {
1330 size_t amount = *--dev->dv_locators;
1331 kmem_free(dev->dv_locators, amount);
1332 }
1333
1334 config_devfree(dev);
1335 }
1336
1337 static int
1338 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1339 {
1340 int unit;
1341
1342 if (cf->cf_fstate == FSTATE_STAR) {
1343 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1344 if (cd->cd_devs[unit] == NULL)
1345 break;
1346 /*
1347 * unit is now the unit of the first NULL device pointer,
1348 * or max(cd->cd_ndevs,cf->cf_unit).
1349 */
1350 } else {
1351 unit = cf->cf_unit;
1352 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1353 unit = -1;
1354 }
1355 return unit;
1356 }
1357
1358 static int
1359 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1360 {
1361 struct alldevs_foray af;
1362 int unit;
1363
1364 config_alldevs_enter(&af);
1365 for (;;) {
1366 unit = config_unit_nextfree(cd, cf);
1367 if (unit == -1)
1368 break;
1369 if (unit < cd->cd_ndevs) {
1370 cd->cd_devs[unit] = dev;
1371 dev->dv_unit = unit;
1372 break;
1373 }
1374 config_makeroom(unit, cd);
1375 }
1376 config_alldevs_exit(&af);
1377
1378 return unit;
1379 }
1380
1381 static device_t
1382 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1383 {
1384 cfdriver_t cd;
1385 cfattach_t ca;
1386 size_t lname, lunit;
1387 const char *xunit;
1388 int myunit;
1389 char num[10];
1390 device_t dev;
1391 void *dev_private;
1392 const struct cfiattrdata *ia;
1393 device_lock_t dvl;
1394
1395 cd = config_cfdriver_lookup(cf->cf_name);
1396 if (cd == NULL)
1397 return NULL;
1398
1399 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1400 if (ca == NULL)
1401 return NULL;
1402
1403 /* get memory for all device vars */
1404 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1405 || ca->ca_devsize >= sizeof(struct device),
1406 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1407 sizeof(struct device));
1408 if (ca->ca_devsize > 0) {
1409 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1410 } else {
1411 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1412 dev_private = NULL;
1413 }
1414
1415 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1416 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1417 } else {
1418 dev = dev_private;
1419 #ifdef DIAGNOSTIC
1420 printf("%s has not been converted to device_t\n", cd->cd_name);
1421 #endif
1422 KASSERT(dev != NULL);
1423 }
1424 dev->dv_class = cd->cd_class;
1425 dev->dv_cfdata = cf;
1426 dev->dv_cfdriver = cd;
1427 dev->dv_cfattach = ca;
1428 dev->dv_activity_count = 0;
1429 dev->dv_activity_handlers = NULL;
1430 dev->dv_private = dev_private;
1431 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1432
1433 myunit = config_unit_alloc(dev, cd, cf);
1434 if (myunit == -1) {
1435 config_devfree(dev);
1436 return NULL;
1437 }
1438
1439 /* compute length of name and decimal expansion of unit number */
1440 lname = strlen(cd->cd_name);
1441 xunit = number(&num[sizeof(num)], myunit);
1442 lunit = &num[sizeof(num)] - xunit;
1443 if (lname + lunit > sizeof(dev->dv_xname))
1444 panic("config_devalloc: device name too long");
1445
1446 dvl = device_getlock(dev);
1447
1448 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1449 cv_init(&dvl->dvl_cv, "pmfsusp");
1450
1451 memcpy(dev->dv_xname, cd->cd_name, lname);
1452 memcpy(dev->dv_xname + lname, xunit, lunit);
1453 dev->dv_parent = parent;
1454 if (parent != NULL)
1455 dev->dv_depth = parent->dv_depth + 1;
1456 else
1457 dev->dv_depth = 0;
1458 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1459 if (locs) {
1460 KASSERT(parent); /* no locators at root */
1461 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1462 dev->dv_locators =
1463 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1464 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1465 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1466 }
1467 dev->dv_properties = prop_dictionary_create();
1468 KASSERT(dev->dv_properties != NULL);
1469
1470 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1471 "device-driver", dev->dv_cfdriver->cd_name);
1472 prop_dictionary_set_uint16(dev->dv_properties,
1473 "device-unit", dev->dv_unit);
1474 if (parent != NULL) {
1475 prop_dictionary_set_cstring(dev->dv_properties,
1476 "device-parent", device_xname(parent));
1477 }
1478
1479 if (dev->dv_cfdriver->cd_attrs != NULL)
1480 config_add_attrib_dict(dev);
1481
1482 return dev;
1483 }
1484
1485 /*
1486 * Create an array of device attach attributes and add it
1487 * to the device's dv_properties dictionary.
1488 *
1489 * <key>interface-attributes</key>
1490 * <array>
1491 * <dict>
1492 * <key>attribute-name</key>
1493 * <string>foo</string>
1494 * <key>locators</key>
1495 * <array>
1496 * <dict>
1497 * <key>loc-name</key>
1498 * <string>foo-loc1</string>
1499 * </dict>
1500 * <dict>
1501 * <key>loc-name</key>
1502 * <string>foo-loc2</string>
1503 * <key>default</key>
1504 * <string>foo-loc2-default</string>
1505 * </dict>
1506 * ...
1507 * </array>
1508 * </dict>
1509 * ...
1510 * </array>
1511 */
1512
1513 static void
1514 config_add_attrib_dict(device_t dev)
1515 {
1516 int i, j;
1517 const struct cfiattrdata *ci;
1518 prop_dictionary_t attr_dict, loc_dict;
1519 prop_array_t attr_array, loc_array;
1520
1521 if ((attr_array = prop_array_create()) == NULL)
1522 return;
1523
1524 for (i = 0; ; i++) {
1525 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1526 break;
1527 if ((attr_dict = prop_dictionary_create()) == NULL)
1528 break;
1529 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1530 ci->ci_name);
1531
1532 /* Create an array of the locator names and defaults */
1533
1534 if (ci->ci_loclen != 0 &&
1535 (loc_array = prop_array_create()) != NULL) {
1536 for (j = 0; j < ci->ci_loclen; j++) {
1537 loc_dict = prop_dictionary_create();
1538 if (loc_dict == NULL)
1539 continue;
1540 prop_dictionary_set_cstring_nocopy(loc_dict,
1541 "loc-name", ci->ci_locdesc[j].cld_name);
1542 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1543 prop_dictionary_set_cstring_nocopy(
1544 loc_dict, "default",
1545 ci->ci_locdesc[j].cld_defaultstr);
1546 prop_array_set(loc_array, j, loc_dict);
1547 prop_object_release(loc_dict);
1548 }
1549 prop_dictionary_set_and_rel(attr_dict, "locators",
1550 loc_array);
1551 }
1552 prop_array_add(attr_array, attr_dict);
1553 prop_object_release(attr_dict);
1554 }
1555 if (i == 0)
1556 prop_object_release(attr_array);
1557 else
1558 prop_dictionary_set_and_rel(dev->dv_properties,
1559 "interface-attributes", attr_array);
1560
1561 return;
1562 }
1563
1564 /*
1565 * Attach a found device.
1566 */
1567 device_t
1568 config_attach_loc(device_t parent, cfdata_t cf,
1569 const int *locs, void *aux, cfprint_t print)
1570 {
1571 device_t dev;
1572 struct cftable *ct;
1573 const char *drvname;
1574
1575 dev = config_devalloc(parent, cf, locs);
1576 if (!dev)
1577 panic("config_attach: allocation of device softc failed");
1578
1579 /* XXX redundant - see below? */
1580 if (cf->cf_fstate != FSTATE_STAR) {
1581 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1582 cf->cf_fstate = FSTATE_FOUND;
1583 }
1584
1585 config_devlink(dev);
1586
1587 if (config_do_twiddle && cold)
1588 twiddle();
1589 else
1590 aprint_naive("Found ");
1591 /*
1592 * We want the next two printfs for normal, verbose, and quiet,
1593 * but not silent (in which case, we're twiddling, instead).
1594 */
1595 if (parent == ROOT) {
1596 aprint_naive("%s (root)", device_xname(dev));
1597 aprint_normal("%s (root)", device_xname(dev));
1598 } else {
1599 aprint_naive("%s at %s", device_xname(dev),
1600 device_xname(parent));
1601 aprint_normal("%s at %s", device_xname(dev),
1602 device_xname(parent));
1603 if (print)
1604 (void) (*print)(aux, NULL);
1605 }
1606
1607 /*
1608 * Before attaching, clobber any unfound devices that are
1609 * otherwise identical.
1610 * XXX code above is redundant?
1611 */
1612 drvname = dev->dv_cfdriver->cd_name;
1613 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1614 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1615 if (STREQ(cf->cf_name, drvname) &&
1616 cf->cf_unit == dev->dv_unit) {
1617 if (cf->cf_fstate == FSTATE_NOTFOUND)
1618 cf->cf_fstate = FSTATE_FOUND;
1619 }
1620 }
1621 }
1622 device_register(dev, aux);
1623
1624 /* Let userland know */
1625 devmon_report_device(dev, true);
1626
1627 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1628
1629 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1630 && !device_pmf_is_registered(dev))
1631 aprint_debug_dev(dev,
1632 "WARNING: power management not supported\n");
1633
1634 config_process_deferred(&deferred_config_queue, dev);
1635
1636 device_register_post_config(dev, aux);
1637 return dev;
1638 }
1639
1640 device_t
1641 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1642 {
1643
1644 return config_attach_loc(parent, cf, NULL, aux, print);
1645 }
1646
1647 /*
1648 * As above, but for pseudo-devices. Pseudo-devices attached in this
1649 * way are silently inserted into the device tree, and their children
1650 * attached.
1651 *
1652 * Note that because pseudo-devices are attached silently, any information
1653 * the attach routine wishes to print should be prefixed with the device
1654 * name by the attach routine.
1655 */
1656 device_t
1657 config_attach_pseudo(cfdata_t cf)
1658 {
1659 device_t dev;
1660
1661 dev = config_devalloc(ROOT, cf, NULL);
1662 if (!dev)
1663 return NULL;
1664
1665 /* XXX mark busy in cfdata */
1666
1667 if (cf->cf_fstate != FSTATE_STAR) {
1668 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1669 cf->cf_fstate = FSTATE_FOUND;
1670 }
1671
1672 config_devlink(dev);
1673
1674 #if 0 /* XXXJRT not yet */
1675 device_register(dev, NULL); /* like a root node */
1676 #endif
1677
1678 /* Let userland know */
1679 devmon_report_device(dev, true);
1680
1681 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1682
1683 config_process_deferred(&deferred_config_queue, dev);
1684 return dev;
1685 }
1686
1687 /*
1688 * Caller must hold alldevs_lock.
1689 */
1690 static void
1691 config_collect_garbage(struct devicelist *garbage)
1692 {
1693 device_t dv;
1694
1695 KASSERT(!cpu_intr_p());
1696 KASSERT(!cpu_softintr_p());
1697 KASSERT(mutex_owned(&alldevs_lock));
1698
1699 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1700 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1701 if (dv->dv_del_gen != 0)
1702 break;
1703 }
1704 if (dv == NULL) {
1705 alldevs_garbage = false;
1706 break;
1707 }
1708 config_devunlink(dv, garbage);
1709 }
1710 KASSERT(mutex_owned(&alldevs_lock));
1711 }
1712
1713 static void
1714 config_dump_garbage(struct devicelist *garbage)
1715 {
1716 device_t dv;
1717
1718 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1719 TAILQ_REMOVE(garbage, dv, dv_list);
1720 config_devdelete(dv);
1721 }
1722 }
1723
1724 /*
1725 * Detach a device. Optionally forced (e.g. because of hardware
1726 * removal) and quiet. Returns zero if successful, non-zero
1727 * (an error code) otherwise.
1728 *
1729 * Note that this code wants to be run from a process context, so
1730 * that the detach can sleep to allow processes which have a device
1731 * open to run and unwind their stacks.
1732 */
1733 int
1734 config_detach(device_t dev, int flags)
1735 {
1736 struct alldevs_foray af;
1737 struct cftable *ct;
1738 cfdata_t cf;
1739 const struct cfattach *ca;
1740 struct cfdriver *cd;
1741 device_t d __diagused;
1742 int rv = 0;
1743
1744 cf = dev->dv_cfdata;
1745 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1746 cf->cf_fstate == FSTATE_STAR),
1747 "config_detach: %s: bad device fstate: %d",
1748 device_xname(dev), cf ? cf->cf_fstate : -1);
1749
1750 cd = dev->dv_cfdriver;
1751 KASSERT(cd != NULL);
1752
1753 ca = dev->dv_cfattach;
1754 KASSERT(ca != NULL);
1755
1756 mutex_enter(&alldevs_lock);
1757 if (dev->dv_del_gen != 0) {
1758 mutex_exit(&alldevs_lock);
1759 #ifdef DIAGNOSTIC
1760 printf("%s: %s is already detached\n", __func__,
1761 device_xname(dev));
1762 #endif /* DIAGNOSTIC */
1763 return ENOENT;
1764 }
1765 alldevs_nwrite++;
1766 mutex_exit(&alldevs_lock);
1767
1768 if (!detachall &&
1769 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1770 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1771 rv = EOPNOTSUPP;
1772 } else if (ca->ca_detach != NULL) {
1773 rv = (*ca->ca_detach)(dev, flags);
1774 } else
1775 rv = EOPNOTSUPP;
1776
1777 /*
1778 * If it was not possible to detach the device, then we either
1779 * panic() (for the forced but failed case), or return an error.
1780 *
1781 * If it was possible to detach the device, ensure that the
1782 * device is deactivated.
1783 */
1784 if (rv == 0)
1785 dev->dv_flags &= ~DVF_ACTIVE;
1786 else if ((flags & DETACH_FORCE) == 0)
1787 goto out;
1788 else {
1789 panic("config_detach: forced detach of %s failed (%d)",
1790 device_xname(dev), rv);
1791 }
1792
1793 /*
1794 * The device has now been successfully detached.
1795 */
1796
1797 /* Let userland know */
1798 devmon_report_device(dev, false);
1799
1800 #ifdef DIAGNOSTIC
1801 /*
1802 * Sanity: If you're successfully detached, you should have no
1803 * children. (Note that because children must be attached
1804 * after parents, we only need to search the latter part of
1805 * the list.)
1806 */
1807 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1808 d = TAILQ_NEXT(d, dv_list)) {
1809 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1810 printf("config_detach: detached device %s"
1811 " has children %s\n", device_xname(dev),
1812 device_xname(d));
1813 panic("config_detach");
1814 }
1815 }
1816 #endif
1817
1818 /* notify the parent that the child is gone */
1819 if (dev->dv_parent) {
1820 device_t p = dev->dv_parent;
1821 if (p->dv_cfattach->ca_childdetached)
1822 (*p->dv_cfattach->ca_childdetached)(p, dev);
1823 }
1824
1825 /*
1826 * Mark cfdata to show that the unit can be reused, if possible.
1827 */
1828 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1829 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1830 if (STREQ(cf->cf_name, cd->cd_name)) {
1831 if (cf->cf_fstate == FSTATE_FOUND &&
1832 cf->cf_unit == dev->dv_unit)
1833 cf->cf_fstate = FSTATE_NOTFOUND;
1834 }
1835 }
1836 }
1837
1838 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1839 aprint_normal_dev(dev, "detached\n");
1840
1841 out:
1842 config_alldevs_enter(&af);
1843 KASSERT(alldevs_nwrite != 0);
1844 --alldevs_nwrite;
1845 if (rv == 0 && dev->dv_del_gen == 0) {
1846 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1847 config_devunlink(dev, &af.af_garbage);
1848 else {
1849 dev->dv_del_gen = alldevs_gen;
1850 alldevs_garbage = true;
1851 }
1852 }
1853 config_alldevs_exit(&af);
1854
1855 return rv;
1856 }
1857
1858 int
1859 config_detach_children(device_t parent, int flags)
1860 {
1861 device_t dv;
1862 deviter_t di;
1863 int error = 0;
1864
1865 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1866 dv = deviter_next(&di)) {
1867 if (device_parent(dv) != parent)
1868 continue;
1869 if ((error = config_detach(dv, flags)) != 0)
1870 break;
1871 }
1872 deviter_release(&di);
1873 return error;
1874 }
1875
1876 device_t
1877 shutdown_first(struct shutdown_state *s)
1878 {
1879 if (!s->initialized) {
1880 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1881 s->initialized = true;
1882 }
1883 return shutdown_next(s);
1884 }
1885
1886 device_t
1887 shutdown_next(struct shutdown_state *s)
1888 {
1889 device_t dv;
1890
1891 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1892 ;
1893
1894 if (dv == NULL)
1895 s->initialized = false;
1896
1897 return dv;
1898 }
1899
1900 bool
1901 config_detach_all(int how)
1902 {
1903 static struct shutdown_state s;
1904 device_t curdev;
1905 bool progress = false;
1906 int flags;
1907
1908 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1909 return false;
1910
1911 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1912 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1913 else
1914 flags = DETACH_SHUTDOWN;
1915
1916 for (curdev = shutdown_first(&s); curdev != NULL;
1917 curdev = shutdown_next(&s)) {
1918 aprint_debug(" detaching %s, ", device_xname(curdev));
1919 if (config_detach(curdev, flags) == 0) {
1920 progress = true;
1921 aprint_debug("success.");
1922 } else
1923 aprint_debug("failed.");
1924 }
1925 return progress;
1926 }
1927
1928 static bool
1929 device_is_ancestor_of(device_t ancestor, device_t descendant)
1930 {
1931 device_t dv;
1932
1933 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1934 if (device_parent(dv) == ancestor)
1935 return true;
1936 }
1937 return false;
1938 }
1939
1940 int
1941 config_deactivate(device_t dev)
1942 {
1943 deviter_t di;
1944 const struct cfattach *ca;
1945 device_t descendant;
1946 int s, rv = 0, oflags;
1947
1948 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1949 descendant != NULL;
1950 descendant = deviter_next(&di)) {
1951 if (dev != descendant &&
1952 !device_is_ancestor_of(dev, descendant))
1953 continue;
1954
1955 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1956 continue;
1957
1958 ca = descendant->dv_cfattach;
1959 oflags = descendant->dv_flags;
1960
1961 descendant->dv_flags &= ~DVF_ACTIVE;
1962 if (ca->ca_activate == NULL)
1963 continue;
1964 s = splhigh();
1965 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1966 splx(s);
1967 if (rv != 0)
1968 descendant->dv_flags = oflags;
1969 }
1970 deviter_release(&di);
1971 return rv;
1972 }
1973
1974 /*
1975 * Defer the configuration of the specified device until all
1976 * of its parent's devices have been attached.
1977 */
1978 void
1979 config_defer(device_t dev, void (*func)(device_t))
1980 {
1981 struct deferred_config *dc;
1982
1983 if (dev->dv_parent == NULL)
1984 panic("config_defer: can't defer config of a root device");
1985
1986 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1987
1988 config_pending_incr(dev);
1989
1990 mutex_enter(&config_misc_lock);
1991 #ifdef DIAGNOSTIC
1992 struct deferred_config *odc;
1993 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
1994 if (odc->dc_dev == dev)
1995 panic("config_defer: deferred twice");
1996 }
1997 #endif
1998 dc->dc_dev = dev;
1999 dc->dc_func = func;
2000 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2001 mutex_exit(&config_misc_lock);
2002 }
2003
2004 /*
2005 * Defer some autoconfiguration for a device until after interrupts
2006 * are enabled.
2007 */
2008 void
2009 config_interrupts(device_t dev, void (*func)(device_t))
2010 {
2011 struct deferred_config *dc;
2012
2013 /*
2014 * If interrupts are enabled, callback now.
2015 */
2016 if (cold == 0) {
2017 (*func)(dev);
2018 return;
2019 }
2020
2021 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2022
2023 config_pending_incr(dev);
2024
2025 mutex_enter(&config_misc_lock);
2026 #ifdef DIAGNOSTIC
2027 struct deferred_config *odc;
2028 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2029 if (odc->dc_dev == dev)
2030 panic("config_interrupts: deferred twice");
2031 }
2032 #endif
2033 dc->dc_dev = dev;
2034 dc->dc_func = func;
2035 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2036 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2037 mutex_exit(&config_misc_lock);
2038 }
2039
2040 /*
2041 * Defer some autoconfiguration for a device until after root file system
2042 * is mounted (to load firmware etc).
2043 */
2044 void
2045 config_mountroot(device_t dev, void (*func)(device_t))
2046 {
2047 struct deferred_config *dc;
2048
2049 /*
2050 * If root file system is mounted, callback now.
2051 */
2052 if (root_is_mounted) {
2053 (*func)(dev);
2054 return;
2055 }
2056
2057 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2058
2059 mutex_enter(&config_misc_lock);
2060 #ifdef DIAGNOSTIC
2061 struct deferred_config *odc;
2062 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2063 if (odc->dc_dev == dev)
2064 panic("%s: deferred twice", __func__);
2065 }
2066 #endif
2067
2068 dc->dc_dev = dev;
2069 dc->dc_func = func;
2070 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2071 mutex_exit(&config_misc_lock);
2072 }
2073
2074 /*
2075 * Process a deferred configuration queue.
2076 */
2077 static void
2078 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2079 {
2080 struct deferred_config *dc;
2081
2082 mutex_enter(&config_misc_lock);
2083 dc = TAILQ_FIRST(queue);
2084 while (dc) {
2085 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2086 TAILQ_REMOVE(queue, dc, dc_queue);
2087 mutex_exit(&config_misc_lock);
2088
2089 (*dc->dc_func)(dc->dc_dev);
2090 config_pending_decr(dc->dc_dev);
2091 kmem_free(dc, sizeof(*dc));
2092
2093 mutex_enter(&config_misc_lock);
2094 /* Restart, queue might have changed */
2095 dc = TAILQ_FIRST(queue);
2096 } else {
2097 dc = TAILQ_NEXT(dc, dc_queue);
2098 }
2099 }
2100 mutex_exit(&config_misc_lock);
2101 }
2102
2103 /*
2104 * Manipulate the config_pending semaphore.
2105 */
2106 void
2107 config_pending_incr(device_t dev)
2108 {
2109
2110 mutex_enter(&config_misc_lock);
2111 config_pending++;
2112 #ifdef DEBUG_AUTOCONF
2113 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2114 #endif
2115 mutex_exit(&config_misc_lock);
2116 }
2117
2118 void
2119 config_pending_decr(device_t dev)
2120 {
2121
2122 KASSERT(0 < config_pending);
2123 mutex_enter(&config_misc_lock);
2124 config_pending--;
2125 #ifdef DEBUG_AUTOCONF
2126 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2127 #endif
2128 if (config_pending == 0)
2129 cv_broadcast(&config_misc_cv);
2130 mutex_exit(&config_misc_lock);
2131 }
2132
2133 /*
2134 * Register a "finalization" routine. Finalization routines are
2135 * called iteratively once all real devices have been found during
2136 * autoconfiguration, for as long as any one finalizer has done
2137 * any work.
2138 */
2139 int
2140 config_finalize_register(device_t dev, int (*fn)(device_t))
2141 {
2142 struct finalize_hook *f;
2143
2144 /*
2145 * If finalization has already been done, invoke the
2146 * callback function now.
2147 */
2148 if (config_finalize_done) {
2149 while ((*fn)(dev) != 0)
2150 /* loop */ ;
2151 return 0;
2152 }
2153
2154 /* Ensure this isn't already on the list. */
2155 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2156 if (f->f_func == fn && f->f_dev == dev)
2157 return EEXIST;
2158 }
2159
2160 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2161 f->f_func = fn;
2162 f->f_dev = dev;
2163 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2164
2165 return 0;
2166 }
2167
2168 void
2169 config_finalize(void)
2170 {
2171 struct finalize_hook *f;
2172 struct pdevinit *pdev;
2173 extern struct pdevinit pdevinit[];
2174 int errcnt, rv;
2175
2176 /*
2177 * Now that device driver threads have been created, wait for
2178 * them to finish any deferred autoconfiguration.
2179 */
2180 mutex_enter(&config_misc_lock);
2181 while (config_pending != 0)
2182 cv_wait(&config_misc_cv, &config_misc_lock);
2183 mutex_exit(&config_misc_lock);
2184
2185 KERNEL_LOCK(1, NULL);
2186
2187 /* Attach pseudo-devices. */
2188 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2189 (*pdev->pdev_attach)(pdev->pdev_count);
2190
2191 /* Run the hooks until none of them does any work. */
2192 do {
2193 rv = 0;
2194 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2195 rv |= (*f->f_func)(f->f_dev);
2196 } while (rv != 0);
2197
2198 config_finalize_done = 1;
2199
2200 /* Now free all the hooks. */
2201 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2202 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2203 kmem_free(f, sizeof(*f));
2204 }
2205
2206 KERNEL_UNLOCK_ONE(NULL);
2207
2208 errcnt = aprint_get_error_count();
2209 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2210 (boothowto & AB_VERBOSE) == 0) {
2211 mutex_enter(&config_misc_lock);
2212 if (config_do_twiddle) {
2213 config_do_twiddle = 0;
2214 printf_nolog(" done.\n");
2215 }
2216 mutex_exit(&config_misc_lock);
2217 }
2218 if (errcnt != 0) {
2219 printf("WARNING: %d error%s while detecting hardware; "
2220 "check system log.\n", errcnt,
2221 errcnt == 1 ? "" : "s");
2222 }
2223 }
2224
2225 void
2226 config_twiddle_init(void)
2227 {
2228
2229 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2230 config_do_twiddle = 1;
2231 }
2232 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2233 }
2234
2235 void
2236 config_twiddle_fn(void *cookie)
2237 {
2238
2239 mutex_enter(&config_misc_lock);
2240 if (config_do_twiddle) {
2241 twiddle();
2242 callout_schedule(&config_twiddle_ch, mstohz(100));
2243 }
2244 mutex_exit(&config_misc_lock);
2245 }
2246
2247 static void
2248 config_alldevs_enter(struct alldevs_foray *af)
2249 {
2250 TAILQ_INIT(&af->af_garbage);
2251 mutex_enter(&alldevs_lock);
2252 config_collect_garbage(&af->af_garbage);
2253 }
2254
2255 static void
2256 config_alldevs_exit(struct alldevs_foray *af)
2257 {
2258 mutex_exit(&alldevs_lock);
2259 config_dump_garbage(&af->af_garbage);
2260 }
2261
2262 /*
2263 * device_lookup:
2264 *
2265 * Look up a device instance for a given driver.
2266 */
2267 device_t
2268 device_lookup(cfdriver_t cd, int unit)
2269 {
2270 device_t dv;
2271
2272 mutex_enter(&alldevs_lock);
2273 if (unit < 0 || unit >= cd->cd_ndevs)
2274 dv = NULL;
2275 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2276 dv = NULL;
2277 mutex_exit(&alldevs_lock);
2278
2279 return dv;
2280 }
2281
2282 /*
2283 * device_lookup_private:
2284 *
2285 * Look up a softc instance for a given driver.
2286 */
2287 void *
2288 device_lookup_private(cfdriver_t cd, int unit)
2289 {
2290
2291 return device_private(device_lookup(cd, unit));
2292 }
2293
2294 /*
2295 * device_find_by_xname:
2296 *
2297 * Returns the device of the given name or NULL if it doesn't exist.
2298 */
2299 device_t
2300 device_find_by_xname(const char *name)
2301 {
2302 device_t dv;
2303 deviter_t di;
2304
2305 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2306 if (strcmp(device_xname(dv), name) == 0)
2307 break;
2308 }
2309 deviter_release(&di);
2310
2311 return dv;
2312 }
2313
2314 /*
2315 * device_find_by_driver_unit:
2316 *
2317 * Returns the device of the given driver name and unit or
2318 * NULL if it doesn't exist.
2319 */
2320 device_t
2321 device_find_by_driver_unit(const char *name, int unit)
2322 {
2323 struct cfdriver *cd;
2324
2325 if ((cd = config_cfdriver_lookup(name)) == NULL)
2326 return NULL;
2327 return device_lookup(cd, unit);
2328 }
2329
2330 /*
2331 * device_compatible_match:
2332 *
2333 * Match a driver's "compatible" data against a device's
2334 * "compatible" strings. If a match is found, we return
2335 * a weighted match result, and optionally the matching
2336 * entry.
2337 */
2338 int
2339 device_compatible_match(const char **device_compats, int ndevice_compats,
2340 const struct device_compatible_entry *driver_compats,
2341 const struct device_compatible_entry **matching_entryp)
2342 {
2343 const struct device_compatible_entry *dce = NULL;
2344 int i, match_weight;
2345
2346 if (ndevice_compats == 0 || device_compats == NULL ||
2347 driver_compats == NULL)
2348 return 0;
2349
2350 /*
2351 * We take the first match because we start with the most-specific
2352 * device compatible string.
2353 */
2354 for (i = 0, match_weight = ndevice_compats - 1;
2355 i < ndevice_compats;
2356 i++, match_weight--) {
2357 for (dce = driver_compats; dce->compat != NULL; dce++) {
2358 if (strcmp(dce->compat, device_compats[i]) == 0) {
2359 KASSERT(match_weight >= 0);
2360 if (matching_entryp)
2361 *matching_entryp = dce;
2362 return 1 + match_weight;
2363 }
2364 }
2365 }
2366 return 0;
2367 }
2368
2369 /*
2370 * Power management related functions.
2371 */
2372
2373 bool
2374 device_pmf_is_registered(device_t dev)
2375 {
2376 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2377 }
2378
2379 bool
2380 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2381 {
2382 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2383 return true;
2384 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2385 return false;
2386 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2387 dev->dv_driver_suspend != NULL &&
2388 !(*dev->dv_driver_suspend)(dev, qual))
2389 return false;
2390
2391 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2392 return true;
2393 }
2394
2395 bool
2396 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2397 {
2398 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2399 return true;
2400 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2401 return false;
2402 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2403 dev->dv_driver_resume != NULL &&
2404 !(*dev->dv_driver_resume)(dev, qual))
2405 return false;
2406
2407 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2408 return true;
2409 }
2410
2411 bool
2412 device_pmf_driver_shutdown(device_t dev, int how)
2413 {
2414
2415 if (*dev->dv_driver_shutdown != NULL &&
2416 !(*dev->dv_driver_shutdown)(dev, how))
2417 return false;
2418 return true;
2419 }
2420
2421 bool
2422 device_pmf_driver_register(device_t dev,
2423 bool (*suspend)(device_t, const pmf_qual_t *),
2424 bool (*resume)(device_t, const pmf_qual_t *),
2425 bool (*shutdown)(device_t, int))
2426 {
2427 dev->dv_driver_suspend = suspend;
2428 dev->dv_driver_resume = resume;
2429 dev->dv_driver_shutdown = shutdown;
2430 dev->dv_flags |= DVF_POWER_HANDLERS;
2431 return true;
2432 }
2433
2434 static const char *
2435 curlwp_name(void)
2436 {
2437 if (curlwp->l_name != NULL)
2438 return curlwp->l_name;
2439 else
2440 return curlwp->l_proc->p_comm;
2441 }
2442
2443 void
2444 device_pmf_driver_deregister(device_t dev)
2445 {
2446 device_lock_t dvl = device_getlock(dev);
2447
2448 dev->dv_driver_suspend = NULL;
2449 dev->dv_driver_resume = NULL;
2450
2451 mutex_enter(&dvl->dvl_mtx);
2452 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2453 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2454 /* Wake a thread that waits for the lock. That
2455 * thread will fail to acquire the lock, and then
2456 * it will wake the next thread that waits for the
2457 * lock, or else it will wake us.
2458 */
2459 cv_signal(&dvl->dvl_cv);
2460 pmflock_debug(dev, __func__, __LINE__);
2461 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2462 pmflock_debug(dev, __func__, __LINE__);
2463 }
2464 mutex_exit(&dvl->dvl_mtx);
2465 }
2466
2467 bool
2468 device_pmf_driver_child_register(device_t dev)
2469 {
2470 device_t parent = device_parent(dev);
2471
2472 if (parent == NULL || parent->dv_driver_child_register == NULL)
2473 return true;
2474 return (*parent->dv_driver_child_register)(dev);
2475 }
2476
2477 void
2478 device_pmf_driver_set_child_register(device_t dev,
2479 bool (*child_register)(device_t))
2480 {
2481 dev->dv_driver_child_register = child_register;
2482 }
2483
2484 static void
2485 pmflock_debug(device_t dev, const char *func, int line)
2486 {
2487 device_lock_t dvl = device_getlock(dev);
2488
2489 aprint_debug_dev(dev,
2490 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2491 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2492 }
2493
2494 static bool
2495 device_pmf_lock1(device_t dev)
2496 {
2497 device_lock_t dvl = device_getlock(dev);
2498
2499 while (device_pmf_is_registered(dev) &&
2500 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2501 dvl->dvl_nwait++;
2502 pmflock_debug(dev, __func__, __LINE__);
2503 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2504 pmflock_debug(dev, __func__, __LINE__);
2505 dvl->dvl_nwait--;
2506 }
2507 if (!device_pmf_is_registered(dev)) {
2508 pmflock_debug(dev, __func__, __LINE__);
2509 /* We could not acquire the lock, but some other thread may
2510 * wait for it, also. Wake that thread.
2511 */
2512 cv_signal(&dvl->dvl_cv);
2513 return false;
2514 }
2515 dvl->dvl_nlock++;
2516 dvl->dvl_holder = curlwp;
2517 pmflock_debug(dev, __func__, __LINE__);
2518 return true;
2519 }
2520
2521 bool
2522 device_pmf_lock(device_t dev)
2523 {
2524 bool rc;
2525 device_lock_t dvl = device_getlock(dev);
2526
2527 mutex_enter(&dvl->dvl_mtx);
2528 rc = device_pmf_lock1(dev);
2529 mutex_exit(&dvl->dvl_mtx);
2530
2531 return rc;
2532 }
2533
2534 void
2535 device_pmf_unlock(device_t dev)
2536 {
2537 device_lock_t dvl = device_getlock(dev);
2538
2539 KASSERT(dvl->dvl_nlock > 0);
2540 mutex_enter(&dvl->dvl_mtx);
2541 if (--dvl->dvl_nlock == 0)
2542 dvl->dvl_holder = NULL;
2543 cv_signal(&dvl->dvl_cv);
2544 pmflock_debug(dev, __func__, __LINE__);
2545 mutex_exit(&dvl->dvl_mtx);
2546 }
2547
2548 device_lock_t
2549 device_getlock(device_t dev)
2550 {
2551 return &dev->dv_lock;
2552 }
2553
2554 void *
2555 device_pmf_bus_private(device_t dev)
2556 {
2557 return dev->dv_bus_private;
2558 }
2559
2560 bool
2561 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2562 {
2563 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2564 return true;
2565 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2566 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2567 return false;
2568 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2569 dev->dv_bus_suspend != NULL &&
2570 !(*dev->dv_bus_suspend)(dev, qual))
2571 return false;
2572
2573 dev->dv_flags |= DVF_BUS_SUSPENDED;
2574 return true;
2575 }
2576
2577 bool
2578 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2579 {
2580 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2581 return true;
2582 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2583 dev->dv_bus_resume != NULL &&
2584 !(*dev->dv_bus_resume)(dev, qual))
2585 return false;
2586
2587 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2588 return true;
2589 }
2590
2591 bool
2592 device_pmf_bus_shutdown(device_t dev, int how)
2593 {
2594
2595 if (*dev->dv_bus_shutdown != NULL &&
2596 !(*dev->dv_bus_shutdown)(dev, how))
2597 return false;
2598 return true;
2599 }
2600
2601 void
2602 device_pmf_bus_register(device_t dev, void *priv,
2603 bool (*suspend)(device_t, const pmf_qual_t *),
2604 bool (*resume)(device_t, const pmf_qual_t *),
2605 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2606 {
2607 dev->dv_bus_private = priv;
2608 dev->dv_bus_resume = resume;
2609 dev->dv_bus_suspend = suspend;
2610 dev->dv_bus_shutdown = shutdown;
2611 dev->dv_bus_deregister = deregister;
2612 }
2613
2614 void
2615 device_pmf_bus_deregister(device_t dev)
2616 {
2617 if (dev->dv_bus_deregister == NULL)
2618 return;
2619 (*dev->dv_bus_deregister)(dev);
2620 dev->dv_bus_private = NULL;
2621 dev->dv_bus_suspend = NULL;
2622 dev->dv_bus_resume = NULL;
2623 dev->dv_bus_deregister = NULL;
2624 }
2625
2626 void *
2627 device_pmf_class_private(device_t dev)
2628 {
2629 return dev->dv_class_private;
2630 }
2631
2632 bool
2633 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2634 {
2635 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2636 return true;
2637 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2638 dev->dv_class_suspend != NULL &&
2639 !(*dev->dv_class_suspend)(dev, qual))
2640 return false;
2641
2642 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2643 return true;
2644 }
2645
2646 bool
2647 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2648 {
2649 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2650 return true;
2651 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2652 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2653 return false;
2654 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2655 dev->dv_class_resume != NULL &&
2656 !(*dev->dv_class_resume)(dev, qual))
2657 return false;
2658
2659 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2660 return true;
2661 }
2662
2663 void
2664 device_pmf_class_register(device_t dev, void *priv,
2665 bool (*suspend)(device_t, const pmf_qual_t *),
2666 bool (*resume)(device_t, const pmf_qual_t *),
2667 void (*deregister)(device_t))
2668 {
2669 dev->dv_class_private = priv;
2670 dev->dv_class_suspend = suspend;
2671 dev->dv_class_resume = resume;
2672 dev->dv_class_deregister = deregister;
2673 }
2674
2675 void
2676 device_pmf_class_deregister(device_t dev)
2677 {
2678 if (dev->dv_class_deregister == NULL)
2679 return;
2680 (*dev->dv_class_deregister)(dev);
2681 dev->dv_class_private = NULL;
2682 dev->dv_class_suspend = NULL;
2683 dev->dv_class_resume = NULL;
2684 dev->dv_class_deregister = NULL;
2685 }
2686
2687 bool
2688 device_active(device_t dev, devactive_t type)
2689 {
2690 size_t i;
2691
2692 if (dev->dv_activity_count == 0)
2693 return false;
2694
2695 for (i = 0; i < dev->dv_activity_count; ++i) {
2696 if (dev->dv_activity_handlers[i] == NULL)
2697 break;
2698 (*dev->dv_activity_handlers[i])(dev, type);
2699 }
2700
2701 return true;
2702 }
2703
2704 bool
2705 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2706 {
2707 void (**new_handlers)(device_t, devactive_t);
2708 void (**old_handlers)(device_t, devactive_t);
2709 size_t i, old_size, new_size;
2710 int s;
2711
2712 old_handlers = dev->dv_activity_handlers;
2713 old_size = dev->dv_activity_count;
2714
2715 KASSERT(old_size == 0 || old_handlers != NULL);
2716
2717 for (i = 0; i < old_size; ++i) {
2718 KASSERT(old_handlers[i] != handler);
2719 if (old_handlers[i] == NULL) {
2720 old_handlers[i] = handler;
2721 return true;
2722 }
2723 }
2724
2725 new_size = old_size + 4;
2726 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2727
2728 for (i = 0; i < old_size; ++i)
2729 new_handlers[i] = old_handlers[i];
2730 new_handlers[old_size] = handler;
2731 for (i = old_size+1; i < new_size; ++i)
2732 new_handlers[i] = NULL;
2733
2734 s = splhigh();
2735 dev->dv_activity_count = new_size;
2736 dev->dv_activity_handlers = new_handlers;
2737 splx(s);
2738
2739 if (old_size > 0)
2740 kmem_free(old_handlers, sizeof(void * [old_size]));
2741
2742 return true;
2743 }
2744
2745 void
2746 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2747 {
2748 void (**old_handlers)(device_t, devactive_t);
2749 size_t i, old_size;
2750 int s;
2751
2752 old_handlers = dev->dv_activity_handlers;
2753 old_size = dev->dv_activity_count;
2754
2755 for (i = 0; i < old_size; ++i) {
2756 if (old_handlers[i] == handler)
2757 break;
2758 if (old_handlers[i] == NULL)
2759 return; /* XXX panic? */
2760 }
2761
2762 if (i == old_size)
2763 return; /* XXX panic? */
2764
2765 for (; i < old_size - 1; ++i) {
2766 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2767 continue;
2768
2769 if (i == 0) {
2770 s = splhigh();
2771 dev->dv_activity_count = 0;
2772 dev->dv_activity_handlers = NULL;
2773 splx(s);
2774 kmem_free(old_handlers, sizeof(void *[old_size]));
2775 }
2776 return;
2777 }
2778 old_handlers[i] = NULL;
2779 }
2780
2781 /* Return true iff the device_t `dev' exists at generation `gen'. */
2782 static bool
2783 device_exists_at(device_t dv, devgen_t gen)
2784 {
2785 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2786 dv->dv_add_gen <= gen;
2787 }
2788
2789 static bool
2790 deviter_visits(const deviter_t *di, device_t dv)
2791 {
2792 return device_exists_at(dv, di->di_gen);
2793 }
2794
2795 /*
2796 * Device Iteration
2797 *
2798 * deviter_t: a device iterator. Holds state for a "walk" visiting
2799 * each device_t's in the device tree.
2800 *
2801 * deviter_init(di, flags): initialize the device iterator `di'
2802 * to "walk" the device tree. deviter_next(di) will return
2803 * the first device_t in the device tree, or NULL if there are
2804 * no devices.
2805 *
2806 * `flags' is one or more of DEVITER_F_RW, indicating that the
2807 * caller intends to modify the device tree by calling
2808 * config_detach(9) on devices in the order that the iterator
2809 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2810 * nearest the "root" of the device tree to be returned, first;
2811 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2812 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2813 * indicating both that deviter_init() should not respect any
2814 * locks on the device tree, and that deviter_next(di) may run
2815 * in more than one LWP before the walk has finished.
2816 *
2817 * Only one DEVITER_F_RW iterator may be in the device tree at
2818 * once.
2819 *
2820 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2821 *
2822 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2823 * DEVITER_F_LEAVES_FIRST are used in combination.
2824 *
2825 * deviter_first(di, flags): initialize the device iterator `di'
2826 * and return the first device_t in the device tree, or NULL
2827 * if there are no devices. The statement
2828 *
2829 * dv = deviter_first(di);
2830 *
2831 * is shorthand for
2832 *
2833 * deviter_init(di);
2834 * dv = deviter_next(di);
2835 *
2836 * deviter_next(di): return the next device_t in the device tree,
2837 * or NULL if there are no more devices. deviter_next(di)
2838 * is undefined if `di' was not initialized with deviter_init() or
2839 * deviter_first().
2840 *
2841 * deviter_release(di): stops iteration (subsequent calls to
2842 * deviter_next() will return NULL), releases any locks and
2843 * resources held by the device iterator.
2844 *
2845 * Device iteration does not return device_t's in any particular
2846 * order. An iterator will never return the same device_t twice.
2847 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2848 * is called repeatedly on the same `di', it will eventually return
2849 * NULL. It is ok to attach/detach devices during device iteration.
2850 */
2851 void
2852 deviter_init(deviter_t *di, deviter_flags_t flags)
2853 {
2854 device_t dv;
2855
2856 memset(di, 0, sizeof(*di));
2857
2858 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2859 flags |= DEVITER_F_RW;
2860
2861 mutex_enter(&alldevs_lock);
2862 if ((flags & DEVITER_F_RW) != 0)
2863 alldevs_nwrite++;
2864 else
2865 alldevs_nread++;
2866 di->di_gen = alldevs_gen++;
2867 di->di_flags = flags;
2868
2869 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2870 case DEVITER_F_LEAVES_FIRST:
2871 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2872 if (!deviter_visits(di, dv))
2873 continue;
2874 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2875 }
2876 break;
2877 case DEVITER_F_ROOT_FIRST:
2878 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2879 if (!deviter_visits(di, dv))
2880 continue;
2881 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2882 }
2883 break;
2884 default:
2885 break;
2886 }
2887
2888 deviter_reinit(di);
2889 mutex_exit(&alldevs_lock);
2890 }
2891
2892 static void
2893 deviter_reinit(deviter_t *di)
2894 {
2895
2896 KASSERT(mutex_owned(&alldevs_lock));
2897 if ((di->di_flags & DEVITER_F_RW) != 0)
2898 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2899 else
2900 di->di_prev = TAILQ_FIRST(&alldevs);
2901 }
2902
2903 device_t
2904 deviter_first(deviter_t *di, deviter_flags_t flags)
2905 {
2906
2907 deviter_init(di, flags);
2908 return deviter_next(di);
2909 }
2910
2911 static device_t
2912 deviter_next2(deviter_t *di)
2913 {
2914 device_t dv;
2915
2916 KASSERT(mutex_owned(&alldevs_lock));
2917
2918 dv = di->di_prev;
2919
2920 if (dv == NULL)
2921 return NULL;
2922
2923 if ((di->di_flags & DEVITER_F_RW) != 0)
2924 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2925 else
2926 di->di_prev = TAILQ_NEXT(dv, dv_list);
2927
2928 return dv;
2929 }
2930
2931 static device_t
2932 deviter_next1(deviter_t *di)
2933 {
2934 device_t dv;
2935
2936 KASSERT(mutex_owned(&alldevs_lock));
2937
2938 do {
2939 dv = deviter_next2(di);
2940 } while (dv != NULL && !deviter_visits(di, dv));
2941
2942 return dv;
2943 }
2944
2945 device_t
2946 deviter_next(deviter_t *di)
2947 {
2948 device_t dv = NULL;
2949
2950 mutex_enter(&alldevs_lock);
2951 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2952 case 0:
2953 dv = deviter_next1(di);
2954 break;
2955 case DEVITER_F_LEAVES_FIRST:
2956 while (di->di_curdepth >= 0) {
2957 if ((dv = deviter_next1(di)) == NULL) {
2958 di->di_curdepth--;
2959 deviter_reinit(di);
2960 } else if (dv->dv_depth == di->di_curdepth)
2961 break;
2962 }
2963 break;
2964 case DEVITER_F_ROOT_FIRST:
2965 while (di->di_curdepth <= di->di_maxdepth) {
2966 if ((dv = deviter_next1(di)) == NULL) {
2967 di->di_curdepth++;
2968 deviter_reinit(di);
2969 } else if (dv->dv_depth == di->di_curdepth)
2970 break;
2971 }
2972 break;
2973 default:
2974 break;
2975 }
2976 mutex_exit(&alldevs_lock);
2977
2978 return dv;
2979 }
2980
2981 void
2982 deviter_release(deviter_t *di)
2983 {
2984 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2985
2986 mutex_enter(&alldevs_lock);
2987 if (rw)
2988 --alldevs_nwrite;
2989 else
2990 --alldevs_nread;
2991 /* XXX wake a garbage-collection thread */
2992 mutex_exit(&alldevs_lock);
2993 }
2994
2995 const char *
2996 cfdata_ifattr(const struct cfdata *cf)
2997 {
2998 return cf->cf_pspec->cfp_iattr;
2999 }
3000
3001 bool
3002 ifattr_match(const char *snull, const char *t)
3003 {
3004 return (snull == NULL) || strcmp(snull, t) == 0;
3005 }
3006
3007 void
3008 null_childdetached(device_t self, device_t child)
3009 {
3010 /* do nothing */
3011 }
3012
3013 static void
3014 sysctl_detach_setup(struct sysctllog **clog)
3015 {
3016
3017 sysctl_createv(clog, 0, NULL, NULL,
3018 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3019 CTLTYPE_BOOL, "detachall",
3020 SYSCTL_DESCR("Detach all devices at shutdown"),
3021 NULL, 0, &detachall, 0,
3022 CTL_KERN, CTL_CREATE, CTL_EOL);
3023 }
3024