Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.274
      1 /* $NetBSD: subr_autoconf.c,v 1.274 2020/10/03 22:32:50 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.274 2020/10/03 22:32:50 riastradh Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 static krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 static struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 static struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 static int interrupt_config_threads = 8;
    200 static struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 static int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_lock __cacheline_aligned;
    222 static devgen_t alldevs_gen = 1;
    223 static int alldevs_nread = 0;
    224 static int alldevs_nwrite = 0;
    225 static bool alldevs_garbage = false;
    226 
    227 static struct devicelist config_pending =
    228     TAILQ_HEAD_INITIALIZER(config_pending);
    229 static kmutex_t config_misc_lock;
    230 static kcondvar_t config_misc_cv;
    231 
    232 static bool detachall = false;
    233 
    234 #define	STREQ(s1, s2)			\
    235 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    236 
    237 static bool config_initialized = false;	/* config_init() has been called. */
    238 
    239 static int config_do_twiddle;
    240 static callout_t config_twiddle_ch;
    241 
    242 static void sysctl_detach_setup(struct sysctllog **);
    243 
    244 int no_devmon_insert(const char *, prop_dictionary_t);
    245 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    246 
    247 typedef int (*cfdriver_fn)(struct cfdriver *);
    248 static int
    249 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    250 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    251 	const char *style, bool dopanic)
    252 {
    253 	void (*pr)(const char *, ...) __printflike(1, 2) =
    254 	    dopanic ? panic : printf;
    255 	int i, error = 0, e2 __diagused;
    256 
    257 	for (i = 0; cfdriverv[i] != NULL; i++) {
    258 		if ((error = drv_do(cfdriverv[i])) != 0) {
    259 			pr("configure: `%s' driver %s failed: %d",
    260 			    cfdriverv[i]->cd_name, style, error);
    261 			goto bad;
    262 		}
    263 	}
    264 
    265 	KASSERT(error == 0);
    266 	return 0;
    267 
    268  bad:
    269 	printf("\n");
    270 	for (i--; i >= 0; i--) {
    271 		e2 = drv_undo(cfdriverv[i]);
    272 		KASSERT(e2 == 0);
    273 	}
    274 
    275 	return error;
    276 }
    277 
    278 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    279 static int
    280 frob_cfattachvec(const struct cfattachinit *cfattachv,
    281 	cfattach_fn att_do, cfattach_fn att_undo,
    282 	const char *style, bool dopanic)
    283 {
    284 	const struct cfattachinit *cfai = NULL;
    285 	void (*pr)(const char *, ...) __printflike(1, 2) =
    286 	    dopanic ? panic : printf;
    287 	int j = 0, error = 0, e2 __diagused;
    288 
    289 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    290 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    291 			if ((error = att_do(cfai->cfai_name,
    292 			    cfai->cfai_list[j])) != 0) {
    293 				pr("configure: attachment `%s' "
    294 				    "of `%s' driver %s failed: %d",
    295 				    cfai->cfai_list[j]->ca_name,
    296 				    cfai->cfai_name, style, error);
    297 				goto bad;
    298 			}
    299 		}
    300 	}
    301 
    302 	KASSERT(error == 0);
    303 	return 0;
    304 
    305  bad:
    306 	/*
    307 	 * Rollback in reverse order.  dunno if super-important, but
    308 	 * do that anyway.  Although the code looks a little like
    309 	 * someone did a little integration (in the math sense).
    310 	 */
    311 	printf("\n");
    312 	if (cfai) {
    313 		bool last;
    314 
    315 		for (last = false; last == false; ) {
    316 			if (cfai == &cfattachv[0])
    317 				last = true;
    318 			for (j--; j >= 0; j--) {
    319 				e2 = att_undo(cfai->cfai_name,
    320 				    cfai->cfai_list[j]);
    321 				KASSERT(e2 == 0);
    322 			}
    323 			if (!last) {
    324 				cfai--;
    325 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    326 					;
    327 			}
    328 		}
    329 	}
    330 
    331 	return error;
    332 }
    333 
    334 /*
    335  * Initialize the autoconfiguration data structures.  Normally this
    336  * is done by configure(), but some platforms need to do this very
    337  * early (to e.g. initialize the console).
    338  */
    339 void
    340 config_init(void)
    341 {
    342 
    343 	KASSERT(config_initialized == false);
    344 
    345 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    346 
    347 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    348 	cv_init(&config_misc_cv, "cfgmisc");
    349 
    350 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    351 
    352 	frob_cfdrivervec(cfdriver_list_initial,
    353 	    config_cfdriver_attach, NULL, "bootstrap", true);
    354 	frob_cfattachvec(cfattachinit,
    355 	    config_cfattach_attach, NULL, "bootstrap", true);
    356 
    357 	initcftable.ct_cfdata = cfdata;
    358 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    359 
    360 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    361 	    RND_FLAG_COLLECT_TIME);
    362 
    363 	config_initialized = true;
    364 }
    365 
    366 /*
    367  * Init or fini drivers and attachments.  Either all or none
    368  * are processed (via rollback).  It would be nice if this were
    369  * atomic to outside consumers, but with the current state of
    370  * locking ...
    371  */
    372 int
    373 config_init_component(struct cfdriver * const *cfdriverv,
    374 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    375 {
    376 	int error;
    377 
    378 	if ((error = frob_cfdrivervec(cfdriverv,
    379 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    380 		return error;
    381 	if ((error = frob_cfattachvec(cfattachv,
    382 	    config_cfattach_attach, config_cfattach_detach,
    383 	    "init", false)) != 0) {
    384 		frob_cfdrivervec(cfdriverv,
    385 	            config_cfdriver_detach, NULL, "init rollback", true);
    386 		return error;
    387 	}
    388 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    389 		frob_cfattachvec(cfattachv,
    390 		    config_cfattach_detach, NULL, "init rollback", true);
    391 		frob_cfdrivervec(cfdriverv,
    392 	            config_cfdriver_detach, NULL, "init rollback", true);
    393 		return error;
    394 	}
    395 
    396 	return 0;
    397 }
    398 
    399 int
    400 config_fini_component(struct cfdriver * const *cfdriverv,
    401 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    402 {
    403 	int error;
    404 
    405 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    406 		return error;
    407 	if ((error = frob_cfattachvec(cfattachv,
    408 	    config_cfattach_detach, config_cfattach_attach,
    409 	    "fini", false)) != 0) {
    410 		if (config_cfdata_attach(cfdatav, 0) != 0)
    411 			panic("config_cfdata fini rollback failed");
    412 		return error;
    413 	}
    414 	if ((error = frob_cfdrivervec(cfdriverv,
    415 	    config_cfdriver_detach, config_cfdriver_attach,
    416 	    "fini", false)) != 0) {
    417 		frob_cfattachvec(cfattachv,
    418 	            config_cfattach_attach, NULL, "fini rollback", true);
    419 		if (config_cfdata_attach(cfdatav, 0) != 0)
    420 			panic("config_cfdata fini rollback failed");
    421 		return error;
    422 	}
    423 
    424 	return 0;
    425 }
    426 
    427 void
    428 config_init_mi(void)
    429 {
    430 
    431 	if (!config_initialized)
    432 		config_init();
    433 
    434 	sysctl_detach_setup(NULL);
    435 }
    436 
    437 void
    438 config_deferred(device_t dev)
    439 {
    440 	config_process_deferred(&deferred_config_queue, dev);
    441 	config_process_deferred(&interrupt_config_queue, dev);
    442 	config_process_deferred(&mountroot_config_queue, dev);
    443 }
    444 
    445 static void
    446 config_interrupts_thread(void *cookie)
    447 {
    448 	struct deferred_config *dc;
    449 	device_t dev;
    450 
    451 	mutex_enter(&config_misc_lock);
    452 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    453 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    454 		mutex_exit(&config_misc_lock);
    455 
    456 		dev = dc->dc_dev;
    457 		(*dc->dc_func)(dev);
    458 		if (!device_pmf_is_registered(dev))
    459 			aprint_debug_dev(dev,
    460 			    "WARNING: power management not supported\n");
    461 		config_pending_decr(dev);
    462 		kmem_free(dc, sizeof(*dc));
    463 
    464 		mutex_enter(&config_misc_lock);
    465 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    466 	}
    467 	mutex_exit(&config_misc_lock);
    468 
    469 	kthread_exit(0);
    470 }
    471 
    472 void
    473 config_create_interruptthreads(void)
    474 {
    475 	int i;
    476 
    477 	for (i = 0; i < interrupt_config_threads; i++) {
    478 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    479 		    config_interrupts_thread, NULL, NULL, "configintr");
    480 	}
    481 }
    482 
    483 static void
    484 config_mountroot_thread(void *cookie)
    485 {
    486 	struct deferred_config *dc;
    487 
    488 	mutex_enter(&config_misc_lock);
    489 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    490 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    491 		mutex_exit(&config_misc_lock);
    492 
    493 		(*dc->dc_func)(dc->dc_dev);
    494 		kmem_free(dc, sizeof(*dc));
    495 
    496 		mutex_enter(&config_misc_lock);
    497 	}
    498 	mutex_exit(&config_misc_lock);
    499 
    500 	kthread_exit(0);
    501 }
    502 
    503 void
    504 config_create_mountrootthreads(void)
    505 {
    506 	int i;
    507 
    508 	if (!root_is_mounted)
    509 		root_is_mounted = true;
    510 
    511 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    512 				       mountroot_config_threads;
    513 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    514 					     KM_NOSLEEP);
    515 	KASSERT(mountroot_config_lwpids);
    516 	for (i = 0; i < mountroot_config_threads; i++) {
    517 		mountroot_config_lwpids[i] = 0;
    518 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    519 				     NULL, config_mountroot_thread, NULL,
    520 				     &mountroot_config_lwpids[i],
    521 				     "configroot");
    522 	}
    523 }
    524 
    525 void
    526 config_finalize_mountroot(void)
    527 {
    528 	int i, error;
    529 
    530 	for (i = 0; i < mountroot_config_threads; i++) {
    531 		if (mountroot_config_lwpids[i] == 0)
    532 			continue;
    533 
    534 		error = kthread_join(mountroot_config_lwpids[i]);
    535 		if (error)
    536 			printf("%s: thread %x joined with error %d\n",
    537 			       __func__, i, error);
    538 	}
    539 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    540 }
    541 
    542 /*
    543  * Announce device attach/detach to userland listeners.
    544  */
    545 
    546 int
    547 no_devmon_insert(const char *name, prop_dictionary_t p)
    548 {
    549 
    550 	return ENODEV;
    551 }
    552 
    553 static void
    554 devmon_report_device(device_t dev, bool isattach)
    555 {
    556 	prop_dictionary_t ev, dict = device_properties(dev);
    557 	const char *parent;
    558 	const char *what;
    559 	const char *where;
    560 	device_t pdev = device_parent(dev);
    561 
    562 	/* If currently no drvctl device, just return */
    563 	if (devmon_insert_vec == no_devmon_insert)
    564 		return;
    565 
    566 	ev = prop_dictionary_create();
    567 	if (ev == NULL)
    568 		return;
    569 
    570 	what = (isattach ? "device-attach" : "device-detach");
    571 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    572 	if (prop_dictionary_get_string(dict, "location", &where)) {
    573 		prop_dictionary_set_string(ev, "location", where);
    574 		aprint_debug("ev: %s %s at %s in [%s]\n",
    575 		    what, device_xname(dev), parent, where);
    576 	}
    577 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    578 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    579 		prop_object_release(ev);
    580 		return;
    581 	}
    582 
    583 	if ((*devmon_insert_vec)(what, ev) != 0)
    584 		prop_object_release(ev);
    585 }
    586 
    587 /*
    588  * Add a cfdriver to the system.
    589  */
    590 int
    591 config_cfdriver_attach(struct cfdriver *cd)
    592 {
    593 	struct cfdriver *lcd;
    594 
    595 	/* Make sure this driver isn't already in the system. */
    596 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    597 		if (STREQ(lcd->cd_name, cd->cd_name))
    598 			return EEXIST;
    599 	}
    600 
    601 	LIST_INIT(&cd->cd_attach);
    602 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    603 
    604 	return 0;
    605 }
    606 
    607 /*
    608  * Remove a cfdriver from the system.
    609  */
    610 int
    611 config_cfdriver_detach(struct cfdriver *cd)
    612 {
    613 	struct alldevs_foray af;
    614 	int i, rc = 0;
    615 
    616 	config_alldevs_enter(&af);
    617 	/* Make sure there are no active instances. */
    618 	for (i = 0; i < cd->cd_ndevs; i++) {
    619 		if (cd->cd_devs[i] != NULL) {
    620 			rc = EBUSY;
    621 			break;
    622 		}
    623 	}
    624 	config_alldevs_exit(&af);
    625 
    626 	if (rc != 0)
    627 		return rc;
    628 
    629 	/* ...and no attachments loaded. */
    630 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    631 		return EBUSY;
    632 
    633 	LIST_REMOVE(cd, cd_list);
    634 
    635 	KASSERT(cd->cd_devs == NULL);
    636 
    637 	return 0;
    638 }
    639 
    640 /*
    641  * Look up a cfdriver by name.
    642  */
    643 struct cfdriver *
    644 config_cfdriver_lookup(const char *name)
    645 {
    646 	struct cfdriver *cd;
    647 
    648 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    649 		if (STREQ(cd->cd_name, name))
    650 			return cd;
    651 	}
    652 
    653 	return NULL;
    654 }
    655 
    656 /*
    657  * Add a cfattach to the specified driver.
    658  */
    659 int
    660 config_cfattach_attach(const char *driver, struct cfattach *ca)
    661 {
    662 	struct cfattach *lca;
    663 	struct cfdriver *cd;
    664 
    665 	cd = config_cfdriver_lookup(driver);
    666 	if (cd == NULL)
    667 		return ESRCH;
    668 
    669 	/* Make sure this attachment isn't already on this driver. */
    670 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    671 		if (STREQ(lca->ca_name, ca->ca_name))
    672 			return EEXIST;
    673 	}
    674 
    675 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    676 
    677 	return 0;
    678 }
    679 
    680 /*
    681  * Remove a cfattach from the specified driver.
    682  */
    683 int
    684 config_cfattach_detach(const char *driver, struct cfattach *ca)
    685 {
    686 	struct alldevs_foray af;
    687 	struct cfdriver *cd;
    688 	device_t dev;
    689 	int i, rc = 0;
    690 
    691 	cd = config_cfdriver_lookup(driver);
    692 	if (cd == NULL)
    693 		return ESRCH;
    694 
    695 	config_alldevs_enter(&af);
    696 	/* Make sure there are no active instances. */
    697 	for (i = 0; i < cd->cd_ndevs; i++) {
    698 		if ((dev = cd->cd_devs[i]) == NULL)
    699 			continue;
    700 		if (dev->dv_cfattach == ca) {
    701 			rc = EBUSY;
    702 			break;
    703 		}
    704 	}
    705 	config_alldevs_exit(&af);
    706 
    707 	if (rc != 0)
    708 		return rc;
    709 
    710 	LIST_REMOVE(ca, ca_list);
    711 
    712 	return 0;
    713 }
    714 
    715 /*
    716  * Look up a cfattach by name.
    717  */
    718 static struct cfattach *
    719 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    720 {
    721 	struct cfattach *ca;
    722 
    723 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    724 		if (STREQ(ca->ca_name, atname))
    725 			return ca;
    726 	}
    727 
    728 	return NULL;
    729 }
    730 
    731 /*
    732  * Look up a cfattach by driver/attachment name.
    733  */
    734 struct cfattach *
    735 config_cfattach_lookup(const char *name, const char *atname)
    736 {
    737 	struct cfdriver *cd;
    738 
    739 	cd = config_cfdriver_lookup(name);
    740 	if (cd == NULL)
    741 		return NULL;
    742 
    743 	return config_cfattach_lookup_cd(cd, atname);
    744 }
    745 
    746 /*
    747  * Apply the matching function and choose the best.  This is used
    748  * a few times and we want to keep the code small.
    749  */
    750 static void
    751 mapply(struct matchinfo *m, cfdata_t cf)
    752 {
    753 	int pri;
    754 
    755 	if (m->fn != NULL) {
    756 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    757 	} else {
    758 		pri = config_match(m->parent, cf, m->aux);
    759 	}
    760 	if (pri > m->pri) {
    761 		m->match = cf;
    762 		m->pri = pri;
    763 	}
    764 }
    765 
    766 int
    767 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    768 {
    769 	const struct cfiattrdata *ci;
    770 	const struct cflocdesc *cl;
    771 	int nlocs, i;
    772 
    773 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    774 	KASSERT(ci);
    775 	nlocs = ci->ci_loclen;
    776 	KASSERT(!nlocs || locs);
    777 	for (i = 0; i < nlocs; i++) {
    778 		cl = &ci->ci_locdesc[i];
    779 		if (cl->cld_defaultstr != NULL &&
    780 		    cf->cf_loc[i] == cl->cld_default)
    781 			continue;
    782 		if (cf->cf_loc[i] == locs[i])
    783 			continue;
    784 		return 0;
    785 	}
    786 
    787 	return config_match(parent, cf, aux);
    788 }
    789 
    790 /*
    791  * Helper function: check whether the driver supports the interface attribute
    792  * and return its descriptor structure.
    793  */
    794 static const struct cfiattrdata *
    795 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    796 {
    797 	const struct cfiattrdata * const *cpp;
    798 
    799 	if (cd->cd_attrs == NULL)
    800 		return 0;
    801 
    802 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    803 		if (STREQ((*cpp)->ci_name, ia)) {
    804 			/* Match. */
    805 			return *cpp;
    806 		}
    807 	}
    808 	return 0;
    809 }
    810 
    811 /*
    812  * Lookup an interface attribute description by name.
    813  * If the driver is given, consider only its supported attributes.
    814  */
    815 const struct cfiattrdata *
    816 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    817 {
    818 	const struct cfdriver *d;
    819 	const struct cfiattrdata *ia;
    820 
    821 	if (cd)
    822 		return cfdriver_get_iattr(cd, name);
    823 
    824 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    825 		ia = cfdriver_get_iattr(d, name);
    826 		if (ia)
    827 			return ia;
    828 	}
    829 	return 0;
    830 }
    831 
    832 /*
    833  * Determine if `parent' is a potential parent for a device spec based
    834  * on `cfp'.
    835  */
    836 static int
    837 cfparent_match(const device_t parent, const struct cfparent *cfp)
    838 {
    839 	struct cfdriver *pcd;
    840 
    841 	/* We don't match root nodes here. */
    842 	if (cfp == NULL)
    843 		return 0;
    844 
    845 	pcd = parent->dv_cfdriver;
    846 	KASSERT(pcd != NULL);
    847 
    848 	/*
    849 	 * First, ensure this parent has the correct interface
    850 	 * attribute.
    851 	 */
    852 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    853 		return 0;
    854 
    855 	/*
    856 	 * If no specific parent device instance was specified (i.e.
    857 	 * we're attaching to the attribute only), we're done!
    858 	 */
    859 	if (cfp->cfp_parent == NULL)
    860 		return 1;
    861 
    862 	/*
    863 	 * Check the parent device's name.
    864 	 */
    865 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    866 		return 0;	/* not the same parent */
    867 
    868 	/*
    869 	 * Make sure the unit number matches.
    870 	 */
    871 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    872 	    cfp->cfp_unit == parent->dv_unit)
    873 		return 1;
    874 
    875 	/* Unit numbers don't match. */
    876 	return 0;
    877 }
    878 
    879 /*
    880  * Helper for config_cfdata_attach(): check all devices whether it could be
    881  * parent any attachment in the config data table passed, and rescan.
    882  */
    883 static void
    884 rescan_with_cfdata(const struct cfdata *cf)
    885 {
    886 	device_t d;
    887 	const struct cfdata *cf1;
    888 	deviter_t di;
    889 
    890 
    891 	/*
    892 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    893 	 * the outer loop.
    894 	 */
    895 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    896 
    897 		if (!(d->dv_cfattach->ca_rescan))
    898 			continue;
    899 
    900 		for (cf1 = cf; cf1->cf_name; cf1++) {
    901 
    902 			if (!cfparent_match(d, cf1->cf_pspec))
    903 				continue;
    904 
    905 			(*d->dv_cfattach->ca_rescan)(d,
    906 				cfdata_ifattr(cf1), cf1->cf_loc);
    907 
    908 			config_deferred(d);
    909 		}
    910 	}
    911 	deviter_release(&di);
    912 }
    913 
    914 /*
    915  * Attach a supplemental config data table and rescan potential
    916  * parent devices if required.
    917  */
    918 int
    919 config_cfdata_attach(cfdata_t cf, int scannow)
    920 {
    921 	struct cftable *ct;
    922 
    923 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    924 	ct->ct_cfdata = cf;
    925 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    926 
    927 	if (scannow)
    928 		rescan_with_cfdata(cf);
    929 
    930 	return 0;
    931 }
    932 
    933 /*
    934  * Helper for config_cfdata_detach: check whether a device is
    935  * found through any attachment in the config data table.
    936  */
    937 static int
    938 dev_in_cfdata(device_t d, cfdata_t cf)
    939 {
    940 	const struct cfdata *cf1;
    941 
    942 	for (cf1 = cf; cf1->cf_name; cf1++)
    943 		if (d->dv_cfdata == cf1)
    944 			return 1;
    945 
    946 	return 0;
    947 }
    948 
    949 /*
    950  * Detach a supplemental config data table. Detach all devices found
    951  * through that table (and thus keeping references to it) before.
    952  */
    953 int
    954 config_cfdata_detach(cfdata_t cf)
    955 {
    956 	device_t d;
    957 	int error = 0;
    958 	struct cftable *ct;
    959 	deviter_t di;
    960 
    961 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    962 	     d = deviter_next(&di)) {
    963 		if (!dev_in_cfdata(d, cf))
    964 			continue;
    965 		if ((error = config_detach(d, 0)) != 0)
    966 			break;
    967 	}
    968 	deviter_release(&di);
    969 	if (error) {
    970 		aprint_error_dev(d, "unable to detach instance\n");
    971 		return error;
    972 	}
    973 
    974 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    975 		if (ct->ct_cfdata == cf) {
    976 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    977 			kmem_free(ct, sizeof(*ct));
    978 			return 0;
    979 		}
    980 	}
    981 
    982 	/* not found -- shouldn't happen */
    983 	return EINVAL;
    984 }
    985 
    986 /*
    987  * Invoke the "match" routine for a cfdata entry on behalf of
    988  * an external caller, usually a "submatch" routine.
    989  */
    990 int
    991 config_match(device_t parent, cfdata_t cf, void *aux)
    992 {
    993 	struct cfattach *ca;
    994 
    995 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    996 	if (ca == NULL) {
    997 		/* No attachment for this entry, oh well. */
    998 		return 0;
    999 	}
   1000 
   1001 	return (*ca->ca_match)(parent, cf, aux);
   1002 }
   1003 
   1004 /*
   1005  * Iterate over all potential children of some device, calling the given
   1006  * function (default being the child's match function) for each one.
   1007  * Nonzero returns are matches; the highest value returned is considered
   1008  * the best match.  Return the `found child' if we got a match, or NULL
   1009  * otherwise.  The `aux' pointer is simply passed on through.
   1010  *
   1011  * Note that this function is designed so that it can be used to apply
   1012  * an arbitrary function to all potential children (its return value
   1013  * can be ignored).
   1014  */
   1015 cfdata_t
   1016 config_search_loc(cfsubmatch_t fn, device_t parent,
   1017 		  const char *ifattr, const int *locs, void *aux)
   1018 {
   1019 	struct cftable *ct;
   1020 	cfdata_t cf;
   1021 	struct matchinfo m;
   1022 
   1023 	KASSERT(config_initialized);
   1024 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1025 
   1026 	m.fn = fn;
   1027 	m.parent = parent;
   1028 	m.locs = locs;
   1029 	m.aux = aux;
   1030 	m.match = NULL;
   1031 	m.pri = 0;
   1032 
   1033 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1034 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1035 
   1036 			/* We don't match root nodes here. */
   1037 			if (!cf->cf_pspec)
   1038 				continue;
   1039 
   1040 			/*
   1041 			 * Skip cf if no longer eligible, otherwise scan
   1042 			 * through parents for one matching `parent', and
   1043 			 * try match function.
   1044 			 */
   1045 			if (cf->cf_fstate == FSTATE_FOUND)
   1046 				continue;
   1047 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1048 			    cf->cf_fstate == FSTATE_DSTAR)
   1049 				continue;
   1050 
   1051 			/*
   1052 			 * If an interface attribute was specified,
   1053 			 * consider only children which attach to
   1054 			 * that attribute.
   1055 			 */
   1056 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1057 				continue;
   1058 
   1059 			if (cfparent_match(parent, cf->cf_pspec))
   1060 				mapply(&m, cf);
   1061 		}
   1062 	}
   1063 	return m.match;
   1064 }
   1065 
   1066 cfdata_t
   1067 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1068     void *aux)
   1069 {
   1070 
   1071 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1072 }
   1073 
   1074 /*
   1075  * Find the given root device.
   1076  * This is much like config_search, but there is no parent.
   1077  * Don't bother with multiple cfdata tables; the root node
   1078  * must always be in the initial table.
   1079  */
   1080 cfdata_t
   1081 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1082 {
   1083 	cfdata_t cf;
   1084 	const short *p;
   1085 	struct matchinfo m;
   1086 
   1087 	m.fn = fn;
   1088 	m.parent = ROOT;
   1089 	m.aux = aux;
   1090 	m.match = NULL;
   1091 	m.pri = 0;
   1092 	m.locs = 0;
   1093 	/*
   1094 	 * Look at root entries for matching name.  We do not bother
   1095 	 * with found-state here since only one root should ever be
   1096 	 * searched (and it must be done first).
   1097 	 */
   1098 	for (p = cfroots; *p >= 0; p++) {
   1099 		cf = &cfdata[*p];
   1100 		if (strcmp(cf->cf_name, rootname) == 0)
   1101 			mapply(&m, cf);
   1102 	}
   1103 	return m.match;
   1104 }
   1105 
   1106 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1107 
   1108 /*
   1109  * The given `aux' argument describes a device that has been found
   1110  * on the given parent, but not necessarily configured.  Locate the
   1111  * configuration data for that device (using the submatch function
   1112  * provided, or using candidates' cd_match configuration driver
   1113  * functions) and attach it, and return its device_t.  If the device was
   1114  * not configured, call the given `print' function and return NULL.
   1115  */
   1116 device_t
   1117 config_found_sm_loc(device_t parent,
   1118 		const char *ifattr, const int *locs, void *aux,
   1119 		cfprint_t print, cfsubmatch_t submatch)
   1120 {
   1121 	cfdata_t cf;
   1122 
   1123 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1124 		return(config_attach_loc(parent, cf, locs, aux, print));
   1125 	if (print) {
   1126 		if (config_do_twiddle && cold)
   1127 			twiddle();
   1128 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1129 	}
   1130 
   1131 	/*
   1132 	 * This has the effect of mixing in a single timestamp to the
   1133 	 * entropy pool.  Experiments indicate the estimator will almost
   1134 	 * always attribute one bit of entropy to this sample; analysis
   1135 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1136 	 * bits of entropy/sample so this seems appropriately conservative.
   1137 	 */
   1138 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1139 	return NULL;
   1140 }
   1141 
   1142 device_t
   1143 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1144     cfprint_t print)
   1145 {
   1146 
   1147 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1148 }
   1149 
   1150 device_t
   1151 config_found(device_t parent, void *aux, cfprint_t print)
   1152 {
   1153 
   1154 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1155 }
   1156 
   1157 /*
   1158  * As above, but for root devices.
   1159  */
   1160 device_t
   1161 config_rootfound(const char *rootname, void *aux)
   1162 {
   1163 	cfdata_t cf;
   1164 
   1165 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1166 		return config_attach(ROOT, cf, aux, NULL);
   1167 	aprint_error("root device %s not configured\n", rootname);
   1168 	return NULL;
   1169 }
   1170 
   1171 /* just like sprintf(buf, "%d") except that it works from the end */
   1172 static char *
   1173 number(char *ep, int n)
   1174 {
   1175 
   1176 	*--ep = 0;
   1177 	while (n >= 10) {
   1178 		*--ep = (n % 10) + '0';
   1179 		n /= 10;
   1180 	}
   1181 	*--ep = n + '0';
   1182 	return ep;
   1183 }
   1184 
   1185 /*
   1186  * Expand the size of the cd_devs array if necessary.
   1187  *
   1188  * The caller must hold alldevs_lock. config_makeroom() may release and
   1189  * re-acquire alldevs_lock, so callers should re-check conditions such
   1190  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1191  * returns.
   1192  */
   1193 static void
   1194 config_makeroom(int n, struct cfdriver *cd)
   1195 {
   1196 	int ondevs, nndevs;
   1197 	device_t *osp, *nsp;
   1198 
   1199 	KASSERT(mutex_owned(&alldevs_lock));
   1200 	alldevs_nwrite++;
   1201 
   1202 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1203 		;
   1204 
   1205 	while (n >= cd->cd_ndevs) {
   1206 		/*
   1207 		 * Need to expand the array.
   1208 		 */
   1209 		ondevs = cd->cd_ndevs;
   1210 		osp = cd->cd_devs;
   1211 
   1212 		/*
   1213 		 * Release alldevs_lock around allocation, which may
   1214 		 * sleep.
   1215 		 */
   1216 		mutex_exit(&alldevs_lock);
   1217 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1218 		mutex_enter(&alldevs_lock);
   1219 
   1220 		/*
   1221 		 * If another thread moved the array while we did
   1222 		 * not hold alldevs_lock, try again.
   1223 		 */
   1224 		if (cd->cd_devs != osp) {
   1225 			mutex_exit(&alldevs_lock);
   1226 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1227 			mutex_enter(&alldevs_lock);
   1228 			continue;
   1229 		}
   1230 
   1231 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1232 		if (ondevs != 0)
   1233 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1234 
   1235 		cd->cd_ndevs = nndevs;
   1236 		cd->cd_devs = nsp;
   1237 		if (ondevs != 0) {
   1238 			mutex_exit(&alldevs_lock);
   1239 			kmem_free(osp, sizeof(device_t) * ondevs);
   1240 			mutex_enter(&alldevs_lock);
   1241 		}
   1242 	}
   1243 	KASSERT(mutex_owned(&alldevs_lock));
   1244 	alldevs_nwrite--;
   1245 }
   1246 
   1247 /*
   1248  * Put dev into the devices list.
   1249  */
   1250 static void
   1251 config_devlink(device_t dev)
   1252 {
   1253 
   1254 	mutex_enter(&alldevs_lock);
   1255 
   1256 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1257 
   1258 	dev->dv_add_gen = alldevs_gen;
   1259 	/* It is safe to add a device to the tail of the list while
   1260 	 * readers and writers are in the list.
   1261 	 */
   1262 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1263 	mutex_exit(&alldevs_lock);
   1264 }
   1265 
   1266 static void
   1267 config_devfree(device_t dev)
   1268 {
   1269 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1270 
   1271 	if (dev->dv_cfattach->ca_devsize > 0)
   1272 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1273 	kmem_free(dev, sizeof(*dev));
   1274 }
   1275 
   1276 /*
   1277  * Caller must hold alldevs_lock.
   1278  */
   1279 static void
   1280 config_devunlink(device_t dev, struct devicelist *garbage)
   1281 {
   1282 	struct device_garbage *dg = &dev->dv_garbage;
   1283 	cfdriver_t cd = device_cfdriver(dev);
   1284 	int i;
   1285 
   1286 	KASSERT(mutex_owned(&alldevs_lock));
   1287 
   1288  	/* Unlink from device list.  Link to garbage list. */
   1289 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1290 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1291 
   1292 	/* Remove from cfdriver's array. */
   1293 	cd->cd_devs[dev->dv_unit] = NULL;
   1294 
   1295 	/*
   1296 	 * If the device now has no units in use, unlink its softc array.
   1297 	 */
   1298 	for (i = 0; i < cd->cd_ndevs; i++) {
   1299 		if (cd->cd_devs[i] != NULL)
   1300 			break;
   1301 	}
   1302 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1303 	if (i == cd->cd_ndevs) {
   1304 		dg->dg_ndevs = cd->cd_ndevs;
   1305 		dg->dg_devs = cd->cd_devs;
   1306 		cd->cd_devs = NULL;
   1307 		cd->cd_ndevs = 0;
   1308 	}
   1309 }
   1310 
   1311 static void
   1312 config_devdelete(device_t dev)
   1313 {
   1314 	struct device_garbage *dg = &dev->dv_garbage;
   1315 	device_lock_t dvl = device_getlock(dev);
   1316 
   1317 	if (dg->dg_devs != NULL)
   1318 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1319 
   1320 	cv_destroy(&dvl->dvl_cv);
   1321 	mutex_destroy(&dvl->dvl_mtx);
   1322 
   1323 	KASSERT(dev->dv_properties != NULL);
   1324 	prop_object_release(dev->dv_properties);
   1325 
   1326 	if (dev->dv_activity_handlers)
   1327 		panic("%s with registered handlers", __func__);
   1328 
   1329 	if (dev->dv_locators) {
   1330 		size_t amount = *--dev->dv_locators;
   1331 		kmem_free(dev->dv_locators, amount);
   1332 	}
   1333 
   1334 	config_devfree(dev);
   1335 }
   1336 
   1337 static int
   1338 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1339 {
   1340 	int unit;
   1341 
   1342 	if (cf->cf_fstate == FSTATE_STAR) {
   1343 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1344 			if (cd->cd_devs[unit] == NULL)
   1345 				break;
   1346 		/*
   1347 		 * unit is now the unit of the first NULL device pointer,
   1348 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1349 		 */
   1350 	} else {
   1351 		unit = cf->cf_unit;
   1352 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1353 			unit = -1;
   1354 	}
   1355 	return unit;
   1356 }
   1357 
   1358 static int
   1359 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1360 {
   1361 	struct alldevs_foray af;
   1362 	int unit;
   1363 
   1364 	config_alldevs_enter(&af);
   1365 	for (;;) {
   1366 		unit = config_unit_nextfree(cd, cf);
   1367 		if (unit == -1)
   1368 			break;
   1369 		if (unit < cd->cd_ndevs) {
   1370 			cd->cd_devs[unit] = dev;
   1371 			dev->dv_unit = unit;
   1372 			break;
   1373 		}
   1374 		config_makeroom(unit, cd);
   1375 	}
   1376 	config_alldevs_exit(&af);
   1377 
   1378 	return unit;
   1379 }
   1380 
   1381 static device_t
   1382 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1383 {
   1384 	cfdriver_t cd;
   1385 	cfattach_t ca;
   1386 	size_t lname, lunit;
   1387 	const char *xunit;
   1388 	int myunit;
   1389 	char num[10];
   1390 	device_t dev;
   1391 	void *dev_private;
   1392 	const struct cfiattrdata *ia;
   1393 	device_lock_t dvl;
   1394 
   1395 	cd = config_cfdriver_lookup(cf->cf_name);
   1396 	if (cd == NULL)
   1397 		return NULL;
   1398 
   1399 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1400 	if (ca == NULL)
   1401 		return NULL;
   1402 
   1403 	/* get memory for all device vars */
   1404 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1405 	if (ca->ca_devsize > 0) {
   1406 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1407 	} else {
   1408 		dev_private = NULL;
   1409 	}
   1410 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1411 
   1412 	dev->dv_class = cd->cd_class;
   1413 	dev->dv_cfdata = cf;
   1414 	dev->dv_cfdriver = cd;
   1415 	dev->dv_cfattach = ca;
   1416 	dev->dv_activity_count = 0;
   1417 	dev->dv_activity_handlers = NULL;
   1418 	dev->dv_private = dev_private;
   1419 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1420 
   1421 	myunit = config_unit_alloc(dev, cd, cf);
   1422 	if (myunit == -1) {
   1423 		config_devfree(dev);
   1424 		return NULL;
   1425 	}
   1426 
   1427 	/* compute length of name and decimal expansion of unit number */
   1428 	lname = strlen(cd->cd_name);
   1429 	xunit = number(&num[sizeof(num)], myunit);
   1430 	lunit = &num[sizeof(num)] - xunit;
   1431 	if (lname + lunit > sizeof(dev->dv_xname))
   1432 		panic("config_devalloc: device name too long");
   1433 
   1434 	dvl = device_getlock(dev);
   1435 
   1436 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1437 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1438 
   1439 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1440 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1441 	dev->dv_parent = parent;
   1442 	if (parent != NULL)
   1443 		dev->dv_depth = parent->dv_depth + 1;
   1444 	else
   1445 		dev->dv_depth = 0;
   1446 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1447 	if (locs) {
   1448 		KASSERT(parent); /* no locators at root */
   1449 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1450 		dev->dv_locators =
   1451 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1452 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1453 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1454 	}
   1455 	dev->dv_properties = prop_dictionary_create();
   1456 	KASSERT(dev->dv_properties != NULL);
   1457 
   1458 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1459 	    "device-driver", dev->dv_cfdriver->cd_name);
   1460 	prop_dictionary_set_uint16(dev->dv_properties,
   1461 	    "device-unit", dev->dv_unit);
   1462 	if (parent != NULL) {
   1463 		prop_dictionary_set_string(dev->dv_properties,
   1464 		    "device-parent", device_xname(parent));
   1465 	}
   1466 
   1467 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1468 		config_add_attrib_dict(dev);
   1469 
   1470 	return dev;
   1471 }
   1472 
   1473 /*
   1474  * Create an array of device attach attributes and add it
   1475  * to the device's dv_properties dictionary.
   1476  *
   1477  * <key>interface-attributes</key>
   1478  * <array>
   1479  *    <dict>
   1480  *       <key>attribute-name</key>
   1481  *       <string>foo</string>
   1482  *       <key>locators</key>
   1483  *       <array>
   1484  *          <dict>
   1485  *             <key>loc-name</key>
   1486  *             <string>foo-loc1</string>
   1487  *          </dict>
   1488  *          <dict>
   1489  *             <key>loc-name</key>
   1490  *             <string>foo-loc2</string>
   1491  *             <key>default</key>
   1492  *             <string>foo-loc2-default</string>
   1493  *          </dict>
   1494  *          ...
   1495  *       </array>
   1496  *    </dict>
   1497  *    ...
   1498  * </array>
   1499  */
   1500 
   1501 static void
   1502 config_add_attrib_dict(device_t dev)
   1503 {
   1504 	int i, j;
   1505 	const struct cfiattrdata *ci;
   1506 	prop_dictionary_t attr_dict, loc_dict;
   1507 	prop_array_t attr_array, loc_array;
   1508 
   1509 	if ((attr_array = prop_array_create()) == NULL)
   1510 		return;
   1511 
   1512 	for (i = 0; ; i++) {
   1513 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1514 			break;
   1515 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1516 			break;
   1517 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1518 		    ci->ci_name);
   1519 
   1520 		/* Create an array of the locator names and defaults */
   1521 
   1522 		if (ci->ci_loclen != 0 &&
   1523 		    (loc_array = prop_array_create()) != NULL) {
   1524 			for (j = 0; j < ci->ci_loclen; j++) {
   1525 				loc_dict = prop_dictionary_create();
   1526 				if (loc_dict == NULL)
   1527 					continue;
   1528 				prop_dictionary_set_string_nocopy(loc_dict,
   1529 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1530 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1531 					prop_dictionary_set_string_nocopy(
   1532 					    loc_dict, "default",
   1533 					    ci->ci_locdesc[j].cld_defaultstr);
   1534 				prop_array_set(loc_array, j, loc_dict);
   1535 				prop_object_release(loc_dict);
   1536 			}
   1537 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1538 			    loc_array);
   1539 		}
   1540 		prop_array_add(attr_array, attr_dict);
   1541 		prop_object_release(attr_dict);
   1542 	}
   1543 	if (i == 0)
   1544 		prop_object_release(attr_array);
   1545 	else
   1546 		prop_dictionary_set_and_rel(dev->dv_properties,
   1547 		    "interface-attributes", attr_array);
   1548 
   1549 	return;
   1550 }
   1551 
   1552 /*
   1553  * Attach a found device.
   1554  */
   1555 device_t
   1556 config_attach_loc(device_t parent, cfdata_t cf,
   1557 	const int *locs, void *aux, cfprint_t print)
   1558 {
   1559 	device_t dev;
   1560 	struct cftable *ct;
   1561 	const char *drvname;
   1562 
   1563 	dev = config_devalloc(parent, cf, locs);
   1564 	if (!dev)
   1565 		panic("config_attach: allocation of device softc failed");
   1566 
   1567 	/* XXX redundant - see below? */
   1568 	if (cf->cf_fstate != FSTATE_STAR) {
   1569 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1570 		cf->cf_fstate = FSTATE_FOUND;
   1571 	}
   1572 
   1573 	config_devlink(dev);
   1574 
   1575 	if (config_do_twiddle && cold)
   1576 		twiddle();
   1577 	else
   1578 		aprint_naive("Found ");
   1579 	/*
   1580 	 * We want the next two printfs for normal, verbose, and quiet,
   1581 	 * but not silent (in which case, we're twiddling, instead).
   1582 	 */
   1583 	if (parent == ROOT) {
   1584 		aprint_naive("%s (root)", device_xname(dev));
   1585 		aprint_normal("%s (root)", device_xname(dev));
   1586 	} else {
   1587 		aprint_naive("%s at %s", device_xname(dev),
   1588 		    device_xname(parent));
   1589 		aprint_normal("%s at %s", device_xname(dev),
   1590 		    device_xname(parent));
   1591 		if (print)
   1592 			(void) (*print)(aux, NULL);
   1593 	}
   1594 
   1595 	/*
   1596 	 * Before attaching, clobber any unfound devices that are
   1597 	 * otherwise identical.
   1598 	 * XXX code above is redundant?
   1599 	 */
   1600 	drvname = dev->dv_cfdriver->cd_name;
   1601 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1602 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1603 			if (STREQ(cf->cf_name, drvname) &&
   1604 			    cf->cf_unit == dev->dv_unit) {
   1605 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1606 					cf->cf_fstate = FSTATE_FOUND;
   1607 			}
   1608 		}
   1609 	}
   1610 	device_register(dev, aux);
   1611 
   1612 	/* Let userland know */
   1613 	devmon_report_device(dev, true);
   1614 
   1615 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1616 
   1617 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1618 	    && !device_pmf_is_registered(dev))
   1619 		aprint_debug_dev(dev,
   1620 		    "WARNING: power management not supported\n");
   1621 
   1622 	config_process_deferred(&deferred_config_queue, dev);
   1623 
   1624 	device_register_post_config(dev, aux);
   1625 	return dev;
   1626 }
   1627 
   1628 device_t
   1629 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1630 {
   1631 
   1632 	return config_attach_loc(parent, cf, NULL, aux, print);
   1633 }
   1634 
   1635 /*
   1636  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1637  * way are silently inserted into the device tree, and their children
   1638  * attached.
   1639  *
   1640  * Note that because pseudo-devices are attached silently, any information
   1641  * the attach routine wishes to print should be prefixed with the device
   1642  * name by the attach routine.
   1643  */
   1644 device_t
   1645 config_attach_pseudo(cfdata_t cf)
   1646 {
   1647 	device_t dev;
   1648 
   1649 	dev = config_devalloc(ROOT, cf, NULL);
   1650 	if (!dev)
   1651 		return NULL;
   1652 
   1653 	/* XXX mark busy in cfdata */
   1654 
   1655 	if (cf->cf_fstate != FSTATE_STAR) {
   1656 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1657 		cf->cf_fstate = FSTATE_FOUND;
   1658 	}
   1659 
   1660 	config_devlink(dev);
   1661 
   1662 #if 0	/* XXXJRT not yet */
   1663 	device_register(dev, NULL);	/* like a root node */
   1664 #endif
   1665 
   1666 	/* Let userland know */
   1667 	devmon_report_device(dev, true);
   1668 
   1669 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1670 
   1671 	config_process_deferred(&deferred_config_queue, dev);
   1672 	return dev;
   1673 }
   1674 
   1675 /*
   1676  * Caller must hold alldevs_lock.
   1677  */
   1678 static void
   1679 config_collect_garbage(struct devicelist *garbage)
   1680 {
   1681 	device_t dv;
   1682 
   1683 	KASSERT(!cpu_intr_p());
   1684 	KASSERT(!cpu_softintr_p());
   1685 	KASSERT(mutex_owned(&alldevs_lock));
   1686 
   1687 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1688 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1689 			if (dv->dv_del_gen != 0)
   1690 				break;
   1691 		}
   1692 		if (dv == NULL) {
   1693 			alldevs_garbage = false;
   1694 			break;
   1695 		}
   1696 		config_devunlink(dv, garbage);
   1697 	}
   1698 	KASSERT(mutex_owned(&alldevs_lock));
   1699 }
   1700 
   1701 static void
   1702 config_dump_garbage(struct devicelist *garbage)
   1703 {
   1704 	device_t dv;
   1705 
   1706 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1707 		TAILQ_REMOVE(garbage, dv, dv_list);
   1708 		config_devdelete(dv);
   1709 	}
   1710 }
   1711 
   1712 /*
   1713  * Detach a device.  Optionally forced (e.g. because of hardware
   1714  * removal) and quiet.  Returns zero if successful, non-zero
   1715  * (an error code) otherwise.
   1716  *
   1717  * Note that this code wants to be run from a process context, so
   1718  * that the detach can sleep to allow processes which have a device
   1719  * open to run and unwind their stacks.
   1720  */
   1721 int
   1722 config_detach(device_t dev, int flags)
   1723 {
   1724 	struct alldevs_foray af;
   1725 	struct cftable *ct;
   1726 	cfdata_t cf;
   1727 	const struct cfattach *ca;
   1728 	struct cfdriver *cd;
   1729 	device_t d __diagused;
   1730 	int rv = 0;
   1731 
   1732 	cf = dev->dv_cfdata;
   1733 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1734 		cf->cf_fstate == FSTATE_STAR),
   1735 	    "config_detach: %s: bad device fstate: %d",
   1736 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1737 
   1738 	cd = dev->dv_cfdriver;
   1739 	KASSERT(cd != NULL);
   1740 
   1741 	ca = dev->dv_cfattach;
   1742 	KASSERT(ca != NULL);
   1743 
   1744 	mutex_enter(&alldevs_lock);
   1745 	if (dev->dv_del_gen != 0) {
   1746 		mutex_exit(&alldevs_lock);
   1747 #ifdef DIAGNOSTIC
   1748 		printf("%s: %s is already detached\n", __func__,
   1749 		    device_xname(dev));
   1750 #endif /* DIAGNOSTIC */
   1751 		return ENOENT;
   1752 	}
   1753 	alldevs_nwrite++;
   1754 	mutex_exit(&alldevs_lock);
   1755 
   1756 	if (!detachall &&
   1757 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1758 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1759 		rv = EOPNOTSUPP;
   1760 	} else if (ca->ca_detach != NULL) {
   1761 		rv = (*ca->ca_detach)(dev, flags);
   1762 	} else
   1763 		rv = EOPNOTSUPP;
   1764 
   1765 	/*
   1766 	 * If it was not possible to detach the device, then we either
   1767 	 * panic() (for the forced but failed case), or return an error.
   1768 	 *
   1769 	 * If it was possible to detach the device, ensure that the
   1770 	 * device is deactivated.
   1771 	 */
   1772 	if (rv == 0)
   1773 		dev->dv_flags &= ~DVF_ACTIVE;
   1774 	else if ((flags & DETACH_FORCE) == 0)
   1775 		goto out;
   1776 	else {
   1777 		panic("config_detach: forced detach of %s failed (%d)",
   1778 		    device_xname(dev), rv);
   1779 	}
   1780 
   1781 	/*
   1782 	 * The device has now been successfully detached.
   1783 	 */
   1784 
   1785 	/* Let userland know */
   1786 	devmon_report_device(dev, false);
   1787 
   1788 #ifdef DIAGNOSTIC
   1789 	/*
   1790 	 * Sanity: If you're successfully detached, you should have no
   1791 	 * children.  (Note that because children must be attached
   1792 	 * after parents, we only need to search the latter part of
   1793 	 * the list.)
   1794 	 */
   1795 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1796 	    d = TAILQ_NEXT(d, dv_list)) {
   1797 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1798 			printf("config_detach: detached device %s"
   1799 			    " has children %s\n", device_xname(dev),
   1800 			    device_xname(d));
   1801 			panic("config_detach");
   1802 		}
   1803 	}
   1804 #endif
   1805 
   1806 	/* notify the parent that the child is gone */
   1807 	if (dev->dv_parent) {
   1808 		device_t p = dev->dv_parent;
   1809 		if (p->dv_cfattach->ca_childdetached)
   1810 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1811 	}
   1812 
   1813 	/*
   1814 	 * Mark cfdata to show that the unit can be reused, if possible.
   1815 	 */
   1816 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1817 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1818 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1819 				if (cf->cf_fstate == FSTATE_FOUND &&
   1820 				    cf->cf_unit == dev->dv_unit)
   1821 					cf->cf_fstate = FSTATE_NOTFOUND;
   1822 			}
   1823 		}
   1824 	}
   1825 
   1826 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1827 		aprint_normal_dev(dev, "detached\n");
   1828 
   1829 out:
   1830 	config_alldevs_enter(&af);
   1831 	KASSERT(alldevs_nwrite != 0);
   1832 	--alldevs_nwrite;
   1833 	if (rv == 0 && dev->dv_del_gen == 0) {
   1834 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1835 			config_devunlink(dev, &af.af_garbage);
   1836 		else {
   1837 			dev->dv_del_gen = alldevs_gen;
   1838 			alldevs_garbage = true;
   1839 		}
   1840 	}
   1841 	config_alldevs_exit(&af);
   1842 
   1843 	return rv;
   1844 }
   1845 
   1846 int
   1847 config_detach_children(device_t parent, int flags)
   1848 {
   1849 	device_t dv;
   1850 	deviter_t di;
   1851 	int error = 0;
   1852 
   1853 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1854 	     dv = deviter_next(&di)) {
   1855 		if (device_parent(dv) != parent)
   1856 			continue;
   1857 		if ((error = config_detach(dv, flags)) != 0)
   1858 			break;
   1859 	}
   1860 	deviter_release(&di);
   1861 	return error;
   1862 }
   1863 
   1864 device_t
   1865 shutdown_first(struct shutdown_state *s)
   1866 {
   1867 	if (!s->initialized) {
   1868 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1869 		s->initialized = true;
   1870 	}
   1871 	return shutdown_next(s);
   1872 }
   1873 
   1874 device_t
   1875 shutdown_next(struct shutdown_state *s)
   1876 {
   1877 	device_t dv;
   1878 
   1879 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1880 		;
   1881 
   1882 	if (dv == NULL)
   1883 		s->initialized = false;
   1884 
   1885 	return dv;
   1886 }
   1887 
   1888 bool
   1889 config_detach_all(int how)
   1890 {
   1891 	static struct shutdown_state s;
   1892 	device_t curdev;
   1893 	bool progress = false;
   1894 	int flags;
   1895 
   1896 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1897 		return false;
   1898 
   1899 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1900 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1901 	else
   1902 		flags = DETACH_SHUTDOWN;
   1903 
   1904 	for (curdev = shutdown_first(&s); curdev != NULL;
   1905 	     curdev = shutdown_next(&s)) {
   1906 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1907 		if (config_detach(curdev, flags) == 0) {
   1908 			progress = true;
   1909 			aprint_debug("success.");
   1910 		} else
   1911 			aprint_debug("failed.");
   1912 	}
   1913 	return progress;
   1914 }
   1915 
   1916 static bool
   1917 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1918 {
   1919 	device_t dv;
   1920 
   1921 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1922 		if (device_parent(dv) == ancestor)
   1923 			return true;
   1924 	}
   1925 	return false;
   1926 }
   1927 
   1928 int
   1929 config_deactivate(device_t dev)
   1930 {
   1931 	deviter_t di;
   1932 	const struct cfattach *ca;
   1933 	device_t descendant;
   1934 	int s, rv = 0, oflags;
   1935 
   1936 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1937 	     descendant != NULL;
   1938 	     descendant = deviter_next(&di)) {
   1939 		if (dev != descendant &&
   1940 		    !device_is_ancestor_of(dev, descendant))
   1941 			continue;
   1942 
   1943 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1944 			continue;
   1945 
   1946 		ca = descendant->dv_cfattach;
   1947 		oflags = descendant->dv_flags;
   1948 
   1949 		descendant->dv_flags &= ~DVF_ACTIVE;
   1950 		if (ca->ca_activate == NULL)
   1951 			continue;
   1952 		s = splhigh();
   1953 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1954 		splx(s);
   1955 		if (rv != 0)
   1956 			descendant->dv_flags = oflags;
   1957 	}
   1958 	deviter_release(&di);
   1959 	return rv;
   1960 }
   1961 
   1962 /*
   1963  * Defer the configuration of the specified device until all
   1964  * of its parent's devices have been attached.
   1965  */
   1966 void
   1967 config_defer(device_t dev, void (*func)(device_t))
   1968 {
   1969 	struct deferred_config *dc;
   1970 
   1971 	if (dev->dv_parent == NULL)
   1972 		panic("config_defer: can't defer config of a root device");
   1973 
   1974 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1975 
   1976 	config_pending_incr(dev);
   1977 
   1978 	mutex_enter(&config_misc_lock);
   1979 #ifdef DIAGNOSTIC
   1980 	struct deferred_config *odc;
   1981 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   1982 		if (odc->dc_dev == dev)
   1983 			panic("config_defer: deferred twice");
   1984 	}
   1985 #endif
   1986 	dc->dc_dev = dev;
   1987 	dc->dc_func = func;
   1988 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1989 	mutex_exit(&config_misc_lock);
   1990 }
   1991 
   1992 /*
   1993  * Defer some autoconfiguration for a device until after interrupts
   1994  * are enabled.
   1995  */
   1996 void
   1997 config_interrupts(device_t dev, void (*func)(device_t))
   1998 {
   1999 	struct deferred_config *dc;
   2000 
   2001 	/*
   2002 	 * If interrupts are enabled, callback now.
   2003 	 */
   2004 	if (cold == 0) {
   2005 		(*func)(dev);
   2006 		return;
   2007 	}
   2008 
   2009 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2010 
   2011 	config_pending_incr(dev);
   2012 
   2013 	mutex_enter(&config_misc_lock);
   2014 #ifdef DIAGNOSTIC
   2015 	struct deferred_config *odc;
   2016 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2017 		if (odc->dc_dev == dev)
   2018 			panic("config_interrupts: deferred twice");
   2019 	}
   2020 #endif
   2021 	dc->dc_dev = dev;
   2022 	dc->dc_func = func;
   2023 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2024 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2025 	mutex_exit(&config_misc_lock);
   2026 }
   2027 
   2028 /*
   2029  * Defer some autoconfiguration for a device until after root file system
   2030  * is mounted (to load firmware etc).
   2031  */
   2032 void
   2033 config_mountroot(device_t dev, void (*func)(device_t))
   2034 {
   2035 	struct deferred_config *dc;
   2036 
   2037 	/*
   2038 	 * If root file system is mounted, callback now.
   2039 	 */
   2040 	if (root_is_mounted) {
   2041 		(*func)(dev);
   2042 		return;
   2043 	}
   2044 
   2045 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2046 
   2047 	mutex_enter(&config_misc_lock);
   2048 #ifdef DIAGNOSTIC
   2049 	struct deferred_config *odc;
   2050 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2051 		if (odc->dc_dev == dev)
   2052 			panic("%s: deferred twice", __func__);
   2053 	}
   2054 #endif
   2055 
   2056 	dc->dc_dev = dev;
   2057 	dc->dc_func = func;
   2058 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2059 	mutex_exit(&config_misc_lock);
   2060 }
   2061 
   2062 /*
   2063  * Process a deferred configuration queue.
   2064  */
   2065 static void
   2066 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2067 {
   2068 	struct deferred_config *dc;
   2069 
   2070 	mutex_enter(&config_misc_lock);
   2071 	dc = TAILQ_FIRST(queue);
   2072 	while (dc) {
   2073 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2074 			TAILQ_REMOVE(queue, dc, dc_queue);
   2075 			mutex_exit(&config_misc_lock);
   2076 
   2077 			(*dc->dc_func)(dc->dc_dev);
   2078 			config_pending_decr(dc->dc_dev);
   2079 			kmem_free(dc, sizeof(*dc));
   2080 
   2081 			mutex_enter(&config_misc_lock);
   2082 			/* Restart, queue might have changed */
   2083 			dc = TAILQ_FIRST(queue);
   2084 		} else {
   2085 			dc = TAILQ_NEXT(dc, dc_queue);
   2086 		}
   2087 	}
   2088 	mutex_exit(&config_misc_lock);
   2089 }
   2090 
   2091 /*
   2092  * Manipulate the config_pending semaphore.
   2093  */
   2094 void
   2095 config_pending_incr(device_t dev)
   2096 {
   2097 
   2098 	mutex_enter(&config_misc_lock);
   2099 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2100 	    "%s: excess config_pending_incr", device_xname(dev));
   2101 	if (dev->dv_pending++ == 0)
   2102 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2103 #ifdef DEBUG_AUTOCONF
   2104 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2105 #endif
   2106 	mutex_exit(&config_misc_lock);
   2107 }
   2108 
   2109 void
   2110 config_pending_decr(device_t dev)
   2111 {
   2112 
   2113 	mutex_enter(&config_misc_lock);
   2114 	KASSERTMSG(dev->dv_pending > 0,
   2115 	    "%s: excess config_pending_decr", device_xname(dev));
   2116 	if (--dev->dv_pending == 0)
   2117 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2118 #ifdef DEBUG_AUTOCONF
   2119 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2120 #endif
   2121 	if (TAILQ_EMPTY(&config_pending))
   2122 		cv_broadcast(&config_misc_cv);
   2123 	mutex_exit(&config_misc_lock);
   2124 }
   2125 
   2126 /*
   2127  * Register a "finalization" routine.  Finalization routines are
   2128  * called iteratively once all real devices have been found during
   2129  * autoconfiguration, for as long as any one finalizer has done
   2130  * any work.
   2131  */
   2132 int
   2133 config_finalize_register(device_t dev, int (*fn)(device_t))
   2134 {
   2135 	struct finalize_hook *f;
   2136 
   2137 	/*
   2138 	 * If finalization has already been done, invoke the
   2139 	 * callback function now.
   2140 	 */
   2141 	if (config_finalize_done) {
   2142 		while ((*fn)(dev) != 0)
   2143 			/* loop */ ;
   2144 		return 0;
   2145 	}
   2146 
   2147 	/* Ensure this isn't already on the list. */
   2148 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2149 		if (f->f_func == fn && f->f_dev == dev)
   2150 			return EEXIST;
   2151 	}
   2152 
   2153 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2154 	f->f_func = fn;
   2155 	f->f_dev = dev;
   2156 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2157 
   2158 	return 0;
   2159 }
   2160 
   2161 void
   2162 config_finalize(void)
   2163 {
   2164 	struct finalize_hook *f;
   2165 	struct pdevinit *pdev;
   2166 	extern struct pdevinit pdevinit[];
   2167 	int errcnt, rv;
   2168 
   2169 	/*
   2170 	 * Now that device driver threads have been created, wait for
   2171 	 * them to finish any deferred autoconfiguration.
   2172 	 */
   2173 	mutex_enter(&config_misc_lock);
   2174 	while (!TAILQ_EMPTY(&config_pending)) {
   2175 		device_t dev;
   2176 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2177 			aprint_debug_dev(dev, "holding up boot\n");
   2178 		cv_wait(&config_misc_cv, &config_misc_lock);
   2179 	}
   2180 	mutex_exit(&config_misc_lock);
   2181 
   2182 	KERNEL_LOCK(1, NULL);
   2183 
   2184 	/* Attach pseudo-devices. */
   2185 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2186 		(*pdev->pdev_attach)(pdev->pdev_count);
   2187 
   2188 	/* Run the hooks until none of them does any work. */
   2189 	do {
   2190 		rv = 0;
   2191 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2192 			rv |= (*f->f_func)(f->f_dev);
   2193 	} while (rv != 0);
   2194 
   2195 	config_finalize_done = 1;
   2196 
   2197 	/* Now free all the hooks. */
   2198 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2199 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2200 		kmem_free(f, sizeof(*f));
   2201 	}
   2202 
   2203 	KERNEL_UNLOCK_ONE(NULL);
   2204 
   2205 	errcnt = aprint_get_error_count();
   2206 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2207 	    (boothowto & AB_VERBOSE) == 0) {
   2208 		mutex_enter(&config_misc_lock);
   2209 		if (config_do_twiddle) {
   2210 			config_do_twiddle = 0;
   2211 			printf_nolog(" done.\n");
   2212 		}
   2213 		mutex_exit(&config_misc_lock);
   2214 	}
   2215 	if (errcnt != 0) {
   2216 		printf("WARNING: %d error%s while detecting hardware; "
   2217 		    "check system log.\n", errcnt,
   2218 		    errcnt == 1 ? "" : "s");
   2219 	}
   2220 }
   2221 
   2222 void
   2223 config_twiddle_init(void)
   2224 {
   2225 
   2226 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2227 		config_do_twiddle = 1;
   2228 	}
   2229 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2230 }
   2231 
   2232 void
   2233 config_twiddle_fn(void *cookie)
   2234 {
   2235 
   2236 	mutex_enter(&config_misc_lock);
   2237 	if (config_do_twiddle) {
   2238 		twiddle();
   2239 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2240 	}
   2241 	mutex_exit(&config_misc_lock);
   2242 }
   2243 
   2244 static void
   2245 config_alldevs_enter(struct alldevs_foray *af)
   2246 {
   2247 	TAILQ_INIT(&af->af_garbage);
   2248 	mutex_enter(&alldevs_lock);
   2249 	config_collect_garbage(&af->af_garbage);
   2250 }
   2251 
   2252 static void
   2253 config_alldevs_exit(struct alldevs_foray *af)
   2254 {
   2255 	mutex_exit(&alldevs_lock);
   2256 	config_dump_garbage(&af->af_garbage);
   2257 }
   2258 
   2259 /*
   2260  * device_lookup:
   2261  *
   2262  *	Look up a device instance for a given driver.
   2263  */
   2264 device_t
   2265 device_lookup(cfdriver_t cd, int unit)
   2266 {
   2267 	device_t dv;
   2268 
   2269 	mutex_enter(&alldevs_lock);
   2270 	if (unit < 0 || unit >= cd->cd_ndevs)
   2271 		dv = NULL;
   2272 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2273 		dv = NULL;
   2274 	mutex_exit(&alldevs_lock);
   2275 
   2276 	return dv;
   2277 }
   2278 
   2279 /*
   2280  * device_lookup_private:
   2281  *
   2282  *	Look up a softc instance for a given driver.
   2283  */
   2284 void *
   2285 device_lookup_private(cfdriver_t cd, int unit)
   2286 {
   2287 
   2288 	return device_private(device_lookup(cd, unit));
   2289 }
   2290 
   2291 /*
   2292  * device_find_by_xname:
   2293  *
   2294  *	Returns the device of the given name or NULL if it doesn't exist.
   2295  */
   2296 device_t
   2297 device_find_by_xname(const char *name)
   2298 {
   2299 	device_t dv;
   2300 	deviter_t di;
   2301 
   2302 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2303 		if (strcmp(device_xname(dv), name) == 0)
   2304 			break;
   2305 	}
   2306 	deviter_release(&di);
   2307 
   2308 	return dv;
   2309 }
   2310 
   2311 /*
   2312  * device_find_by_driver_unit:
   2313  *
   2314  *	Returns the device of the given driver name and unit or
   2315  *	NULL if it doesn't exist.
   2316  */
   2317 device_t
   2318 device_find_by_driver_unit(const char *name, int unit)
   2319 {
   2320 	struct cfdriver *cd;
   2321 
   2322 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2323 		return NULL;
   2324 	return device_lookup(cd, unit);
   2325 }
   2326 
   2327 /*
   2328  * device_compatible_match:
   2329  *
   2330  *	Match a driver's "compatible" data against a device's
   2331  *	"compatible" strings.  If a match is found, we return
   2332  *	a weighted match result, and optionally the matching
   2333  *	entry.
   2334  */
   2335 int
   2336 device_compatible_match(const char **device_compats, int ndevice_compats,
   2337 			const struct device_compatible_entry *driver_compats,
   2338 			const struct device_compatible_entry **matching_entryp)
   2339 {
   2340 	const struct device_compatible_entry *dce = NULL;
   2341 	int i, match_weight;
   2342 
   2343 	if (ndevice_compats == 0 || device_compats == NULL ||
   2344 	    driver_compats == NULL)
   2345 		return 0;
   2346 
   2347 	/*
   2348 	 * We take the first match because we start with the most-specific
   2349 	 * device compatible string.
   2350 	 */
   2351 	for (i = 0, match_weight = ndevice_compats - 1;
   2352 	     i < ndevice_compats;
   2353 	     i++, match_weight--) {
   2354 		for (dce = driver_compats; dce->compat != NULL; dce++) {
   2355 			if (strcmp(dce->compat, device_compats[i]) == 0) {
   2356 				KASSERT(match_weight >= 0);
   2357 				if (matching_entryp)
   2358 					*matching_entryp = dce;
   2359 				return 1 + match_weight;
   2360 			}
   2361 		}
   2362 	}
   2363 	return 0;
   2364 }
   2365 
   2366 /*
   2367  * Power management related functions.
   2368  */
   2369 
   2370 bool
   2371 device_pmf_is_registered(device_t dev)
   2372 {
   2373 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2374 }
   2375 
   2376 bool
   2377 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2378 {
   2379 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2380 		return true;
   2381 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2382 		return false;
   2383 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2384 	    dev->dv_driver_suspend != NULL &&
   2385 	    !(*dev->dv_driver_suspend)(dev, qual))
   2386 		return false;
   2387 
   2388 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2389 	return true;
   2390 }
   2391 
   2392 bool
   2393 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2394 {
   2395 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2396 		return true;
   2397 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2398 		return false;
   2399 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2400 	    dev->dv_driver_resume != NULL &&
   2401 	    !(*dev->dv_driver_resume)(dev, qual))
   2402 		return false;
   2403 
   2404 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2405 	return true;
   2406 }
   2407 
   2408 bool
   2409 device_pmf_driver_shutdown(device_t dev, int how)
   2410 {
   2411 
   2412 	if (*dev->dv_driver_shutdown != NULL &&
   2413 	    !(*dev->dv_driver_shutdown)(dev, how))
   2414 		return false;
   2415 	return true;
   2416 }
   2417 
   2418 bool
   2419 device_pmf_driver_register(device_t dev,
   2420     bool (*suspend)(device_t, const pmf_qual_t *),
   2421     bool (*resume)(device_t, const pmf_qual_t *),
   2422     bool (*shutdown)(device_t, int))
   2423 {
   2424 	dev->dv_driver_suspend = suspend;
   2425 	dev->dv_driver_resume = resume;
   2426 	dev->dv_driver_shutdown = shutdown;
   2427 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2428 	return true;
   2429 }
   2430 
   2431 static const char *
   2432 curlwp_name(void)
   2433 {
   2434 	if (curlwp->l_name != NULL)
   2435 		return curlwp->l_name;
   2436 	else
   2437 		return curlwp->l_proc->p_comm;
   2438 }
   2439 
   2440 void
   2441 device_pmf_driver_deregister(device_t dev)
   2442 {
   2443 	device_lock_t dvl = device_getlock(dev);
   2444 
   2445 	dev->dv_driver_suspend = NULL;
   2446 	dev->dv_driver_resume = NULL;
   2447 
   2448 	mutex_enter(&dvl->dvl_mtx);
   2449 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2450 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2451 		/* Wake a thread that waits for the lock.  That
   2452 		 * thread will fail to acquire the lock, and then
   2453 		 * it will wake the next thread that waits for the
   2454 		 * lock, or else it will wake us.
   2455 		 */
   2456 		cv_signal(&dvl->dvl_cv);
   2457 		pmflock_debug(dev, __func__, __LINE__);
   2458 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2459 		pmflock_debug(dev, __func__, __LINE__);
   2460 	}
   2461 	mutex_exit(&dvl->dvl_mtx);
   2462 }
   2463 
   2464 bool
   2465 device_pmf_driver_child_register(device_t dev)
   2466 {
   2467 	device_t parent = device_parent(dev);
   2468 
   2469 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2470 		return true;
   2471 	return (*parent->dv_driver_child_register)(dev);
   2472 }
   2473 
   2474 void
   2475 device_pmf_driver_set_child_register(device_t dev,
   2476     bool (*child_register)(device_t))
   2477 {
   2478 	dev->dv_driver_child_register = child_register;
   2479 }
   2480 
   2481 static void
   2482 pmflock_debug(device_t dev, const char *func, int line)
   2483 {
   2484 	device_lock_t dvl = device_getlock(dev);
   2485 
   2486 	aprint_debug_dev(dev,
   2487 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2488 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2489 }
   2490 
   2491 static bool
   2492 device_pmf_lock1(device_t dev)
   2493 {
   2494 	device_lock_t dvl = device_getlock(dev);
   2495 
   2496 	while (device_pmf_is_registered(dev) &&
   2497 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2498 		dvl->dvl_nwait++;
   2499 		pmflock_debug(dev, __func__, __LINE__);
   2500 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2501 		pmflock_debug(dev, __func__, __LINE__);
   2502 		dvl->dvl_nwait--;
   2503 	}
   2504 	if (!device_pmf_is_registered(dev)) {
   2505 		pmflock_debug(dev, __func__, __LINE__);
   2506 		/* We could not acquire the lock, but some other thread may
   2507 		 * wait for it, also.  Wake that thread.
   2508 		 */
   2509 		cv_signal(&dvl->dvl_cv);
   2510 		return false;
   2511 	}
   2512 	dvl->dvl_nlock++;
   2513 	dvl->dvl_holder = curlwp;
   2514 	pmflock_debug(dev, __func__, __LINE__);
   2515 	return true;
   2516 }
   2517 
   2518 bool
   2519 device_pmf_lock(device_t dev)
   2520 {
   2521 	bool rc;
   2522 	device_lock_t dvl = device_getlock(dev);
   2523 
   2524 	mutex_enter(&dvl->dvl_mtx);
   2525 	rc = device_pmf_lock1(dev);
   2526 	mutex_exit(&dvl->dvl_mtx);
   2527 
   2528 	return rc;
   2529 }
   2530 
   2531 void
   2532 device_pmf_unlock(device_t dev)
   2533 {
   2534 	device_lock_t dvl = device_getlock(dev);
   2535 
   2536 	KASSERT(dvl->dvl_nlock > 0);
   2537 	mutex_enter(&dvl->dvl_mtx);
   2538 	if (--dvl->dvl_nlock == 0)
   2539 		dvl->dvl_holder = NULL;
   2540 	cv_signal(&dvl->dvl_cv);
   2541 	pmflock_debug(dev, __func__, __LINE__);
   2542 	mutex_exit(&dvl->dvl_mtx);
   2543 }
   2544 
   2545 device_lock_t
   2546 device_getlock(device_t dev)
   2547 {
   2548 	return &dev->dv_lock;
   2549 }
   2550 
   2551 void *
   2552 device_pmf_bus_private(device_t dev)
   2553 {
   2554 	return dev->dv_bus_private;
   2555 }
   2556 
   2557 bool
   2558 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2559 {
   2560 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2561 		return true;
   2562 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2563 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2564 		return false;
   2565 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2566 	    dev->dv_bus_suspend != NULL &&
   2567 	    !(*dev->dv_bus_suspend)(dev, qual))
   2568 		return false;
   2569 
   2570 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2571 	return true;
   2572 }
   2573 
   2574 bool
   2575 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2576 {
   2577 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2578 		return true;
   2579 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2580 	    dev->dv_bus_resume != NULL &&
   2581 	    !(*dev->dv_bus_resume)(dev, qual))
   2582 		return false;
   2583 
   2584 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2585 	return true;
   2586 }
   2587 
   2588 bool
   2589 device_pmf_bus_shutdown(device_t dev, int how)
   2590 {
   2591 
   2592 	if (*dev->dv_bus_shutdown != NULL &&
   2593 	    !(*dev->dv_bus_shutdown)(dev, how))
   2594 		return false;
   2595 	return true;
   2596 }
   2597 
   2598 void
   2599 device_pmf_bus_register(device_t dev, void *priv,
   2600     bool (*suspend)(device_t, const pmf_qual_t *),
   2601     bool (*resume)(device_t, const pmf_qual_t *),
   2602     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2603 {
   2604 	dev->dv_bus_private = priv;
   2605 	dev->dv_bus_resume = resume;
   2606 	dev->dv_bus_suspend = suspend;
   2607 	dev->dv_bus_shutdown = shutdown;
   2608 	dev->dv_bus_deregister = deregister;
   2609 }
   2610 
   2611 void
   2612 device_pmf_bus_deregister(device_t dev)
   2613 {
   2614 	if (dev->dv_bus_deregister == NULL)
   2615 		return;
   2616 	(*dev->dv_bus_deregister)(dev);
   2617 	dev->dv_bus_private = NULL;
   2618 	dev->dv_bus_suspend = NULL;
   2619 	dev->dv_bus_resume = NULL;
   2620 	dev->dv_bus_deregister = NULL;
   2621 }
   2622 
   2623 void *
   2624 device_pmf_class_private(device_t dev)
   2625 {
   2626 	return dev->dv_class_private;
   2627 }
   2628 
   2629 bool
   2630 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2631 {
   2632 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2633 		return true;
   2634 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2635 	    dev->dv_class_suspend != NULL &&
   2636 	    !(*dev->dv_class_suspend)(dev, qual))
   2637 		return false;
   2638 
   2639 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2640 	return true;
   2641 }
   2642 
   2643 bool
   2644 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2645 {
   2646 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2647 		return true;
   2648 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2649 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2650 		return false;
   2651 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2652 	    dev->dv_class_resume != NULL &&
   2653 	    !(*dev->dv_class_resume)(dev, qual))
   2654 		return false;
   2655 
   2656 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2657 	return true;
   2658 }
   2659 
   2660 void
   2661 device_pmf_class_register(device_t dev, void *priv,
   2662     bool (*suspend)(device_t, const pmf_qual_t *),
   2663     bool (*resume)(device_t, const pmf_qual_t *),
   2664     void (*deregister)(device_t))
   2665 {
   2666 	dev->dv_class_private = priv;
   2667 	dev->dv_class_suspend = suspend;
   2668 	dev->dv_class_resume = resume;
   2669 	dev->dv_class_deregister = deregister;
   2670 }
   2671 
   2672 void
   2673 device_pmf_class_deregister(device_t dev)
   2674 {
   2675 	if (dev->dv_class_deregister == NULL)
   2676 		return;
   2677 	(*dev->dv_class_deregister)(dev);
   2678 	dev->dv_class_private = NULL;
   2679 	dev->dv_class_suspend = NULL;
   2680 	dev->dv_class_resume = NULL;
   2681 	dev->dv_class_deregister = NULL;
   2682 }
   2683 
   2684 bool
   2685 device_active(device_t dev, devactive_t type)
   2686 {
   2687 	size_t i;
   2688 
   2689 	if (dev->dv_activity_count == 0)
   2690 		return false;
   2691 
   2692 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2693 		if (dev->dv_activity_handlers[i] == NULL)
   2694 			break;
   2695 		(*dev->dv_activity_handlers[i])(dev, type);
   2696 	}
   2697 
   2698 	return true;
   2699 }
   2700 
   2701 bool
   2702 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2703 {
   2704 	void (**new_handlers)(device_t, devactive_t);
   2705 	void (**old_handlers)(device_t, devactive_t);
   2706 	size_t i, old_size, new_size;
   2707 	int s;
   2708 
   2709 	old_handlers = dev->dv_activity_handlers;
   2710 	old_size = dev->dv_activity_count;
   2711 
   2712 	KASSERT(old_size == 0 || old_handlers != NULL);
   2713 
   2714 	for (i = 0; i < old_size; ++i) {
   2715 		KASSERT(old_handlers[i] != handler);
   2716 		if (old_handlers[i] == NULL) {
   2717 			old_handlers[i] = handler;
   2718 			return true;
   2719 		}
   2720 	}
   2721 
   2722 	new_size = old_size + 4;
   2723 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   2724 
   2725 	for (i = 0; i < old_size; ++i)
   2726 		new_handlers[i] = old_handlers[i];
   2727 	new_handlers[old_size] = handler;
   2728 	for (i = old_size+1; i < new_size; ++i)
   2729 		new_handlers[i] = NULL;
   2730 
   2731 	s = splhigh();
   2732 	dev->dv_activity_count = new_size;
   2733 	dev->dv_activity_handlers = new_handlers;
   2734 	splx(s);
   2735 
   2736 	if (old_size > 0)
   2737 		kmem_free(old_handlers, sizeof(void *) * old_size);
   2738 
   2739 	return true;
   2740 }
   2741 
   2742 void
   2743 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2744 {
   2745 	void (**old_handlers)(device_t, devactive_t);
   2746 	size_t i, old_size;
   2747 	int s;
   2748 
   2749 	old_handlers = dev->dv_activity_handlers;
   2750 	old_size = dev->dv_activity_count;
   2751 
   2752 	for (i = 0; i < old_size; ++i) {
   2753 		if (old_handlers[i] == handler)
   2754 			break;
   2755 		if (old_handlers[i] == NULL)
   2756 			return; /* XXX panic? */
   2757 	}
   2758 
   2759 	if (i == old_size)
   2760 		return; /* XXX panic? */
   2761 
   2762 	for (; i < old_size - 1; ++i) {
   2763 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2764 			continue;
   2765 
   2766 		if (i == 0) {
   2767 			s = splhigh();
   2768 			dev->dv_activity_count = 0;
   2769 			dev->dv_activity_handlers = NULL;
   2770 			splx(s);
   2771 			kmem_free(old_handlers, sizeof(void *) * old_size);
   2772 		}
   2773 		return;
   2774 	}
   2775 	old_handlers[i] = NULL;
   2776 }
   2777 
   2778 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2779 static bool
   2780 device_exists_at(device_t dv, devgen_t gen)
   2781 {
   2782 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2783 	    dv->dv_add_gen <= gen;
   2784 }
   2785 
   2786 static bool
   2787 deviter_visits(const deviter_t *di, device_t dv)
   2788 {
   2789 	return device_exists_at(dv, di->di_gen);
   2790 }
   2791 
   2792 /*
   2793  * Device Iteration
   2794  *
   2795  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2796  *     each device_t's in the device tree.
   2797  *
   2798  * deviter_init(di, flags): initialize the device iterator `di'
   2799  *     to "walk" the device tree.  deviter_next(di) will return
   2800  *     the first device_t in the device tree, or NULL if there are
   2801  *     no devices.
   2802  *
   2803  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2804  *     caller intends to modify the device tree by calling
   2805  *     config_detach(9) on devices in the order that the iterator
   2806  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2807  *     nearest the "root" of the device tree to be returned, first;
   2808  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2809  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2810  *     indicating both that deviter_init() should not respect any
   2811  *     locks on the device tree, and that deviter_next(di) may run
   2812  *     in more than one LWP before the walk has finished.
   2813  *
   2814  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2815  *     once.
   2816  *
   2817  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2818  *
   2819  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2820  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2821  *
   2822  * deviter_first(di, flags): initialize the device iterator `di'
   2823  *     and return the first device_t in the device tree, or NULL
   2824  *     if there are no devices.  The statement
   2825  *
   2826  *         dv = deviter_first(di);
   2827  *
   2828  *     is shorthand for
   2829  *
   2830  *         deviter_init(di);
   2831  *         dv = deviter_next(di);
   2832  *
   2833  * deviter_next(di): return the next device_t in the device tree,
   2834  *     or NULL if there are no more devices.  deviter_next(di)
   2835  *     is undefined if `di' was not initialized with deviter_init() or
   2836  *     deviter_first().
   2837  *
   2838  * deviter_release(di): stops iteration (subsequent calls to
   2839  *     deviter_next() will return NULL), releases any locks and
   2840  *     resources held by the device iterator.
   2841  *
   2842  * Device iteration does not return device_t's in any particular
   2843  * order.  An iterator will never return the same device_t twice.
   2844  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2845  * is called repeatedly on the same `di', it will eventually return
   2846  * NULL.  It is ok to attach/detach devices during device iteration.
   2847  */
   2848 void
   2849 deviter_init(deviter_t *di, deviter_flags_t flags)
   2850 {
   2851 	device_t dv;
   2852 
   2853 	memset(di, 0, sizeof(*di));
   2854 
   2855 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2856 		flags |= DEVITER_F_RW;
   2857 
   2858 	mutex_enter(&alldevs_lock);
   2859 	if ((flags & DEVITER_F_RW) != 0)
   2860 		alldevs_nwrite++;
   2861 	else
   2862 		alldevs_nread++;
   2863 	di->di_gen = alldevs_gen++;
   2864 	di->di_flags = flags;
   2865 
   2866 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2867 	case DEVITER_F_LEAVES_FIRST:
   2868 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2869 			if (!deviter_visits(di, dv))
   2870 				continue;
   2871 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2872 		}
   2873 		break;
   2874 	case DEVITER_F_ROOT_FIRST:
   2875 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2876 			if (!deviter_visits(di, dv))
   2877 				continue;
   2878 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2879 		}
   2880 		break;
   2881 	default:
   2882 		break;
   2883 	}
   2884 
   2885 	deviter_reinit(di);
   2886 	mutex_exit(&alldevs_lock);
   2887 }
   2888 
   2889 static void
   2890 deviter_reinit(deviter_t *di)
   2891 {
   2892 
   2893 	KASSERT(mutex_owned(&alldevs_lock));
   2894 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2895 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2896 	else
   2897 		di->di_prev = TAILQ_FIRST(&alldevs);
   2898 }
   2899 
   2900 device_t
   2901 deviter_first(deviter_t *di, deviter_flags_t flags)
   2902 {
   2903 
   2904 	deviter_init(di, flags);
   2905 	return deviter_next(di);
   2906 }
   2907 
   2908 static device_t
   2909 deviter_next2(deviter_t *di)
   2910 {
   2911 	device_t dv;
   2912 
   2913 	KASSERT(mutex_owned(&alldevs_lock));
   2914 
   2915 	dv = di->di_prev;
   2916 
   2917 	if (dv == NULL)
   2918 		return NULL;
   2919 
   2920 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2921 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2922 	else
   2923 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2924 
   2925 	return dv;
   2926 }
   2927 
   2928 static device_t
   2929 deviter_next1(deviter_t *di)
   2930 {
   2931 	device_t dv;
   2932 
   2933 	KASSERT(mutex_owned(&alldevs_lock));
   2934 
   2935 	do {
   2936 		dv = deviter_next2(di);
   2937 	} while (dv != NULL && !deviter_visits(di, dv));
   2938 
   2939 	return dv;
   2940 }
   2941 
   2942 device_t
   2943 deviter_next(deviter_t *di)
   2944 {
   2945 	device_t dv = NULL;
   2946 
   2947 	mutex_enter(&alldevs_lock);
   2948 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2949 	case 0:
   2950 		dv = deviter_next1(di);
   2951 		break;
   2952 	case DEVITER_F_LEAVES_FIRST:
   2953 		while (di->di_curdepth >= 0) {
   2954 			if ((dv = deviter_next1(di)) == NULL) {
   2955 				di->di_curdepth--;
   2956 				deviter_reinit(di);
   2957 			} else if (dv->dv_depth == di->di_curdepth)
   2958 				break;
   2959 		}
   2960 		break;
   2961 	case DEVITER_F_ROOT_FIRST:
   2962 		while (di->di_curdepth <= di->di_maxdepth) {
   2963 			if ((dv = deviter_next1(di)) == NULL) {
   2964 				di->di_curdepth++;
   2965 				deviter_reinit(di);
   2966 			} else if (dv->dv_depth == di->di_curdepth)
   2967 				break;
   2968 		}
   2969 		break;
   2970 	default:
   2971 		break;
   2972 	}
   2973 	mutex_exit(&alldevs_lock);
   2974 
   2975 	return dv;
   2976 }
   2977 
   2978 void
   2979 deviter_release(deviter_t *di)
   2980 {
   2981 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2982 
   2983 	mutex_enter(&alldevs_lock);
   2984 	if (rw)
   2985 		--alldevs_nwrite;
   2986 	else
   2987 		--alldevs_nread;
   2988 	/* XXX wake a garbage-collection thread */
   2989 	mutex_exit(&alldevs_lock);
   2990 }
   2991 
   2992 const char *
   2993 cfdata_ifattr(const struct cfdata *cf)
   2994 {
   2995 	return cf->cf_pspec->cfp_iattr;
   2996 }
   2997 
   2998 bool
   2999 ifattr_match(const char *snull, const char *t)
   3000 {
   3001 	return (snull == NULL) || strcmp(snull, t) == 0;
   3002 }
   3003 
   3004 void
   3005 null_childdetached(device_t self, device_t child)
   3006 {
   3007 	/* do nothing */
   3008 }
   3009 
   3010 static void
   3011 sysctl_detach_setup(struct sysctllog **clog)
   3012 {
   3013 
   3014 	sysctl_createv(clog, 0, NULL, NULL,
   3015 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3016 		CTLTYPE_BOOL, "detachall",
   3017 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3018 		NULL, 0, &detachall, 0,
   3019 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3020 }
   3021