Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.1
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.1 2021/03/20 19:33:41 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.1 2021/03/20 19:33:41 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 static struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 static struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 static int interrupt_config_threads = 8;
    201 static struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 static int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    222 static kmutex_t alldevs_lock __cacheline_aligned;
    223 static devgen_t alldevs_gen = 1;
    224 static int alldevs_nread = 0;
    225 static int alldevs_nwrite = 0;
    226 static bool alldevs_garbage = false;
    227 
    228 static struct devicelist config_pending =
    229     TAILQ_HEAD_INITIALIZER(config_pending);
    230 static kmutex_t config_misc_lock;
    231 static kcondvar_t config_misc_cv;
    232 
    233 static bool detachall = false;
    234 
    235 #define	STREQ(s1, s2)			\
    236 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    237 
    238 static bool config_initialized = false;	/* config_init() has been called. */
    239 
    240 static int config_do_twiddle;
    241 static callout_t config_twiddle_ch;
    242 
    243 static void sysctl_detach_setup(struct sysctllog **);
    244 
    245 int no_devmon_insert(const char *, prop_dictionary_t);
    246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    247 
    248 typedef int (*cfdriver_fn)(struct cfdriver *);
    249 static int
    250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    251 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    252 	const char *style, bool dopanic)
    253 {
    254 	void (*pr)(const char *, ...) __printflike(1, 2) =
    255 	    dopanic ? panic : printf;
    256 	int i, error = 0, e2 __diagused;
    257 
    258 	for (i = 0; cfdriverv[i] != NULL; i++) {
    259 		if ((error = drv_do(cfdriverv[i])) != 0) {
    260 			pr("configure: `%s' driver %s failed: %d",
    261 			    cfdriverv[i]->cd_name, style, error);
    262 			goto bad;
    263 		}
    264 	}
    265 
    266 	KASSERT(error == 0);
    267 	return 0;
    268 
    269  bad:
    270 	printf("\n");
    271 	for (i--; i >= 0; i--) {
    272 		e2 = drv_undo(cfdriverv[i]);
    273 		KASSERT(e2 == 0);
    274 	}
    275 
    276 	return error;
    277 }
    278 
    279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    280 static int
    281 frob_cfattachvec(const struct cfattachinit *cfattachv,
    282 	cfattach_fn att_do, cfattach_fn att_undo,
    283 	const char *style, bool dopanic)
    284 {
    285 	const struct cfattachinit *cfai = NULL;
    286 	void (*pr)(const char *, ...) __printflike(1, 2) =
    287 	    dopanic ? panic : printf;
    288 	int j = 0, error = 0, e2 __diagused;
    289 
    290 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    291 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    292 			if ((error = att_do(cfai->cfai_name,
    293 			    cfai->cfai_list[j])) != 0) {
    294 				pr("configure: attachment `%s' "
    295 				    "of `%s' driver %s failed: %d",
    296 				    cfai->cfai_list[j]->ca_name,
    297 				    cfai->cfai_name, style, error);
    298 				goto bad;
    299 			}
    300 		}
    301 	}
    302 
    303 	KASSERT(error == 0);
    304 	return 0;
    305 
    306  bad:
    307 	/*
    308 	 * Rollback in reverse order.  dunno if super-important, but
    309 	 * do that anyway.  Although the code looks a little like
    310 	 * someone did a little integration (in the math sense).
    311 	 */
    312 	printf("\n");
    313 	if (cfai) {
    314 		bool last;
    315 
    316 		for (last = false; last == false; ) {
    317 			if (cfai == &cfattachv[0])
    318 				last = true;
    319 			for (j--; j >= 0; j--) {
    320 				e2 = att_undo(cfai->cfai_name,
    321 				    cfai->cfai_list[j]);
    322 				KASSERT(e2 == 0);
    323 			}
    324 			if (!last) {
    325 				cfai--;
    326 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    327 					;
    328 			}
    329 		}
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Initialize the autoconfiguration data structures.  Normally this
    337  * is done by configure(), but some platforms need to do this very
    338  * early (to e.g. initialize the console).
    339  */
    340 void
    341 config_init(void)
    342 {
    343 
    344 	KASSERT(config_initialized == false);
    345 
    346 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    347 
    348 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&config_misc_cv, "cfgmisc");
    350 
    351 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    352 
    353 	frob_cfdrivervec(cfdriver_list_initial,
    354 	    config_cfdriver_attach, NULL, "bootstrap", true);
    355 	frob_cfattachvec(cfattachinit,
    356 	    config_cfattach_attach, NULL, "bootstrap", true);
    357 
    358 	initcftable.ct_cfdata = cfdata;
    359 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    360 
    361 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    362 	    RND_FLAG_COLLECT_TIME);
    363 
    364 	config_initialized = true;
    365 }
    366 
    367 /*
    368  * Init or fini drivers and attachments.  Either all or none
    369  * are processed (via rollback).  It would be nice if this were
    370  * atomic to outside consumers, but with the current state of
    371  * locking ...
    372  */
    373 int
    374 config_init_component(struct cfdriver * const *cfdriverv,
    375 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    376 {
    377 	int error;
    378 
    379 	if ((error = frob_cfdrivervec(cfdriverv,
    380 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    381 		return error;
    382 	if ((error = frob_cfattachvec(cfattachv,
    383 	    config_cfattach_attach, config_cfattach_detach,
    384 	    "init", false)) != 0) {
    385 		frob_cfdrivervec(cfdriverv,
    386 	            config_cfdriver_detach, NULL, "init rollback", true);
    387 		return error;
    388 	}
    389 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    390 		frob_cfattachvec(cfattachv,
    391 		    config_cfattach_detach, NULL, "init rollback", true);
    392 		frob_cfdrivervec(cfdriverv,
    393 	            config_cfdriver_detach, NULL, "init rollback", true);
    394 		return error;
    395 	}
    396 
    397 	return 0;
    398 }
    399 
    400 int
    401 config_fini_component(struct cfdriver * const *cfdriverv,
    402 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    403 {
    404 	int error;
    405 
    406 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    407 		return error;
    408 	if ((error = frob_cfattachvec(cfattachv,
    409 	    config_cfattach_detach, config_cfattach_attach,
    410 	    "fini", false)) != 0) {
    411 		if (config_cfdata_attach(cfdatav, 0) != 0)
    412 			panic("config_cfdata fini rollback failed");
    413 		return error;
    414 	}
    415 	if ((error = frob_cfdrivervec(cfdriverv,
    416 	    config_cfdriver_detach, config_cfdriver_attach,
    417 	    "fini", false)) != 0) {
    418 		frob_cfattachvec(cfattachv,
    419 	            config_cfattach_attach, NULL, "fini rollback", true);
    420 		if (config_cfdata_attach(cfdatav, 0) != 0)
    421 			panic("config_cfdata fini rollback failed");
    422 		return error;
    423 	}
    424 
    425 	return 0;
    426 }
    427 
    428 void
    429 config_init_mi(void)
    430 {
    431 
    432 	if (!config_initialized)
    433 		config_init();
    434 
    435 	sysctl_detach_setup(NULL);
    436 }
    437 
    438 void
    439 config_deferred(device_t dev)
    440 {
    441 	config_process_deferred(&deferred_config_queue, dev);
    442 	config_process_deferred(&interrupt_config_queue, dev);
    443 	config_process_deferred(&mountroot_config_queue, dev);
    444 }
    445 
    446 static void
    447 config_interrupts_thread(void *cookie)
    448 {
    449 	struct deferred_config *dc;
    450 	device_t dev;
    451 
    452 	mutex_enter(&config_misc_lock);
    453 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    454 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    455 		mutex_exit(&config_misc_lock);
    456 
    457 		dev = dc->dc_dev;
    458 		(*dc->dc_func)(dev);
    459 		if (!device_pmf_is_registered(dev))
    460 			aprint_debug_dev(dev,
    461 			    "WARNING: power management not supported\n");
    462 		config_pending_decr(dev);
    463 		kmem_free(dc, sizeof(*dc));
    464 
    465 		mutex_enter(&config_misc_lock);
    466 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    467 	}
    468 	mutex_exit(&config_misc_lock);
    469 
    470 	kthread_exit(0);
    471 }
    472 
    473 void
    474 config_create_interruptthreads(void)
    475 {
    476 	int i;
    477 
    478 	for (i = 0; i < interrupt_config_threads; i++) {
    479 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    480 		    config_interrupts_thread, NULL, NULL, "configintr");
    481 	}
    482 }
    483 
    484 static void
    485 config_mountroot_thread(void *cookie)
    486 {
    487 	struct deferred_config *dc;
    488 
    489 	mutex_enter(&config_misc_lock);
    490 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    491 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    492 		mutex_exit(&config_misc_lock);
    493 
    494 		(*dc->dc_func)(dc->dc_dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_mountrootthreads(void)
    506 {
    507 	int i;
    508 
    509 	if (!root_is_mounted)
    510 		root_is_mounted = true;
    511 
    512 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    513 				       mountroot_config_threads;
    514 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    515 					     KM_NOSLEEP);
    516 	KASSERT(mountroot_config_lwpids);
    517 	for (i = 0; i < mountroot_config_threads; i++) {
    518 		mountroot_config_lwpids[i] = 0;
    519 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    520 				     NULL, config_mountroot_thread, NULL,
    521 				     &mountroot_config_lwpids[i],
    522 				     "configroot");
    523 	}
    524 }
    525 
    526 void
    527 config_finalize_mountroot(void)
    528 {
    529 	int i, error;
    530 
    531 	for (i = 0; i < mountroot_config_threads; i++) {
    532 		if (mountroot_config_lwpids[i] == 0)
    533 			continue;
    534 
    535 		error = kthread_join(mountroot_config_lwpids[i]);
    536 		if (error)
    537 			printf("%s: thread %x joined with error %d\n",
    538 			       __func__, i, error);
    539 	}
    540 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    541 }
    542 
    543 /*
    544  * Announce device attach/detach to userland listeners.
    545  */
    546 
    547 int
    548 no_devmon_insert(const char *name, prop_dictionary_t p)
    549 {
    550 
    551 	return ENODEV;
    552 }
    553 
    554 static void
    555 devmon_report_device(device_t dev, bool isattach)
    556 {
    557 	prop_dictionary_t ev, dict = device_properties(dev);
    558 	const char *parent;
    559 	const char *what;
    560 	const char *where;
    561 	device_t pdev = device_parent(dev);
    562 
    563 	/* If currently no drvctl device, just return */
    564 	if (devmon_insert_vec == no_devmon_insert)
    565 		return;
    566 
    567 	ev = prop_dictionary_create();
    568 	if (ev == NULL)
    569 		return;
    570 
    571 	what = (isattach ? "device-attach" : "device-detach");
    572 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    573 	if (prop_dictionary_get_string(dict, "location", &where)) {
    574 		prop_dictionary_set_string(ev, "location", where);
    575 		aprint_debug("ev: %s %s at %s in [%s]\n",
    576 		    what, device_xname(dev), parent, where);
    577 	}
    578 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    579 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    580 		prop_object_release(ev);
    581 		return;
    582 	}
    583 
    584 	if ((*devmon_insert_vec)(what, ev) != 0)
    585 		prop_object_release(ev);
    586 }
    587 
    588 /*
    589  * Add a cfdriver to the system.
    590  */
    591 int
    592 config_cfdriver_attach(struct cfdriver *cd)
    593 {
    594 	struct cfdriver *lcd;
    595 
    596 	/* Make sure this driver isn't already in the system. */
    597 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    598 		if (STREQ(lcd->cd_name, cd->cd_name))
    599 			return EEXIST;
    600 	}
    601 
    602 	LIST_INIT(&cd->cd_attach);
    603 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * Remove a cfdriver from the system.
    610  */
    611 int
    612 config_cfdriver_detach(struct cfdriver *cd)
    613 {
    614 	struct alldevs_foray af;
    615 	int i, rc = 0;
    616 
    617 	config_alldevs_enter(&af);
    618 	/* Make sure there are no active instances. */
    619 	for (i = 0; i < cd->cd_ndevs; i++) {
    620 		if (cd->cd_devs[i] != NULL) {
    621 			rc = EBUSY;
    622 			break;
    623 		}
    624 	}
    625 	config_alldevs_exit(&af);
    626 
    627 	if (rc != 0)
    628 		return rc;
    629 
    630 	/* ...and no attachments loaded. */
    631 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    632 		return EBUSY;
    633 
    634 	LIST_REMOVE(cd, cd_list);
    635 
    636 	KASSERT(cd->cd_devs == NULL);
    637 
    638 	return 0;
    639 }
    640 
    641 /*
    642  * Look up a cfdriver by name.
    643  */
    644 struct cfdriver *
    645 config_cfdriver_lookup(const char *name)
    646 {
    647 	struct cfdriver *cd;
    648 
    649 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    650 		if (STREQ(cd->cd_name, name))
    651 			return cd;
    652 	}
    653 
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * Add a cfattach to the specified driver.
    659  */
    660 int
    661 config_cfattach_attach(const char *driver, struct cfattach *ca)
    662 {
    663 	struct cfattach *lca;
    664 	struct cfdriver *cd;
    665 
    666 	cd = config_cfdriver_lookup(driver);
    667 	if (cd == NULL)
    668 		return ESRCH;
    669 
    670 	/* Make sure this attachment isn't already on this driver. */
    671 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    672 		if (STREQ(lca->ca_name, ca->ca_name))
    673 			return EEXIST;
    674 	}
    675 
    676 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    677 
    678 	return 0;
    679 }
    680 
    681 /*
    682  * Remove a cfattach from the specified driver.
    683  */
    684 int
    685 config_cfattach_detach(const char *driver, struct cfattach *ca)
    686 {
    687 	struct alldevs_foray af;
    688 	struct cfdriver *cd;
    689 	device_t dev;
    690 	int i, rc = 0;
    691 
    692 	cd = config_cfdriver_lookup(driver);
    693 	if (cd == NULL)
    694 		return ESRCH;
    695 
    696 	config_alldevs_enter(&af);
    697 	/* Make sure there are no active instances. */
    698 	for (i = 0; i < cd->cd_ndevs; i++) {
    699 		if ((dev = cd->cd_devs[i]) == NULL)
    700 			continue;
    701 		if (dev->dv_cfattach == ca) {
    702 			rc = EBUSY;
    703 			break;
    704 		}
    705 	}
    706 	config_alldevs_exit(&af);
    707 
    708 	if (rc != 0)
    709 		return rc;
    710 
    711 	LIST_REMOVE(ca, ca_list);
    712 
    713 	return 0;
    714 }
    715 
    716 /*
    717  * Look up a cfattach by name.
    718  */
    719 static struct cfattach *
    720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    721 {
    722 	struct cfattach *ca;
    723 
    724 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    725 		if (STREQ(ca->ca_name, atname))
    726 			return ca;
    727 	}
    728 
    729 	return NULL;
    730 }
    731 
    732 /*
    733  * Look up a cfattach by driver/attachment name.
    734  */
    735 struct cfattach *
    736 config_cfattach_lookup(const char *name, const char *atname)
    737 {
    738 	struct cfdriver *cd;
    739 
    740 	cd = config_cfdriver_lookup(name);
    741 	if (cd == NULL)
    742 		return NULL;
    743 
    744 	return config_cfattach_lookup_cd(cd, atname);
    745 }
    746 
    747 /*
    748  * Apply the matching function and choose the best.  This is used
    749  * a few times and we want to keep the code small.
    750  */
    751 static void
    752 mapply(struct matchinfo *m, cfdata_t cf)
    753 {
    754 	int pri;
    755 
    756 	if (m->fn != NULL) {
    757 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    758 	} else {
    759 		pri = config_match(m->parent, cf, m->aux);
    760 	}
    761 	if (pri > m->pri) {
    762 		m->match = cf;
    763 		m->pri = pri;
    764 	}
    765 }
    766 
    767 int
    768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    769 {
    770 	const struct cfiattrdata *ci;
    771 	const struct cflocdesc *cl;
    772 	int nlocs, i;
    773 
    774 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    775 	KASSERT(ci);
    776 	nlocs = ci->ci_loclen;
    777 	KASSERT(!nlocs || locs);
    778 	for (i = 0; i < nlocs; i++) {
    779 		cl = &ci->ci_locdesc[i];
    780 		if (cl->cld_defaultstr != NULL &&
    781 		    cf->cf_loc[i] == cl->cld_default)
    782 			continue;
    783 		if (cf->cf_loc[i] == locs[i])
    784 			continue;
    785 		return 0;
    786 	}
    787 
    788 	return config_match(parent, cf, aux);
    789 }
    790 
    791 /*
    792  * Helper function: check whether the driver supports the interface attribute
    793  * and return its descriptor structure.
    794  */
    795 static const struct cfiattrdata *
    796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    797 {
    798 	const struct cfiattrdata * const *cpp;
    799 
    800 	if (cd->cd_attrs == NULL)
    801 		return 0;
    802 
    803 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    804 		if (STREQ((*cpp)->ci_name, ia)) {
    805 			/* Match. */
    806 			return *cpp;
    807 		}
    808 	}
    809 	return 0;
    810 }
    811 
    812 /*
    813  * Lookup an interface attribute description by name.
    814  * If the driver is given, consider only its supported attributes.
    815  */
    816 const struct cfiattrdata *
    817 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    818 {
    819 	const struct cfdriver *d;
    820 	const struct cfiattrdata *ia;
    821 
    822 	if (cd)
    823 		return cfdriver_get_iattr(cd, name);
    824 
    825 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    826 		ia = cfdriver_get_iattr(d, name);
    827 		if (ia)
    828 			return ia;
    829 	}
    830 	return 0;
    831 }
    832 
    833 /*
    834  * Determine if `parent' is a potential parent for a device spec based
    835  * on `cfp'.
    836  */
    837 static int
    838 cfparent_match(const device_t parent, const struct cfparent *cfp)
    839 {
    840 	struct cfdriver *pcd;
    841 
    842 	/* We don't match root nodes here. */
    843 	if (cfp == NULL)
    844 		return 0;
    845 
    846 	pcd = parent->dv_cfdriver;
    847 	KASSERT(pcd != NULL);
    848 
    849 	/*
    850 	 * First, ensure this parent has the correct interface
    851 	 * attribute.
    852 	 */
    853 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    854 		return 0;
    855 
    856 	/*
    857 	 * If no specific parent device instance was specified (i.e.
    858 	 * we're attaching to the attribute only), we're done!
    859 	 */
    860 	if (cfp->cfp_parent == NULL)
    861 		return 1;
    862 
    863 	/*
    864 	 * Check the parent device's name.
    865 	 */
    866 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    867 		return 0;	/* not the same parent */
    868 
    869 	/*
    870 	 * Make sure the unit number matches.
    871 	 */
    872 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    873 	    cfp->cfp_unit == parent->dv_unit)
    874 		return 1;
    875 
    876 	/* Unit numbers don't match. */
    877 	return 0;
    878 }
    879 
    880 /*
    881  * Helper for config_cfdata_attach(): check all devices whether it could be
    882  * parent any attachment in the config data table passed, and rescan.
    883  */
    884 static void
    885 rescan_with_cfdata(const struct cfdata *cf)
    886 {
    887 	device_t d;
    888 	const struct cfdata *cf1;
    889 	deviter_t di;
    890 
    891 
    892 	/*
    893 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    894 	 * the outer loop.
    895 	 */
    896 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    897 
    898 		if (!(d->dv_cfattach->ca_rescan))
    899 			continue;
    900 
    901 		for (cf1 = cf; cf1->cf_name; cf1++) {
    902 
    903 			if (!cfparent_match(d, cf1->cf_pspec))
    904 				continue;
    905 
    906 			(*d->dv_cfattach->ca_rescan)(d,
    907 				cfdata_ifattr(cf1), cf1->cf_loc);
    908 
    909 			config_deferred(d);
    910 		}
    911 	}
    912 	deviter_release(&di);
    913 }
    914 
    915 /*
    916  * Attach a supplemental config data table and rescan potential
    917  * parent devices if required.
    918  */
    919 int
    920 config_cfdata_attach(cfdata_t cf, int scannow)
    921 {
    922 	struct cftable *ct;
    923 
    924 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    925 	ct->ct_cfdata = cf;
    926 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    927 
    928 	if (scannow)
    929 		rescan_with_cfdata(cf);
    930 
    931 	return 0;
    932 }
    933 
    934 /*
    935  * Helper for config_cfdata_detach: check whether a device is
    936  * found through any attachment in the config data table.
    937  */
    938 static int
    939 dev_in_cfdata(device_t d, cfdata_t cf)
    940 {
    941 	const struct cfdata *cf1;
    942 
    943 	for (cf1 = cf; cf1->cf_name; cf1++)
    944 		if (d->dv_cfdata == cf1)
    945 			return 1;
    946 
    947 	return 0;
    948 }
    949 
    950 /*
    951  * Detach a supplemental config data table. Detach all devices found
    952  * through that table (and thus keeping references to it) before.
    953  */
    954 int
    955 config_cfdata_detach(cfdata_t cf)
    956 {
    957 	device_t d;
    958 	int error = 0;
    959 	struct cftable *ct;
    960 	deviter_t di;
    961 
    962 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    963 	     d = deviter_next(&di)) {
    964 		if (!dev_in_cfdata(d, cf))
    965 			continue;
    966 		if ((error = config_detach(d, 0)) != 0)
    967 			break;
    968 	}
    969 	deviter_release(&di);
    970 	if (error) {
    971 		aprint_error_dev(d, "unable to detach instance\n");
    972 		return error;
    973 	}
    974 
    975 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    976 		if (ct->ct_cfdata == cf) {
    977 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    978 			kmem_free(ct, sizeof(*ct));
    979 			return 0;
    980 		}
    981 	}
    982 
    983 	/* not found -- shouldn't happen */
    984 	return EINVAL;
    985 }
    986 
    987 /*
    988  * Invoke the "match" routine for a cfdata entry on behalf of
    989  * an external caller, usually a "submatch" routine.
    990  */
    991 int
    992 config_match(device_t parent, cfdata_t cf, void *aux)
    993 {
    994 	struct cfattach *ca;
    995 
    996 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    997 	if (ca == NULL) {
    998 		/* No attachment for this entry, oh well. */
    999 		return 0;
   1000 	}
   1001 
   1002 	return (*ca->ca_match)(parent, cf, aux);
   1003 }
   1004 
   1005 static void
   1006 config_get_cfargs(cfarg_t tag,
   1007 		  cfsubmatch_t *fnp,		/* output */
   1008 		  const char **ifattrp,		/* output */
   1009 		  const int **locsp,		/* output */
   1010 		  va_list ap)
   1011 {
   1012 	cfsubmatch_t fn = NULL;
   1013 	const char *ifattr = NULL;
   1014 	const int *locs = NULL;
   1015 
   1016 	while (tag != CFARG_EOL) {
   1017 		switch (tag) {
   1018 		case CFARG_SUBMATCH:
   1019 			fn = va_arg(ap, cfsubmatch_t);
   1020 			break;
   1021 
   1022 		case CFARG_IATTR:
   1023 			ifattr = va_arg(ap, const char *);
   1024 			break;
   1025 
   1026 		case CFARG_LOCATORS:
   1027 			locs = va_arg(ap, const int *);
   1028 			break;
   1029 
   1030 		default:
   1031 			/* XXX panic? */
   1032 			/* XXX dump stack backtrace? */
   1033 			aprint_error("%s: unknown cfarg tag: %d\n",
   1034 			    __func__, tag);
   1035 			goto out;
   1036 		}
   1037 		tag = va_arg(ap, cfarg_t);
   1038 	}
   1039 
   1040  out:
   1041 	if (fnp != NULL)
   1042 		*fnp = fn;
   1043 	if (ifattrp != NULL)
   1044 		*ifattrp = ifattr;
   1045 	if (locsp != NULL)
   1046 		*locsp = locs;
   1047 }
   1048 
   1049 /*
   1050  * Iterate over all potential children of some device, calling the given
   1051  * function (default being the child's match function) for each one.
   1052  * Nonzero returns are matches; the highest value returned is considered
   1053  * the best match.  Return the `found child' if we got a match, or NULL
   1054  * otherwise.  The `aux' pointer is simply passed on through.
   1055  *
   1056  * Note that this function is designed so that it can be used to apply
   1057  * an arbitrary function to all potential children (its return value
   1058  * can be ignored).
   1059  */
   1060 static cfdata_t
   1061 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1062 {
   1063 	cfsubmatch_t fn;
   1064 	const char *ifattr;
   1065 	const int *locs;
   1066 	struct cftable *ct;
   1067 	cfdata_t cf;
   1068 	struct matchinfo m;
   1069 
   1070 	config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
   1071 
   1072 	KASSERT(config_initialized);
   1073 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1074 
   1075 	m.fn = fn;
   1076 	m.parent = parent;
   1077 	m.locs = locs;
   1078 	m.aux = aux;
   1079 	m.match = NULL;
   1080 	m.pri = 0;
   1081 
   1082 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1083 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1084 
   1085 			/* We don't match root nodes here. */
   1086 			if (!cf->cf_pspec)
   1087 				continue;
   1088 
   1089 			/*
   1090 			 * Skip cf if no longer eligible, otherwise scan
   1091 			 * through parents for one matching `parent', and
   1092 			 * try match function.
   1093 			 */
   1094 			if (cf->cf_fstate == FSTATE_FOUND)
   1095 				continue;
   1096 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1097 			    cf->cf_fstate == FSTATE_DSTAR)
   1098 				continue;
   1099 
   1100 			/*
   1101 			 * If an interface attribute was specified,
   1102 			 * consider only children which attach to
   1103 			 * that attribute.
   1104 			 */
   1105 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1106 				continue;
   1107 
   1108 			if (cfparent_match(parent, cf->cf_pspec))
   1109 				mapply(&m, cf);
   1110 		}
   1111 	}
   1112 	return m.match;
   1113 }
   1114 
   1115 cfdata_t
   1116 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1117 {
   1118 	cfdata_t cf;
   1119 	va_list ap;
   1120 
   1121 	va_start(ap, tag);
   1122 	cf = config_vsearch(parent, aux, tag, ap);
   1123 	va_end(ap);
   1124 
   1125 	return cf;
   1126 }
   1127 
   1128 /*
   1129  * Find the given root device.
   1130  * This is much like config_search, but there is no parent.
   1131  * Don't bother with multiple cfdata tables; the root node
   1132  * must always be in the initial table.
   1133  */
   1134 cfdata_t
   1135 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1136 {
   1137 	cfdata_t cf;
   1138 	const short *p;
   1139 	struct matchinfo m;
   1140 
   1141 	m.fn = fn;
   1142 	m.parent = ROOT;
   1143 	m.aux = aux;
   1144 	m.match = NULL;
   1145 	m.pri = 0;
   1146 	m.locs = 0;
   1147 	/*
   1148 	 * Look at root entries for matching name.  We do not bother
   1149 	 * with found-state here since only one root should ever be
   1150 	 * searched (and it must be done first).
   1151 	 */
   1152 	for (p = cfroots; *p >= 0; p++) {
   1153 		cf = &cfdata[*p];
   1154 		if (strcmp(cf->cf_name, rootname) == 0)
   1155 			mapply(&m, cf);
   1156 	}
   1157 	return m.match;
   1158 }
   1159 
   1160 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1161 
   1162 /*
   1163  * The given `aux' argument describes a device that has been found
   1164  * on the given parent, but not necessarily configured.  Locate the
   1165  * configuration data for that device (using the submatch function
   1166  * provided, or using candidates' cd_match configuration driver
   1167  * functions) and attach it, and return its device_t.  If the device was
   1168  * not configured, call the given `print' function and return NULL.
   1169  */
   1170 device_t
   1171 config_found_sm_loc(device_t parent,
   1172 		const char *ifattr, const int *locs, void *aux,
   1173 		cfprint_t print, cfsubmatch_t submatch)
   1174 {
   1175 	cfdata_t cf;
   1176 
   1177 	if ((cf = config_search(parent, aux,
   1178 				CFARG_SUBMATCH, submatch,
   1179 				CFARG_IATTR, ifattr,
   1180 				CFARG_LOCATORS, locs,
   1181 				CFARG_EOL)))
   1182 		return(config_attach_loc(parent, cf, locs, aux, print));
   1183 	if (print) {
   1184 		if (config_do_twiddle && cold)
   1185 			twiddle();
   1186 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1187 	}
   1188 
   1189 	/*
   1190 	 * This has the effect of mixing in a single timestamp to the
   1191 	 * entropy pool.  Experiments indicate the estimator will almost
   1192 	 * always attribute one bit of entropy to this sample; analysis
   1193 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1194 	 * bits of entropy/sample so this seems appropriately conservative.
   1195 	 */
   1196 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1197 	return NULL;
   1198 }
   1199 
   1200 device_t
   1201 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1202     cfprint_t print)
   1203 {
   1204 
   1205 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1206 }
   1207 
   1208 device_t
   1209 config_found(device_t parent, void *aux, cfprint_t print)
   1210 {
   1211 
   1212 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1213 }
   1214 
   1215 /*
   1216  * As above, but for root devices.
   1217  */
   1218 device_t
   1219 config_rootfound(const char *rootname, void *aux)
   1220 {
   1221 	cfdata_t cf;
   1222 
   1223 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1224 		return config_attach(ROOT, cf, aux, NULL);
   1225 	aprint_error("root device %s not configured\n", rootname);
   1226 	return NULL;
   1227 }
   1228 
   1229 /* just like sprintf(buf, "%d") except that it works from the end */
   1230 static char *
   1231 number(char *ep, int n)
   1232 {
   1233 
   1234 	*--ep = 0;
   1235 	while (n >= 10) {
   1236 		*--ep = (n % 10) + '0';
   1237 		n /= 10;
   1238 	}
   1239 	*--ep = n + '0';
   1240 	return ep;
   1241 }
   1242 
   1243 /*
   1244  * Expand the size of the cd_devs array if necessary.
   1245  *
   1246  * The caller must hold alldevs_lock. config_makeroom() may release and
   1247  * re-acquire alldevs_lock, so callers should re-check conditions such
   1248  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1249  * returns.
   1250  */
   1251 static void
   1252 config_makeroom(int n, struct cfdriver *cd)
   1253 {
   1254 	int ondevs, nndevs;
   1255 	device_t *osp, *nsp;
   1256 
   1257 	KASSERT(mutex_owned(&alldevs_lock));
   1258 	alldevs_nwrite++;
   1259 
   1260 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1261 		;
   1262 
   1263 	while (n >= cd->cd_ndevs) {
   1264 		/*
   1265 		 * Need to expand the array.
   1266 		 */
   1267 		ondevs = cd->cd_ndevs;
   1268 		osp = cd->cd_devs;
   1269 
   1270 		/*
   1271 		 * Release alldevs_lock around allocation, which may
   1272 		 * sleep.
   1273 		 */
   1274 		mutex_exit(&alldevs_lock);
   1275 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1276 		mutex_enter(&alldevs_lock);
   1277 
   1278 		/*
   1279 		 * If another thread moved the array while we did
   1280 		 * not hold alldevs_lock, try again.
   1281 		 */
   1282 		if (cd->cd_devs != osp) {
   1283 			mutex_exit(&alldevs_lock);
   1284 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1285 			mutex_enter(&alldevs_lock);
   1286 			continue;
   1287 		}
   1288 
   1289 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1290 		if (ondevs != 0)
   1291 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1292 
   1293 		cd->cd_ndevs = nndevs;
   1294 		cd->cd_devs = nsp;
   1295 		if (ondevs != 0) {
   1296 			mutex_exit(&alldevs_lock);
   1297 			kmem_free(osp, sizeof(device_t) * ondevs);
   1298 			mutex_enter(&alldevs_lock);
   1299 		}
   1300 	}
   1301 	KASSERT(mutex_owned(&alldevs_lock));
   1302 	alldevs_nwrite--;
   1303 }
   1304 
   1305 /*
   1306  * Put dev into the devices list.
   1307  */
   1308 static void
   1309 config_devlink(device_t dev)
   1310 {
   1311 
   1312 	mutex_enter(&alldevs_lock);
   1313 
   1314 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1315 
   1316 	dev->dv_add_gen = alldevs_gen;
   1317 	/* It is safe to add a device to the tail of the list while
   1318 	 * readers and writers are in the list.
   1319 	 */
   1320 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1321 	mutex_exit(&alldevs_lock);
   1322 }
   1323 
   1324 static void
   1325 config_devfree(device_t dev)
   1326 {
   1327 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1328 
   1329 	if (dev->dv_cfattach->ca_devsize > 0)
   1330 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1331 	kmem_free(dev, sizeof(*dev));
   1332 }
   1333 
   1334 /*
   1335  * Caller must hold alldevs_lock.
   1336  */
   1337 static void
   1338 config_devunlink(device_t dev, struct devicelist *garbage)
   1339 {
   1340 	struct device_garbage *dg = &dev->dv_garbage;
   1341 	cfdriver_t cd = device_cfdriver(dev);
   1342 	int i;
   1343 
   1344 	KASSERT(mutex_owned(&alldevs_lock));
   1345 
   1346  	/* Unlink from device list.  Link to garbage list. */
   1347 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1348 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1349 
   1350 	/* Remove from cfdriver's array. */
   1351 	cd->cd_devs[dev->dv_unit] = NULL;
   1352 
   1353 	/*
   1354 	 * If the device now has no units in use, unlink its softc array.
   1355 	 */
   1356 	for (i = 0; i < cd->cd_ndevs; i++) {
   1357 		if (cd->cd_devs[i] != NULL)
   1358 			break;
   1359 	}
   1360 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1361 	if (i == cd->cd_ndevs) {
   1362 		dg->dg_ndevs = cd->cd_ndevs;
   1363 		dg->dg_devs = cd->cd_devs;
   1364 		cd->cd_devs = NULL;
   1365 		cd->cd_ndevs = 0;
   1366 	}
   1367 }
   1368 
   1369 static void
   1370 config_devdelete(device_t dev)
   1371 {
   1372 	struct device_garbage *dg = &dev->dv_garbage;
   1373 	device_lock_t dvl = device_getlock(dev);
   1374 
   1375 	if (dg->dg_devs != NULL)
   1376 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1377 
   1378 	cv_destroy(&dvl->dvl_cv);
   1379 	mutex_destroy(&dvl->dvl_mtx);
   1380 
   1381 	KASSERT(dev->dv_properties != NULL);
   1382 	prop_object_release(dev->dv_properties);
   1383 
   1384 	if (dev->dv_activity_handlers)
   1385 		panic("%s with registered handlers", __func__);
   1386 
   1387 	if (dev->dv_locators) {
   1388 		size_t amount = *--dev->dv_locators;
   1389 		kmem_free(dev->dv_locators, amount);
   1390 	}
   1391 
   1392 	config_devfree(dev);
   1393 }
   1394 
   1395 static int
   1396 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1397 {
   1398 	int unit;
   1399 
   1400 	if (cf->cf_fstate == FSTATE_STAR) {
   1401 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1402 			if (cd->cd_devs[unit] == NULL)
   1403 				break;
   1404 		/*
   1405 		 * unit is now the unit of the first NULL device pointer,
   1406 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1407 		 */
   1408 	} else {
   1409 		unit = cf->cf_unit;
   1410 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1411 			unit = -1;
   1412 	}
   1413 	return unit;
   1414 }
   1415 
   1416 static int
   1417 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1418 {
   1419 	struct alldevs_foray af;
   1420 	int unit;
   1421 
   1422 	config_alldevs_enter(&af);
   1423 	for (;;) {
   1424 		unit = config_unit_nextfree(cd, cf);
   1425 		if (unit == -1)
   1426 			break;
   1427 		if (unit < cd->cd_ndevs) {
   1428 			cd->cd_devs[unit] = dev;
   1429 			dev->dv_unit = unit;
   1430 			break;
   1431 		}
   1432 		config_makeroom(unit, cd);
   1433 	}
   1434 	config_alldevs_exit(&af);
   1435 
   1436 	return unit;
   1437 }
   1438 
   1439 static device_t
   1440 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1441 {
   1442 	cfdriver_t cd;
   1443 	cfattach_t ca;
   1444 	size_t lname, lunit;
   1445 	const char *xunit;
   1446 	int myunit;
   1447 	char num[10];
   1448 	device_t dev;
   1449 	void *dev_private;
   1450 	const struct cfiattrdata *ia;
   1451 	device_lock_t dvl;
   1452 
   1453 	cd = config_cfdriver_lookup(cf->cf_name);
   1454 	if (cd == NULL)
   1455 		return NULL;
   1456 
   1457 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1458 	if (ca == NULL)
   1459 		return NULL;
   1460 
   1461 	/* get memory for all device vars */
   1462 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1463 	if (ca->ca_devsize > 0) {
   1464 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1465 	} else {
   1466 		dev_private = NULL;
   1467 	}
   1468 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1469 
   1470 	dev->dv_class = cd->cd_class;
   1471 	dev->dv_cfdata = cf;
   1472 	dev->dv_cfdriver = cd;
   1473 	dev->dv_cfattach = ca;
   1474 	dev->dv_activity_count = 0;
   1475 	dev->dv_activity_handlers = NULL;
   1476 	dev->dv_private = dev_private;
   1477 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1478 
   1479 	myunit = config_unit_alloc(dev, cd, cf);
   1480 	if (myunit == -1) {
   1481 		config_devfree(dev);
   1482 		return NULL;
   1483 	}
   1484 
   1485 	/* compute length of name and decimal expansion of unit number */
   1486 	lname = strlen(cd->cd_name);
   1487 	xunit = number(&num[sizeof(num)], myunit);
   1488 	lunit = &num[sizeof(num)] - xunit;
   1489 	if (lname + lunit > sizeof(dev->dv_xname))
   1490 		panic("config_devalloc: device name too long");
   1491 
   1492 	dvl = device_getlock(dev);
   1493 
   1494 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1495 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1496 
   1497 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1498 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1499 	dev->dv_parent = parent;
   1500 	if (parent != NULL)
   1501 		dev->dv_depth = parent->dv_depth + 1;
   1502 	else
   1503 		dev->dv_depth = 0;
   1504 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1505 	if (locs) {
   1506 		KASSERT(parent); /* no locators at root */
   1507 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1508 		dev->dv_locators =
   1509 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1510 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1511 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1512 	}
   1513 	dev->dv_properties = prop_dictionary_create();
   1514 	KASSERT(dev->dv_properties != NULL);
   1515 
   1516 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1517 	    "device-driver", dev->dv_cfdriver->cd_name);
   1518 	prop_dictionary_set_uint16(dev->dv_properties,
   1519 	    "device-unit", dev->dv_unit);
   1520 	if (parent != NULL) {
   1521 		prop_dictionary_set_string(dev->dv_properties,
   1522 		    "device-parent", device_xname(parent));
   1523 	}
   1524 
   1525 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1526 		config_add_attrib_dict(dev);
   1527 
   1528 	return dev;
   1529 }
   1530 
   1531 /*
   1532  * Create an array of device attach attributes and add it
   1533  * to the device's dv_properties dictionary.
   1534  *
   1535  * <key>interface-attributes</key>
   1536  * <array>
   1537  *    <dict>
   1538  *       <key>attribute-name</key>
   1539  *       <string>foo</string>
   1540  *       <key>locators</key>
   1541  *       <array>
   1542  *          <dict>
   1543  *             <key>loc-name</key>
   1544  *             <string>foo-loc1</string>
   1545  *          </dict>
   1546  *          <dict>
   1547  *             <key>loc-name</key>
   1548  *             <string>foo-loc2</string>
   1549  *             <key>default</key>
   1550  *             <string>foo-loc2-default</string>
   1551  *          </dict>
   1552  *          ...
   1553  *       </array>
   1554  *    </dict>
   1555  *    ...
   1556  * </array>
   1557  */
   1558 
   1559 static void
   1560 config_add_attrib_dict(device_t dev)
   1561 {
   1562 	int i, j;
   1563 	const struct cfiattrdata *ci;
   1564 	prop_dictionary_t attr_dict, loc_dict;
   1565 	prop_array_t attr_array, loc_array;
   1566 
   1567 	if ((attr_array = prop_array_create()) == NULL)
   1568 		return;
   1569 
   1570 	for (i = 0; ; i++) {
   1571 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1572 			break;
   1573 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1574 			break;
   1575 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1576 		    ci->ci_name);
   1577 
   1578 		/* Create an array of the locator names and defaults */
   1579 
   1580 		if (ci->ci_loclen != 0 &&
   1581 		    (loc_array = prop_array_create()) != NULL) {
   1582 			for (j = 0; j < ci->ci_loclen; j++) {
   1583 				loc_dict = prop_dictionary_create();
   1584 				if (loc_dict == NULL)
   1585 					continue;
   1586 				prop_dictionary_set_string_nocopy(loc_dict,
   1587 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1588 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1589 					prop_dictionary_set_string_nocopy(
   1590 					    loc_dict, "default",
   1591 					    ci->ci_locdesc[j].cld_defaultstr);
   1592 				prop_array_set(loc_array, j, loc_dict);
   1593 				prop_object_release(loc_dict);
   1594 			}
   1595 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1596 			    loc_array);
   1597 		}
   1598 		prop_array_add(attr_array, attr_dict);
   1599 		prop_object_release(attr_dict);
   1600 	}
   1601 	if (i == 0)
   1602 		prop_object_release(attr_array);
   1603 	else
   1604 		prop_dictionary_set_and_rel(dev->dv_properties,
   1605 		    "interface-attributes", attr_array);
   1606 
   1607 	return;
   1608 }
   1609 
   1610 /*
   1611  * Attach a found device.
   1612  */
   1613 device_t
   1614 config_attach_loc(device_t parent, cfdata_t cf,
   1615 	const int *locs, void *aux, cfprint_t print)
   1616 {
   1617 	device_t dev;
   1618 	struct cftable *ct;
   1619 	const char *drvname;
   1620 
   1621 	dev = config_devalloc(parent, cf, locs);
   1622 	if (!dev)
   1623 		panic("config_attach: allocation of device softc failed");
   1624 
   1625 	/* XXX redundant - see below? */
   1626 	if (cf->cf_fstate != FSTATE_STAR) {
   1627 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1628 		cf->cf_fstate = FSTATE_FOUND;
   1629 	}
   1630 
   1631 	config_devlink(dev);
   1632 
   1633 	if (config_do_twiddle && cold)
   1634 		twiddle();
   1635 	else
   1636 		aprint_naive("Found ");
   1637 	/*
   1638 	 * We want the next two printfs for normal, verbose, and quiet,
   1639 	 * but not silent (in which case, we're twiddling, instead).
   1640 	 */
   1641 	if (parent == ROOT) {
   1642 		aprint_naive("%s (root)", device_xname(dev));
   1643 		aprint_normal("%s (root)", device_xname(dev));
   1644 	} else {
   1645 		aprint_naive("%s at %s", device_xname(dev),
   1646 		    device_xname(parent));
   1647 		aprint_normal("%s at %s", device_xname(dev),
   1648 		    device_xname(parent));
   1649 		if (print)
   1650 			(void) (*print)(aux, NULL);
   1651 	}
   1652 
   1653 	/*
   1654 	 * Before attaching, clobber any unfound devices that are
   1655 	 * otherwise identical.
   1656 	 * XXX code above is redundant?
   1657 	 */
   1658 	drvname = dev->dv_cfdriver->cd_name;
   1659 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1660 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1661 			if (STREQ(cf->cf_name, drvname) &&
   1662 			    cf->cf_unit == dev->dv_unit) {
   1663 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1664 					cf->cf_fstate = FSTATE_FOUND;
   1665 			}
   1666 		}
   1667 	}
   1668 	device_register(dev, aux);
   1669 
   1670 	/* Let userland know */
   1671 	devmon_report_device(dev, true);
   1672 
   1673 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1674 
   1675 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1676 	    && !device_pmf_is_registered(dev))
   1677 		aprint_debug_dev(dev,
   1678 		    "WARNING: power management not supported\n");
   1679 
   1680 	config_process_deferred(&deferred_config_queue, dev);
   1681 
   1682 	device_register_post_config(dev, aux);
   1683 	return dev;
   1684 }
   1685 
   1686 device_t
   1687 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1688 {
   1689 
   1690 	return config_attach_loc(parent, cf, NULL, aux, print);
   1691 }
   1692 
   1693 /*
   1694  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1695  * way are silently inserted into the device tree, and their children
   1696  * attached.
   1697  *
   1698  * Note that because pseudo-devices are attached silently, any information
   1699  * the attach routine wishes to print should be prefixed with the device
   1700  * name by the attach routine.
   1701  */
   1702 device_t
   1703 config_attach_pseudo(cfdata_t cf)
   1704 {
   1705 	device_t dev;
   1706 
   1707 	dev = config_devalloc(ROOT, cf, NULL);
   1708 	if (!dev)
   1709 		return NULL;
   1710 
   1711 	/* XXX mark busy in cfdata */
   1712 
   1713 	if (cf->cf_fstate != FSTATE_STAR) {
   1714 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1715 		cf->cf_fstate = FSTATE_FOUND;
   1716 	}
   1717 
   1718 	config_devlink(dev);
   1719 
   1720 #if 0	/* XXXJRT not yet */
   1721 	device_register(dev, NULL);	/* like a root node */
   1722 #endif
   1723 
   1724 	/* Let userland know */
   1725 	devmon_report_device(dev, true);
   1726 
   1727 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1728 
   1729 	config_process_deferred(&deferred_config_queue, dev);
   1730 	return dev;
   1731 }
   1732 
   1733 /*
   1734  * Caller must hold alldevs_lock.
   1735  */
   1736 static void
   1737 config_collect_garbage(struct devicelist *garbage)
   1738 {
   1739 	device_t dv;
   1740 
   1741 	KASSERT(!cpu_intr_p());
   1742 	KASSERT(!cpu_softintr_p());
   1743 	KASSERT(mutex_owned(&alldevs_lock));
   1744 
   1745 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1746 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1747 			if (dv->dv_del_gen != 0)
   1748 				break;
   1749 		}
   1750 		if (dv == NULL) {
   1751 			alldevs_garbage = false;
   1752 			break;
   1753 		}
   1754 		config_devunlink(dv, garbage);
   1755 	}
   1756 	KASSERT(mutex_owned(&alldevs_lock));
   1757 }
   1758 
   1759 static void
   1760 config_dump_garbage(struct devicelist *garbage)
   1761 {
   1762 	device_t dv;
   1763 
   1764 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1765 		TAILQ_REMOVE(garbage, dv, dv_list);
   1766 		config_devdelete(dv);
   1767 	}
   1768 }
   1769 
   1770 /*
   1771  * Detach a device.  Optionally forced (e.g. because of hardware
   1772  * removal) and quiet.  Returns zero if successful, non-zero
   1773  * (an error code) otherwise.
   1774  *
   1775  * Note that this code wants to be run from a process context, so
   1776  * that the detach can sleep to allow processes which have a device
   1777  * open to run and unwind their stacks.
   1778  */
   1779 int
   1780 config_detach(device_t dev, int flags)
   1781 {
   1782 	struct alldevs_foray af;
   1783 	struct cftable *ct;
   1784 	cfdata_t cf;
   1785 	const struct cfattach *ca;
   1786 	struct cfdriver *cd;
   1787 	device_t d __diagused;
   1788 	int rv = 0;
   1789 
   1790 	cf = dev->dv_cfdata;
   1791 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1792 		cf->cf_fstate == FSTATE_STAR),
   1793 	    "config_detach: %s: bad device fstate: %d",
   1794 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1795 
   1796 	cd = dev->dv_cfdriver;
   1797 	KASSERT(cd != NULL);
   1798 
   1799 	ca = dev->dv_cfattach;
   1800 	KASSERT(ca != NULL);
   1801 
   1802 	mutex_enter(&alldevs_lock);
   1803 	if (dev->dv_del_gen != 0) {
   1804 		mutex_exit(&alldevs_lock);
   1805 #ifdef DIAGNOSTIC
   1806 		printf("%s: %s is already detached\n", __func__,
   1807 		    device_xname(dev));
   1808 #endif /* DIAGNOSTIC */
   1809 		return ENOENT;
   1810 	}
   1811 	alldevs_nwrite++;
   1812 	mutex_exit(&alldevs_lock);
   1813 
   1814 	if (!detachall &&
   1815 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1816 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1817 		rv = EOPNOTSUPP;
   1818 	} else if (ca->ca_detach != NULL) {
   1819 		rv = (*ca->ca_detach)(dev, flags);
   1820 	} else
   1821 		rv = EOPNOTSUPP;
   1822 
   1823 	/*
   1824 	 * If it was not possible to detach the device, then we either
   1825 	 * panic() (for the forced but failed case), or return an error.
   1826 	 *
   1827 	 * If it was possible to detach the device, ensure that the
   1828 	 * device is deactivated.
   1829 	 */
   1830 	if (rv == 0)
   1831 		dev->dv_flags &= ~DVF_ACTIVE;
   1832 	else if ((flags & DETACH_FORCE) == 0)
   1833 		goto out;
   1834 	else {
   1835 		panic("config_detach: forced detach of %s failed (%d)",
   1836 		    device_xname(dev), rv);
   1837 	}
   1838 
   1839 	/*
   1840 	 * The device has now been successfully detached.
   1841 	 */
   1842 
   1843 	/* Let userland know */
   1844 	devmon_report_device(dev, false);
   1845 
   1846 #ifdef DIAGNOSTIC
   1847 	/*
   1848 	 * Sanity: If you're successfully detached, you should have no
   1849 	 * children.  (Note that because children must be attached
   1850 	 * after parents, we only need to search the latter part of
   1851 	 * the list.)
   1852 	 */
   1853 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1854 	    d = TAILQ_NEXT(d, dv_list)) {
   1855 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1856 			printf("config_detach: detached device %s"
   1857 			    " has children %s\n", device_xname(dev),
   1858 			    device_xname(d));
   1859 			panic("config_detach");
   1860 		}
   1861 	}
   1862 #endif
   1863 
   1864 	/* notify the parent that the child is gone */
   1865 	if (dev->dv_parent) {
   1866 		device_t p = dev->dv_parent;
   1867 		if (p->dv_cfattach->ca_childdetached)
   1868 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1869 	}
   1870 
   1871 	/*
   1872 	 * Mark cfdata to show that the unit can be reused, if possible.
   1873 	 */
   1874 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1875 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1876 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1877 				if (cf->cf_fstate == FSTATE_FOUND &&
   1878 				    cf->cf_unit == dev->dv_unit)
   1879 					cf->cf_fstate = FSTATE_NOTFOUND;
   1880 			}
   1881 		}
   1882 	}
   1883 
   1884 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1885 		aprint_normal_dev(dev, "detached\n");
   1886 
   1887 out:
   1888 	config_alldevs_enter(&af);
   1889 	KASSERT(alldevs_nwrite != 0);
   1890 	--alldevs_nwrite;
   1891 	if (rv == 0 && dev->dv_del_gen == 0) {
   1892 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1893 			config_devunlink(dev, &af.af_garbage);
   1894 		else {
   1895 			dev->dv_del_gen = alldevs_gen;
   1896 			alldevs_garbage = true;
   1897 		}
   1898 	}
   1899 	config_alldevs_exit(&af);
   1900 
   1901 	return rv;
   1902 }
   1903 
   1904 int
   1905 config_detach_children(device_t parent, int flags)
   1906 {
   1907 	device_t dv;
   1908 	deviter_t di;
   1909 	int error = 0;
   1910 
   1911 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1912 	     dv = deviter_next(&di)) {
   1913 		if (device_parent(dv) != parent)
   1914 			continue;
   1915 		if ((error = config_detach(dv, flags)) != 0)
   1916 			break;
   1917 	}
   1918 	deviter_release(&di);
   1919 	return error;
   1920 }
   1921 
   1922 device_t
   1923 shutdown_first(struct shutdown_state *s)
   1924 {
   1925 	if (!s->initialized) {
   1926 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1927 		s->initialized = true;
   1928 	}
   1929 	return shutdown_next(s);
   1930 }
   1931 
   1932 device_t
   1933 shutdown_next(struct shutdown_state *s)
   1934 {
   1935 	device_t dv;
   1936 
   1937 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1938 		;
   1939 
   1940 	if (dv == NULL)
   1941 		s->initialized = false;
   1942 
   1943 	return dv;
   1944 }
   1945 
   1946 bool
   1947 config_detach_all(int how)
   1948 {
   1949 	static struct shutdown_state s;
   1950 	device_t curdev;
   1951 	bool progress = false;
   1952 	int flags;
   1953 
   1954 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1955 		return false;
   1956 
   1957 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1958 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1959 	else
   1960 		flags = DETACH_SHUTDOWN;
   1961 
   1962 	for (curdev = shutdown_first(&s); curdev != NULL;
   1963 	     curdev = shutdown_next(&s)) {
   1964 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1965 		if (config_detach(curdev, flags) == 0) {
   1966 			progress = true;
   1967 			aprint_debug("success.");
   1968 		} else
   1969 			aprint_debug("failed.");
   1970 	}
   1971 	return progress;
   1972 }
   1973 
   1974 static bool
   1975 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1976 {
   1977 	device_t dv;
   1978 
   1979 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1980 		if (device_parent(dv) == ancestor)
   1981 			return true;
   1982 	}
   1983 	return false;
   1984 }
   1985 
   1986 int
   1987 config_deactivate(device_t dev)
   1988 {
   1989 	deviter_t di;
   1990 	const struct cfattach *ca;
   1991 	device_t descendant;
   1992 	int s, rv = 0, oflags;
   1993 
   1994 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1995 	     descendant != NULL;
   1996 	     descendant = deviter_next(&di)) {
   1997 		if (dev != descendant &&
   1998 		    !device_is_ancestor_of(dev, descendant))
   1999 			continue;
   2000 
   2001 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2002 			continue;
   2003 
   2004 		ca = descendant->dv_cfattach;
   2005 		oflags = descendant->dv_flags;
   2006 
   2007 		descendant->dv_flags &= ~DVF_ACTIVE;
   2008 		if (ca->ca_activate == NULL)
   2009 			continue;
   2010 		s = splhigh();
   2011 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2012 		splx(s);
   2013 		if (rv != 0)
   2014 			descendant->dv_flags = oflags;
   2015 	}
   2016 	deviter_release(&di);
   2017 	return rv;
   2018 }
   2019 
   2020 /*
   2021  * Defer the configuration of the specified device until all
   2022  * of its parent's devices have been attached.
   2023  */
   2024 void
   2025 config_defer(device_t dev, void (*func)(device_t))
   2026 {
   2027 	struct deferred_config *dc;
   2028 
   2029 	if (dev->dv_parent == NULL)
   2030 		panic("config_defer: can't defer config of a root device");
   2031 
   2032 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2033 
   2034 	config_pending_incr(dev);
   2035 
   2036 	mutex_enter(&config_misc_lock);
   2037 #ifdef DIAGNOSTIC
   2038 	struct deferred_config *odc;
   2039 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2040 		if (odc->dc_dev == dev)
   2041 			panic("config_defer: deferred twice");
   2042 	}
   2043 #endif
   2044 	dc->dc_dev = dev;
   2045 	dc->dc_func = func;
   2046 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2047 	mutex_exit(&config_misc_lock);
   2048 }
   2049 
   2050 /*
   2051  * Defer some autoconfiguration for a device until after interrupts
   2052  * are enabled.
   2053  */
   2054 void
   2055 config_interrupts(device_t dev, void (*func)(device_t))
   2056 {
   2057 	struct deferred_config *dc;
   2058 
   2059 	/*
   2060 	 * If interrupts are enabled, callback now.
   2061 	 */
   2062 	if (cold == 0) {
   2063 		(*func)(dev);
   2064 		return;
   2065 	}
   2066 
   2067 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2068 
   2069 	config_pending_incr(dev);
   2070 
   2071 	mutex_enter(&config_misc_lock);
   2072 #ifdef DIAGNOSTIC
   2073 	struct deferred_config *odc;
   2074 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2075 		if (odc->dc_dev == dev)
   2076 			panic("config_interrupts: deferred twice");
   2077 	}
   2078 #endif
   2079 	dc->dc_dev = dev;
   2080 	dc->dc_func = func;
   2081 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2082 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2083 	mutex_exit(&config_misc_lock);
   2084 }
   2085 
   2086 /*
   2087  * Defer some autoconfiguration for a device until after root file system
   2088  * is mounted (to load firmware etc).
   2089  */
   2090 void
   2091 config_mountroot(device_t dev, void (*func)(device_t))
   2092 {
   2093 	struct deferred_config *dc;
   2094 
   2095 	/*
   2096 	 * If root file system is mounted, callback now.
   2097 	 */
   2098 	if (root_is_mounted) {
   2099 		(*func)(dev);
   2100 		return;
   2101 	}
   2102 
   2103 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2104 
   2105 	mutex_enter(&config_misc_lock);
   2106 #ifdef DIAGNOSTIC
   2107 	struct deferred_config *odc;
   2108 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2109 		if (odc->dc_dev == dev)
   2110 			panic("%s: deferred twice", __func__);
   2111 	}
   2112 #endif
   2113 
   2114 	dc->dc_dev = dev;
   2115 	dc->dc_func = func;
   2116 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2117 	mutex_exit(&config_misc_lock);
   2118 }
   2119 
   2120 /*
   2121  * Process a deferred configuration queue.
   2122  */
   2123 static void
   2124 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2125 {
   2126 	struct deferred_config *dc;
   2127 
   2128 	mutex_enter(&config_misc_lock);
   2129 	dc = TAILQ_FIRST(queue);
   2130 	while (dc) {
   2131 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2132 			TAILQ_REMOVE(queue, dc, dc_queue);
   2133 			mutex_exit(&config_misc_lock);
   2134 
   2135 			(*dc->dc_func)(dc->dc_dev);
   2136 			config_pending_decr(dc->dc_dev);
   2137 			kmem_free(dc, sizeof(*dc));
   2138 
   2139 			mutex_enter(&config_misc_lock);
   2140 			/* Restart, queue might have changed */
   2141 			dc = TAILQ_FIRST(queue);
   2142 		} else {
   2143 			dc = TAILQ_NEXT(dc, dc_queue);
   2144 		}
   2145 	}
   2146 	mutex_exit(&config_misc_lock);
   2147 }
   2148 
   2149 /*
   2150  * Manipulate the config_pending semaphore.
   2151  */
   2152 void
   2153 config_pending_incr(device_t dev)
   2154 {
   2155 
   2156 	mutex_enter(&config_misc_lock);
   2157 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2158 	    "%s: excess config_pending_incr", device_xname(dev));
   2159 	if (dev->dv_pending++ == 0)
   2160 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2161 #ifdef DEBUG_AUTOCONF
   2162 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2163 #endif
   2164 	mutex_exit(&config_misc_lock);
   2165 }
   2166 
   2167 void
   2168 config_pending_decr(device_t dev)
   2169 {
   2170 
   2171 	mutex_enter(&config_misc_lock);
   2172 	KASSERTMSG(dev->dv_pending > 0,
   2173 	    "%s: excess config_pending_decr", device_xname(dev));
   2174 	if (--dev->dv_pending == 0)
   2175 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2176 #ifdef DEBUG_AUTOCONF
   2177 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2178 #endif
   2179 	if (TAILQ_EMPTY(&config_pending))
   2180 		cv_broadcast(&config_misc_cv);
   2181 	mutex_exit(&config_misc_lock);
   2182 }
   2183 
   2184 /*
   2185  * Register a "finalization" routine.  Finalization routines are
   2186  * called iteratively once all real devices have been found during
   2187  * autoconfiguration, for as long as any one finalizer has done
   2188  * any work.
   2189  */
   2190 int
   2191 config_finalize_register(device_t dev, int (*fn)(device_t))
   2192 {
   2193 	struct finalize_hook *f;
   2194 
   2195 	/*
   2196 	 * If finalization has already been done, invoke the
   2197 	 * callback function now.
   2198 	 */
   2199 	if (config_finalize_done) {
   2200 		while ((*fn)(dev) != 0)
   2201 			/* loop */ ;
   2202 		return 0;
   2203 	}
   2204 
   2205 	/* Ensure this isn't already on the list. */
   2206 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2207 		if (f->f_func == fn && f->f_dev == dev)
   2208 			return EEXIST;
   2209 	}
   2210 
   2211 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2212 	f->f_func = fn;
   2213 	f->f_dev = dev;
   2214 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2215 
   2216 	return 0;
   2217 }
   2218 
   2219 void
   2220 config_finalize(void)
   2221 {
   2222 	struct finalize_hook *f;
   2223 	struct pdevinit *pdev;
   2224 	extern struct pdevinit pdevinit[];
   2225 	int errcnt, rv;
   2226 
   2227 	/*
   2228 	 * Now that device driver threads have been created, wait for
   2229 	 * them to finish any deferred autoconfiguration.
   2230 	 */
   2231 	mutex_enter(&config_misc_lock);
   2232 	while (!TAILQ_EMPTY(&config_pending)) {
   2233 		device_t dev;
   2234 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2235 			aprint_debug_dev(dev, "holding up boot\n");
   2236 		cv_wait(&config_misc_cv, &config_misc_lock);
   2237 	}
   2238 	mutex_exit(&config_misc_lock);
   2239 
   2240 	KERNEL_LOCK(1, NULL);
   2241 
   2242 	/* Attach pseudo-devices. */
   2243 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2244 		(*pdev->pdev_attach)(pdev->pdev_count);
   2245 
   2246 	/* Run the hooks until none of them does any work. */
   2247 	do {
   2248 		rv = 0;
   2249 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2250 			rv |= (*f->f_func)(f->f_dev);
   2251 	} while (rv != 0);
   2252 
   2253 	config_finalize_done = 1;
   2254 
   2255 	/* Now free all the hooks. */
   2256 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2257 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2258 		kmem_free(f, sizeof(*f));
   2259 	}
   2260 
   2261 	KERNEL_UNLOCK_ONE(NULL);
   2262 
   2263 	errcnt = aprint_get_error_count();
   2264 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2265 	    (boothowto & AB_VERBOSE) == 0) {
   2266 		mutex_enter(&config_misc_lock);
   2267 		if (config_do_twiddle) {
   2268 			config_do_twiddle = 0;
   2269 			printf_nolog(" done.\n");
   2270 		}
   2271 		mutex_exit(&config_misc_lock);
   2272 	}
   2273 	if (errcnt != 0) {
   2274 		printf("WARNING: %d error%s while detecting hardware; "
   2275 		    "check system log.\n", errcnt,
   2276 		    errcnt == 1 ? "" : "s");
   2277 	}
   2278 }
   2279 
   2280 void
   2281 config_twiddle_init(void)
   2282 {
   2283 
   2284 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2285 		config_do_twiddle = 1;
   2286 	}
   2287 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2288 }
   2289 
   2290 void
   2291 config_twiddle_fn(void *cookie)
   2292 {
   2293 
   2294 	mutex_enter(&config_misc_lock);
   2295 	if (config_do_twiddle) {
   2296 		twiddle();
   2297 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2298 	}
   2299 	mutex_exit(&config_misc_lock);
   2300 }
   2301 
   2302 static void
   2303 config_alldevs_enter(struct alldevs_foray *af)
   2304 {
   2305 	TAILQ_INIT(&af->af_garbage);
   2306 	mutex_enter(&alldevs_lock);
   2307 	config_collect_garbage(&af->af_garbage);
   2308 }
   2309 
   2310 static void
   2311 config_alldevs_exit(struct alldevs_foray *af)
   2312 {
   2313 	mutex_exit(&alldevs_lock);
   2314 	config_dump_garbage(&af->af_garbage);
   2315 }
   2316 
   2317 /*
   2318  * device_lookup:
   2319  *
   2320  *	Look up a device instance for a given driver.
   2321  */
   2322 device_t
   2323 device_lookup(cfdriver_t cd, int unit)
   2324 {
   2325 	device_t dv;
   2326 
   2327 	mutex_enter(&alldevs_lock);
   2328 	if (unit < 0 || unit >= cd->cd_ndevs)
   2329 		dv = NULL;
   2330 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2331 		dv = NULL;
   2332 	mutex_exit(&alldevs_lock);
   2333 
   2334 	return dv;
   2335 }
   2336 
   2337 /*
   2338  * device_lookup_private:
   2339  *
   2340  *	Look up a softc instance for a given driver.
   2341  */
   2342 void *
   2343 device_lookup_private(cfdriver_t cd, int unit)
   2344 {
   2345 
   2346 	return device_private(device_lookup(cd, unit));
   2347 }
   2348 
   2349 /*
   2350  * device_find_by_xname:
   2351  *
   2352  *	Returns the device of the given name or NULL if it doesn't exist.
   2353  */
   2354 device_t
   2355 device_find_by_xname(const char *name)
   2356 {
   2357 	device_t dv;
   2358 	deviter_t di;
   2359 
   2360 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2361 		if (strcmp(device_xname(dv), name) == 0)
   2362 			break;
   2363 	}
   2364 	deviter_release(&di);
   2365 
   2366 	return dv;
   2367 }
   2368 
   2369 /*
   2370  * device_find_by_driver_unit:
   2371  *
   2372  *	Returns the device of the given driver name and unit or
   2373  *	NULL if it doesn't exist.
   2374  */
   2375 device_t
   2376 device_find_by_driver_unit(const char *name, int unit)
   2377 {
   2378 	struct cfdriver *cd;
   2379 
   2380 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2381 		return NULL;
   2382 	return device_lookup(cd, unit);
   2383 }
   2384 
   2385 static bool
   2386 match_strcmp(const char * const s1, const char * const s2)
   2387 {
   2388 	return strcmp(s1, s2) == 0;
   2389 }
   2390 
   2391 static bool
   2392 match_pmatch(const char * const s1, const char * const s2)
   2393 {
   2394 	return pmatch(s1, s2, NULL) == 2;
   2395 }
   2396 
   2397 static bool
   2398 strarray_match_internal(const char ** const strings,
   2399     unsigned int const nstrings, const char * const str,
   2400     unsigned int * const indexp,
   2401     bool (*match_fn)(const char *, const char *))
   2402 {
   2403 	unsigned int i;
   2404 
   2405 	if (strings == NULL || nstrings == 0) {
   2406 		return false;
   2407 	}
   2408 
   2409 	for (i = 0; i < nstrings; i++) {
   2410 		if ((*match_fn)(strings[i], str)) {
   2411 			*indexp = i;
   2412 			return true;
   2413 		}
   2414 	}
   2415 
   2416 	return false;
   2417 }
   2418 
   2419 static int
   2420 strarray_match(const char ** const strings, unsigned int const nstrings,
   2421     const char * const str)
   2422 {
   2423 	unsigned int idx;
   2424 
   2425 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2426 				    match_strcmp)) {
   2427 		return (int)(nstrings - idx);
   2428 	}
   2429 	return 0;
   2430 }
   2431 
   2432 static int
   2433 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2434     const char * const pattern)
   2435 {
   2436 	unsigned int idx;
   2437 
   2438 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2439 				    match_pmatch)) {
   2440 		return (int)(nstrings - idx);
   2441 	}
   2442 	return 0;
   2443 }
   2444 
   2445 static int
   2446 device_compatible_match_strarray_internal(
   2447     const char **device_compats, int ndevice_compats,
   2448     const struct device_compatible_entry *driver_compats,
   2449     const struct device_compatible_entry **matching_entryp,
   2450     int (*match_fn)(const char **, unsigned int, const char *))
   2451 {
   2452 	const struct device_compatible_entry *dce = NULL;
   2453 	int rv;
   2454 
   2455 	if (ndevice_compats == 0 || device_compats == NULL ||
   2456 	    driver_compats == NULL)
   2457 		return 0;
   2458 
   2459 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2460 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2461 		if (rv != 0) {
   2462 			if (matching_entryp != NULL) {
   2463 				*matching_entryp = dce;
   2464 			}
   2465 			return rv;
   2466 		}
   2467 	}
   2468 	return 0;
   2469 }
   2470 
   2471 /*
   2472  * device_compatible_match:
   2473  *
   2474  *	Match a driver's "compatible" data against a device's
   2475  *	"compatible" strings.  Returns resulted weighted by
   2476  *	which device "compatible" string was matched.
   2477  */
   2478 int
   2479 device_compatible_match(const char **device_compats, int ndevice_compats,
   2480     const struct device_compatible_entry *driver_compats)
   2481 {
   2482 	return device_compatible_match_strarray_internal(device_compats,
   2483 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2484 }
   2485 
   2486 /*
   2487  * device_compatible_pmatch:
   2488  *
   2489  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2490  *	the device "compatible" strings against patterns in the
   2491  *	driver's "compatible" data.
   2492  */
   2493 int
   2494 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2495     const struct device_compatible_entry *driver_compats)
   2496 {
   2497 	return device_compatible_match_strarray_internal(device_compats,
   2498 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2499 }
   2500 
   2501 static int
   2502 device_compatible_match_strlist_internal(
   2503     const char * const device_compats, size_t const device_compatsize,
   2504     const struct device_compatible_entry *driver_compats,
   2505     const struct device_compatible_entry **matching_entryp,
   2506     int (*match_fn)(const char *, size_t, const char *))
   2507 {
   2508 	const struct device_compatible_entry *dce = NULL;
   2509 	int rv;
   2510 
   2511 	if (device_compats == NULL || device_compatsize == 0 ||
   2512 	    driver_compats == NULL)
   2513 		return 0;
   2514 
   2515 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2516 		rv = (*match_fn)(device_compats, device_compatsize,
   2517 		    dce->compat);
   2518 		if (rv != 0) {
   2519 			if (matching_entryp != NULL) {
   2520 				*matching_entryp = dce;
   2521 			}
   2522 			return rv;
   2523 		}
   2524 	}
   2525 	return 0;
   2526 }
   2527 
   2528 /*
   2529  * device_compatible_match_strlist:
   2530  *
   2531  *	Like device_compatible_match(), but take the device
   2532  *	"compatible" strings as an OpenFirmware-style string
   2533  *	list.
   2534  */
   2535 int
   2536 device_compatible_match_strlist(
   2537     const char * const device_compats, size_t const device_compatsize,
   2538     const struct device_compatible_entry *driver_compats)
   2539 {
   2540 	return device_compatible_match_strlist_internal(device_compats,
   2541 	    device_compatsize, driver_compats, NULL, strlist_match);
   2542 }
   2543 
   2544 /*
   2545  * device_compatible_pmatch_strlist:
   2546  *
   2547  *	Like device_compatible_pmatch(), but take the device
   2548  *	"compatible" strings as an OpenFirmware-style string
   2549  *	list.
   2550  */
   2551 int
   2552 device_compatible_pmatch_strlist(
   2553     const char * const device_compats, size_t const device_compatsize,
   2554     const struct device_compatible_entry *driver_compats)
   2555 {
   2556 	return device_compatible_match_strlist_internal(device_compats,
   2557 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2558 }
   2559 
   2560 static int
   2561 device_compatible_match_id_internal(
   2562     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2563     const struct device_compatible_entry *driver_compats,
   2564     const struct device_compatible_entry **matching_entryp)
   2565 {
   2566 	const struct device_compatible_entry *dce = NULL;
   2567 
   2568 	if (mask == 0)
   2569 		return 0;
   2570 
   2571 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2572 		if ((id & mask) == dce->id) {
   2573 			if (matching_entryp != NULL) {
   2574 				*matching_entryp = dce;
   2575 			}
   2576 			return 1;
   2577 		}
   2578 	}
   2579 	return 0;
   2580 }
   2581 
   2582 /*
   2583  * device_compatible_match_id:
   2584  *
   2585  *	Like device_compatible_match(), but takes a single
   2586  *	unsigned integer device ID.
   2587  */
   2588 int
   2589 device_compatible_match_id(
   2590     uintptr_t const id, uintptr_t const sentinel_id,
   2591     const struct device_compatible_entry *driver_compats)
   2592 {
   2593 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2594 	    sentinel_id, driver_compats, NULL);
   2595 }
   2596 
   2597 /*
   2598  * device_compatible_lookup:
   2599  *
   2600  *	Look up and return the device_compatible_entry, using the
   2601  *	same matching criteria used by device_compatible_match().
   2602  */
   2603 const struct device_compatible_entry *
   2604 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2605 			 const struct device_compatible_entry *driver_compats)
   2606 {
   2607 	const struct device_compatible_entry *dce;
   2608 
   2609 	if (device_compatible_match_strarray_internal(device_compats,
   2610 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2611 		return dce;
   2612 	}
   2613 	return NULL;
   2614 }
   2615 
   2616 /*
   2617  * device_compatible_plookup:
   2618  *
   2619  *	Look up and return the device_compatible_entry, using the
   2620  *	same matching criteria used by device_compatible_pmatch().
   2621  */
   2622 const struct device_compatible_entry *
   2623 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2624 			  const struct device_compatible_entry *driver_compats)
   2625 {
   2626 	const struct device_compatible_entry *dce;
   2627 
   2628 	if (device_compatible_match_strarray_internal(device_compats,
   2629 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2630 		return dce;
   2631 	}
   2632 	return NULL;
   2633 }
   2634 
   2635 /*
   2636  * device_compatible_lookup_strlist:
   2637  *
   2638  *	Like device_compatible_lookup(), but take the device
   2639  *	"compatible" strings as an OpenFirmware-style string
   2640  *	list.
   2641  */
   2642 const struct device_compatible_entry *
   2643 device_compatible_lookup_strlist(
   2644     const char * const device_compats, size_t const device_compatsize,
   2645     const struct device_compatible_entry *driver_compats)
   2646 {
   2647 	const struct device_compatible_entry *dce;
   2648 
   2649 	if (device_compatible_match_strlist_internal(device_compats,
   2650 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2651 		return dce;
   2652 	}
   2653 	return NULL;
   2654 }
   2655 
   2656 /*
   2657  * device_compatible_plookup_strlist:
   2658  *
   2659  *	Like device_compatible_plookup(), but take the device
   2660  *	"compatible" strings as an OpenFirmware-style string
   2661  *	list.
   2662  */
   2663 const struct device_compatible_entry *
   2664 device_compatible_plookup_strlist(
   2665     const char * const device_compats, size_t const device_compatsize,
   2666     const struct device_compatible_entry *driver_compats)
   2667 {
   2668 	const struct device_compatible_entry *dce;
   2669 
   2670 	if (device_compatible_match_strlist_internal(device_compats,
   2671 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2672 		return dce;
   2673 	}
   2674 	return NULL;
   2675 }
   2676 
   2677 /*
   2678  * device_compatible_lookup_id:
   2679  *
   2680  *	Like device_compatible_lookup(), but takes a single
   2681  *	unsigned integer device ID.
   2682  */
   2683 const struct device_compatible_entry *
   2684 device_compatible_lookup_id(
   2685     uintptr_t const id, uintptr_t const sentinel_id,
   2686     const struct device_compatible_entry *driver_compats)
   2687 {
   2688 	const struct device_compatible_entry *dce;
   2689 
   2690 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2691 	    sentinel_id, driver_compats, &dce)) {
   2692 		return dce;
   2693 	}
   2694 	return NULL;
   2695 }
   2696 
   2697 /*
   2698  * Power management related functions.
   2699  */
   2700 
   2701 bool
   2702 device_pmf_is_registered(device_t dev)
   2703 {
   2704 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2705 }
   2706 
   2707 bool
   2708 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2709 {
   2710 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2711 		return true;
   2712 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2713 		return false;
   2714 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2715 	    dev->dv_driver_suspend != NULL &&
   2716 	    !(*dev->dv_driver_suspend)(dev, qual))
   2717 		return false;
   2718 
   2719 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2720 	return true;
   2721 }
   2722 
   2723 bool
   2724 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2725 {
   2726 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2727 		return true;
   2728 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2729 		return false;
   2730 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2731 	    dev->dv_driver_resume != NULL &&
   2732 	    !(*dev->dv_driver_resume)(dev, qual))
   2733 		return false;
   2734 
   2735 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2736 	return true;
   2737 }
   2738 
   2739 bool
   2740 device_pmf_driver_shutdown(device_t dev, int how)
   2741 {
   2742 
   2743 	if (*dev->dv_driver_shutdown != NULL &&
   2744 	    !(*dev->dv_driver_shutdown)(dev, how))
   2745 		return false;
   2746 	return true;
   2747 }
   2748 
   2749 bool
   2750 device_pmf_driver_register(device_t dev,
   2751     bool (*suspend)(device_t, const pmf_qual_t *),
   2752     bool (*resume)(device_t, const pmf_qual_t *),
   2753     bool (*shutdown)(device_t, int))
   2754 {
   2755 	dev->dv_driver_suspend = suspend;
   2756 	dev->dv_driver_resume = resume;
   2757 	dev->dv_driver_shutdown = shutdown;
   2758 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2759 	return true;
   2760 }
   2761 
   2762 static const char *
   2763 curlwp_name(void)
   2764 {
   2765 	if (curlwp->l_name != NULL)
   2766 		return curlwp->l_name;
   2767 	else
   2768 		return curlwp->l_proc->p_comm;
   2769 }
   2770 
   2771 void
   2772 device_pmf_driver_deregister(device_t dev)
   2773 {
   2774 	device_lock_t dvl = device_getlock(dev);
   2775 
   2776 	dev->dv_driver_suspend = NULL;
   2777 	dev->dv_driver_resume = NULL;
   2778 
   2779 	mutex_enter(&dvl->dvl_mtx);
   2780 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2781 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2782 		/* Wake a thread that waits for the lock.  That
   2783 		 * thread will fail to acquire the lock, and then
   2784 		 * it will wake the next thread that waits for the
   2785 		 * lock, or else it will wake us.
   2786 		 */
   2787 		cv_signal(&dvl->dvl_cv);
   2788 		pmflock_debug(dev, __func__, __LINE__);
   2789 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2790 		pmflock_debug(dev, __func__, __LINE__);
   2791 	}
   2792 	mutex_exit(&dvl->dvl_mtx);
   2793 }
   2794 
   2795 bool
   2796 device_pmf_driver_child_register(device_t dev)
   2797 {
   2798 	device_t parent = device_parent(dev);
   2799 
   2800 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2801 		return true;
   2802 	return (*parent->dv_driver_child_register)(dev);
   2803 }
   2804 
   2805 void
   2806 device_pmf_driver_set_child_register(device_t dev,
   2807     bool (*child_register)(device_t))
   2808 {
   2809 	dev->dv_driver_child_register = child_register;
   2810 }
   2811 
   2812 static void
   2813 pmflock_debug(device_t dev, const char *func, int line)
   2814 {
   2815 	device_lock_t dvl = device_getlock(dev);
   2816 
   2817 	aprint_debug_dev(dev,
   2818 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2819 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2820 }
   2821 
   2822 static bool
   2823 device_pmf_lock1(device_t dev)
   2824 {
   2825 	device_lock_t dvl = device_getlock(dev);
   2826 
   2827 	while (device_pmf_is_registered(dev) &&
   2828 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2829 		dvl->dvl_nwait++;
   2830 		pmflock_debug(dev, __func__, __LINE__);
   2831 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2832 		pmflock_debug(dev, __func__, __LINE__);
   2833 		dvl->dvl_nwait--;
   2834 	}
   2835 	if (!device_pmf_is_registered(dev)) {
   2836 		pmflock_debug(dev, __func__, __LINE__);
   2837 		/* We could not acquire the lock, but some other thread may
   2838 		 * wait for it, also.  Wake that thread.
   2839 		 */
   2840 		cv_signal(&dvl->dvl_cv);
   2841 		return false;
   2842 	}
   2843 	dvl->dvl_nlock++;
   2844 	dvl->dvl_holder = curlwp;
   2845 	pmflock_debug(dev, __func__, __LINE__);
   2846 	return true;
   2847 }
   2848 
   2849 bool
   2850 device_pmf_lock(device_t dev)
   2851 {
   2852 	bool rc;
   2853 	device_lock_t dvl = device_getlock(dev);
   2854 
   2855 	mutex_enter(&dvl->dvl_mtx);
   2856 	rc = device_pmf_lock1(dev);
   2857 	mutex_exit(&dvl->dvl_mtx);
   2858 
   2859 	return rc;
   2860 }
   2861 
   2862 void
   2863 device_pmf_unlock(device_t dev)
   2864 {
   2865 	device_lock_t dvl = device_getlock(dev);
   2866 
   2867 	KASSERT(dvl->dvl_nlock > 0);
   2868 	mutex_enter(&dvl->dvl_mtx);
   2869 	if (--dvl->dvl_nlock == 0)
   2870 		dvl->dvl_holder = NULL;
   2871 	cv_signal(&dvl->dvl_cv);
   2872 	pmflock_debug(dev, __func__, __LINE__);
   2873 	mutex_exit(&dvl->dvl_mtx);
   2874 }
   2875 
   2876 device_lock_t
   2877 device_getlock(device_t dev)
   2878 {
   2879 	return &dev->dv_lock;
   2880 }
   2881 
   2882 void *
   2883 device_pmf_bus_private(device_t dev)
   2884 {
   2885 	return dev->dv_bus_private;
   2886 }
   2887 
   2888 bool
   2889 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2890 {
   2891 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2892 		return true;
   2893 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2894 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2895 		return false;
   2896 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2897 	    dev->dv_bus_suspend != NULL &&
   2898 	    !(*dev->dv_bus_suspend)(dev, qual))
   2899 		return false;
   2900 
   2901 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2902 	return true;
   2903 }
   2904 
   2905 bool
   2906 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2907 {
   2908 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2909 		return true;
   2910 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2911 	    dev->dv_bus_resume != NULL &&
   2912 	    !(*dev->dv_bus_resume)(dev, qual))
   2913 		return false;
   2914 
   2915 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2916 	return true;
   2917 }
   2918 
   2919 bool
   2920 device_pmf_bus_shutdown(device_t dev, int how)
   2921 {
   2922 
   2923 	if (*dev->dv_bus_shutdown != NULL &&
   2924 	    !(*dev->dv_bus_shutdown)(dev, how))
   2925 		return false;
   2926 	return true;
   2927 }
   2928 
   2929 void
   2930 device_pmf_bus_register(device_t dev, void *priv,
   2931     bool (*suspend)(device_t, const pmf_qual_t *),
   2932     bool (*resume)(device_t, const pmf_qual_t *),
   2933     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2934 {
   2935 	dev->dv_bus_private = priv;
   2936 	dev->dv_bus_resume = resume;
   2937 	dev->dv_bus_suspend = suspend;
   2938 	dev->dv_bus_shutdown = shutdown;
   2939 	dev->dv_bus_deregister = deregister;
   2940 }
   2941 
   2942 void
   2943 device_pmf_bus_deregister(device_t dev)
   2944 {
   2945 	if (dev->dv_bus_deregister == NULL)
   2946 		return;
   2947 	(*dev->dv_bus_deregister)(dev);
   2948 	dev->dv_bus_private = NULL;
   2949 	dev->dv_bus_suspend = NULL;
   2950 	dev->dv_bus_resume = NULL;
   2951 	dev->dv_bus_deregister = NULL;
   2952 }
   2953 
   2954 void *
   2955 device_pmf_class_private(device_t dev)
   2956 {
   2957 	return dev->dv_class_private;
   2958 }
   2959 
   2960 bool
   2961 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2962 {
   2963 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2964 		return true;
   2965 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2966 	    dev->dv_class_suspend != NULL &&
   2967 	    !(*dev->dv_class_suspend)(dev, qual))
   2968 		return false;
   2969 
   2970 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2971 	return true;
   2972 }
   2973 
   2974 bool
   2975 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2976 {
   2977 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2978 		return true;
   2979 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2980 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2981 		return false;
   2982 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2983 	    dev->dv_class_resume != NULL &&
   2984 	    !(*dev->dv_class_resume)(dev, qual))
   2985 		return false;
   2986 
   2987 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2988 	return true;
   2989 }
   2990 
   2991 void
   2992 device_pmf_class_register(device_t dev, void *priv,
   2993     bool (*suspend)(device_t, const pmf_qual_t *),
   2994     bool (*resume)(device_t, const pmf_qual_t *),
   2995     void (*deregister)(device_t))
   2996 {
   2997 	dev->dv_class_private = priv;
   2998 	dev->dv_class_suspend = suspend;
   2999 	dev->dv_class_resume = resume;
   3000 	dev->dv_class_deregister = deregister;
   3001 }
   3002 
   3003 void
   3004 device_pmf_class_deregister(device_t dev)
   3005 {
   3006 	if (dev->dv_class_deregister == NULL)
   3007 		return;
   3008 	(*dev->dv_class_deregister)(dev);
   3009 	dev->dv_class_private = NULL;
   3010 	dev->dv_class_suspend = NULL;
   3011 	dev->dv_class_resume = NULL;
   3012 	dev->dv_class_deregister = NULL;
   3013 }
   3014 
   3015 bool
   3016 device_active(device_t dev, devactive_t type)
   3017 {
   3018 	size_t i;
   3019 
   3020 	if (dev->dv_activity_count == 0)
   3021 		return false;
   3022 
   3023 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3024 		if (dev->dv_activity_handlers[i] == NULL)
   3025 			break;
   3026 		(*dev->dv_activity_handlers[i])(dev, type);
   3027 	}
   3028 
   3029 	return true;
   3030 }
   3031 
   3032 bool
   3033 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3034 {
   3035 	void (**new_handlers)(device_t, devactive_t);
   3036 	void (**old_handlers)(device_t, devactive_t);
   3037 	size_t i, old_size, new_size;
   3038 	int s;
   3039 
   3040 	old_handlers = dev->dv_activity_handlers;
   3041 	old_size = dev->dv_activity_count;
   3042 
   3043 	KASSERT(old_size == 0 || old_handlers != NULL);
   3044 
   3045 	for (i = 0; i < old_size; ++i) {
   3046 		KASSERT(old_handlers[i] != handler);
   3047 		if (old_handlers[i] == NULL) {
   3048 			old_handlers[i] = handler;
   3049 			return true;
   3050 		}
   3051 	}
   3052 
   3053 	new_size = old_size + 4;
   3054 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3055 
   3056 	for (i = 0; i < old_size; ++i)
   3057 		new_handlers[i] = old_handlers[i];
   3058 	new_handlers[old_size] = handler;
   3059 	for (i = old_size+1; i < new_size; ++i)
   3060 		new_handlers[i] = NULL;
   3061 
   3062 	s = splhigh();
   3063 	dev->dv_activity_count = new_size;
   3064 	dev->dv_activity_handlers = new_handlers;
   3065 	splx(s);
   3066 
   3067 	if (old_size > 0)
   3068 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3069 
   3070 	return true;
   3071 }
   3072 
   3073 void
   3074 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3075 {
   3076 	void (**old_handlers)(device_t, devactive_t);
   3077 	size_t i, old_size;
   3078 	int s;
   3079 
   3080 	old_handlers = dev->dv_activity_handlers;
   3081 	old_size = dev->dv_activity_count;
   3082 
   3083 	for (i = 0; i < old_size; ++i) {
   3084 		if (old_handlers[i] == handler)
   3085 			break;
   3086 		if (old_handlers[i] == NULL)
   3087 			return; /* XXX panic? */
   3088 	}
   3089 
   3090 	if (i == old_size)
   3091 		return; /* XXX panic? */
   3092 
   3093 	for (; i < old_size - 1; ++i) {
   3094 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3095 			continue;
   3096 
   3097 		if (i == 0) {
   3098 			s = splhigh();
   3099 			dev->dv_activity_count = 0;
   3100 			dev->dv_activity_handlers = NULL;
   3101 			splx(s);
   3102 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3103 		}
   3104 		return;
   3105 	}
   3106 	old_handlers[i] = NULL;
   3107 }
   3108 
   3109 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3110 static bool
   3111 device_exists_at(device_t dv, devgen_t gen)
   3112 {
   3113 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3114 	    dv->dv_add_gen <= gen;
   3115 }
   3116 
   3117 static bool
   3118 deviter_visits(const deviter_t *di, device_t dv)
   3119 {
   3120 	return device_exists_at(dv, di->di_gen);
   3121 }
   3122 
   3123 /*
   3124  * Device Iteration
   3125  *
   3126  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3127  *     each device_t's in the device tree.
   3128  *
   3129  * deviter_init(di, flags): initialize the device iterator `di'
   3130  *     to "walk" the device tree.  deviter_next(di) will return
   3131  *     the first device_t in the device tree, or NULL if there are
   3132  *     no devices.
   3133  *
   3134  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3135  *     caller intends to modify the device tree by calling
   3136  *     config_detach(9) on devices in the order that the iterator
   3137  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3138  *     nearest the "root" of the device tree to be returned, first;
   3139  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3140  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3141  *     indicating both that deviter_init() should not respect any
   3142  *     locks on the device tree, and that deviter_next(di) may run
   3143  *     in more than one LWP before the walk has finished.
   3144  *
   3145  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3146  *     once.
   3147  *
   3148  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3149  *
   3150  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3151  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3152  *
   3153  * deviter_first(di, flags): initialize the device iterator `di'
   3154  *     and return the first device_t in the device tree, or NULL
   3155  *     if there are no devices.  The statement
   3156  *
   3157  *         dv = deviter_first(di);
   3158  *
   3159  *     is shorthand for
   3160  *
   3161  *         deviter_init(di);
   3162  *         dv = deviter_next(di);
   3163  *
   3164  * deviter_next(di): return the next device_t in the device tree,
   3165  *     or NULL if there are no more devices.  deviter_next(di)
   3166  *     is undefined if `di' was not initialized with deviter_init() or
   3167  *     deviter_first().
   3168  *
   3169  * deviter_release(di): stops iteration (subsequent calls to
   3170  *     deviter_next() will return NULL), releases any locks and
   3171  *     resources held by the device iterator.
   3172  *
   3173  * Device iteration does not return device_t's in any particular
   3174  * order.  An iterator will never return the same device_t twice.
   3175  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3176  * is called repeatedly on the same `di', it will eventually return
   3177  * NULL.  It is ok to attach/detach devices during device iteration.
   3178  */
   3179 void
   3180 deviter_init(deviter_t *di, deviter_flags_t flags)
   3181 {
   3182 	device_t dv;
   3183 
   3184 	memset(di, 0, sizeof(*di));
   3185 
   3186 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3187 		flags |= DEVITER_F_RW;
   3188 
   3189 	mutex_enter(&alldevs_lock);
   3190 	if ((flags & DEVITER_F_RW) != 0)
   3191 		alldevs_nwrite++;
   3192 	else
   3193 		alldevs_nread++;
   3194 	di->di_gen = alldevs_gen++;
   3195 	di->di_flags = flags;
   3196 
   3197 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3198 	case DEVITER_F_LEAVES_FIRST:
   3199 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3200 			if (!deviter_visits(di, dv))
   3201 				continue;
   3202 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3203 		}
   3204 		break;
   3205 	case DEVITER_F_ROOT_FIRST:
   3206 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3207 			if (!deviter_visits(di, dv))
   3208 				continue;
   3209 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3210 		}
   3211 		break;
   3212 	default:
   3213 		break;
   3214 	}
   3215 
   3216 	deviter_reinit(di);
   3217 	mutex_exit(&alldevs_lock);
   3218 }
   3219 
   3220 static void
   3221 deviter_reinit(deviter_t *di)
   3222 {
   3223 
   3224 	KASSERT(mutex_owned(&alldevs_lock));
   3225 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3226 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3227 	else
   3228 		di->di_prev = TAILQ_FIRST(&alldevs);
   3229 }
   3230 
   3231 device_t
   3232 deviter_first(deviter_t *di, deviter_flags_t flags)
   3233 {
   3234 
   3235 	deviter_init(di, flags);
   3236 	return deviter_next(di);
   3237 }
   3238 
   3239 static device_t
   3240 deviter_next2(deviter_t *di)
   3241 {
   3242 	device_t dv;
   3243 
   3244 	KASSERT(mutex_owned(&alldevs_lock));
   3245 
   3246 	dv = di->di_prev;
   3247 
   3248 	if (dv == NULL)
   3249 		return NULL;
   3250 
   3251 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3252 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3253 	else
   3254 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3255 
   3256 	return dv;
   3257 }
   3258 
   3259 static device_t
   3260 deviter_next1(deviter_t *di)
   3261 {
   3262 	device_t dv;
   3263 
   3264 	KASSERT(mutex_owned(&alldevs_lock));
   3265 
   3266 	do {
   3267 		dv = deviter_next2(di);
   3268 	} while (dv != NULL && !deviter_visits(di, dv));
   3269 
   3270 	return dv;
   3271 }
   3272 
   3273 device_t
   3274 deviter_next(deviter_t *di)
   3275 {
   3276 	device_t dv = NULL;
   3277 
   3278 	mutex_enter(&alldevs_lock);
   3279 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3280 	case 0:
   3281 		dv = deviter_next1(di);
   3282 		break;
   3283 	case DEVITER_F_LEAVES_FIRST:
   3284 		while (di->di_curdepth >= 0) {
   3285 			if ((dv = deviter_next1(di)) == NULL) {
   3286 				di->di_curdepth--;
   3287 				deviter_reinit(di);
   3288 			} else if (dv->dv_depth == di->di_curdepth)
   3289 				break;
   3290 		}
   3291 		break;
   3292 	case DEVITER_F_ROOT_FIRST:
   3293 		while (di->di_curdepth <= di->di_maxdepth) {
   3294 			if ((dv = deviter_next1(di)) == NULL) {
   3295 				di->di_curdepth++;
   3296 				deviter_reinit(di);
   3297 			} else if (dv->dv_depth == di->di_curdepth)
   3298 				break;
   3299 		}
   3300 		break;
   3301 	default:
   3302 		break;
   3303 	}
   3304 	mutex_exit(&alldevs_lock);
   3305 
   3306 	return dv;
   3307 }
   3308 
   3309 void
   3310 deviter_release(deviter_t *di)
   3311 {
   3312 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3313 
   3314 	mutex_enter(&alldevs_lock);
   3315 	if (rw)
   3316 		--alldevs_nwrite;
   3317 	else
   3318 		--alldevs_nread;
   3319 	/* XXX wake a garbage-collection thread */
   3320 	mutex_exit(&alldevs_lock);
   3321 }
   3322 
   3323 const char *
   3324 cfdata_ifattr(const struct cfdata *cf)
   3325 {
   3326 	return cf->cf_pspec->cfp_iattr;
   3327 }
   3328 
   3329 bool
   3330 ifattr_match(const char *snull, const char *t)
   3331 {
   3332 	return (snull == NULL) || strcmp(snull, t) == 0;
   3333 }
   3334 
   3335 void
   3336 null_childdetached(device_t self, device_t child)
   3337 {
   3338 	/* do nothing */
   3339 }
   3340 
   3341 static void
   3342 sysctl_detach_setup(struct sysctllog **clog)
   3343 {
   3344 
   3345 	sysctl_createv(clog, 0, NULL, NULL,
   3346 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3347 		CTLTYPE_BOOL, "detachall",
   3348 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3349 		NULL, 0, &detachall, 0,
   3350 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3351 }
   3352