Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.10
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.10 2021/04/03 16:09:44 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.10 2021/04/03 16:09:44 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_vattach(device_t, cfdata_t, void *, cfprint_t, cfarg_t,
    172 			       va_list);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 static struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 static struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 static int interrupt_config_threads = 8;
    202 static struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 static int mountroot_config_threads = 2;
    205 static lwp_t **mountroot_config_lwpids;
    206 static size_t mountroot_config_lwpids_size;
    207 bool root_is_mounted = false;
    208 
    209 static void config_process_deferred(struct deferred_config_head *, device_t);
    210 
    211 /* Hooks to finalize configuration once all real devices have been found. */
    212 struct finalize_hook {
    213 	TAILQ_ENTRY(finalize_hook) f_list;
    214 	int (*f_func)(device_t);
    215 	device_t f_dev;
    216 };
    217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    219 static int config_finalize_done;
    220 
    221 /* list of all devices */
    222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    223 static kmutex_t alldevs_lock __cacheline_aligned;
    224 static devgen_t alldevs_gen = 1;
    225 static int alldevs_nread = 0;
    226 static int alldevs_nwrite = 0;
    227 static bool alldevs_garbage = false;
    228 
    229 static struct devicelist config_pending =
    230     TAILQ_HEAD_INITIALIZER(config_pending);
    231 static kmutex_t config_misc_lock;
    232 static kcondvar_t config_misc_cv;
    233 
    234 static bool detachall = false;
    235 
    236 #define	STREQ(s1, s2)			\
    237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    238 
    239 static bool config_initialized = false;	/* config_init() has been called. */
    240 
    241 static int config_do_twiddle;
    242 static callout_t config_twiddle_ch;
    243 
    244 static void sysctl_detach_setup(struct sysctllog **);
    245 
    246 int no_devmon_insert(const char *, prop_dictionary_t);
    247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    248 
    249 typedef int (*cfdriver_fn)(struct cfdriver *);
    250 static int
    251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    253 	const char *style, bool dopanic)
    254 {
    255 	void (*pr)(const char *, ...) __printflike(1, 2) =
    256 	    dopanic ? panic : printf;
    257 	int i, error = 0, e2 __diagused;
    258 
    259 	for (i = 0; cfdriverv[i] != NULL; i++) {
    260 		if ((error = drv_do(cfdriverv[i])) != 0) {
    261 			pr("configure: `%s' driver %s failed: %d",
    262 			    cfdriverv[i]->cd_name, style, error);
    263 			goto bad;
    264 		}
    265 	}
    266 
    267 	KASSERT(error == 0);
    268 	return 0;
    269 
    270  bad:
    271 	printf("\n");
    272 	for (i--; i >= 0; i--) {
    273 		e2 = drv_undo(cfdriverv[i]);
    274 		KASSERT(e2 == 0);
    275 	}
    276 
    277 	return error;
    278 }
    279 
    280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    281 static int
    282 frob_cfattachvec(const struct cfattachinit *cfattachv,
    283 	cfattach_fn att_do, cfattach_fn att_undo,
    284 	const char *style, bool dopanic)
    285 {
    286 	const struct cfattachinit *cfai = NULL;
    287 	void (*pr)(const char *, ...) __printflike(1, 2) =
    288 	    dopanic ? panic : printf;
    289 	int j = 0, error = 0, e2 __diagused;
    290 
    291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    293 			if ((error = att_do(cfai->cfai_name,
    294 			    cfai->cfai_list[j])) != 0) {
    295 				pr("configure: attachment `%s' "
    296 				    "of `%s' driver %s failed: %d",
    297 				    cfai->cfai_list[j]->ca_name,
    298 				    cfai->cfai_name, style, error);
    299 				goto bad;
    300 			}
    301 		}
    302 	}
    303 
    304 	KASSERT(error == 0);
    305 	return 0;
    306 
    307  bad:
    308 	/*
    309 	 * Rollback in reverse order.  dunno if super-important, but
    310 	 * do that anyway.  Although the code looks a little like
    311 	 * someone did a little integration (in the math sense).
    312 	 */
    313 	printf("\n");
    314 	if (cfai) {
    315 		bool last;
    316 
    317 		for (last = false; last == false; ) {
    318 			if (cfai == &cfattachv[0])
    319 				last = true;
    320 			for (j--; j >= 0; j--) {
    321 				e2 = att_undo(cfai->cfai_name,
    322 				    cfai->cfai_list[j]);
    323 				KASSERT(e2 == 0);
    324 			}
    325 			if (!last) {
    326 				cfai--;
    327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    328 					;
    329 			}
    330 		}
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 
    345 	KASSERT(config_initialized == false);
    346 
    347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    348 
    349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	cv_init(&config_misc_cv, "cfgmisc");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    363 	    RND_FLAG_COLLECT_TIME);
    364 
    365 	config_initialized = true;
    366 }
    367 
    368 /*
    369  * Init or fini drivers and attachments.  Either all or none
    370  * are processed (via rollback).  It would be nice if this were
    371  * atomic to outside consumers, but with the current state of
    372  * locking ...
    373  */
    374 int
    375 config_init_component(struct cfdriver * const *cfdriverv,
    376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    377 {
    378 	int error;
    379 
    380 	if ((error = frob_cfdrivervec(cfdriverv,
    381 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    382 		return error;
    383 	if ((error = frob_cfattachvec(cfattachv,
    384 	    config_cfattach_attach, config_cfattach_detach,
    385 	    "init", false)) != 0) {
    386 		frob_cfdrivervec(cfdriverv,
    387 	            config_cfdriver_detach, NULL, "init rollback", true);
    388 		return error;
    389 	}
    390 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    391 		frob_cfattachvec(cfattachv,
    392 		    config_cfattach_detach, NULL, "init rollback", true);
    393 		frob_cfdrivervec(cfdriverv,
    394 	            config_cfdriver_detach, NULL, "init rollback", true);
    395 		return error;
    396 	}
    397 
    398 	return 0;
    399 }
    400 
    401 int
    402 config_fini_component(struct cfdriver * const *cfdriverv,
    403 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    404 {
    405 	int error;
    406 
    407 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    408 		return error;
    409 	if ((error = frob_cfattachvec(cfattachv,
    410 	    config_cfattach_detach, config_cfattach_attach,
    411 	    "fini", false)) != 0) {
    412 		if (config_cfdata_attach(cfdatav, 0) != 0)
    413 			panic("config_cfdata fini rollback failed");
    414 		return error;
    415 	}
    416 	if ((error = frob_cfdrivervec(cfdriverv,
    417 	    config_cfdriver_detach, config_cfdriver_attach,
    418 	    "fini", false)) != 0) {
    419 		frob_cfattachvec(cfattachv,
    420 	            config_cfattach_attach, NULL, "fini rollback", true);
    421 		if (config_cfdata_attach(cfdatav, 0) != 0)
    422 			panic("config_cfdata fini rollback failed");
    423 		return error;
    424 	}
    425 
    426 	return 0;
    427 }
    428 
    429 void
    430 config_init_mi(void)
    431 {
    432 
    433 	if (!config_initialized)
    434 		config_init();
    435 
    436 	sysctl_detach_setup(NULL);
    437 }
    438 
    439 void
    440 config_deferred(device_t dev)
    441 {
    442 	config_process_deferred(&deferred_config_queue, dev);
    443 	config_process_deferred(&interrupt_config_queue, dev);
    444 	config_process_deferred(&mountroot_config_queue, dev);
    445 }
    446 
    447 static void
    448 config_interrupts_thread(void *cookie)
    449 {
    450 	struct deferred_config *dc;
    451 	device_t dev;
    452 
    453 	mutex_enter(&config_misc_lock);
    454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    456 		mutex_exit(&config_misc_lock);
    457 
    458 		dev = dc->dc_dev;
    459 		(*dc->dc_func)(dev);
    460 		if (!device_pmf_is_registered(dev))
    461 			aprint_debug_dev(dev,
    462 			    "WARNING: power management not supported\n");
    463 		config_pending_decr(dev);
    464 		kmem_free(dc, sizeof(*dc));
    465 
    466 		mutex_enter(&config_misc_lock);
    467 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    468 	}
    469 	mutex_exit(&config_misc_lock);
    470 
    471 	kthread_exit(0);
    472 }
    473 
    474 void
    475 config_create_interruptthreads(void)
    476 {
    477 	int i;
    478 
    479 	for (i = 0; i < interrupt_config_threads; i++) {
    480 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    481 		    config_interrupts_thread, NULL, NULL, "configintr");
    482 	}
    483 }
    484 
    485 static void
    486 config_mountroot_thread(void *cookie)
    487 {
    488 	struct deferred_config *dc;
    489 
    490 	mutex_enter(&config_misc_lock);
    491 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    492 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    493 		mutex_exit(&config_misc_lock);
    494 
    495 		(*dc->dc_func)(dc->dc_dev);
    496 		kmem_free(dc, sizeof(*dc));
    497 
    498 		mutex_enter(&config_misc_lock);
    499 	}
    500 	mutex_exit(&config_misc_lock);
    501 
    502 	kthread_exit(0);
    503 }
    504 
    505 void
    506 config_create_mountrootthreads(void)
    507 {
    508 	int i;
    509 
    510 	if (!root_is_mounted)
    511 		root_is_mounted = true;
    512 
    513 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    514 				       mountroot_config_threads;
    515 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    516 					     KM_NOSLEEP);
    517 	KASSERT(mountroot_config_lwpids);
    518 	for (i = 0; i < mountroot_config_threads; i++) {
    519 		mountroot_config_lwpids[i] = 0;
    520 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    521 				     NULL, config_mountroot_thread, NULL,
    522 				     &mountroot_config_lwpids[i],
    523 				     "configroot");
    524 	}
    525 }
    526 
    527 void
    528 config_finalize_mountroot(void)
    529 {
    530 	int i, error;
    531 
    532 	for (i = 0; i < mountroot_config_threads; i++) {
    533 		if (mountroot_config_lwpids[i] == 0)
    534 			continue;
    535 
    536 		error = kthread_join(mountroot_config_lwpids[i]);
    537 		if (error)
    538 			printf("%s: thread %x joined with error %d\n",
    539 			       __func__, i, error);
    540 	}
    541 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    542 }
    543 
    544 /*
    545  * Announce device attach/detach to userland listeners.
    546  */
    547 
    548 int
    549 no_devmon_insert(const char *name, prop_dictionary_t p)
    550 {
    551 
    552 	return ENODEV;
    553 }
    554 
    555 static void
    556 devmon_report_device(device_t dev, bool isattach)
    557 {
    558 	prop_dictionary_t ev, dict = device_properties(dev);
    559 	const char *parent;
    560 	const char *what;
    561 	const char *where;
    562 	device_t pdev = device_parent(dev);
    563 
    564 	/* If currently no drvctl device, just return */
    565 	if (devmon_insert_vec == no_devmon_insert)
    566 		return;
    567 
    568 	ev = prop_dictionary_create();
    569 	if (ev == NULL)
    570 		return;
    571 
    572 	what = (isattach ? "device-attach" : "device-detach");
    573 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    574 	if (prop_dictionary_get_string(dict, "location", &where)) {
    575 		prop_dictionary_set_string(ev, "location", where);
    576 		aprint_debug("ev: %s %s at %s in [%s]\n",
    577 		    what, device_xname(dev), parent, where);
    578 	}
    579 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    580 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    581 		prop_object_release(ev);
    582 		return;
    583 	}
    584 
    585 	if ((*devmon_insert_vec)(what, ev) != 0)
    586 		prop_object_release(ev);
    587 }
    588 
    589 /*
    590  * Add a cfdriver to the system.
    591  */
    592 int
    593 config_cfdriver_attach(struct cfdriver *cd)
    594 {
    595 	struct cfdriver *lcd;
    596 
    597 	/* Make sure this driver isn't already in the system. */
    598 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    599 		if (STREQ(lcd->cd_name, cd->cd_name))
    600 			return EEXIST;
    601 	}
    602 
    603 	LIST_INIT(&cd->cd_attach);
    604 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    605 
    606 	return 0;
    607 }
    608 
    609 /*
    610  * Remove a cfdriver from the system.
    611  */
    612 int
    613 config_cfdriver_detach(struct cfdriver *cd)
    614 {
    615 	struct alldevs_foray af;
    616 	int i, rc = 0;
    617 
    618 	config_alldevs_enter(&af);
    619 	/* Make sure there are no active instances. */
    620 	for (i = 0; i < cd->cd_ndevs; i++) {
    621 		if (cd->cd_devs[i] != NULL) {
    622 			rc = EBUSY;
    623 			break;
    624 		}
    625 	}
    626 	config_alldevs_exit(&af);
    627 
    628 	if (rc != 0)
    629 		return rc;
    630 
    631 	/* ...and no attachments loaded. */
    632 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    633 		return EBUSY;
    634 
    635 	LIST_REMOVE(cd, cd_list);
    636 
    637 	KASSERT(cd->cd_devs == NULL);
    638 
    639 	return 0;
    640 }
    641 
    642 /*
    643  * Look up a cfdriver by name.
    644  */
    645 struct cfdriver *
    646 config_cfdriver_lookup(const char *name)
    647 {
    648 	struct cfdriver *cd;
    649 
    650 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    651 		if (STREQ(cd->cd_name, name))
    652 			return cd;
    653 	}
    654 
    655 	return NULL;
    656 }
    657 
    658 /*
    659  * Add a cfattach to the specified driver.
    660  */
    661 int
    662 config_cfattach_attach(const char *driver, struct cfattach *ca)
    663 {
    664 	struct cfattach *lca;
    665 	struct cfdriver *cd;
    666 
    667 	cd = config_cfdriver_lookup(driver);
    668 	if (cd == NULL)
    669 		return ESRCH;
    670 
    671 	/* Make sure this attachment isn't already on this driver. */
    672 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    673 		if (STREQ(lca->ca_name, ca->ca_name))
    674 			return EEXIST;
    675 	}
    676 
    677 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    678 
    679 	return 0;
    680 }
    681 
    682 /*
    683  * Remove a cfattach from the specified driver.
    684  */
    685 int
    686 config_cfattach_detach(const char *driver, struct cfattach *ca)
    687 {
    688 	struct alldevs_foray af;
    689 	struct cfdriver *cd;
    690 	device_t dev;
    691 	int i, rc = 0;
    692 
    693 	cd = config_cfdriver_lookup(driver);
    694 	if (cd == NULL)
    695 		return ESRCH;
    696 
    697 	config_alldevs_enter(&af);
    698 	/* Make sure there are no active instances. */
    699 	for (i = 0; i < cd->cd_ndevs; i++) {
    700 		if ((dev = cd->cd_devs[i]) == NULL)
    701 			continue;
    702 		if (dev->dv_cfattach == ca) {
    703 			rc = EBUSY;
    704 			break;
    705 		}
    706 	}
    707 	config_alldevs_exit(&af);
    708 
    709 	if (rc != 0)
    710 		return rc;
    711 
    712 	LIST_REMOVE(ca, ca_list);
    713 
    714 	return 0;
    715 }
    716 
    717 /*
    718  * Look up a cfattach by name.
    719  */
    720 static struct cfattach *
    721 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    722 {
    723 	struct cfattach *ca;
    724 
    725 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    726 		if (STREQ(ca->ca_name, atname))
    727 			return ca;
    728 	}
    729 
    730 	return NULL;
    731 }
    732 
    733 /*
    734  * Look up a cfattach by driver/attachment name.
    735  */
    736 struct cfattach *
    737 config_cfattach_lookup(const char *name, const char *atname)
    738 {
    739 	struct cfdriver *cd;
    740 
    741 	cd = config_cfdriver_lookup(name);
    742 	if (cd == NULL)
    743 		return NULL;
    744 
    745 	return config_cfattach_lookup_cd(cd, atname);
    746 }
    747 
    748 /*
    749  * Apply the matching function and choose the best.  This is used
    750  * a few times and we want to keep the code small.
    751  */
    752 static void
    753 mapply(struct matchinfo *m, cfdata_t cf)
    754 {
    755 	int pri;
    756 
    757 	if (m->fn != NULL) {
    758 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    759 	} else {
    760 		pri = config_match(m->parent, cf, m->aux);
    761 	}
    762 	if (pri > m->pri) {
    763 		m->match = cf;
    764 		m->pri = pri;
    765 	}
    766 }
    767 
    768 int
    769 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    770 {
    771 	const struct cfiattrdata *ci;
    772 	const struct cflocdesc *cl;
    773 	int nlocs, i;
    774 
    775 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    776 	KASSERT(ci);
    777 	nlocs = ci->ci_loclen;
    778 	KASSERT(!nlocs || locs);
    779 	for (i = 0; i < nlocs; i++) {
    780 		cl = &ci->ci_locdesc[i];
    781 		if (cl->cld_defaultstr != NULL &&
    782 		    cf->cf_loc[i] == cl->cld_default)
    783 			continue;
    784 		if (cf->cf_loc[i] == locs[i])
    785 			continue;
    786 		return 0;
    787 	}
    788 
    789 	return config_match(parent, cf, aux);
    790 }
    791 
    792 /*
    793  * Helper function: check whether the driver supports the interface attribute
    794  * and return its descriptor structure.
    795  */
    796 static const struct cfiattrdata *
    797 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    798 {
    799 	const struct cfiattrdata * const *cpp;
    800 
    801 	if (cd->cd_attrs == NULL)
    802 		return 0;
    803 
    804 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    805 		if (STREQ((*cpp)->ci_name, ia)) {
    806 			/* Match. */
    807 			return *cpp;
    808 		}
    809 	}
    810 	return 0;
    811 }
    812 
    813 #if defined(DIAGNOSTIC)
    814 static int
    815 cfdriver_iattr_count(const struct cfdriver *cd)
    816 {
    817 	const struct cfiattrdata * const *cpp;
    818 	int i;
    819 
    820 	if (cd->cd_attrs == NULL)
    821 		return 0;
    822 
    823 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    824 		i++;
    825 	}
    826 	return i;
    827 }
    828 #endif /* DIAGNOSTIC */
    829 
    830 /*
    831  * Lookup an interface attribute description by name.
    832  * If the driver is given, consider only its supported attributes.
    833  */
    834 const struct cfiattrdata *
    835 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    836 {
    837 	const struct cfdriver *d;
    838 	const struct cfiattrdata *ia;
    839 
    840 	if (cd)
    841 		return cfdriver_get_iattr(cd, name);
    842 
    843 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    844 		ia = cfdriver_get_iattr(d, name);
    845 		if (ia)
    846 			return ia;
    847 	}
    848 	return 0;
    849 }
    850 
    851 /*
    852  * Determine if `parent' is a potential parent for a device spec based
    853  * on `cfp'.
    854  */
    855 static int
    856 cfparent_match(const device_t parent, const struct cfparent *cfp)
    857 {
    858 	struct cfdriver *pcd;
    859 
    860 	/* We don't match root nodes here. */
    861 	if (cfp == NULL)
    862 		return 0;
    863 
    864 	pcd = parent->dv_cfdriver;
    865 	KASSERT(pcd != NULL);
    866 
    867 	/*
    868 	 * First, ensure this parent has the correct interface
    869 	 * attribute.
    870 	 */
    871 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    872 		return 0;
    873 
    874 	/*
    875 	 * If no specific parent device instance was specified (i.e.
    876 	 * we're attaching to the attribute only), we're done!
    877 	 */
    878 	if (cfp->cfp_parent == NULL)
    879 		return 1;
    880 
    881 	/*
    882 	 * Check the parent device's name.
    883 	 */
    884 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    885 		return 0;	/* not the same parent */
    886 
    887 	/*
    888 	 * Make sure the unit number matches.
    889 	 */
    890 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    891 	    cfp->cfp_unit == parent->dv_unit)
    892 		return 1;
    893 
    894 	/* Unit numbers don't match. */
    895 	return 0;
    896 }
    897 
    898 /*
    899  * Helper for config_cfdata_attach(): check all devices whether it could be
    900  * parent any attachment in the config data table passed, and rescan.
    901  */
    902 static void
    903 rescan_with_cfdata(const struct cfdata *cf)
    904 {
    905 	device_t d;
    906 	const struct cfdata *cf1;
    907 	deviter_t di;
    908 
    909 
    910 	/*
    911 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    912 	 * the outer loop.
    913 	 */
    914 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    915 
    916 		if (!(d->dv_cfattach->ca_rescan))
    917 			continue;
    918 
    919 		for (cf1 = cf; cf1->cf_name; cf1++) {
    920 
    921 			if (!cfparent_match(d, cf1->cf_pspec))
    922 				continue;
    923 
    924 			(*d->dv_cfattach->ca_rescan)(d,
    925 				cfdata_ifattr(cf1), cf1->cf_loc);
    926 
    927 			config_deferred(d);
    928 		}
    929 	}
    930 	deviter_release(&di);
    931 }
    932 
    933 /*
    934  * Attach a supplemental config data table and rescan potential
    935  * parent devices if required.
    936  */
    937 int
    938 config_cfdata_attach(cfdata_t cf, int scannow)
    939 {
    940 	struct cftable *ct;
    941 
    942 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    943 	ct->ct_cfdata = cf;
    944 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    945 
    946 	if (scannow)
    947 		rescan_with_cfdata(cf);
    948 
    949 	return 0;
    950 }
    951 
    952 /*
    953  * Helper for config_cfdata_detach: check whether a device is
    954  * found through any attachment in the config data table.
    955  */
    956 static int
    957 dev_in_cfdata(device_t d, cfdata_t cf)
    958 {
    959 	const struct cfdata *cf1;
    960 
    961 	for (cf1 = cf; cf1->cf_name; cf1++)
    962 		if (d->dv_cfdata == cf1)
    963 			return 1;
    964 
    965 	return 0;
    966 }
    967 
    968 /*
    969  * Detach a supplemental config data table. Detach all devices found
    970  * through that table (and thus keeping references to it) before.
    971  */
    972 int
    973 config_cfdata_detach(cfdata_t cf)
    974 {
    975 	device_t d;
    976 	int error = 0;
    977 	struct cftable *ct;
    978 	deviter_t di;
    979 
    980 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    981 	     d = deviter_next(&di)) {
    982 		if (!dev_in_cfdata(d, cf))
    983 			continue;
    984 		if ((error = config_detach(d, 0)) != 0)
    985 			break;
    986 	}
    987 	deviter_release(&di);
    988 	if (error) {
    989 		aprint_error_dev(d, "unable to detach instance\n");
    990 		return error;
    991 	}
    992 
    993 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    994 		if (ct->ct_cfdata == cf) {
    995 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    996 			kmem_free(ct, sizeof(*ct));
    997 			return 0;
    998 		}
    999 	}
   1000 
   1001 	/* not found -- shouldn't happen */
   1002 	return EINVAL;
   1003 }
   1004 
   1005 /*
   1006  * Invoke the "match" routine for a cfdata entry on behalf of
   1007  * an external caller, usually a "submatch" routine.
   1008  */
   1009 int
   1010 config_match(device_t parent, cfdata_t cf, void *aux)
   1011 {
   1012 	struct cfattach *ca;
   1013 
   1014 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1015 	if (ca == NULL) {
   1016 		/* No attachment for this entry, oh well. */
   1017 		return 0;
   1018 	}
   1019 
   1020 	return (*ca->ca_match)(parent, cf, aux);
   1021 }
   1022 
   1023 static void
   1024 config_get_cfargs(cfarg_t tag,
   1025 		  cfsubmatch_t *fnp,		/* output */
   1026 		  const char **ifattrp,		/* output */
   1027 		  const int **locsp,		/* output */
   1028 		  devhandle_t *handlep,		/* output */
   1029 		  va_list ap)
   1030 {
   1031 	cfsubmatch_t fn = NULL;
   1032 	const char *ifattr = NULL;
   1033 	const int *locs = NULL;
   1034 	devhandle_t handle;
   1035 
   1036 	devhandle_invalidate(&handle);
   1037 
   1038 	while (tag != CFARG_EOL) {
   1039 		switch (tag) {
   1040 		case CFARG_SUBMATCH:
   1041 			fn = va_arg(ap, cfsubmatch_t);
   1042 			break;
   1043 
   1044 		case CFARG_IATTR:
   1045 			ifattr = va_arg(ap, const char *);
   1046 			break;
   1047 
   1048 		case CFARG_LOCATORS:
   1049 			locs = va_arg(ap, const int *);
   1050 			break;
   1051 
   1052 		case CFARG_DEVHANDLE:
   1053 			handle = va_arg(ap, devhandle_t);
   1054 			break;
   1055 
   1056 		default:
   1057 			/* XXX panic? */
   1058 			/* XXX dump stack backtrace? */
   1059 			aprint_error("%s: unknown cfarg tag: %d\n",
   1060 			    __func__, tag);
   1061 			goto out;
   1062 		}
   1063 		tag = va_arg(ap, cfarg_t);
   1064 	}
   1065 
   1066  out:
   1067 	if (fnp != NULL)
   1068 		*fnp = fn;
   1069 	if (ifattrp != NULL)
   1070 		*ifattrp = ifattr;
   1071 	if (locsp != NULL)
   1072 		*locsp = locs;
   1073 	if (handlep != NULL)
   1074 		*handlep = handle;
   1075 }
   1076 
   1077 /*
   1078  * Iterate over all potential children of some device, calling the given
   1079  * function (default being the child's match function) for each one.
   1080  * Nonzero returns are matches; the highest value returned is considered
   1081  * the best match.  Return the `found child' if we got a match, or NULL
   1082  * otherwise.  The `aux' pointer is simply passed on through.
   1083  *
   1084  * Note that this function is designed so that it can be used to apply
   1085  * an arbitrary function to all potential children (its return value
   1086  * can be ignored).
   1087  */
   1088 static cfdata_t
   1089 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1090 {
   1091 	cfsubmatch_t fn;
   1092 	const char *ifattr;
   1093 	const int *locs;
   1094 	struct cftable *ct;
   1095 	cfdata_t cf;
   1096 	struct matchinfo m;
   1097 
   1098 	config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
   1099 
   1100 	KASSERT(config_initialized);
   1101 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1102 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1103 
   1104 	m.fn = fn;
   1105 	m.parent = parent;
   1106 	m.locs = locs;
   1107 	m.aux = aux;
   1108 	m.match = NULL;
   1109 	m.pri = 0;
   1110 
   1111 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1112 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1113 
   1114 			/* We don't match root nodes here. */
   1115 			if (!cf->cf_pspec)
   1116 				continue;
   1117 
   1118 			/*
   1119 			 * Skip cf if no longer eligible, otherwise scan
   1120 			 * through parents for one matching `parent', and
   1121 			 * try match function.
   1122 			 */
   1123 			if (cf->cf_fstate == FSTATE_FOUND)
   1124 				continue;
   1125 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1126 			    cf->cf_fstate == FSTATE_DSTAR)
   1127 				continue;
   1128 
   1129 			/*
   1130 			 * If an interface attribute was specified,
   1131 			 * consider only children which attach to
   1132 			 * that attribute.
   1133 			 */
   1134 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1135 				continue;
   1136 
   1137 			if (cfparent_match(parent, cf->cf_pspec))
   1138 				mapply(&m, cf);
   1139 		}
   1140 	}
   1141 	return m.match;
   1142 }
   1143 
   1144 cfdata_t
   1145 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1146 {
   1147 	cfdata_t cf;
   1148 	va_list ap;
   1149 
   1150 	va_start(ap, tag);
   1151 	cf = config_vsearch(parent, aux, tag, ap);
   1152 	va_end(ap);
   1153 
   1154 	return cf;
   1155 }
   1156 
   1157 /*
   1158  * Find the given root device.
   1159  * This is much like config_search, but there is no parent.
   1160  * Don't bother with multiple cfdata tables; the root node
   1161  * must always be in the initial table.
   1162  */
   1163 cfdata_t
   1164 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1165 {
   1166 	cfdata_t cf;
   1167 	const short *p;
   1168 	struct matchinfo m;
   1169 
   1170 	m.fn = fn;
   1171 	m.parent = ROOT;
   1172 	m.aux = aux;
   1173 	m.match = NULL;
   1174 	m.pri = 0;
   1175 	m.locs = 0;
   1176 	/*
   1177 	 * Look at root entries for matching name.  We do not bother
   1178 	 * with found-state here since only one root should ever be
   1179 	 * searched (and it must be done first).
   1180 	 */
   1181 	for (p = cfroots; *p >= 0; p++) {
   1182 		cf = &cfdata[*p];
   1183 		if (strcmp(cf->cf_name, rootname) == 0)
   1184 			mapply(&m, cf);
   1185 	}
   1186 	return m.match;
   1187 }
   1188 
   1189 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1190 
   1191 /*
   1192  * The given `aux' argument describes a device that has been found
   1193  * on the given parent, but not necessarily configured.  Locate the
   1194  * configuration data for that device (using the submatch function
   1195  * provided, or using candidates' cd_match configuration driver
   1196  * functions) and attach it, and return its device_t.  If the device was
   1197  * not configured, call the given `print' function and return NULL.
   1198  */
   1199 static device_t
   1200 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1201     va_list ap)
   1202 {
   1203 	cfdata_t cf;
   1204 	va_list nap;
   1205 
   1206 	va_copy(nap, ap);
   1207 	cf = config_vsearch(parent, aux, tag, nap);
   1208 	va_end(nap);
   1209 
   1210 	if (cf != NULL) {
   1211 		return config_vattach(parent, cf, aux, print, tag, ap);
   1212 	}
   1213 
   1214 	if (print) {
   1215 		if (config_do_twiddle && cold)
   1216 			twiddle();
   1217 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1218 	}
   1219 
   1220 	/*
   1221 	 * This has the effect of mixing in a single timestamp to the
   1222 	 * entropy pool.  Experiments indicate the estimator will almost
   1223 	 * always attribute one bit of entropy to this sample; analysis
   1224 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1225 	 * bits of entropy/sample so this seems appropriately conservative.
   1226 	 */
   1227 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1228 	return NULL;
   1229 }
   1230 
   1231 device_t
   1232 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1233 {
   1234 	device_t dev;
   1235 	va_list ap;
   1236 
   1237 	va_start(ap, tag);
   1238 	dev = config_vfound(parent, aux, print, tag, ap);
   1239 	va_end(ap);
   1240 
   1241 	return dev;
   1242 }
   1243 
   1244 /*
   1245  * As above, but for root devices.
   1246  */
   1247 device_t
   1248 config_rootfound(const char *rootname, void *aux)
   1249 {
   1250 	cfdata_t cf;
   1251 
   1252 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1253 		return config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
   1254 	aprint_error("root device %s not configured\n", rootname);
   1255 	return NULL;
   1256 }
   1257 
   1258 /* just like sprintf(buf, "%d") except that it works from the end */
   1259 static char *
   1260 number(char *ep, int n)
   1261 {
   1262 
   1263 	*--ep = 0;
   1264 	while (n >= 10) {
   1265 		*--ep = (n % 10) + '0';
   1266 		n /= 10;
   1267 	}
   1268 	*--ep = n + '0';
   1269 	return ep;
   1270 }
   1271 
   1272 /*
   1273  * Expand the size of the cd_devs array if necessary.
   1274  *
   1275  * The caller must hold alldevs_lock. config_makeroom() may release and
   1276  * re-acquire alldevs_lock, so callers should re-check conditions such
   1277  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1278  * returns.
   1279  */
   1280 static void
   1281 config_makeroom(int n, struct cfdriver *cd)
   1282 {
   1283 	int ondevs, nndevs;
   1284 	device_t *osp, *nsp;
   1285 
   1286 	KASSERT(mutex_owned(&alldevs_lock));
   1287 	alldevs_nwrite++;
   1288 
   1289 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1290 		;
   1291 
   1292 	while (n >= cd->cd_ndevs) {
   1293 		/*
   1294 		 * Need to expand the array.
   1295 		 */
   1296 		ondevs = cd->cd_ndevs;
   1297 		osp = cd->cd_devs;
   1298 
   1299 		/*
   1300 		 * Release alldevs_lock around allocation, which may
   1301 		 * sleep.
   1302 		 */
   1303 		mutex_exit(&alldevs_lock);
   1304 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1305 		mutex_enter(&alldevs_lock);
   1306 
   1307 		/*
   1308 		 * If another thread moved the array while we did
   1309 		 * not hold alldevs_lock, try again.
   1310 		 */
   1311 		if (cd->cd_devs != osp) {
   1312 			mutex_exit(&alldevs_lock);
   1313 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1314 			mutex_enter(&alldevs_lock);
   1315 			continue;
   1316 		}
   1317 
   1318 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1319 		if (ondevs != 0)
   1320 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1321 
   1322 		cd->cd_ndevs = nndevs;
   1323 		cd->cd_devs = nsp;
   1324 		if (ondevs != 0) {
   1325 			mutex_exit(&alldevs_lock);
   1326 			kmem_free(osp, sizeof(device_t) * ondevs);
   1327 			mutex_enter(&alldevs_lock);
   1328 		}
   1329 	}
   1330 	KASSERT(mutex_owned(&alldevs_lock));
   1331 	alldevs_nwrite--;
   1332 }
   1333 
   1334 /*
   1335  * Put dev into the devices list.
   1336  */
   1337 static void
   1338 config_devlink(device_t dev)
   1339 {
   1340 
   1341 	mutex_enter(&alldevs_lock);
   1342 
   1343 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1344 
   1345 	dev->dv_add_gen = alldevs_gen;
   1346 	/* It is safe to add a device to the tail of the list while
   1347 	 * readers and writers are in the list.
   1348 	 */
   1349 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1350 	mutex_exit(&alldevs_lock);
   1351 }
   1352 
   1353 static void
   1354 config_devfree(device_t dev)
   1355 {
   1356 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1357 
   1358 	if (dev->dv_cfattach->ca_devsize > 0)
   1359 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1360 	kmem_free(dev, sizeof(*dev));
   1361 }
   1362 
   1363 /*
   1364  * Caller must hold alldevs_lock.
   1365  */
   1366 static void
   1367 config_devunlink(device_t dev, struct devicelist *garbage)
   1368 {
   1369 	struct device_garbage *dg = &dev->dv_garbage;
   1370 	cfdriver_t cd = device_cfdriver(dev);
   1371 	int i;
   1372 
   1373 	KASSERT(mutex_owned(&alldevs_lock));
   1374 
   1375  	/* Unlink from device list.  Link to garbage list. */
   1376 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1377 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1378 
   1379 	/* Remove from cfdriver's array. */
   1380 	cd->cd_devs[dev->dv_unit] = NULL;
   1381 
   1382 	/*
   1383 	 * If the device now has no units in use, unlink its softc array.
   1384 	 */
   1385 	for (i = 0; i < cd->cd_ndevs; i++) {
   1386 		if (cd->cd_devs[i] != NULL)
   1387 			break;
   1388 	}
   1389 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1390 	if (i == cd->cd_ndevs) {
   1391 		dg->dg_ndevs = cd->cd_ndevs;
   1392 		dg->dg_devs = cd->cd_devs;
   1393 		cd->cd_devs = NULL;
   1394 		cd->cd_ndevs = 0;
   1395 	}
   1396 }
   1397 
   1398 static void
   1399 config_devdelete(device_t dev)
   1400 {
   1401 	struct device_garbage *dg = &dev->dv_garbage;
   1402 	device_lock_t dvl = device_getlock(dev);
   1403 
   1404 	if (dg->dg_devs != NULL)
   1405 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1406 
   1407 	cv_destroy(&dvl->dvl_cv);
   1408 	mutex_destroy(&dvl->dvl_mtx);
   1409 
   1410 	KASSERT(dev->dv_properties != NULL);
   1411 	prop_object_release(dev->dv_properties);
   1412 
   1413 	if (dev->dv_activity_handlers)
   1414 		panic("%s with registered handlers", __func__);
   1415 
   1416 	if (dev->dv_locators) {
   1417 		size_t amount = *--dev->dv_locators;
   1418 		kmem_free(dev->dv_locators, amount);
   1419 	}
   1420 
   1421 	config_devfree(dev);
   1422 }
   1423 
   1424 static int
   1425 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1426 {
   1427 	int unit;
   1428 
   1429 	if (cf->cf_fstate == FSTATE_STAR) {
   1430 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1431 			if (cd->cd_devs[unit] == NULL)
   1432 				break;
   1433 		/*
   1434 		 * unit is now the unit of the first NULL device pointer,
   1435 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1436 		 */
   1437 	} else {
   1438 		unit = cf->cf_unit;
   1439 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1440 			unit = -1;
   1441 	}
   1442 	return unit;
   1443 }
   1444 
   1445 static int
   1446 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1447 {
   1448 	struct alldevs_foray af;
   1449 	int unit;
   1450 
   1451 	config_alldevs_enter(&af);
   1452 	for (;;) {
   1453 		unit = config_unit_nextfree(cd, cf);
   1454 		if (unit == -1)
   1455 			break;
   1456 		if (unit < cd->cd_ndevs) {
   1457 			cd->cd_devs[unit] = dev;
   1458 			dev->dv_unit = unit;
   1459 			break;
   1460 		}
   1461 		config_makeroom(unit, cd);
   1462 	}
   1463 	config_alldevs_exit(&af);
   1464 
   1465 	return unit;
   1466 }
   1467 
   1468 static device_t
   1469 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
   1470     va_list ap)
   1471 {
   1472 	cfdriver_t cd;
   1473 	cfattach_t ca;
   1474 	size_t lname, lunit;
   1475 	const char *xunit;
   1476 	int myunit;
   1477 	char num[10];
   1478 	device_t dev;
   1479 	void *dev_private;
   1480 	const struct cfiattrdata *ia;
   1481 	device_lock_t dvl;
   1482 	const int *locs;
   1483 
   1484 	cd = config_cfdriver_lookup(cf->cf_name);
   1485 	if (cd == NULL)
   1486 		return NULL;
   1487 
   1488 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1489 	if (ca == NULL)
   1490 		return NULL;
   1491 
   1492 	/* get memory for all device vars */
   1493 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1494 	if (ca->ca_devsize > 0) {
   1495 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1496 	} else {
   1497 		dev_private = NULL;
   1498 	}
   1499 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1500 
   1501 	/*
   1502 	 * If a handle was supplied to config_attach(), we'll get it
   1503 	 * assigned automatically here.  If not, then we'll get the
   1504 	 * default invalid handle.
   1505 	 */
   1506 	config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
   1507 
   1508 	dev->dv_class = cd->cd_class;
   1509 	dev->dv_cfdata = cf;
   1510 	dev->dv_cfdriver = cd;
   1511 	dev->dv_cfattach = ca;
   1512 	dev->dv_activity_count = 0;
   1513 	dev->dv_activity_handlers = NULL;
   1514 	dev->dv_private = dev_private;
   1515 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1516 
   1517 	myunit = config_unit_alloc(dev, cd, cf);
   1518 	if (myunit == -1) {
   1519 		config_devfree(dev);
   1520 		return NULL;
   1521 	}
   1522 
   1523 	/* compute length of name and decimal expansion of unit number */
   1524 	lname = strlen(cd->cd_name);
   1525 	xunit = number(&num[sizeof(num)], myunit);
   1526 	lunit = &num[sizeof(num)] - xunit;
   1527 	if (lname + lunit > sizeof(dev->dv_xname))
   1528 		panic("config_vdevalloc: device name too long");
   1529 
   1530 	dvl = device_getlock(dev);
   1531 
   1532 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1533 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1534 
   1535 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1536 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1537 	dev->dv_parent = parent;
   1538 	if (parent != NULL)
   1539 		dev->dv_depth = parent->dv_depth + 1;
   1540 	else
   1541 		dev->dv_depth = 0;
   1542 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1543 	if (locs) {
   1544 		KASSERT(parent); /* no locators at root */
   1545 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1546 		dev->dv_locators =
   1547 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1548 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1549 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1550 	}
   1551 	dev->dv_properties = prop_dictionary_create();
   1552 	KASSERT(dev->dv_properties != NULL);
   1553 
   1554 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1555 	    "device-driver", dev->dv_cfdriver->cd_name);
   1556 	prop_dictionary_set_uint16(dev->dv_properties,
   1557 	    "device-unit", dev->dv_unit);
   1558 	if (parent != NULL) {
   1559 		prop_dictionary_set_string(dev->dv_properties,
   1560 		    "device-parent", device_xname(parent));
   1561 	}
   1562 
   1563 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1564 		config_add_attrib_dict(dev);
   1565 
   1566 	return dev;
   1567 }
   1568 
   1569 static device_t
   1570 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
   1571 {
   1572 	device_t dev;
   1573 	va_list ap;
   1574 
   1575 	va_start(ap, tag);
   1576 	dev = config_vdevalloc(parent, cf, tag, ap);
   1577 	va_end(ap);
   1578 
   1579 	return dev;
   1580 }
   1581 
   1582 /*
   1583  * Create an array of device attach attributes and add it
   1584  * to the device's dv_properties dictionary.
   1585  *
   1586  * <key>interface-attributes</key>
   1587  * <array>
   1588  *    <dict>
   1589  *       <key>attribute-name</key>
   1590  *       <string>foo</string>
   1591  *       <key>locators</key>
   1592  *       <array>
   1593  *          <dict>
   1594  *             <key>loc-name</key>
   1595  *             <string>foo-loc1</string>
   1596  *          </dict>
   1597  *          <dict>
   1598  *             <key>loc-name</key>
   1599  *             <string>foo-loc2</string>
   1600  *             <key>default</key>
   1601  *             <string>foo-loc2-default</string>
   1602  *          </dict>
   1603  *          ...
   1604  *       </array>
   1605  *    </dict>
   1606  *    ...
   1607  * </array>
   1608  */
   1609 
   1610 static void
   1611 config_add_attrib_dict(device_t dev)
   1612 {
   1613 	int i, j;
   1614 	const struct cfiattrdata *ci;
   1615 	prop_dictionary_t attr_dict, loc_dict;
   1616 	prop_array_t attr_array, loc_array;
   1617 
   1618 	if ((attr_array = prop_array_create()) == NULL)
   1619 		return;
   1620 
   1621 	for (i = 0; ; i++) {
   1622 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1623 			break;
   1624 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1625 			break;
   1626 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1627 		    ci->ci_name);
   1628 
   1629 		/* Create an array of the locator names and defaults */
   1630 
   1631 		if (ci->ci_loclen != 0 &&
   1632 		    (loc_array = prop_array_create()) != NULL) {
   1633 			for (j = 0; j < ci->ci_loclen; j++) {
   1634 				loc_dict = prop_dictionary_create();
   1635 				if (loc_dict == NULL)
   1636 					continue;
   1637 				prop_dictionary_set_string_nocopy(loc_dict,
   1638 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1639 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1640 					prop_dictionary_set_string_nocopy(
   1641 					    loc_dict, "default",
   1642 					    ci->ci_locdesc[j].cld_defaultstr);
   1643 				prop_array_set(loc_array, j, loc_dict);
   1644 				prop_object_release(loc_dict);
   1645 			}
   1646 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1647 			    loc_array);
   1648 		}
   1649 		prop_array_add(attr_array, attr_dict);
   1650 		prop_object_release(attr_dict);
   1651 	}
   1652 	if (i == 0)
   1653 		prop_object_release(attr_array);
   1654 	else
   1655 		prop_dictionary_set_and_rel(dev->dv_properties,
   1656 		    "interface-attributes", attr_array);
   1657 
   1658 	return;
   1659 }
   1660 
   1661 /*
   1662  * Attach a found device.
   1663  */
   1664 static device_t
   1665 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1666     cfarg_t tag, va_list ap)
   1667 {
   1668 	device_t dev;
   1669 	struct cftable *ct;
   1670 	const char *drvname;
   1671 
   1672 	dev = config_vdevalloc(parent, cf, tag, ap);
   1673 	if (!dev)
   1674 		panic("config_attach: allocation of device softc failed");
   1675 
   1676 	/* XXX redundant - see below? */
   1677 	if (cf->cf_fstate != FSTATE_STAR) {
   1678 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1679 		cf->cf_fstate = FSTATE_FOUND;
   1680 	}
   1681 
   1682 	config_devlink(dev);
   1683 
   1684 	if (config_do_twiddle && cold)
   1685 		twiddle();
   1686 	else
   1687 		aprint_naive("Found ");
   1688 	/*
   1689 	 * We want the next two printfs for normal, verbose, and quiet,
   1690 	 * but not silent (in which case, we're twiddling, instead).
   1691 	 */
   1692 	if (parent == ROOT) {
   1693 		aprint_naive("%s (root)", device_xname(dev));
   1694 		aprint_normal("%s (root)", device_xname(dev));
   1695 	} else {
   1696 		aprint_naive("%s at %s", device_xname(dev),
   1697 		    device_xname(parent));
   1698 		aprint_normal("%s at %s", device_xname(dev),
   1699 		    device_xname(parent));
   1700 		if (print)
   1701 			(void) (*print)(aux, NULL);
   1702 	}
   1703 
   1704 	/*
   1705 	 * Before attaching, clobber any unfound devices that are
   1706 	 * otherwise identical.
   1707 	 * XXX code above is redundant?
   1708 	 */
   1709 	drvname = dev->dv_cfdriver->cd_name;
   1710 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1711 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1712 			if (STREQ(cf->cf_name, drvname) &&
   1713 			    cf->cf_unit == dev->dv_unit) {
   1714 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1715 					cf->cf_fstate = FSTATE_FOUND;
   1716 			}
   1717 		}
   1718 	}
   1719 	device_register(dev, aux);
   1720 
   1721 	/* Let userland know */
   1722 	devmon_report_device(dev, true);
   1723 
   1724 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1725 
   1726 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1727 	    && !device_pmf_is_registered(dev))
   1728 		aprint_debug_dev(dev,
   1729 		    "WARNING: power management not supported\n");
   1730 
   1731 	config_process_deferred(&deferred_config_queue, dev);
   1732 
   1733 	device_register_post_config(dev, aux);
   1734 	return dev;
   1735 }
   1736 
   1737 device_t
   1738 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1739     cfarg_t tag, ...)
   1740 {
   1741 	device_t dev;
   1742 	va_list ap;
   1743 
   1744 	va_start(ap, tag);
   1745 	dev = config_vattach(parent, cf, aux, print, tag, ap);
   1746 	va_end(ap);
   1747 
   1748 	return dev;
   1749 }
   1750 
   1751 /*
   1752  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1753  * way are silently inserted into the device tree, and their children
   1754  * attached.
   1755  *
   1756  * Note that because pseudo-devices are attached silently, any information
   1757  * the attach routine wishes to print should be prefixed with the device
   1758  * name by the attach routine.
   1759  */
   1760 device_t
   1761 config_attach_pseudo(cfdata_t cf)
   1762 {
   1763 	device_t dev;
   1764 
   1765 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
   1766 	if (!dev)
   1767 		return NULL;
   1768 
   1769 	/* XXX mark busy in cfdata */
   1770 
   1771 	if (cf->cf_fstate != FSTATE_STAR) {
   1772 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1773 		cf->cf_fstate = FSTATE_FOUND;
   1774 	}
   1775 
   1776 	config_devlink(dev);
   1777 
   1778 #if 0	/* XXXJRT not yet */
   1779 	device_register(dev, NULL);	/* like a root node */
   1780 #endif
   1781 
   1782 	/* Let userland know */
   1783 	devmon_report_device(dev, true);
   1784 
   1785 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1786 
   1787 	config_process_deferred(&deferred_config_queue, dev);
   1788 	return dev;
   1789 }
   1790 
   1791 /*
   1792  * Caller must hold alldevs_lock.
   1793  */
   1794 static void
   1795 config_collect_garbage(struct devicelist *garbage)
   1796 {
   1797 	device_t dv;
   1798 
   1799 	KASSERT(!cpu_intr_p());
   1800 	KASSERT(!cpu_softintr_p());
   1801 	KASSERT(mutex_owned(&alldevs_lock));
   1802 
   1803 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1804 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1805 			if (dv->dv_del_gen != 0)
   1806 				break;
   1807 		}
   1808 		if (dv == NULL) {
   1809 			alldevs_garbage = false;
   1810 			break;
   1811 		}
   1812 		config_devunlink(dv, garbage);
   1813 	}
   1814 	KASSERT(mutex_owned(&alldevs_lock));
   1815 }
   1816 
   1817 static void
   1818 config_dump_garbage(struct devicelist *garbage)
   1819 {
   1820 	device_t dv;
   1821 
   1822 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1823 		TAILQ_REMOVE(garbage, dv, dv_list);
   1824 		config_devdelete(dv);
   1825 	}
   1826 }
   1827 
   1828 /*
   1829  * Detach a device.  Optionally forced (e.g. because of hardware
   1830  * removal) and quiet.  Returns zero if successful, non-zero
   1831  * (an error code) otherwise.
   1832  *
   1833  * Note that this code wants to be run from a process context, so
   1834  * that the detach can sleep to allow processes which have a device
   1835  * open to run and unwind their stacks.
   1836  */
   1837 int
   1838 config_detach(device_t dev, int flags)
   1839 {
   1840 	struct alldevs_foray af;
   1841 	struct cftable *ct;
   1842 	cfdata_t cf;
   1843 	const struct cfattach *ca;
   1844 	struct cfdriver *cd;
   1845 	device_t d __diagused;
   1846 	int rv = 0;
   1847 
   1848 	cf = dev->dv_cfdata;
   1849 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1850 		cf->cf_fstate == FSTATE_STAR),
   1851 	    "config_detach: %s: bad device fstate: %d",
   1852 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1853 
   1854 	cd = dev->dv_cfdriver;
   1855 	KASSERT(cd != NULL);
   1856 
   1857 	ca = dev->dv_cfattach;
   1858 	KASSERT(ca != NULL);
   1859 
   1860 	mutex_enter(&alldevs_lock);
   1861 	if (dev->dv_del_gen != 0) {
   1862 		mutex_exit(&alldevs_lock);
   1863 #ifdef DIAGNOSTIC
   1864 		printf("%s: %s is already detached\n", __func__,
   1865 		    device_xname(dev));
   1866 #endif /* DIAGNOSTIC */
   1867 		return ENOENT;
   1868 	}
   1869 	alldevs_nwrite++;
   1870 	mutex_exit(&alldevs_lock);
   1871 
   1872 	if (!detachall &&
   1873 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1874 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1875 		rv = EOPNOTSUPP;
   1876 	} else if (ca->ca_detach != NULL) {
   1877 		rv = (*ca->ca_detach)(dev, flags);
   1878 	} else
   1879 		rv = EOPNOTSUPP;
   1880 
   1881 	/*
   1882 	 * If it was not possible to detach the device, then we either
   1883 	 * panic() (for the forced but failed case), or return an error.
   1884 	 *
   1885 	 * If it was possible to detach the device, ensure that the
   1886 	 * device is deactivated.
   1887 	 */
   1888 	if (rv == 0)
   1889 		dev->dv_flags &= ~DVF_ACTIVE;
   1890 	else if ((flags & DETACH_FORCE) == 0)
   1891 		goto out;
   1892 	else {
   1893 		panic("config_detach: forced detach of %s failed (%d)",
   1894 		    device_xname(dev), rv);
   1895 	}
   1896 
   1897 	/*
   1898 	 * The device has now been successfully detached.
   1899 	 */
   1900 
   1901 	/* Let userland know */
   1902 	devmon_report_device(dev, false);
   1903 
   1904 #ifdef DIAGNOSTIC
   1905 	/*
   1906 	 * Sanity: If you're successfully detached, you should have no
   1907 	 * children.  (Note that because children must be attached
   1908 	 * after parents, we only need to search the latter part of
   1909 	 * the list.)
   1910 	 */
   1911 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1912 	    d = TAILQ_NEXT(d, dv_list)) {
   1913 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1914 			printf("config_detach: detached device %s"
   1915 			    " has children %s\n", device_xname(dev),
   1916 			    device_xname(d));
   1917 			panic("config_detach");
   1918 		}
   1919 	}
   1920 #endif
   1921 
   1922 	/* notify the parent that the child is gone */
   1923 	if (dev->dv_parent) {
   1924 		device_t p = dev->dv_parent;
   1925 		if (p->dv_cfattach->ca_childdetached)
   1926 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1927 	}
   1928 
   1929 	/*
   1930 	 * Mark cfdata to show that the unit can be reused, if possible.
   1931 	 */
   1932 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1933 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1934 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1935 				if (cf->cf_fstate == FSTATE_FOUND &&
   1936 				    cf->cf_unit == dev->dv_unit)
   1937 					cf->cf_fstate = FSTATE_NOTFOUND;
   1938 			}
   1939 		}
   1940 	}
   1941 
   1942 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1943 		aprint_normal_dev(dev, "detached\n");
   1944 
   1945 out:
   1946 	config_alldevs_enter(&af);
   1947 	KASSERT(alldevs_nwrite != 0);
   1948 	--alldevs_nwrite;
   1949 	if (rv == 0 && dev->dv_del_gen == 0) {
   1950 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1951 			config_devunlink(dev, &af.af_garbage);
   1952 		else {
   1953 			dev->dv_del_gen = alldevs_gen;
   1954 			alldevs_garbage = true;
   1955 		}
   1956 	}
   1957 	config_alldevs_exit(&af);
   1958 
   1959 	return rv;
   1960 }
   1961 
   1962 int
   1963 config_detach_children(device_t parent, int flags)
   1964 {
   1965 	device_t dv;
   1966 	deviter_t di;
   1967 	int error = 0;
   1968 
   1969 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1970 	     dv = deviter_next(&di)) {
   1971 		if (device_parent(dv) != parent)
   1972 			continue;
   1973 		if ((error = config_detach(dv, flags)) != 0)
   1974 			break;
   1975 	}
   1976 	deviter_release(&di);
   1977 	return error;
   1978 }
   1979 
   1980 device_t
   1981 shutdown_first(struct shutdown_state *s)
   1982 {
   1983 	if (!s->initialized) {
   1984 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1985 		s->initialized = true;
   1986 	}
   1987 	return shutdown_next(s);
   1988 }
   1989 
   1990 device_t
   1991 shutdown_next(struct shutdown_state *s)
   1992 {
   1993 	device_t dv;
   1994 
   1995 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1996 		;
   1997 
   1998 	if (dv == NULL)
   1999 		s->initialized = false;
   2000 
   2001 	return dv;
   2002 }
   2003 
   2004 bool
   2005 config_detach_all(int how)
   2006 {
   2007 	static struct shutdown_state s;
   2008 	device_t curdev;
   2009 	bool progress = false;
   2010 	int flags;
   2011 
   2012 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2013 		return false;
   2014 
   2015 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2016 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2017 	else
   2018 		flags = DETACH_SHUTDOWN;
   2019 
   2020 	for (curdev = shutdown_first(&s); curdev != NULL;
   2021 	     curdev = shutdown_next(&s)) {
   2022 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2023 		if (config_detach(curdev, flags) == 0) {
   2024 			progress = true;
   2025 			aprint_debug("success.");
   2026 		} else
   2027 			aprint_debug("failed.");
   2028 	}
   2029 	return progress;
   2030 }
   2031 
   2032 static bool
   2033 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2034 {
   2035 	device_t dv;
   2036 
   2037 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2038 		if (device_parent(dv) == ancestor)
   2039 			return true;
   2040 	}
   2041 	return false;
   2042 }
   2043 
   2044 int
   2045 config_deactivate(device_t dev)
   2046 {
   2047 	deviter_t di;
   2048 	const struct cfattach *ca;
   2049 	device_t descendant;
   2050 	int s, rv = 0, oflags;
   2051 
   2052 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2053 	     descendant != NULL;
   2054 	     descendant = deviter_next(&di)) {
   2055 		if (dev != descendant &&
   2056 		    !device_is_ancestor_of(dev, descendant))
   2057 			continue;
   2058 
   2059 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2060 			continue;
   2061 
   2062 		ca = descendant->dv_cfattach;
   2063 		oflags = descendant->dv_flags;
   2064 
   2065 		descendant->dv_flags &= ~DVF_ACTIVE;
   2066 		if (ca->ca_activate == NULL)
   2067 			continue;
   2068 		s = splhigh();
   2069 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2070 		splx(s);
   2071 		if (rv != 0)
   2072 			descendant->dv_flags = oflags;
   2073 	}
   2074 	deviter_release(&di);
   2075 	return rv;
   2076 }
   2077 
   2078 /*
   2079  * Defer the configuration of the specified device until all
   2080  * of its parent's devices have been attached.
   2081  */
   2082 void
   2083 config_defer(device_t dev, void (*func)(device_t))
   2084 {
   2085 	struct deferred_config *dc;
   2086 
   2087 	if (dev->dv_parent == NULL)
   2088 		panic("config_defer: can't defer config of a root device");
   2089 
   2090 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2091 
   2092 	config_pending_incr(dev);
   2093 
   2094 	mutex_enter(&config_misc_lock);
   2095 #ifdef DIAGNOSTIC
   2096 	struct deferred_config *odc;
   2097 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2098 		if (odc->dc_dev == dev)
   2099 			panic("config_defer: deferred twice");
   2100 	}
   2101 #endif
   2102 	dc->dc_dev = dev;
   2103 	dc->dc_func = func;
   2104 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2105 	mutex_exit(&config_misc_lock);
   2106 }
   2107 
   2108 /*
   2109  * Defer some autoconfiguration for a device until after interrupts
   2110  * are enabled.
   2111  */
   2112 void
   2113 config_interrupts(device_t dev, void (*func)(device_t))
   2114 {
   2115 	struct deferred_config *dc;
   2116 
   2117 	/*
   2118 	 * If interrupts are enabled, callback now.
   2119 	 */
   2120 	if (cold == 0) {
   2121 		(*func)(dev);
   2122 		return;
   2123 	}
   2124 
   2125 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2126 
   2127 	config_pending_incr(dev);
   2128 
   2129 	mutex_enter(&config_misc_lock);
   2130 #ifdef DIAGNOSTIC
   2131 	struct deferred_config *odc;
   2132 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2133 		if (odc->dc_dev == dev)
   2134 			panic("config_interrupts: deferred twice");
   2135 	}
   2136 #endif
   2137 	dc->dc_dev = dev;
   2138 	dc->dc_func = func;
   2139 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2140 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2141 	mutex_exit(&config_misc_lock);
   2142 }
   2143 
   2144 /*
   2145  * Defer some autoconfiguration for a device until after root file system
   2146  * is mounted (to load firmware etc).
   2147  */
   2148 void
   2149 config_mountroot(device_t dev, void (*func)(device_t))
   2150 {
   2151 	struct deferred_config *dc;
   2152 
   2153 	/*
   2154 	 * If root file system is mounted, callback now.
   2155 	 */
   2156 	if (root_is_mounted) {
   2157 		(*func)(dev);
   2158 		return;
   2159 	}
   2160 
   2161 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2162 
   2163 	mutex_enter(&config_misc_lock);
   2164 #ifdef DIAGNOSTIC
   2165 	struct deferred_config *odc;
   2166 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2167 		if (odc->dc_dev == dev)
   2168 			panic("%s: deferred twice", __func__);
   2169 	}
   2170 #endif
   2171 
   2172 	dc->dc_dev = dev;
   2173 	dc->dc_func = func;
   2174 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2175 	mutex_exit(&config_misc_lock);
   2176 }
   2177 
   2178 /*
   2179  * Process a deferred configuration queue.
   2180  */
   2181 static void
   2182 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2183 {
   2184 	struct deferred_config *dc;
   2185 
   2186 	mutex_enter(&config_misc_lock);
   2187 	dc = TAILQ_FIRST(queue);
   2188 	while (dc) {
   2189 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2190 			TAILQ_REMOVE(queue, dc, dc_queue);
   2191 			mutex_exit(&config_misc_lock);
   2192 
   2193 			(*dc->dc_func)(dc->dc_dev);
   2194 			config_pending_decr(dc->dc_dev);
   2195 			kmem_free(dc, sizeof(*dc));
   2196 
   2197 			mutex_enter(&config_misc_lock);
   2198 			/* Restart, queue might have changed */
   2199 			dc = TAILQ_FIRST(queue);
   2200 		} else {
   2201 			dc = TAILQ_NEXT(dc, dc_queue);
   2202 		}
   2203 	}
   2204 	mutex_exit(&config_misc_lock);
   2205 }
   2206 
   2207 /*
   2208  * Manipulate the config_pending semaphore.
   2209  */
   2210 void
   2211 config_pending_incr(device_t dev)
   2212 {
   2213 
   2214 	mutex_enter(&config_misc_lock);
   2215 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2216 	    "%s: excess config_pending_incr", device_xname(dev));
   2217 	if (dev->dv_pending++ == 0)
   2218 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2219 #ifdef DEBUG_AUTOCONF
   2220 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2221 #endif
   2222 	mutex_exit(&config_misc_lock);
   2223 }
   2224 
   2225 void
   2226 config_pending_decr(device_t dev)
   2227 {
   2228 
   2229 	mutex_enter(&config_misc_lock);
   2230 	KASSERTMSG(dev->dv_pending > 0,
   2231 	    "%s: excess config_pending_decr", device_xname(dev));
   2232 	if (--dev->dv_pending == 0)
   2233 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2234 #ifdef DEBUG_AUTOCONF
   2235 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2236 #endif
   2237 	if (TAILQ_EMPTY(&config_pending))
   2238 		cv_broadcast(&config_misc_cv);
   2239 	mutex_exit(&config_misc_lock);
   2240 }
   2241 
   2242 /*
   2243  * Register a "finalization" routine.  Finalization routines are
   2244  * called iteratively once all real devices have been found during
   2245  * autoconfiguration, for as long as any one finalizer has done
   2246  * any work.
   2247  */
   2248 int
   2249 config_finalize_register(device_t dev, int (*fn)(device_t))
   2250 {
   2251 	struct finalize_hook *f;
   2252 
   2253 	/*
   2254 	 * If finalization has already been done, invoke the
   2255 	 * callback function now.
   2256 	 */
   2257 	if (config_finalize_done) {
   2258 		while ((*fn)(dev) != 0)
   2259 			/* loop */ ;
   2260 		return 0;
   2261 	}
   2262 
   2263 	/* Ensure this isn't already on the list. */
   2264 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2265 		if (f->f_func == fn && f->f_dev == dev)
   2266 			return EEXIST;
   2267 	}
   2268 
   2269 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2270 	f->f_func = fn;
   2271 	f->f_dev = dev;
   2272 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2273 
   2274 	return 0;
   2275 }
   2276 
   2277 void
   2278 config_finalize(void)
   2279 {
   2280 	struct finalize_hook *f;
   2281 	struct pdevinit *pdev;
   2282 	extern struct pdevinit pdevinit[];
   2283 	int errcnt, rv;
   2284 
   2285 	/*
   2286 	 * Now that device driver threads have been created, wait for
   2287 	 * them to finish any deferred autoconfiguration.
   2288 	 */
   2289 	mutex_enter(&config_misc_lock);
   2290 	while (!TAILQ_EMPTY(&config_pending)) {
   2291 		device_t dev;
   2292 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2293 			aprint_debug_dev(dev, "holding up boot\n");
   2294 		cv_wait(&config_misc_cv, &config_misc_lock);
   2295 	}
   2296 	mutex_exit(&config_misc_lock);
   2297 
   2298 	KERNEL_LOCK(1, NULL);
   2299 
   2300 	/* Attach pseudo-devices. */
   2301 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2302 		(*pdev->pdev_attach)(pdev->pdev_count);
   2303 
   2304 	/* Run the hooks until none of them does any work. */
   2305 	do {
   2306 		rv = 0;
   2307 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2308 			rv |= (*f->f_func)(f->f_dev);
   2309 	} while (rv != 0);
   2310 
   2311 	config_finalize_done = 1;
   2312 
   2313 	/* Now free all the hooks. */
   2314 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2315 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2316 		kmem_free(f, sizeof(*f));
   2317 	}
   2318 
   2319 	KERNEL_UNLOCK_ONE(NULL);
   2320 
   2321 	errcnt = aprint_get_error_count();
   2322 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2323 	    (boothowto & AB_VERBOSE) == 0) {
   2324 		mutex_enter(&config_misc_lock);
   2325 		if (config_do_twiddle) {
   2326 			config_do_twiddle = 0;
   2327 			printf_nolog(" done.\n");
   2328 		}
   2329 		mutex_exit(&config_misc_lock);
   2330 	}
   2331 	if (errcnt != 0) {
   2332 		printf("WARNING: %d error%s while detecting hardware; "
   2333 		    "check system log.\n", errcnt,
   2334 		    errcnt == 1 ? "" : "s");
   2335 	}
   2336 }
   2337 
   2338 void
   2339 config_twiddle_init(void)
   2340 {
   2341 
   2342 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2343 		config_do_twiddle = 1;
   2344 	}
   2345 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2346 }
   2347 
   2348 void
   2349 config_twiddle_fn(void *cookie)
   2350 {
   2351 
   2352 	mutex_enter(&config_misc_lock);
   2353 	if (config_do_twiddle) {
   2354 		twiddle();
   2355 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2356 	}
   2357 	mutex_exit(&config_misc_lock);
   2358 }
   2359 
   2360 static void
   2361 config_alldevs_enter(struct alldevs_foray *af)
   2362 {
   2363 	TAILQ_INIT(&af->af_garbage);
   2364 	mutex_enter(&alldevs_lock);
   2365 	config_collect_garbage(&af->af_garbage);
   2366 }
   2367 
   2368 static void
   2369 config_alldevs_exit(struct alldevs_foray *af)
   2370 {
   2371 	mutex_exit(&alldevs_lock);
   2372 	config_dump_garbage(&af->af_garbage);
   2373 }
   2374 
   2375 /*
   2376  * device_lookup:
   2377  *
   2378  *	Look up a device instance for a given driver.
   2379  */
   2380 device_t
   2381 device_lookup(cfdriver_t cd, int unit)
   2382 {
   2383 	device_t dv;
   2384 
   2385 	mutex_enter(&alldevs_lock);
   2386 	if (unit < 0 || unit >= cd->cd_ndevs)
   2387 		dv = NULL;
   2388 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2389 		dv = NULL;
   2390 	mutex_exit(&alldevs_lock);
   2391 
   2392 	return dv;
   2393 }
   2394 
   2395 /*
   2396  * device_lookup_private:
   2397  *
   2398  *	Look up a softc instance for a given driver.
   2399  */
   2400 void *
   2401 device_lookup_private(cfdriver_t cd, int unit)
   2402 {
   2403 
   2404 	return device_private(device_lookup(cd, unit));
   2405 }
   2406 
   2407 /*
   2408  * device_find_by_xname:
   2409  *
   2410  *	Returns the device of the given name or NULL if it doesn't exist.
   2411  */
   2412 device_t
   2413 device_find_by_xname(const char *name)
   2414 {
   2415 	device_t dv;
   2416 	deviter_t di;
   2417 
   2418 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2419 		if (strcmp(device_xname(dv), name) == 0)
   2420 			break;
   2421 	}
   2422 	deviter_release(&di);
   2423 
   2424 	return dv;
   2425 }
   2426 
   2427 /*
   2428  * device_find_by_driver_unit:
   2429  *
   2430  *	Returns the device of the given driver name and unit or
   2431  *	NULL if it doesn't exist.
   2432  */
   2433 device_t
   2434 device_find_by_driver_unit(const char *name, int unit)
   2435 {
   2436 	struct cfdriver *cd;
   2437 
   2438 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2439 		return NULL;
   2440 	return device_lookup(cd, unit);
   2441 }
   2442 
   2443 static bool
   2444 match_strcmp(const char * const s1, const char * const s2)
   2445 {
   2446 	return strcmp(s1, s2) == 0;
   2447 }
   2448 
   2449 static bool
   2450 match_pmatch(const char * const s1, const char * const s2)
   2451 {
   2452 	return pmatch(s1, s2, NULL) == 2;
   2453 }
   2454 
   2455 static bool
   2456 strarray_match_internal(const char ** const strings,
   2457     unsigned int const nstrings, const char * const str,
   2458     unsigned int * const indexp,
   2459     bool (*match_fn)(const char *, const char *))
   2460 {
   2461 	unsigned int i;
   2462 
   2463 	if (strings == NULL || nstrings == 0) {
   2464 		return false;
   2465 	}
   2466 
   2467 	for (i = 0; i < nstrings; i++) {
   2468 		if ((*match_fn)(strings[i], str)) {
   2469 			*indexp = i;
   2470 			return true;
   2471 		}
   2472 	}
   2473 
   2474 	return false;
   2475 }
   2476 
   2477 static int
   2478 strarray_match(const char ** const strings, unsigned int const nstrings,
   2479     const char * const str)
   2480 {
   2481 	unsigned int idx;
   2482 
   2483 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2484 				    match_strcmp)) {
   2485 		return (int)(nstrings - idx);
   2486 	}
   2487 	return 0;
   2488 }
   2489 
   2490 static int
   2491 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2492     const char * const pattern)
   2493 {
   2494 	unsigned int idx;
   2495 
   2496 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2497 				    match_pmatch)) {
   2498 		return (int)(nstrings - idx);
   2499 	}
   2500 	return 0;
   2501 }
   2502 
   2503 static int
   2504 device_compatible_match_strarray_internal(
   2505     const char **device_compats, int ndevice_compats,
   2506     const struct device_compatible_entry *driver_compats,
   2507     const struct device_compatible_entry **matching_entryp,
   2508     int (*match_fn)(const char **, unsigned int, const char *))
   2509 {
   2510 	const struct device_compatible_entry *dce = NULL;
   2511 	int rv;
   2512 
   2513 	if (ndevice_compats == 0 || device_compats == NULL ||
   2514 	    driver_compats == NULL)
   2515 		return 0;
   2516 
   2517 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2518 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2519 		if (rv != 0) {
   2520 			if (matching_entryp != NULL) {
   2521 				*matching_entryp = dce;
   2522 			}
   2523 			return rv;
   2524 		}
   2525 	}
   2526 	return 0;
   2527 }
   2528 
   2529 /*
   2530  * device_compatible_match:
   2531  *
   2532  *	Match a driver's "compatible" data against a device's
   2533  *	"compatible" strings.  Returns resulted weighted by
   2534  *	which device "compatible" string was matched.
   2535  */
   2536 int
   2537 device_compatible_match(const char **device_compats, int ndevice_compats,
   2538     const struct device_compatible_entry *driver_compats)
   2539 {
   2540 	return device_compatible_match_strarray_internal(device_compats,
   2541 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2542 }
   2543 
   2544 /*
   2545  * device_compatible_pmatch:
   2546  *
   2547  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2548  *	the device "compatible" strings against patterns in the
   2549  *	driver's "compatible" data.
   2550  */
   2551 int
   2552 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2553     const struct device_compatible_entry *driver_compats)
   2554 {
   2555 	return device_compatible_match_strarray_internal(device_compats,
   2556 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2557 }
   2558 
   2559 static int
   2560 device_compatible_match_strlist_internal(
   2561     const char * const device_compats, size_t const device_compatsize,
   2562     const struct device_compatible_entry *driver_compats,
   2563     const struct device_compatible_entry **matching_entryp,
   2564     int (*match_fn)(const char *, size_t, const char *))
   2565 {
   2566 	const struct device_compatible_entry *dce = NULL;
   2567 	int rv;
   2568 
   2569 	if (device_compats == NULL || device_compatsize == 0 ||
   2570 	    driver_compats == NULL)
   2571 		return 0;
   2572 
   2573 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2574 		rv = (*match_fn)(device_compats, device_compatsize,
   2575 		    dce->compat);
   2576 		if (rv != 0) {
   2577 			if (matching_entryp != NULL) {
   2578 				*matching_entryp = dce;
   2579 			}
   2580 			return rv;
   2581 		}
   2582 	}
   2583 	return 0;
   2584 }
   2585 
   2586 /*
   2587  * device_compatible_match_strlist:
   2588  *
   2589  *	Like device_compatible_match(), but take the device
   2590  *	"compatible" strings as an OpenFirmware-style string
   2591  *	list.
   2592  */
   2593 int
   2594 device_compatible_match_strlist(
   2595     const char * const device_compats, size_t const device_compatsize,
   2596     const struct device_compatible_entry *driver_compats)
   2597 {
   2598 	return device_compatible_match_strlist_internal(device_compats,
   2599 	    device_compatsize, driver_compats, NULL, strlist_match);
   2600 }
   2601 
   2602 /*
   2603  * device_compatible_pmatch_strlist:
   2604  *
   2605  *	Like device_compatible_pmatch(), but take the device
   2606  *	"compatible" strings as an OpenFirmware-style string
   2607  *	list.
   2608  */
   2609 int
   2610 device_compatible_pmatch_strlist(
   2611     const char * const device_compats, size_t const device_compatsize,
   2612     const struct device_compatible_entry *driver_compats)
   2613 {
   2614 	return device_compatible_match_strlist_internal(device_compats,
   2615 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2616 }
   2617 
   2618 static int
   2619 device_compatible_match_id_internal(
   2620     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2621     const struct device_compatible_entry *driver_compats,
   2622     const struct device_compatible_entry **matching_entryp)
   2623 {
   2624 	const struct device_compatible_entry *dce = NULL;
   2625 
   2626 	if (mask == 0)
   2627 		return 0;
   2628 
   2629 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2630 		if ((id & mask) == dce->id) {
   2631 			if (matching_entryp != NULL) {
   2632 				*matching_entryp = dce;
   2633 			}
   2634 			return 1;
   2635 		}
   2636 	}
   2637 	return 0;
   2638 }
   2639 
   2640 /*
   2641  * device_compatible_match_id:
   2642  *
   2643  *	Like device_compatible_match(), but takes a single
   2644  *	unsigned integer device ID.
   2645  */
   2646 int
   2647 device_compatible_match_id(
   2648     uintptr_t const id, uintptr_t const sentinel_id,
   2649     const struct device_compatible_entry *driver_compats)
   2650 {
   2651 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2652 	    sentinel_id, driver_compats, NULL);
   2653 }
   2654 
   2655 /*
   2656  * device_compatible_lookup:
   2657  *
   2658  *	Look up and return the device_compatible_entry, using the
   2659  *	same matching criteria used by device_compatible_match().
   2660  */
   2661 const struct device_compatible_entry *
   2662 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2663 			 const struct device_compatible_entry *driver_compats)
   2664 {
   2665 	const struct device_compatible_entry *dce;
   2666 
   2667 	if (device_compatible_match_strarray_internal(device_compats,
   2668 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2669 		return dce;
   2670 	}
   2671 	return NULL;
   2672 }
   2673 
   2674 /*
   2675  * device_compatible_plookup:
   2676  *
   2677  *	Look up and return the device_compatible_entry, using the
   2678  *	same matching criteria used by device_compatible_pmatch().
   2679  */
   2680 const struct device_compatible_entry *
   2681 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2682 			  const struct device_compatible_entry *driver_compats)
   2683 {
   2684 	const struct device_compatible_entry *dce;
   2685 
   2686 	if (device_compatible_match_strarray_internal(device_compats,
   2687 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2688 		return dce;
   2689 	}
   2690 	return NULL;
   2691 }
   2692 
   2693 /*
   2694  * device_compatible_lookup_strlist:
   2695  *
   2696  *	Like device_compatible_lookup(), but take the device
   2697  *	"compatible" strings as an OpenFirmware-style string
   2698  *	list.
   2699  */
   2700 const struct device_compatible_entry *
   2701 device_compatible_lookup_strlist(
   2702     const char * const device_compats, size_t const device_compatsize,
   2703     const struct device_compatible_entry *driver_compats)
   2704 {
   2705 	const struct device_compatible_entry *dce;
   2706 
   2707 	if (device_compatible_match_strlist_internal(device_compats,
   2708 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2709 		return dce;
   2710 	}
   2711 	return NULL;
   2712 }
   2713 
   2714 /*
   2715  * device_compatible_plookup_strlist:
   2716  *
   2717  *	Like device_compatible_plookup(), but take the device
   2718  *	"compatible" strings as an OpenFirmware-style string
   2719  *	list.
   2720  */
   2721 const struct device_compatible_entry *
   2722 device_compatible_plookup_strlist(
   2723     const char * const device_compats, size_t const device_compatsize,
   2724     const struct device_compatible_entry *driver_compats)
   2725 {
   2726 	const struct device_compatible_entry *dce;
   2727 
   2728 	if (device_compatible_match_strlist_internal(device_compats,
   2729 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2730 		return dce;
   2731 	}
   2732 	return NULL;
   2733 }
   2734 
   2735 /*
   2736  * device_compatible_lookup_id:
   2737  *
   2738  *	Like device_compatible_lookup(), but takes a single
   2739  *	unsigned integer device ID.
   2740  */
   2741 const struct device_compatible_entry *
   2742 device_compatible_lookup_id(
   2743     uintptr_t const id, uintptr_t const sentinel_id,
   2744     const struct device_compatible_entry *driver_compats)
   2745 {
   2746 	const struct device_compatible_entry *dce;
   2747 
   2748 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2749 	    sentinel_id, driver_compats, &dce)) {
   2750 		return dce;
   2751 	}
   2752 	return NULL;
   2753 }
   2754 
   2755 /*
   2756  * Power management related functions.
   2757  */
   2758 
   2759 bool
   2760 device_pmf_is_registered(device_t dev)
   2761 {
   2762 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2763 }
   2764 
   2765 bool
   2766 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2767 {
   2768 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2769 		return true;
   2770 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2771 		return false;
   2772 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2773 	    dev->dv_driver_suspend != NULL &&
   2774 	    !(*dev->dv_driver_suspend)(dev, qual))
   2775 		return false;
   2776 
   2777 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2778 	return true;
   2779 }
   2780 
   2781 bool
   2782 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2783 {
   2784 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2785 		return true;
   2786 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2787 		return false;
   2788 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2789 	    dev->dv_driver_resume != NULL &&
   2790 	    !(*dev->dv_driver_resume)(dev, qual))
   2791 		return false;
   2792 
   2793 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2794 	return true;
   2795 }
   2796 
   2797 bool
   2798 device_pmf_driver_shutdown(device_t dev, int how)
   2799 {
   2800 
   2801 	if (*dev->dv_driver_shutdown != NULL &&
   2802 	    !(*dev->dv_driver_shutdown)(dev, how))
   2803 		return false;
   2804 	return true;
   2805 }
   2806 
   2807 bool
   2808 device_pmf_driver_register(device_t dev,
   2809     bool (*suspend)(device_t, const pmf_qual_t *),
   2810     bool (*resume)(device_t, const pmf_qual_t *),
   2811     bool (*shutdown)(device_t, int))
   2812 {
   2813 	dev->dv_driver_suspend = suspend;
   2814 	dev->dv_driver_resume = resume;
   2815 	dev->dv_driver_shutdown = shutdown;
   2816 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2817 	return true;
   2818 }
   2819 
   2820 static const char *
   2821 curlwp_name(void)
   2822 {
   2823 	if (curlwp->l_name != NULL)
   2824 		return curlwp->l_name;
   2825 	else
   2826 		return curlwp->l_proc->p_comm;
   2827 }
   2828 
   2829 void
   2830 device_pmf_driver_deregister(device_t dev)
   2831 {
   2832 	device_lock_t dvl = device_getlock(dev);
   2833 
   2834 	dev->dv_driver_suspend = NULL;
   2835 	dev->dv_driver_resume = NULL;
   2836 
   2837 	mutex_enter(&dvl->dvl_mtx);
   2838 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2839 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2840 		/* Wake a thread that waits for the lock.  That
   2841 		 * thread will fail to acquire the lock, and then
   2842 		 * it will wake the next thread that waits for the
   2843 		 * lock, or else it will wake us.
   2844 		 */
   2845 		cv_signal(&dvl->dvl_cv);
   2846 		pmflock_debug(dev, __func__, __LINE__);
   2847 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2848 		pmflock_debug(dev, __func__, __LINE__);
   2849 	}
   2850 	mutex_exit(&dvl->dvl_mtx);
   2851 }
   2852 
   2853 bool
   2854 device_pmf_driver_child_register(device_t dev)
   2855 {
   2856 	device_t parent = device_parent(dev);
   2857 
   2858 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2859 		return true;
   2860 	return (*parent->dv_driver_child_register)(dev);
   2861 }
   2862 
   2863 void
   2864 device_pmf_driver_set_child_register(device_t dev,
   2865     bool (*child_register)(device_t))
   2866 {
   2867 	dev->dv_driver_child_register = child_register;
   2868 }
   2869 
   2870 static void
   2871 pmflock_debug(device_t dev, const char *func, int line)
   2872 {
   2873 	device_lock_t dvl = device_getlock(dev);
   2874 
   2875 	aprint_debug_dev(dev,
   2876 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2877 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2878 }
   2879 
   2880 static bool
   2881 device_pmf_lock1(device_t dev)
   2882 {
   2883 	device_lock_t dvl = device_getlock(dev);
   2884 
   2885 	while (device_pmf_is_registered(dev) &&
   2886 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2887 		dvl->dvl_nwait++;
   2888 		pmflock_debug(dev, __func__, __LINE__);
   2889 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2890 		pmflock_debug(dev, __func__, __LINE__);
   2891 		dvl->dvl_nwait--;
   2892 	}
   2893 	if (!device_pmf_is_registered(dev)) {
   2894 		pmflock_debug(dev, __func__, __LINE__);
   2895 		/* We could not acquire the lock, but some other thread may
   2896 		 * wait for it, also.  Wake that thread.
   2897 		 */
   2898 		cv_signal(&dvl->dvl_cv);
   2899 		return false;
   2900 	}
   2901 	dvl->dvl_nlock++;
   2902 	dvl->dvl_holder = curlwp;
   2903 	pmflock_debug(dev, __func__, __LINE__);
   2904 	return true;
   2905 }
   2906 
   2907 bool
   2908 device_pmf_lock(device_t dev)
   2909 {
   2910 	bool rc;
   2911 	device_lock_t dvl = device_getlock(dev);
   2912 
   2913 	mutex_enter(&dvl->dvl_mtx);
   2914 	rc = device_pmf_lock1(dev);
   2915 	mutex_exit(&dvl->dvl_mtx);
   2916 
   2917 	return rc;
   2918 }
   2919 
   2920 void
   2921 device_pmf_unlock(device_t dev)
   2922 {
   2923 	device_lock_t dvl = device_getlock(dev);
   2924 
   2925 	KASSERT(dvl->dvl_nlock > 0);
   2926 	mutex_enter(&dvl->dvl_mtx);
   2927 	if (--dvl->dvl_nlock == 0)
   2928 		dvl->dvl_holder = NULL;
   2929 	cv_signal(&dvl->dvl_cv);
   2930 	pmflock_debug(dev, __func__, __LINE__);
   2931 	mutex_exit(&dvl->dvl_mtx);
   2932 }
   2933 
   2934 device_lock_t
   2935 device_getlock(device_t dev)
   2936 {
   2937 	return &dev->dv_lock;
   2938 }
   2939 
   2940 void *
   2941 device_pmf_bus_private(device_t dev)
   2942 {
   2943 	return dev->dv_bus_private;
   2944 }
   2945 
   2946 bool
   2947 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2948 {
   2949 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2950 		return true;
   2951 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2952 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2953 		return false;
   2954 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2955 	    dev->dv_bus_suspend != NULL &&
   2956 	    !(*dev->dv_bus_suspend)(dev, qual))
   2957 		return false;
   2958 
   2959 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2960 	return true;
   2961 }
   2962 
   2963 bool
   2964 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2965 {
   2966 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2967 		return true;
   2968 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2969 	    dev->dv_bus_resume != NULL &&
   2970 	    !(*dev->dv_bus_resume)(dev, qual))
   2971 		return false;
   2972 
   2973 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2974 	return true;
   2975 }
   2976 
   2977 bool
   2978 device_pmf_bus_shutdown(device_t dev, int how)
   2979 {
   2980 
   2981 	if (*dev->dv_bus_shutdown != NULL &&
   2982 	    !(*dev->dv_bus_shutdown)(dev, how))
   2983 		return false;
   2984 	return true;
   2985 }
   2986 
   2987 void
   2988 device_pmf_bus_register(device_t dev, void *priv,
   2989     bool (*suspend)(device_t, const pmf_qual_t *),
   2990     bool (*resume)(device_t, const pmf_qual_t *),
   2991     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2992 {
   2993 	dev->dv_bus_private = priv;
   2994 	dev->dv_bus_resume = resume;
   2995 	dev->dv_bus_suspend = suspend;
   2996 	dev->dv_bus_shutdown = shutdown;
   2997 	dev->dv_bus_deregister = deregister;
   2998 }
   2999 
   3000 void
   3001 device_pmf_bus_deregister(device_t dev)
   3002 {
   3003 	if (dev->dv_bus_deregister == NULL)
   3004 		return;
   3005 	(*dev->dv_bus_deregister)(dev);
   3006 	dev->dv_bus_private = NULL;
   3007 	dev->dv_bus_suspend = NULL;
   3008 	dev->dv_bus_resume = NULL;
   3009 	dev->dv_bus_deregister = NULL;
   3010 }
   3011 
   3012 void *
   3013 device_pmf_class_private(device_t dev)
   3014 {
   3015 	return dev->dv_class_private;
   3016 }
   3017 
   3018 bool
   3019 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3020 {
   3021 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3022 		return true;
   3023 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3024 	    dev->dv_class_suspend != NULL &&
   3025 	    !(*dev->dv_class_suspend)(dev, qual))
   3026 		return false;
   3027 
   3028 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3029 	return true;
   3030 }
   3031 
   3032 bool
   3033 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3034 {
   3035 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3036 		return true;
   3037 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3038 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3039 		return false;
   3040 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3041 	    dev->dv_class_resume != NULL &&
   3042 	    !(*dev->dv_class_resume)(dev, qual))
   3043 		return false;
   3044 
   3045 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3046 	return true;
   3047 }
   3048 
   3049 void
   3050 device_pmf_class_register(device_t dev, void *priv,
   3051     bool (*suspend)(device_t, const pmf_qual_t *),
   3052     bool (*resume)(device_t, const pmf_qual_t *),
   3053     void (*deregister)(device_t))
   3054 {
   3055 	dev->dv_class_private = priv;
   3056 	dev->dv_class_suspend = suspend;
   3057 	dev->dv_class_resume = resume;
   3058 	dev->dv_class_deregister = deregister;
   3059 }
   3060 
   3061 void
   3062 device_pmf_class_deregister(device_t dev)
   3063 {
   3064 	if (dev->dv_class_deregister == NULL)
   3065 		return;
   3066 	(*dev->dv_class_deregister)(dev);
   3067 	dev->dv_class_private = NULL;
   3068 	dev->dv_class_suspend = NULL;
   3069 	dev->dv_class_resume = NULL;
   3070 	dev->dv_class_deregister = NULL;
   3071 }
   3072 
   3073 bool
   3074 device_active(device_t dev, devactive_t type)
   3075 {
   3076 	size_t i;
   3077 
   3078 	if (dev->dv_activity_count == 0)
   3079 		return false;
   3080 
   3081 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3082 		if (dev->dv_activity_handlers[i] == NULL)
   3083 			break;
   3084 		(*dev->dv_activity_handlers[i])(dev, type);
   3085 	}
   3086 
   3087 	return true;
   3088 }
   3089 
   3090 bool
   3091 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3092 {
   3093 	void (**new_handlers)(device_t, devactive_t);
   3094 	void (**old_handlers)(device_t, devactive_t);
   3095 	size_t i, old_size, new_size;
   3096 	int s;
   3097 
   3098 	old_handlers = dev->dv_activity_handlers;
   3099 	old_size = dev->dv_activity_count;
   3100 
   3101 	KASSERT(old_size == 0 || old_handlers != NULL);
   3102 
   3103 	for (i = 0; i < old_size; ++i) {
   3104 		KASSERT(old_handlers[i] != handler);
   3105 		if (old_handlers[i] == NULL) {
   3106 			old_handlers[i] = handler;
   3107 			return true;
   3108 		}
   3109 	}
   3110 
   3111 	new_size = old_size + 4;
   3112 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3113 
   3114 	for (i = 0; i < old_size; ++i)
   3115 		new_handlers[i] = old_handlers[i];
   3116 	new_handlers[old_size] = handler;
   3117 	for (i = old_size+1; i < new_size; ++i)
   3118 		new_handlers[i] = NULL;
   3119 
   3120 	s = splhigh();
   3121 	dev->dv_activity_count = new_size;
   3122 	dev->dv_activity_handlers = new_handlers;
   3123 	splx(s);
   3124 
   3125 	if (old_size > 0)
   3126 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3127 
   3128 	return true;
   3129 }
   3130 
   3131 void
   3132 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3133 {
   3134 	void (**old_handlers)(device_t, devactive_t);
   3135 	size_t i, old_size;
   3136 	int s;
   3137 
   3138 	old_handlers = dev->dv_activity_handlers;
   3139 	old_size = dev->dv_activity_count;
   3140 
   3141 	for (i = 0; i < old_size; ++i) {
   3142 		if (old_handlers[i] == handler)
   3143 			break;
   3144 		if (old_handlers[i] == NULL)
   3145 			return; /* XXX panic? */
   3146 	}
   3147 
   3148 	if (i == old_size)
   3149 		return; /* XXX panic? */
   3150 
   3151 	for (; i < old_size - 1; ++i) {
   3152 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3153 			continue;
   3154 
   3155 		if (i == 0) {
   3156 			s = splhigh();
   3157 			dev->dv_activity_count = 0;
   3158 			dev->dv_activity_handlers = NULL;
   3159 			splx(s);
   3160 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3161 		}
   3162 		return;
   3163 	}
   3164 	old_handlers[i] = NULL;
   3165 }
   3166 
   3167 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3168 static bool
   3169 device_exists_at(device_t dv, devgen_t gen)
   3170 {
   3171 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3172 	    dv->dv_add_gen <= gen;
   3173 }
   3174 
   3175 static bool
   3176 deviter_visits(const deviter_t *di, device_t dv)
   3177 {
   3178 	return device_exists_at(dv, di->di_gen);
   3179 }
   3180 
   3181 /*
   3182  * Device Iteration
   3183  *
   3184  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3185  *     each device_t's in the device tree.
   3186  *
   3187  * deviter_init(di, flags): initialize the device iterator `di'
   3188  *     to "walk" the device tree.  deviter_next(di) will return
   3189  *     the first device_t in the device tree, or NULL if there are
   3190  *     no devices.
   3191  *
   3192  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3193  *     caller intends to modify the device tree by calling
   3194  *     config_detach(9) on devices in the order that the iterator
   3195  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3196  *     nearest the "root" of the device tree to be returned, first;
   3197  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3198  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3199  *     indicating both that deviter_init() should not respect any
   3200  *     locks on the device tree, and that deviter_next(di) may run
   3201  *     in more than one LWP before the walk has finished.
   3202  *
   3203  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3204  *     once.
   3205  *
   3206  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3207  *
   3208  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3209  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3210  *
   3211  * deviter_first(di, flags): initialize the device iterator `di'
   3212  *     and return the first device_t in the device tree, or NULL
   3213  *     if there are no devices.  The statement
   3214  *
   3215  *         dv = deviter_first(di);
   3216  *
   3217  *     is shorthand for
   3218  *
   3219  *         deviter_init(di);
   3220  *         dv = deviter_next(di);
   3221  *
   3222  * deviter_next(di): return the next device_t in the device tree,
   3223  *     or NULL if there are no more devices.  deviter_next(di)
   3224  *     is undefined if `di' was not initialized with deviter_init() or
   3225  *     deviter_first().
   3226  *
   3227  * deviter_release(di): stops iteration (subsequent calls to
   3228  *     deviter_next() will return NULL), releases any locks and
   3229  *     resources held by the device iterator.
   3230  *
   3231  * Device iteration does not return device_t's in any particular
   3232  * order.  An iterator will never return the same device_t twice.
   3233  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3234  * is called repeatedly on the same `di', it will eventually return
   3235  * NULL.  It is ok to attach/detach devices during device iteration.
   3236  */
   3237 void
   3238 deviter_init(deviter_t *di, deviter_flags_t flags)
   3239 {
   3240 	device_t dv;
   3241 
   3242 	memset(di, 0, sizeof(*di));
   3243 
   3244 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3245 		flags |= DEVITER_F_RW;
   3246 
   3247 	mutex_enter(&alldevs_lock);
   3248 	if ((flags & DEVITER_F_RW) != 0)
   3249 		alldevs_nwrite++;
   3250 	else
   3251 		alldevs_nread++;
   3252 	di->di_gen = alldevs_gen++;
   3253 	di->di_flags = flags;
   3254 
   3255 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3256 	case DEVITER_F_LEAVES_FIRST:
   3257 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3258 			if (!deviter_visits(di, dv))
   3259 				continue;
   3260 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3261 		}
   3262 		break;
   3263 	case DEVITER_F_ROOT_FIRST:
   3264 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3265 			if (!deviter_visits(di, dv))
   3266 				continue;
   3267 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3268 		}
   3269 		break;
   3270 	default:
   3271 		break;
   3272 	}
   3273 
   3274 	deviter_reinit(di);
   3275 	mutex_exit(&alldevs_lock);
   3276 }
   3277 
   3278 static void
   3279 deviter_reinit(deviter_t *di)
   3280 {
   3281 
   3282 	KASSERT(mutex_owned(&alldevs_lock));
   3283 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3284 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3285 	else
   3286 		di->di_prev = TAILQ_FIRST(&alldevs);
   3287 }
   3288 
   3289 device_t
   3290 deviter_first(deviter_t *di, deviter_flags_t flags)
   3291 {
   3292 
   3293 	deviter_init(di, flags);
   3294 	return deviter_next(di);
   3295 }
   3296 
   3297 static device_t
   3298 deviter_next2(deviter_t *di)
   3299 {
   3300 	device_t dv;
   3301 
   3302 	KASSERT(mutex_owned(&alldevs_lock));
   3303 
   3304 	dv = di->di_prev;
   3305 
   3306 	if (dv == NULL)
   3307 		return NULL;
   3308 
   3309 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3310 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3311 	else
   3312 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3313 
   3314 	return dv;
   3315 }
   3316 
   3317 static device_t
   3318 deviter_next1(deviter_t *di)
   3319 {
   3320 	device_t dv;
   3321 
   3322 	KASSERT(mutex_owned(&alldevs_lock));
   3323 
   3324 	do {
   3325 		dv = deviter_next2(di);
   3326 	} while (dv != NULL && !deviter_visits(di, dv));
   3327 
   3328 	return dv;
   3329 }
   3330 
   3331 device_t
   3332 deviter_next(deviter_t *di)
   3333 {
   3334 	device_t dv = NULL;
   3335 
   3336 	mutex_enter(&alldevs_lock);
   3337 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3338 	case 0:
   3339 		dv = deviter_next1(di);
   3340 		break;
   3341 	case DEVITER_F_LEAVES_FIRST:
   3342 		while (di->di_curdepth >= 0) {
   3343 			if ((dv = deviter_next1(di)) == NULL) {
   3344 				di->di_curdepth--;
   3345 				deviter_reinit(di);
   3346 			} else if (dv->dv_depth == di->di_curdepth)
   3347 				break;
   3348 		}
   3349 		break;
   3350 	case DEVITER_F_ROOT_FIRST:
   3351 		while (di->di_curdepth <= di->di_maxdepth) {
   3352 			if ((dv = deviter_next1(di)) == NULL) {
   3353 				di->di_curdepth++;
   3354 				deviter_reinit(di);
   3355 			} else if (dv->dv_depth == di->di_curdepth)
   3356 				break;
   3357 		}
   3358 		break;
   3359 	default:
   3360 		break;
   3361 	}
   3362 	mutex_exit(&alldevs_lock);
   3363 
   3364 	return dv;
   3365 }
   3366 
   3367 void
   3368 deviter_release(deviter_t *di)
   3369 {
   3370 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3371 
   3372 	mutex_enter(&alldevs_lock);
   3373 	if (rw)
   3374 		--alldevs_nwrite;
   3375 	else
   3376 		--alldevs_nread;
   3377 	/* XXX wake a garbage-collection thread */
   3378 	mutex_exit(&alldevs_lock);
   3379 }
   3380 
   3381 const char *
   3382 cfdata_ifattr(const struct cfdata *cf)
   3383 {
   3384 	return cf->cf_pspec->cfp_iattr;
   3385 }
   3386 
   3387 bool
   3388 ifattr_match(const char *snull, const char *t)
   3389 {
   3390 	return (snull == NULL) || strcmp(snull, t) == 0;
   3391 }
   3392 
   3393 void
   3394 null_childdetached(device_t self, device_t child)
   3395 {
   3396 	/* do nothing */
   3397 }
   3398 
   3399 static void
   3400 sysctl_detach_setup(struct sysctllog **clog)
   3401 {
   3402 
   3403 	sysctl_createv(clog, 0, NULL, NULL,
   3404 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3405 		CTLTYPE_BOOL, "detachall",
   3406 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3407 		NULL, 0, &detachall, 0,
   3408 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3409 }
   3410