Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.11
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.11 2021/04/04 19:12:27 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.11 2021/04/04 19:12:27 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_vattach(device_t, cfdata_t, void *, cfprint_t, cfarg_t,
    172 			       va_list);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 static struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 static struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 static int interrupt_config_threads = 8;
    202 static struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 static int mountroot_config_threads = 2;
    205 static lwp_t **mountroot_config_lwpids;
    206 static size_t mountroot_config_lwpids_size;
    207 bool root_is_mounted = false;
    208 
    209 static void config_process_deferred(struct deferred_config_head *, device_t);
    210 
    211 /* Hooks to finalize configuration once all real devices have been found. */
    212 struct finalize_hook {
    213 	TAILQ_ENTRY(finalize_hook) f_list;
    214 	int (*f_func)(device_t);
    215 	device_t f_dev;
    216 };
    217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    219 static int config_finalize_done;
    220 
    221 /* list of all devices */
    222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    223 static kmutex_t alldevs_lock __cacheline_aligned;
    224 static devgen_t alldevs_gen = 1;
    225 static int alldevs_nread = 0;
    226 static int alldevs_nwrite = 0;
    227 static bool alldevs_garbage = false;
    228 
    229 static struct devicelist config_pending =
    230     TAILQ_HEAD_INITIALIZER(config_pending);
    231 static kmutex_t config_misc_lock;
    232 static kcondvar_t config_misc_cv;
    233 
    234 static bool detachall = false;
    235 
    236 #define	STREQ(s1, s2)			\
    237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    238 
    239 static bool config_initialized = false;	/* config_init() has been called. */
    240 
    241 static int config_do_twiddle;
    242 static callout_t config_twiddle_ch;
    243 
    244 static void sysctl_detach_setup(struct sysctllog **);
    245 
    246 int no_devmon_insert(const char *, prop_dictionary_t);
    247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    248 
    249 typedef int (*cfdriver_fn)(struct cfdriver *);
    250 static int
    251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    253 	const char *style, bool dopanic)
    254 {
    255 	void (*pr)(const char *, ...) __printflike(1, 2) =
    256 	    dopanic ? panic : printf;
    257 	int i, error = 0, e2 __diagused;
    258 
    259 	for (i = 0; cfdriverv[i] != NULL; i++) {
    260 		if ((error = drv_do(cfdriverv[i])) != 0) {
    261 			pr("configure: `%s' driver %s failed: %d",
    262 			    cfdriverv[i]->cd_name, style, error);
    263 			goto bad;
    264 		}
    265 	}
    266 
    267 	KASSERT(error == 0);
    268 	return 0;
    269 
    270  bad:
    271 	printf("\n");
    272 	for (i--; i >= 0; i--) {
    273 		e2 = drv_undo(cfdriverv[i]);
    274 		KASSERT(e2 == 0);
    275 	}
    276 
    277 	return error;
    278 }
    279 
    280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    281 static int
    282 frob_cfattachvec(const struct cfattachinit *cfattachv,
    283 	cfattach_fn att_do, cfattach_fn att_undo,
    284 	const char *style, bool dopanic)
    285 {
    286 	const struct cfattachinit *cfai = NULL;
    287 	void (*pr)(const char *, ...) __printflike(1, 2) =
    288 	    dopanic ? panic : printf;
    289 	int j = 0, error = 0, e2 __diagused;
    290 
    291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    293 			if ((error = att_do(cfai->cfai_name,
    294 			    cfai->cfai_list[j])) != 0) {
    295 				pr("configure: attachment `%s' "
    296 				    "of `%s' driver %s failed: %d",
    297 				    cfai->cfai_list[j]->ca_name,
    298 				    cfai->cfai_name, style, error);
    299 				goto bad;
    300 			}
    301 		}
    302 	}
    303 
    304 	KASSERT(error == 0);
    305 	return 0;
    306 
    307  bad:
    308 	/*
    309 	 * Rollback in reverse order.  dunno if super-important, but
    310 	 * do that anyway.  Although the code looks a little like
    311 	 * someone did a little integration (in the math sense).
    312 	 */
    313 	printf("\n");
    314 	if (cfai) {
    315 		bool last;
    316 
    317 		for (last = false; last == false; ) {
    318 			if (cfai == &cfattachv[0])
    319 				last = true;
    320 			for (j--; j >= 0; j--) {
    321 				e2 = att_undo(cfai->cfai_name,
    322 				    cfai->cfai_list[j]);
    323 				KASSERT(e2 == 0);
    324 			}
    325 			if (!last) {
    326 				cfai--;
    327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    328 					;
    329 			}
    330 		}
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 
    345 	KASSERT(config_initialized == false);
    346 
    347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    348 
    349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	cv_init(&config_misc_cv, "cfgmisc");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    363 	    RND_FLAG_COLLECT_TIME);
    364 
    365 	config_initialized = true;
    366 }
    367 
    368 /*
    369  * Init or fini drivers and attachments.  Either all or none
    370  * are processed (via rollback).  It would be nice if this were
    371  * atomic to outside consumers, but with the current state of
    372  * locking ...
    373  */
    374 int
    375 config_init_component(struct cfdriver * const *cfdriverv,
    376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    377 {
    378 	int error;
    379 
    380 	if ((error = frob_cfdrivervec(cfdriverv,
    381 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    382 		return error;
    383 	if ((error = frob_cfattachvec(cfattachv,
    384 	    config_cfattach_attach, config_cfattach_detach,
    385 	    "init", false)) != 0) {
    386 		frob_cfdrivervec(cfdriverv,
    387 	            config_cfdriver_detach, NULL, "init rollback", true);
    388 		return error;
    389 	}
    390 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    391 		frob_cfattachvec(cfattachv,
    392 		    config_cfattach_detach, NULL, "init rollback", true);
    393 		frob_cfdrivervec(cfdriverv,
    394 	            config_cfdriver_detach, NULL, "init rollback", true);
    395 		return error;
    396 	}
    397 
    398 	return 0;
    399 }
    400 
    401 int
    402 config_fini_component(struct cfdriver * const *cfdriverv,
    403 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    404 {
    405 	int error;
    406 
    407 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    408 		return error;
    409 	if ((error = frob_cfattachvec(cfattachv,
    410 	    config_cfattach_detach, config_cfattach_attach,
    411 	    "fini", false)) != 0) {
    412 		if (config_cfdata_attach(cfdatav, 0) != 0)
    413 			panic("config_cfdata fini rollback failed");
    414 		return error;
    415 	}
    416 	if ((error = frob_cfdrivervec(cfdriverv,
    417 	    config_cfdriver_detach, config_cfdriver_attach,
    418 	    "fini", false)) != 0) {
    419 		frob_cfattachvec(cfattachv,
    420 	            config_cfattach_attach, NULL, "fini rollback", true);
    421 		if (config_cfdata_attach(cfdatav, 0) != 0)
    422 			panic("config_cfdata fini rollback failed");
    423 		return error;
    424 	}
    425 
    426 	return 0;
    427 }
    428 
    429 void
    430 config_init_mi(void)
    431 {
    432 
    433 	if (!config_initialized)
    434 		config_init();
    435 
    436 	sysctl_detach_setup(NULL);
    437 }
    438 
    439 void
    440 config_deferred(device_t dev)
    441 {
    442 	config_process_deferred(&deferred_config_queue, dev);
    443 	config_process_deferred(&interrupt_config_queue, dev);
    444 	config_process_deferred(&mountroot_config_queue, dev);
    445 }
    446 
    447 static void
    448 config_interrupts_thread(void *cookie)
    449 {
    450 	struct deferred_config *dc;
    451 	device_t dev;
    452 
    453 	mutex_enter(&config_misc_lock);
    454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    456 		mutex_exit(&config_misc_lock);
    457 
    458 		dev = dc->dc_dev;
    459 		(*dc->dc_func)(dev);
    460 		if (!device_pmf_is_registered(dev))
    461 			aprint_debug_dev(dev,
    462 			    "WARNING: power management not supported\n");
    463 		config_pending_decr(dev);
    464 		kmem_free(dc, sizeof(*dc));
    465 
    466 		mutex_enter(&config_misc_lock);
    467 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    468 	}
    469 	mutex_exit(&config_misc_lock);
    470 
    471 	kthread_exit(0);
    472 }
    473 
    474 void
    475 config_create_interruptthreads(void)
    476 {
    477 	int i;
    478 
    479 	for (i = 0; i < interrupt_config_threads; i++) {
    480 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    481 		    config_interrupts_thread, NULL, NULL, "configintr");
    482 	}
    483 }
    484 
    485 static void
    486 config_mountroot_thread(void *cookie)
    487 {
    488 	struct deferred_config *dc;
    489 
    490 	mutex_enter(&config_misc_lock);
    491 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    492 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    493 		mutex_exit(&config_misc_lock);
    494 
    495 		(*dc->dc_func)(dc->dc_dev);
    496 		kmem_free(dc, sizeof(*dc));
    497 
    498 		mutex_enter(&config_misc_lock);
    499 	}
    500 	mutex_exit(&config_misc_lock);
    501 
    502 	kthread_exit(0);
    503 }
    504 
    505 void
    506 config_create_mountrootthreads(void)
    507 {
    508 	int i;
    509 
    510 	if (!root_is_mounted)
    511 		root_is_mounted = true;
    512 
    513 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    514 				       mountroot_config_threads;
    515 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    516 					     KM_NOSLEEP);
    517 	KASSERT(mountroot_config_lwpids);
    518 	for (i = 0; i < mountroot_config_threads; i++) {
    519 		mountroot_config_lwpids[i] = 0;
    520 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    521 				     NULL, config_mountroot_thread, NULL,
    522 				     &mountroot_config_lwpids[i],
    523 				     "configroot");
    524 	}
    525 }
    526 
    527 void
    528 config_finalize_mountroot(void)
    529 {
    530 	int i, error;
    531 
    532 	for (i = 0; i < mountroot_config_threads; i++) {
    533 		if (mountroot_config_lwpids[i] == 0)
    534 			continue;
    535 
    536 		error = kthread_join(mountroot_config_lwpids[i]);
    537 		if (error)
    538 			printf("%s: thread %x joined with error %d\n",
    539 			       __func__, i, error);
    540 	}
    541 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    542 }
    543 
    544 /*
    545  * Announce device attach/detach to userland listeners.
    546  */
    547 
    548 int
    549 no_devmon_insert(const char *name, prop_dictionary_t p)
    550 {
    551 
    552 	return ENODEV;
    553 }
    554 
    555 static void
    556 devmon_report_device(device_t dev, bool isattach)
    557 {
    558 	prop_dictionary_t ev, dict = device_properties(dev);
    559 	const char *parent;
    560 	const char *what;
    561 	const char *where;
    562 	device_t pdev = device_parent(dev);
    563 
    564 	/* If currently no drvctl device, just return */
    565 	if (devmon_insert_vec == no_devmon_insert)
    566 		return;
    567 
    568 	ev = prop_dictionary_create();
    569 	if (ev == NULL)
    570 		return;
    571 
    572 	what = (isattach ? "device-attach" : "device-detach");
    573 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    574 	if (prop_dictionary_get_string(dict, "location", &where)) {
    575 		prop_dictionary_set_string(ev, "location", where);
    576 		aprint_debug("ev: %s %s at %s in [%s]\n",
    577 		    what, device_xname(dev), parent, where);
    578 	}
    579 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    580 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    581 		prop_object_release(ev);
    582 		return;
    583 	}
    584 
    585 	if ((*devmon_insert_vec)(what, ev) != 0)
    586 		prop_object_release(ev);
    587 }
    588 
    589 /*
    590  * Add a cfdriver to the system.
    591  */
    592 int
    593 config_cfdriver_attach(struct cfdriver *cd)
    594 {
    595 	struct cfdriver *lcd;
    596 
    597 	/* Make sure this driver isn't already in the system. */
    598 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    599 		if (STREQ(lcd->cd_name, cd->cd_name))
    600 			return EEXIST;
    601 	}
    602 
    603 	LIST_INIT(&cd->cd_attach);
    604 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    605 
    606 	return 0;
    607 }
    608 
    609 /*
    610  * Remove a cfdriver from the system.
    611  */
    612 int
    613 config_cfdriver_detach(struct cfdriver *cd)
    614 {
    615 	struct alldevs_foray af;
    616 	int i, rc = 0;
    617 
    618 	config_alldevs_enter(&af);
    619 	/* Make sure there are no active instances. */
    620 	for (i = 0; i < cd->cd_ndevs; i++) {
    621 		if (cd->cd_devs[i] != NULL) {
    622 			rc = EBUSY;
    623 			break;
    624 		}
    625 	}
    626 	config_alldevs_exit(&af);
    627 
    628 	if (rc != 0)
    629 		return rc;
    630 
    631 	/* ...and no attachments loaded. */
    632 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    633 		return EBUSY;
    634 
    635 	LIST_REMOVE(cd, cd_list);
    636 
    637 	KASSERT(cd->cd_devs == NULL);
    638 
    639 	return 0;
    640 }
    641 
    642 /*
    643  * Look up a cfdriver by name.
    644  */
    645 struct cfdriver *
    646 config_cfdriver_lookup(const char *name)
    647 {
    648 	struct cfdriver *cd;
    649 
    650 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    651 		if (STREQ(cd->cd_name, name))
    652 			return cd;
    653 	}
    654 
    655 	return NULL;
    656 }
    657 
    658 /*
    659  * Add a cfattach to the specified driver.
    660  */
    661 int
    662 config_cfattach_attach(const char *driver, struct cfattach *ca)
    663 {
    664 	struct cfattach *lca;
    665 	struct cfdriver *cd;
    666 
    667 	cd = config_cfdriver_lookup(driver);
    668 	if (cd == NULL)
    669 		return ESRCH;
    670 
    671 	/* Make sure this attachment isn't already on this driver. */
    672 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    673 		if (STREQ(lca->ca_name, ca->ca_name))
    674 			return EEXIST;
    675 	}
    676 
    677 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    678 
    679 	return 0;
    680 }
    681 
    682 /*
    683  * Remove a cfattach from the specified driver.
    684  */
    685 int
    686 config_cfattach_detach(const char *driver, struct cfattach *ca)
    687 {
    688 	struct alldevs_foray af;
    689 	struct cfdriver *cd;
    690 	device_t dev;
    691 	int i, rc = 0;
    692 
    693 	cd = config_cfdriver_lookup(driver);
    694 	if (cd == NULL)
    695 		return ESRCH;
    696 
    697 	config_alldevs_enter(&af);
    698 	/* Make sure there are no active instances. */
    699 	for (i = 0; i < cd->cd_ndevs; i++) {
    700 		if ((dev = cd->cd_devs[i]) == NULL)
    701 			continue;
    702 		if (dev->dv_cfattach == ca) {
    703 			rc = EBUSY;
    704 			break;
    705 		}
    706 	}
    707 	config_alldevs_exit(&af);
    708 
    709 	if (rc != 0)
    710 		return rc;
    711 
    712 	LIST_REMOVE(ca, ca_list);
    713 
    714 	return 0;
    715 }
    716 
    717 /*
    718  * Look up a cfattach by name.
    719  */
    720 static struct cfattach *
    721 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    722 {
    723 	struct cfattach *ca;
    724 
    725 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    726 		if (STREQ(ca->ca_name, atname))
    727 			return ca;
    728 	}
    729 
    730 	return NULL;
    731 }
    732 
    733 /*
    734  * Look up a cfattach by driver/attachment name.
    735  */
    736 struct cfattach *
    737 config_cfattach_lookup(const char *name, const char *atname)
    738 {
    739 	struct cfdriver *cd;
    740 
    741 	cd = config_cfdriver_lookup(name);
    742 	if (cd == NULL)
    743 		return NULL;
    744 
    745 	return config_cfattach_lookup_cd(cd, atname);
    746 }
    747 
    748 /*
    749  * Apply the matching function and choose the best.  This is used
    750  * a few times and we want to keep the code small.
    751  */
    752 static void
    753 mapply(struct matchinfo *m, cfdata_t cf)
    754 {
    755 	int pri;
    756 
    757 	if (m->fn != NULL) {
    758 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    759 	} else {
    760 		pri = config_match(m->parent, cf, m->aux);
    761 	}
    762 	if (pri > m->pri) {
    763 		m->match = cf;
    764 		m->pri = pri;
    765 	}
    766 }
    767 
    768 int
    769 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    770 {
    771 	const struct cfiattrdata *ci;
    772 	const struct cflocdesc *cl;
    773 	int nlocs, i;
    774 
    775 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    776 	KASSERT(ci);
    777 	nlocs = ci->ci_loclen;
    778 	KASSERT(!nlocs || locs);
    779 	for (i = 0; i < nlocs; i++) {
    780 		cl = &ci->ci_locdesc[i];
    781 		if (cl->cld_defaultstr != NULL &&
    782 		    cf->cf_loc[i] == cl->cld_default)
    783 			continue;
    784 		if (cf->cf_loc[i] == locs[i])
    785 			continue;
    786 		return 0;
    787 	}
    788 
    789 	return config_match(parent, cf, aux);
    790 }
    791 
    792 /*
    793  * Helper function: check whether the driver supports the interface attribute
    794  * and return its descriptor structure.
    795  */
    796 static const struct cfiattrdata *
    797 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    798 {
    799 	const struct cfiattrdata * const *cpp;
    800 
    801 	if (cd->cd_attrs == NULL)
    802 		return 0;
    803 
    804 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    805 		if (STREQ((*cpp)->ci_name, ia)) {
    806 			/* Match. */
    807 			return *cpp;
    808 		}
    809 	}
    810 	return 0;
    811 }
    812 
    813 #if defined(DIAGNOSTIC)
    814 static int
    815 cfdriver_iattr_count(const struct cfdriver *cd)
    816 {
    817 	const struct cfiattrdata * const *cpp;
    818 	int i;
    819 
    820 	if (cd->cd_attrs == NULL)
    821 		return 0;
    822 
    823 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    824 		i++;
    825 	}
    826 	return i;
    827 }
    828 #endif /* DIAGNOSTIC */
    829 
    830 /*
    831  * Lookup an interface attribute description by name.
    832  * If the driver is given, consider only its supported attributes.
    833  */
    834 const struct cfiattrdata *
    835 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    836 {
    837 	const struct cfdriver *d;
    838 	const struct cfiattrdata *ia;
    839 
    840 	if (cd)
    841 		return cfdriver_get_iattr(cd, name);
    842 
    843 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    844 		ia = cfdriver_get_iattr(d, name);
    845 		if (ia)
    846 			return ia;
    847 	}
    848 	return 0;
    849 }
    850 
    851 /*
    852  * Determine if `parent' is a potential parent for a device spec based
    853  * on `cfp'.
    854  */
    855 static int
    856 cfparent_match(const device_t parent, const struct cfparent *cfp)
    857 {
    858 	struct cfdriver *pcd;
    859 
    860 	/* We don't match root nodes here. */
    861 	if (cfp == NULL)
    862 		return 0;
    863 
    864 	pcd = parent->dv_cfdriver;
    865 	KASSERT(pcd != NULL);
    866 
    867 	/*
    868 	 * First, ensure this parent has the correct interface
    869 	 * attribute.
    870 	 */
    871 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    872 		return 0;
    873 
    874 	/*
    875 	 * If no specific parent device instance was specified (i.e.
    876 	 * we're attaching to the attribute only), we're done!
    877 	 */
    878 	if (cfp->cfp_parent == NULL)
    879 		return 1;
    880 
    881 	/*
    882 	 * Check the parent device's name.
    883 	 */
    884 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    885 		return 0;	/* not the same parent */
    886 
    887 	/*
    888 	 * Make sure the unit number matches.
    889 	 */
    890 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    891 	    cfp->cfp_unit == parent->dv_unit)
    892 		return 1;
    893 
    894 	/* Unit numbers don't match. */
    895 	return 0;
    896 }
    897 
    898 /*
    899  * Helper for config_cfdata_attach(): check all devices whether it could be
    900  * parent any attachment in the config data table passed, and rescan.
    901  */
    902 static void
    903 rescan_with_cfdata(const struct cfdata *cf)
    904 {
    905 	device_t d;
    906 	const struct cfdata *cf1;
    907 	deviter_t di;
    908 
    909 
    910 	/*
    911 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    912 	 * the outer loop.
    913 	 */
    914 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    915 
    916 		if (!(d->dv_cfattach->ca_rescan))
    917 			continue;
    918 
    919 		for (cf1 = cf; cf1->cf_name; cf1++) {
    920 
    921 			if (!cfparent_match(d, cf1->cf_pspec))
    922 				continue;
    923 
    924 			(*d->dv_cfattach->ca_rescan)(d,
    925 				cfdata_ifattr(cf1), cf1->cf_loc);
    926 
    927 			config_deferred(d);
    928 		}
    929 	}
    930 	deviter_release(&di);
    931 }
    932 
    933 /*
    934  * Attach a supplemental config data table and rescan potential
    935  * parent devices if required.
    936  */
    937 int
    938 config_cfdata_attach(cfdata_t cf, int scannow)
    939 {
    940 	struct cftable *ct;
    941 
    942 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    943 	ct->ct_cfdata = cf;
    944 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    945 
    946 	if (scannow)
    947 		rescan_with_cfdata(cf);
    948 
    949 	return 0;
    950 }
    951 
    952 /*
    953  * Helper for config_cfdata_detach: check whether a device is
    954  * found through any attachment in the config data table.
    955  */
    956 static int
    957 dev_in_cfdata(device_t d, cfdata_t cf)
    958 {
    959 	const struct cfdata *cf1;
    960 
    961 	for (cf1 = cf; cf1->cf_name; cf1++)
    962 		if (d->dv_cfdata == cf1)
    963 			return 1;
    964 
    965 	return 0;
    966 }
    967 
    968 /*
    969  * Detach a supplemental config data table. Detach all devices found
    970  * through that table (and thus keeping references to it) before.
    971  */
    972 int
    973 config_cfdata_detach(cfdata_t cf)
    974 {
    975 	device_t d;
    976 	int error = 0;
    977 	struct cftable *ct;
    978 	deviter_t di;
    979 
    980 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    981 	     d = deviter_next(&di)) {
    982 		if (!dev_in_cfdata(d, cf))
    983 			continue;
    984 		if ((error = config_detach(d, 0)) != 0)
    985 			break;
    986 	}
    987 	deviter_release(&di);
    988 	if (error) {
    989 		aprint_error_dev(d, "unable to detach instance\n");
    990 		return error;
    991 	}
    992 
    993 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    994 		if (ct->ct_cfdata == cf) {
    995 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    996 			kmem_free(ct, sizeof(*ct));
    997 			return 0;
    998 		}
    999 	}
   1000 
   1001 	/* not found -- shouldn't happen */
   1002 	return EINVAL;
   1003 }
   1004 
   1005 /*
   1006  * Invoke the "match" routine for a cfdata entry on behalf of
   1007  * an external caller, usually a "submatch" routine.
   1008  */
   1009 int
   1010 config_match(device_t parent, cfdata_t cf, void *aux)
   1011 {
   1012 	struct cfattach *ca;
   1013 
   1014 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1015 	if (ca == NULL) {
   1016 		/* No attachment for this entry, oh well. */
   1017 		return 0;
   1018 	}
   1019 
   1020 	return (*ca->ca_match)(parent, cf, aux);
   1021 }
   1022 
   1023 static void
   1024 config_get_cfargs(cfarg_t tag,
   1025 		  cfsubmatch_t *fnp,		/* output */
   1026 		  const char **ifattrp,		/* output */
   1027 		  const int **locsp,		/* output */
   1028 		  devhandle_t *handlep,		/* output */
   1029 		  va_list ap)
   1030 {
   1031 	cfsubmatch_t fn = NULL;
   1032 	const char *ifattr = NULL;
   1033 	const int *locs = NULL;
   1034 	devhandle_t handle;
   1035 
   1036 	devhandle_invalidate(&handle);
   1037 
   1038 	while (tag != CFARG_EOL) {
   1039 		switch (tag) {
   1040 		/*
   1041 		 * CFARG_SUBMATCH and CFARG_SEARCH are synonyms, but this
   1042 		 * is merely an implementation detail.  They are distinct
   1043 		 * from the caller's point of view.
   1044 		 */
   1045 		case CFARG_SUBMATCH:
   1046 		case CFARG_SEARCH:
   1047 			/* Only allow one function to be specified. */
   1048 			if (fn != NULL) {
   1049 				panic("%s: caller specified both "
   1050 				    "SUBMATCH and SEARCH", __func__);
   1051 			}
   1052 			fn = va_arg(ap, cfsubmatch_t);
   1053 			break;
   1054 
   1055 		case CFARG_IATTR:
   1056 			ifattr = va_arg(ap, const char *);
   1057 			break;
   1058 
   1059 		case CFARG_LOCATORS:
   1060 			locs = va_arg(ap, const int *);
   1061 			break;
   1062 
   1063 		case CFARG_DEVHANDLE:
   1064 			handle = va_arg(ap, devhandle_t);
   1065 			break;
   1066 
   1067 		default:
   1068 			panic("%s: unknown cfarg tag: %d\n",
   1069 			    __func__, tag);
   1070 		}
   1071 		tag = va_arg(ap, cfarg_t);
   1072 	}
   1073 
   1074 	if (fnp != NULL)
   1075 		*fnp = fn;
   1076 	if (ifattrp != NULL)
   1077 		*ifattrp = ifattr;
   1078 	if (locsp != NULL)
   1079 		*locsp = locs;
   1080 	if (handlep != NULL)
   1081 		*handlep = handle;
   1082 }
   1083 
   1084 /*
   1085  * Iterate over all potential children of some device, calling the given
   1086  * function (default being the child's match function) for each one.
   1087  * Nonzero returns are matches; the highest value returned is considered
   1088  * the best match.  Return the `found child' if we got a match, or NULL
   1089  * otherwise.  The `aux' pointer is simply passed on through.
   1090  *
   1091  * Note that this function is designed so that it can be used to apply
   1092  * an arbitrary function to all potential children (its return value
   1093  * can be ignored).
   1094  */
   1095 static cfdata_t
   1096 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1097 {
   1098 	cfsubmatch_t fn;
   1099 	const char *ifattr;
   1100 	const int *locs;
   1101 	struct cftable *ct;
   1102 	cfdata_t cf;
   1103 	struct matchinfo m;
   1104 
   1105 	config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
   1106 
   1107 	KASSERT(config_initialized);
   1108 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1109 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1110 
   1111 	m.fn = fn;
   1112 	m.parent = parent;
   1113 	m.locs = locs;
   1114 	m.aux = aux;
   1115 	m.match = NULL;
   1116 	m.pri = 0;
   1117 
   1118 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1119 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1120 
   1121 			/* We don't match root nodes here. */
   1122 			if (!cf->cf_pspec)
   1123 				continue;
   1124 
   1125 			/*
   1126 			 * Skip cf if no longer eligible, otherwise scan
   1127 			 * through parents for one matching `parent', and
   1128 			 * try match function.
   1129 			 */
   1130 			if (cf->cf_fstate == FSTATE_FOUND)
   1131 				continue;
   1132 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1133 			    cf->cf_fstate == FSTATE_DSTAR)
   1134 				continue;
   1135 
   1136 			/*
   1137 			 * If an interface attribute was specified,
   1138 			 * consider only children which attach to
   1139 			 * that attribute.
   1140 			 */
   1141 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1142 				continue;
   1143 
   1144 			if (cfparent_match(parent, cf->cf_pspec))
   1145 				mapply(&m, cf);
   1146 		}
   1147 	}
   1148 	return m.match;
   1149 }
   1150 
   1151 cfdata_t
   1152 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1153 {
   1154 	cfdata_t cf;
   1155 	va_list ap;
   1156 
   1157 	va_start(ap, tag);
   1158 	cf = config_vsearch(parent, aux, tag, ap);
   1159 	va_end(ap);
   1160 
   1161 	return cf;
   1162 }
   1163 
   1164 /*
   1165  * Find the given root device.
   1166  * This is much like config_search, but there is no parent.
   1167  * Don't bother with multiple cfdata tables; the root node
   1168  * must always be in the initial table.
   1169  */
   1170 cfdata_t
   1171 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1172 {
   1173 	cfdata_t cf;
   1174 	const short *p;
   1175 	struct matchinfo m;
   1176 
   1177 	m.fn = fn;
   1178 	m.parent = ROOT;
   1179 	m.aux = aux;
   1180 	m.match = NULL;
   1181 	m.pri = 0;
   1182 	m.locs = 0;
   1183 	/*
   1184 	 * Look at root entries for matching name.  We do not bother
   1185 	 * with found-state here since only one root should ever be
   1186 	 * searched (and it must be done first).
   1187 	 */
   1188 	for (p = cfroots; *p >= 0; p++) {
   1189 		cf = &cfdata[*p];
   1190 		if (strcmp(cf->cf_name, rootname) == 0)
   1191 			mapply(&m, cf);
   1192 	}
   1193 	return m.match;
   1194 }
   1195 
   1196 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1197 
   1198 /*
   1199  * The given `aux' argument describes a device that has been found
   1200  * on the given parent, but not necessarily configured.  Locate the
   1201  * configuration data for that device (using the submatch function
   1202  * provided, or using candidates' cd_match configuration driver
   1203  * functions) and attach it, and return its device_t.  If the device was
   1204  * not configured, call the given `print' function and return NULL.
   1205  */
   1206 static device_t
   1207 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1208     va_list ap)
   1209 {
   1210 	cfdata_t cf;
   1211 	va_list nap;
   1212 
   1213 	va_copy(nap, ap);
   1214 	cf = config_vsearch(parent, aux, tag, nap);
   1215 	va_end(nap);
   1216 
   1217 	if (cf != NULL) {
   1218 		return config_vattach(parent, cf, aux, print, tag, ap);
   1219 	}
   1220 
   1221 	if (print) {
   1222 		if (config_do_twiddle && cold)
   1223 			twiddle();
   1224 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1225 	}
   1226 
   1227 	/*
   1228 	 * This has the effect of mixing in a single timestamp to the
   1229 	 * entropy pool.  Experiments indicate the estimator will almost
   1230 	 * always attribute one bit of entropy to this sample; analysis
   1231 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1232 	 * bits of entropy/sample so this seems appropriately conservative.
   1233 	 */
   1234 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1235 	return NULL;
   1236 }
   1237 
   1238 device_t
   1239 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1240 {
   1241 	device_t dev;
   1242 	va_list ap;
   1243 
   1244 	va_start(ap, tag);
   1245 	dev = config_vfound(parent, aux, print, tag, ap);
   1246 	va_end(ap);
   1247 
   1248 	return dev;
   1249 }
   1250 
   1251 /*
   1252  * As above, but for root devices.
   1253  */
   1254 device_t
   1255 config_rootfound(const char *rootname, void *aux)
   1256 {
   1257 	cfdata_t cf;
   1258 
   1259 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1260 		return config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
   1261 	aprint_error("root device %s not configured\n", rootname);
   1262 	return NULL;
   1263 }
   1264 
   1265 /* just like sprintf(buf, "%d") except that it works from the end */
   1266 static char *
   1267 number(char *ep, int n)
   1268 {
   1269 
   1270 	*--ep = 0;
   1271 	while (n >= 10) {
   1272 		*--ep = (n % 10) + '0';
   1273 		n /= 10;
   1274 	}
   1275 	*--ep = n + '0';
   1276 	return ep;
   1277 }
   1278 
   1279 /*
   1280  * Expand the size of the cd_devs array if necessary.
   1281  *
   1282  * The caller must hold alldevs_lock. config_makeroom() may release and
   1283  * re-acquire alldevs_lock, so callers should re-check conditions such
   1284  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1285  * returns.
   1286  */
   1287 static void
   1288 config_makeroom(int n, struct cfdriver *cd)
   1289 {
   1290 	int ondevs, nndevs;
   1291 	device_t *osp, *nsp;
   1292 
   1293 	KASSERT(mutex_owned(&alldevs_lock));
   1294 	alldevs_nwrite++;
   1295 
   1296 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1297 		;
   1298 
   1299 	while (n >= cd->cd_ndevs) {
   1300 		/*
   1301 		 * Need to expand the array.
   1302 		 */
   1303 		ondevs = cd->cd_ndevs;
   1304 		osp = cd->cd_devs;
   1305 
   1306 		/*
   1307 		 * Release alldevs_lock around allocation, which may
   1308 		 * sleep.
   1309 		 */
   1310 		mutex_exit(&alldevs_lock);
   1311 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1312 		mutex_enter(&alldevs_lock);
   1313 
   1314 		/*
   1315 		 * If another thread moved the array while we did
   1316 		 * not hold alldevs_lock, try again.
   1317 		 */
   1318 		if (cd->cd_devs != osp) {
   1319 			mutex_exit(&alldevs_lock);
   1320 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1321 			mutex_enter(&alldevs_lock);
   1322 			continue;
   1323 		}
   1324 
   1325 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1326 		if (ondevs != 0)
   1327 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1328 
   1329 		cd->cd_ndevs = nndevs;
   1330 		cd->cd_devs = nsp;
   1331 		if (ondevs != 0) {
   1332 			mutex_exit(&alldevs_lock);
   1333 			kmem_free(osp, sizeof(device_t) * ondevs);
   1334 			mutex_enter(&alldevs_lock);
   1335 		}
   1336 	}
   1337 	KASSERT(mutex_owned(&alldevs_lock));
   1338 	alldevs_nwrite--;
   1339 }
   1340 
   1341 /*
   1342  * Put dev into the devices list.
   1343  */
   1344 static void
   1345 config_devlink(device_t dev)
   1346 {
   1347 
   1348 	mutex_enter(&alldevs_lock);
   1349 
   1350 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1351 
   1352 	dev->dv_add_gen = alldevs_gen;
   1353 	/* It is safe to add a device to the tail of the list while
   1354 	 * readers and writers are in the list.
   1355 	 */
   1356 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1357 	mutex_exit(&alldevs_lock);
   1358 }
   1359 
   1360 static void
   1361 config_devfree(device_t dev)
   1362 {
   1363 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1364 
   1365 	if (dev->dv_cfattach->ca_devsize > 0)
   1366 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1367 	kmem_free(dev, sizeof(*dev));
   1368 }
   1369 
   1370 /*
   1371  * Caller must hold alldevs_lock.
   1372  */
   1373 static void
   1374 config_devunlink(device_t dev, struct devicelist *garbage)
   1375 {
   1376 	struct device_garbage *dg = &dev->dv_garbage;
   1377 	cfdriver_t cd = device_cfdriver(dev);
   1378 	int i;
   1379 
   1380 	KASSERT(mutex_owned(&alldevs_lock));
   1381 
   1382  	/* Unlink from device list.  Link to garbage list. */
   1383 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1384 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1385 
   1386 	/* Remove from cfdriver's array. */
   1387 	cd->cd_devs[dev->dv_unit] = NULL;
   1388 
   1389 	/*
   1390 	 * If the device now has no units in use, unlink its softc array.
   1391 	 */
   1392 	for (i = 0; i < cd->cd_ndevs; i++) {
   1393 		if (cd->cd_devs[i] != NULL)
   1394 			break;
   1395 	}
   1396 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1397 	if (i == cd->cd_ndevs) {
   1398 		dg->dg_ndevs = cd->cd_ndevs;
   1399 		dg->dg_devs = cd->cd_devs;
   1400 		cd->cd_devs = NULL;
   1401 		cd->cd_ndevs = 0;
   1402 	}
   1403 }
   1404 
   1405 static void
   1406 config_devdelete(device_t dev)
   1407 {
   1408 	struct device_garbage *dg = &dev->dv_garbage;
   1409 	device_lock_t dvl = device_getlock(dev);
   1410 
   1411 	if (dg->dg_devs != NULL)
   1412 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1413 
   1414 	cv_destroy(&dvl->dvl_cv);
   1415 	mutex_destroy(&dvl->dvl_mtx);
   1416 
   1417 	KASSERT(dev->dv_properties != NULL);
   1418 	prop_object_release(dev->dv_properties);
   1419 
   1420 	if (dev->dv_activity_handlers)
   1421 		panic("%s with registered handlers", __func__);
   1422 
   1423 	if (dev->dv_locators) {
   1424 		size_t amount = *--dev->dv_locators;
   1425 		kmem_free(dev->dv_locators, amount);
   1426 	}
   1427 
   1428 	config_devfree(dev);
   1429 }
   1430 
   1431 static int
   1432 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1433 {
   1434 	int unit;
   1435 
   1436 	if (cf->cf_fstate == FSTATE_STAR) {
   1437 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1438 			if (cd->cd_devs[unit] == NULL)
   1439 				break;
   1440 		/*
   1441 		 * unit is now the unit of the first NULL device pointer,
   1442 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1443 		 */
   1444 	} else {
   1445 		unit = cf->cf_unit;
   1446 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1447 			unit = -1;
   1448 	}
   1449 	return unit;
   1450 }
   1451 
   1452 static int
   1453 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1454 {
   1455 	struct alldevs_foray af;
   1456 	int unit;
   1457 
   1458 	config_alldevs_enter(&af);
   1459 	for (;;) {
   1460 		unit = config_unit_nextfree(cd, cf);
   1461 		if (unit == -1)
   1462 			break;
   1463 		if (unit < cd->cd_ndevs) {
   1464 			cd->cd_devs[unit] = dev;
   1465 			dev->dv_unit = unit;
   1466 			break;
   1467 		}
   1468 		config_makeroom(unit, cd);
   1469 	}
   1470 	config_alldevs_exit(&af);
   1471 
   1472 	return unit;
   1473 }
   1474 
   1475 static device_t
   1476 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
   1477     va_list ap)
   1478 {
   1479 	cfdriver_t cd;
   1480 	cfattach_t ca;
   1481 	size_t lname, lunit;
   1482 	const char *xunit;
   1483 	int myunit;
   1484 	char num[10];
   1485 	device_t dev;
   1486 	void *dev_private;
   1487 	const struct cfiattrdata *ia;
   1488 	device_lock_t dvl;
   1489 	const int *locs;
   1490 
   1491 	cd = config_cfdriver_lookup(cf->cf_name);
   1492 	if (cd == NULL)
   1493 		return NULL;
   1494 
   1495 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1496 	if (ca == NULL)
   1497 		return NULL;
   1498 
   1499 	/* get memory for all device vars */
   1500 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1501 	if (ca->ca_devsize > 0) {
   1502 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1503 	} else {
   1504 		dev_private = NULL;
   1505 	}
   1506 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1507 
   1508 	/*
   1509 	 * If a handle was supplied to config_attach(), we'll get it
   1510 	 * assigned automatically here.  If not, then we'll get the
   1511 	 * default invalid handle.
   1512 	 */
   1513 	config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
   1514 
   1515 	dev->dv_class = cd->cd_class;
   1516 	dev->dv_cfdata = cf;
   1517 	dev->dv_cfdriver = cd;
   1518 	dev->dv_cfattach = ca;
   1519 	dev->dv_activity_count = 0;
   1520 	dev->dv_activity_handlers = NULL;
   1521 	dev->dv_private = dev_private;
   1522 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1523 
   1524 	myunit = config_unit_alloc(dev, cd, cf);
   1525 	if (myunit == -1) {
   1526 		config_devfree(dev);
   1527 		return NULL;
   1528 	}
   1529 
   1530 	/* compute length of name and decimal expansion of unit number */
   1531 	lname = strlen(cd->cd_name);
   1532 	xunit = number(&num[sizeof(num)], myunit);
   1533 	lunit = &num[sizeof(num)] - xunit;
   1534 	if (lname + lunit > sizeof(dev->dv_xname))
   1535 		panic("config_vdevalloc: device name too long");
   1536 
   1537 	dvl = device_getlock(dev);
   1538 
   1539 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1540 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1541 
   1542 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1543 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1544 	dev->dv_parent = parent;
   1545 	if (parent != NULL)
   1546 		dev->dv_depth = parent->dv_depth + 1;
   1547 	else
   1548 		dev->dv_depth = 0;
   1549 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1550 	if (locs) {
   1551 		KASSERT(parent); /* no locators at root */
   1552 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1553 		dev->dv_locators =
   1554 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1555 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1556 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1557 	}
   1558 	dev->dv_properties = prop_dictionary_create();
   1559 	KASSERT(dev->dv_properties != NULL);
   1560 
   1561 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1562 	    "device-driver", dev->dv_cfdriver->cd_name);
   1563 	prop_dictionary_set_uint16(dev->dv_properties,
   1564 	    "device-unit", dev->dv_unit);
   1565 	if (parent != NULL) {
   1566 		prop_dictionary_set_string(dev->dv_properties,
   1567 		    "device-parent", device_xname(parent));
   1568 	}
   1569 
   1570 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1571 		config_add_attrib_dict(dev);
   1572 
   1573 	return dev;
   1574 }
   1575 
   1576 static device_t
   1577 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
   1578 {
   1579 	device_t dev;
   1580 	va_list ap;
   1581 
   1582 	va_start(ap, tag);
   1583 	dev = config_vdevalloc(parent, cf, tag, ap);
   1584 	va_end(ap);
   1585 
   1586 	return dev;
   1587 }
   1588 
   1589 /*
   1590  * Create an array of device attach attributes and add it
   1591  * to the device's dv_properties dictionary.
   1592  *
   1593  * <key>interface-attributes</key>
   1594  * <array>
   1595  *    <dict>
   1596  *       <key>attribute-name</key>
   1597  *       <string>foo</string>
   1598  *       <key>locators</key>
   1599  *       <array>
   1600  *          <dict>
   1601  *             <key>loc-name</key>
   1602  *             <string>foo-loc1</string>
   1603  *          </dict>
   1604  *          <dict>
   1605  *             <key>loc-name</key>
   1606  *             <string>foo-loc2</string>
   1607  *             <key>default</key>
   1608  *             <string>foo-loc2-default</string>
   1609  *          </dict>
   1610  *          ...
   1611  *       </array>
   1612  *    </dict>
   1613  *    ...
   1614  * </array>
   1615  */
   1616 
   1617 static void
   1618 config_add_attrib_dict(device_t dev)
   1619 {
   1620 	int i, j;
   1621 	const struct cfiattrdata *ci;
   1622 	prop_dictionary_t attr_dict, loc_dict;
   1623 	prop_array_t attr_array, loc_array;
   1624 
   1625 	if ((attr_array = prop_array_create()) == NULL)
   1626 		return;
   1627 
   1628 	for (i = 0; ; i++) {
   1629 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1630 			break;
   1631 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1632 			break;
   1633 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1634 		    ci->ci_name);
   1635 
   1636 		/* Create an array of the locator names and defaults */
   1637 
   1638 		if (ci->ci_loclen != 0 &&
   1639 		    (loc_array = prop_array_create()) != NULL) {
   1640 			for (j = 0; j < ci->ci_loclen; j++) {
   1641 				loc_dict = prop_dictionary_create();
   1642 				if (loc_dict == NULL)
   1643 					continue;
   1644 				prop_dictionary_set_string_nocopy(loc_dict,
   1645 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1646 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1647 					prop_dictionary_set_string_nocopy(
   1648 					    loc_dict, "default",
   1649 					    ci->ci_locdesc[j].cld_defaultstr);
   1650 				prop_array_set(loc_array, j, loc_dict);
   1651 				prop_object_release(loc_dict);
   1652 			}
   1653 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1654 			    loc_array);
   1655 		}
   1656 		prop_array_add(attr_array, attr_dict);
   1657 		prop_object_release(attr_dict);
   1658 	}
   1659 	if (i == 0)
   1660 		prop_object_release(attr_array);
   1661 	else
   1662 		prop_dictionary_set_and_rel(dev->dv_properties,
   1663 		    "interface-attributes", attr_array);
   1664 
   1665 	return;
   1666 }
   1667 
   1668 /*
   1669  * Attach a found device.
   1670  */
   1671 static device_t
   1672 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1673     cfarg_t tag, va_list ap)
   1674 {
   1675 	device_t dev;
   1676 	struct cftable *ct;
   1677 	const char *drvname;
   1678 
   1679 	dev = config_vdevalloc(parent, cf, tag, ap);
   1680 	if (!dev)
   1681 		panic("config_attach: allocation of device softc failed");
   1682 
   1683 	/* XXX redundant - see below? */
   1684 	if (cf->cf_fstate != FSTATE_STAR) {
   1685 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1686 		cf->cf_fstate = FSTATE_FOUND;
   1687 	}
   1688 
   1689 	config_devlink(dev);
   1690 
   1691 	if (config_do_twiddle && cold)
   1692 		twiddle();
   1693 	else
   1694 		aprint_naive("Found ");
   1695 	/*
   1696 	 * We want the next two printfs for normal, verbose, and quiet,
   1697 	 * but not silent (in which case, we're twiddling, instead).
   1698 	 */
   1699 	if (parent == ROOT) {
   1700 		aprint_naive("%s (root)", device_xname(dev));
   1701 		aprint_normal("%s (root)", device_xname(dev));
   1702 	} else {
   1703 		aprint_naive("%s at %s", device_xname(dev),
   1704 		    device_xname(parent));
   1705 		aprint_normal("%s at %s", device_xname(dev),
   1706 		    device_xname(parent));
   1707 		if (print)
   1708 			(void) (*print)(aux, NULL);
   1709 	}
   1710 
   1711 	/*
   1712 	 * Before attaching, clobber any unfound devices that are
   1713 	 * otherwise identical.
   1714 	 * XXX code above is redundant?
   1715 	 */
   1716 	drvname = dev->dv_cfdriver->cd_name;
   1717 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1718 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1719 			if (STREQ(cf->cf_name, drvname) &&
   1720 			    cf->cf_unit == dev->dv_unit) {
   1721 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1722 					cf->cf_fstate = FSTATE_FOUND;
   1723 			}
   1724 		}
   1725 	}
   1726 	device_register(dev, aux);
   1727 
   1728 	/* Let userland know */
   1729 	devmon_report_device(dev, true);
   1730 
   1731 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1732 
   1733 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1734 	    && !device_pmf_is_registered(dev))
   1735 		aprint_debug_dev(dev,
   1736 		    "WARNING: power management not supported\n");
   1737 
   1738 	config_process_deferred(&deferred_config_queue, dev);
   1739 
   1740 	device_register_post_config(dev, aux);
   1741 	return dev;
   1742 }
   1743 
   1744 device_t
   1745 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1746     cfarg_t tag, ...)
   1747 {
   1748 	device_t dev;
   1749 	va_list ap;
   1750 
   1751 	va_start(ap, tag);
   1752 	dev = config_vattach(parent, cf, aux, print, tag, ap);
   1753 	va_end(ap);
   1754 
   1755 	return dev;
   1756 }
   1757 
   1758 /*
   1759  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1760  * way are silently inserted into the device tree, and their children
   1761  * attached.
   1762  *
   1763  * Note that because pseudo-devices are attached silently, any information
   1764  * the attach routine wishes to print should be prefixed with the device
   1765  * name by the attach routine.
   1766  */
   1767 device_t
   1768 config_attach_pseudo(cfdata_t cf)
   1769 {
   1770 	device_t dev;
   1771 
   1772 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
   1773 	if (!dev)
   1774 		return NULL;
   1775 
   1776 	/* XXX mark busy in cfdata */
   1777 
   1778 	if (cf->cf_fstate != FSTATE_STAR) {
   1779 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1780 		cf->cf_fstate = FSTATE_FOUND;
   1781 	}
   1782 
   1783 	config_devlink(dev);
   1784 
   1785 #if 0	/* XXXJRT not yet */
   1786 	device_register(dev, NULL);	/* like a root node */
   1787 #endif
   1788 
   1789 	/* Let userland know */
   1790 	devmon_report_device(dev, true);
   1791 
   1792 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1793 
   1794 	config_process_deferred(&deferred_config_queue, dev);
   1795 	return dev;
   1796 }
   1797 
   1798 /*
   1799  * Caller must hold alldevs_lock.
   1800  */
   1801 static void
   1802 config_collect_garbage(struct devicelist *garbage)
   1803 {
   1804 	device_t dv;
   1805 
   1806 	KASSERT(!cpu_intr_p());
   1807 	KASSERT(!cpu_softintr_p());
   1808 	KASSERT(mutex_owned(&alldevs_lock));
   1809 
   1810 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1811 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1812 			if (dv->dv_del_gen != 0)
   1813 				break;
   1814 		}
   1815 		if (dv == NULL) {
   1816 			alldevs_garbage = false;
   1817 			break;
   1818 		}
   1819 		config_devunlink(dv, garbage);
   1820 	}
   1821 	KASSERT(mutex_owned(&alldevs_lock));
   1822 }
   1823 
   1824 static void
   1825 config_dump_garbage(struct devicelist *garbage)
   1826 {
   1827 	device_t dv;
   1828 
   1829 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1830 		TAILQ_REMOVE(garbage, dv, dv_list);
   1831 		config_devdelete(dv);
   1832 	}
   1833 }
   1834 
   1835 /*
   1836  * Detach a device.  Optionally forced (e.g. because of hardware
   1837  * removal) and quiet.  Returns zero if successful, non-zero
   1838  * (an error code) otherwise.
   1839  *
   1840  * Note that this code wants to be run from a process context, so
   1841  * that the detach can sleep to allow processes which have a device
   1842  * open to run and unwind their stacks.
   1843  */
   1844 int
   1845 config_detach(device_t dev, int flags)
   1846 {
   1847 	struct alldevs_foray af;
   1848 	struct cftable *ct;
   1849 	cfdata_t cf;
   1850 	const struct cfattach *ca;
   1851 	struct cfdriver *cd;
   1852 	device_t d __diagused;
   1853 	int rv = 0;
   1854 
   1855 	cf = dev->dv_cfdata;
   1856 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1857 		cf->cf_fstate == FSTATE_STAR),
   1858 	    "config_detach: %s: bad device fstate: %d",
   1859 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1860 
   1861 	cd = dev->dv_cfdriver;
   1862 	KASSERT(cd != NULL);
   1863 
   1864 	ca = dev->dv_cfattach;
   1865 	KASSERT(ca != NULL);
   1866 
   1867 	mutex_enter(&alldevs_lock);
   1868 	if (dev->dv_del_gen != 0) {
   1869 		mutex_exit(&alldevs_lock);
   1870 #ifdef DIAGNOSTIC
   1871 		printf("%s: %s is already detached\n", __func__,
   1872 		    device_xname(dev));
   1873 #endif /* DIAGNOSTIC */
   1874 		return ENOENT;
   1875 	}
   1876 	alldevs_nwrite++;
   1877 	mutex_exit(&alldevs_lock);
   1878 
   1879 	if (!detachall &&
   1880 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1881 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1882 		rv = EOPNOTSUPP;
   1883 	} else if (ca->ca_detach != NULL) {
   1884 		rv = (*ca->ca_detach)(dev, flags);
   1885 	} else
   1886 		rv = EOPNOTSUPP;
   1887 
   1888 	/*
   1889 	 * If it was not possible to detach the device, then we either
   1890 	 * panic() (for the forced but failed case), or return an error.
   1891 	 *
   1892 	 * If it was possible to detach the device, ensure that the
   1893 	 * device is deactivated.
   1894 	 */
   1895 	if (rv == 0)
   1896 		dev->dv_flags &= ~DVF_ACTIVE;
   1897 	else if ((flags & DETACH_FORCE) == 0)
   1898 		goto out;
   1899 	else {
   1900 		panic("config_detach: forced detach of %s failed (%d)",
   1901 		    device_xname(dev), rv);
   1902 	}
   1903 
   1904 	/*
   1905 	 * The device has now been successfully detached.
   1906 	 */
   1907 
   1908 	/* Let userland know */
   1909 	devmon_report_device(dev, false);
   1910 
   1911 #ifdef DIAGNOSTIC
   1912 	/*
   1913 	 * Sanity: If you're successfully detached, you should have no
   1914 	 * children.  (Note that because children must be attached
   1915 	 * after parents, we only need to search the latter part of
   1916 	 * the list.)
   1917 	 */
   1918 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1919 	    d = TAILQ_NEXT(d, dv_list)) {
   1920 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1921 			printf("config_detach: detached device %s"
   1922 			    " has children %s\n", device_xname(dev),
   1923 			    device_xname(d));
   1924 			panic("config_detach");
   1925 		}
   1926 	}
   1927 #endif
   1928 
   1929 	/* notify the parent that the child is gone */
   1930 	if (dev->dv_parent) {
   1931 		device_t p = dev->dv_parent;
   1932 		if (p->dv_cfattach->ca_childdetached)
   1933 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1934 	}
   1935 
   1936 	/*
   1937 	 * Mark cfdata to show that the unit can be reused, if possible.
   1938 	 */
   1939 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1940 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1941 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1942 				if (cf->cf_fstate == FSTATE_FOUND &&
   1943 				    cf->cf_unit == dev->dv_unit)
   1944 					cf->cf_fstate = FSTATE_NOTFOUND;
   1945 			}
   1946 		}
   1947 	}
   1948 
   1949 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1950 		aprint_normal_dev(dev, "detached\n");
   1951 
   1952 out:
   1953 	config_alldevs_enter(&af);
   1954 	KASSERT(alldevs_nwrite != 0);
   1955 	--alldevs_nwrite;
   1956 	if (rv == 0 && dev->dv_del_gen == 0) {
   1957 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1958 			config_devunlink(dev, &af.af_garbage);
   1959 		else {
   1960 			dev->dv_del_gen = alldevs_gen;
   1961 			alldevs_garbage = true;
   1962 		}
   1963 	}
   1964 	config_alldevs_exit(&af);
   1965 
   1966 	return rv;
   1967 }
   1968 
   1969 int
   1970 config_detach_children(device_t parent, int flags)
   1971 {
   1972 	device_t dv;
   1973 	deviter_t di;
   1974 	int error = 0;
   1975 
   1976 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1977 	     dv = deviter_next(&di)) {
   1978 		if (device_parent(dv) != parent)
   1979 			continue;
   1980 		if ((error = config_detach(dv, flags)) != 0)
   1981 			break;
   1982 	}
   1983 	deviter_release(&di);
   1984 	return error;
   1985 }
   1986 
   1987 device_t
   1988 shutdown_first(struct shutdown_state *s)
   1989 {
   1990 	if (!s->initialized) {
   1991 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1992 		s->initialized = true;
   1993 	}
   1994 	return shutdown_next(s);
   1995 }
   1996 
   1997 device_t
   1998 shutdown_next(struct shutdown_state *s)
   1999 {
   2000 	device_t dv;
   2001 
   2002 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2003 		;
   2004 
   2005 	if (dv == NULL)
   2006 		s->initialized = false;
   2007 
   2008 	return dv;
   2009 }
   2010 
   2011 bool
   2012 config_detach_all(int how)
   2013 {
   2014 	static struct shutdown_state s;
   2015 	device_t curdev;
   2016 	bool progress = false;
   2017 	int flags;
   2018 
   2019 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2020 		return false;
   2021 
   2022 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2023 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2024 	else
   2025 		flags = DETACH_SHUTDOWN;
   2026 
   2027 	for (curdev = shutdown_first(&s); curdev != NULL;
   2028 	     curdev = shutdown_next(&s)) {
   2029 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2030 		if (config_detach(curdev, flags) == 0) {
   2031 			progress = true;
   2032 			aprint_debug("success.");
   2033 		} else
   2034 			aprint_debug("failed.");
   2035 	}
   2036 	return progress;
   2037 }
   2038 
   2039 static bool
   2040 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2041 {
   2042 	device_t dv;
   2043 
   2044 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2045 		if (device_parent(dv) == ancestor)
   2046 			return true;
   2047 	}
   2048 	return false;
   2049 }
   2050 
   2051 int
   2052 config_deactivate(device_t dev)
   2053 {
   2054 	deviter_t di;
   2055 	const struct cfattach *ca;
   2056 	device_t descendant;
   2057 	int s, rv = 0, oflags;
   2058 
   2059 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2060 	     descendant != NULL;
   2061 	     descendant = deviter_next(&di)) {
   2062 		if (dev != descendant &&
   2063 		    !device_is_ancestor_of(dev, descendant))
   2064 			continue;
   2065 
   2066 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2067 			continue;
   2068 
   2069 		ca = descendant->dv_cfattach;
   2070 		oflags = descendant->dv_flags;
   2071 
   2072 		descendant->dv_flags &= ~DVF_ACTIVE;
   2073 		if (ca->ca_activate == NULL)
   2074 			continue;
   2075 		s = splhigh();
   2076 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2077 		splx(s);
   2078 		if (rv != 0)
   2079 			descendant->dv_flags = oflags;
   2080 	}
   2081 	deviter_release(&di);
   2082 	return rv;
   2083 }
   2084 
   2085 /*
   2086  * Defer the configuration of the specified device until all
   2087  * of its parent's devices have been attached.
   2088  */
   2089 void
   2090 config_defer(device_t dev, void (*func)(device_t))
   2091 {
   2092 	struct deferred_config *dc;
   2093 
   2094 	if (dev->dv_parent == NULL)
   2095 		panic("config_defer: can't defer config of a root device");
   2096 
   2097 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2098 
   2099 	config_pending_incr(dev);
   2100 
   2101 	mutex_enter(&config_misc_lock);
   2102 #ifdef DIAGNOSTIC
   2103 	struct deferred_config *odc;
   2104 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2105 		if (odc->dc_dev == dev)
   2106 			panic("config_defer: deferred twice");
   2107 	}
   2108 #endif
   2109 	dc->dc_dev = dev;
   2110 	dc->dc_func = func;
   2111 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2112 	mutex_exit(&config_misc_lock);
   2113 }
   2114 
   2115 /*
   2116  * Defer some autoconfiguration for a device until after interrupts
   2117  * are enabled.
   2118  */
   2119 void
   2120 config_interrupts(device_t dev, void (*func)(device_t))
   2121 {
   2122 	struct deferred_config *dc;
   2123 
   2124 	/*
   2125 	 * If interrupts are enabled, callback now.
   2126 	 */
   2127 	if (cold == 0) {
   2128 		(*func)(dev);
   2129 		return;
   2130 	}
   2131 
   2132 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2133 
   2134 	config_pending_incr(dev);
   2135 
   2136 	mutex_enter(&config_misc_lock);
   2137 #ifdef DIAGNOSTIC
   2138 	struct deferred_config *odc;
   2139 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2140 		if (odc->dc_dev == dev)
   2141 			panic("config_interrupts: deferred twice");
   2142 	}
   2143 #endif
   2144 	dc->dc_dev = dev;
   2145 	dc->dc_func = func;
   2146 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2147 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2148 	mutex_exit(&config_misc_lock);
   2149 }
   2150 
   2151 /*
   2152  * Defer some autoconfiguration for a device until after root file system
   2153  * is mounted (to load firmware etc).
   2154  */
   2155 void
   2156 config_mountroot(device_t dev, void (*func)(device_t))
   2157 {
   2158 	struct deferred_config *dc;
   2159 
   2160 	/*
   2161 	 * If root file system is mounted, callback now.
   2162 	 */
   2163 	if (root_is_mounted) {
   2164 		(*func)(dev);
   2165 		return;
   2166 	}
   2167 
   2168 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2169 
   2170 	mutex_enter(&config_misc_lock);
   2171 #ifdef DIAGNOSTIC
   2172 	struct deferred_config *odc;
   2173 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2174 		if (odc->dc_dev == dev)
   2175 			panic("%s: deferred twice", __func__);
   2176 	}
   2177 #endif
   2178 
   2179 	dc->dc_dev = dev;
   2180 	dc->dc_func = func;
   2181 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2182 	mutex_exit(&config_misc_lock);
   2183 }
   2184 
   2185 /*
   2186  * Process a deferred configuration queue.
   2187  */
   2188 static void
   2189 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2190 {
   2191 	struct deferred_config *dc;
   2192 
   2193 	mutex_enter(&config_misc_lock);
   2194 	dc = TAILQ_FIRST(queue);
   2195 	while (dc) {
   2196 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2197 			TAILQ_REMOVE(queue, dc, dc_queue);
   2198 			mutex_exit(&config_misc_lock);
   2199 
   2200 			(*dc->dc_func)(dc->dc_dev);
   2201 			config_pending_decr(dc->dc_dev);
   2202 			kmem_free(dc, sizeof(*dc));
   2203 
   2204 			mutex_enter(&config_misc_lock);
   2205 			/* Restart, queue might have changed */
   2206 			dc = TAILQ_FIRST(queue);
   2207 		} else {
   2208 			dc = TAILQ_NEXT(dc, dc_queue);
   2209 		}
   2210 	}
   2211 	mutex_exit(&config_misc_lock);
   2212 }
   2213 
   2214 /*
   2215  * Manipulate the config_pending semaphore.
   2216  */
   2217 void
   2218 config_pending_incr(device_t dev)
   2219 {
   2220 
   2221 	mutex_enter(&config_misc_lock);
   2222 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2223 	    "%s: excess config_pending_incr", device_xname(dev));
   2224 	if (dev->dv_pending++ == 0)
   2225 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2226 #ifdef DEBUG_AUTOCONF
   2227 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2228 #endif
   2229 	mutex_exit(&config_misc_lock);
   2230 }
   2231 
   2232 void
   2233 config_pending_decr(device_t dev)
   2234 {
   2235 
   2236 	mutex_enter(&config_misc_lock);
   2237 	KASSERTMSG(dev->dv_pending > 0,
   2238 	    "%s: excess config_pending_decr", device_xname(dev));
   2239 	if (--dev->dv_pending == 0)
   2240 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2241 #ifdef DEBUG_AUTOCONF
   2242 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2243 #endif
   2244 	if (TAILQ_EMPTY(&config_pending))
   2245 		cv_broadcast(&config_misc_cv);
   2246 	mutex_exit(&config_misc_lock);
   2247 }
   2248 
   2249 /*
   2250  * Register a "finalization" routine.  Finalization routines are
   2251  * called iteratively once all real devices have been found during
   2252  * autoconfiguration, for as long as any one finalizer has done
   2253  * any work.
   2254  */
   2255 int
   2256 config_finalize_register(device_t dev, int (*fn)(device_t))
   2257 {
   2258 	struct finalize_hook *f;
   2259 
   2260 	/*
   2261 	 * If finalization has already been done, invoke the
   2262 	 * callback function now.
   2263 	 */
   2264 	if (config_finalize_done) {
   2265 		while ((*fn)(dev) != 0)
   2266 			/* loop */ ;
   2267 		return 0;
   2268 	}
   2269 
   2270 	/* Ensure this isn't already on the list. */
   2271 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2272 		if (f->f_func == fn && f->f_dev == dev)
   2273 			return EEXIST;
   2274 	}
   2275 
   2276 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2277 	f->f_func = fn;
   2278 	f->f_dev = dev;
   2279 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2280 
   2281 	return 0;
   2282 }
   2283 
   2284 void
   2285 config_finalize(void)
   2286 {
   2287 	struct finalize_hook *f;
   2288 	struct pdevinit *pdev;
   2289 	extern struct pdevinit pdevinit[];
   2290 	int errcnt, rv;
   2291 
   2292 	/*
   2293 	 * Now that device driver threads have been created, wait for
   2294 	 * them to finish any deferred autoconfiguration.
   2295 	 */
   2296 	mutex_enter(&config_misc_lock);
   2297 	while (!TAILQ_EMPTY(&config_pending)) {
   2298 		device_t dev;
   2299 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2300 			aprint_debug_dev(dev, "holding up boot\n");
   2301 		cv_wait(&config_misc_cv, &config_misc_lock);
   2302 	}
   2303 	mutex_exit(&config_misc_lock);
   2304 
   2305 	KERNEL_LOCK(1, NULL);
   2306 
   2307 	/* Attach pseudo-devices. */
   2308 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2309 		(*pdev->pdev_attach)(pdev->pdev_count);
   2310 
   2311 	/* Run the hooks until none of them does any work. */
   2312 	do {
   2313 		rv = 0;
   2314 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2315 			rv |= (*f->f_func)(f->f_dev);
   2316 	} while (rv != 0);
   2317 
   2318 	config_finalize_done = 1;
   2319 
   2320 	/* Now free all the hooks. */
   2321 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2322 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2323 		kmem_free(f, sizeof(*f));
   2324 	}
   2325 
   2326 	KERNEL_UNLOCK_ONE(NULL);
   2327 
   2328 	errcnt = aprint_get_error_count();
   2329 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2330 	    (boothowto & AB_VERBOSE) == 0) {
   2331 		mutex_enter(&config_misc_lock);
   2332 		if (config_do_twiddle) {
   2333 			config_do_twiddle = 0;
   2334 			printf_nolog(" done.\n");
   2335 		}
   2336 		mutex_exit(&config_misc_lock);
   2337 	}
   2338 	if (errcnt != 0) {
   2339 		printf("WARNING: %d error%s while detecting hardware; "
   2340 		    "check system log.\n", errcnt,
   2341 		    errcnt == 1 ? "" : "s");
   2342 	}
   2343 }
   2344 
   2345 void
   2346 config_twiddle_init(void)
   2347 {
   2348 
   2349 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2350 		config_do_twiddle = 1;
   2351 	}
   2352 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2353 }
   2354 
   2355 void
   2356 config_twiddle_fn(void *cookie)
   2357 {
   2358 
   2359 	mutex_enter(&config_misc_lock);
   2360 	if (config_do_twiddle) {
   2361 		twiddle();
   2362 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2363 	}
   2364 	mutex_exit(&config_misc_lock);
   2365 }
   2366 
   2367 static void
   2368 config_alldevs_enter(struct alldevs_foray *af)
   2369 {
   2370 	TAILQ_INIT(&af->af_garbage);
   2371 	mutex_enter(&alldevs_lock);
   2372 	config_collect_garbage(&af->af_garbage);
   2373 }
   2374 
   2375 static void
   2376 config_alldevs_exit(struct alldevs_foray *af)
   2377 {
   2378 	mutex_exit(&alldevs_lock);
   2379 	config_dump_garbage(&af->af_garbage);
   2380 }
   2381 
   2382 /*
   2383  * device_lookup:
   2384  *
   2385  *	Look up a device instance for a given driver.
   2386  */
   2387 device_t
   2388 device_lookup(cfdriver_t cd, int unit)
   2389 {
   2390 	device_t dv;
   2391 
   2392 	mutex_enter(&alldevs_lock);
   2393 	if (unit < 0 || unit >= cd->cd_ndevs)
   2394 		dv = NULL;
   2395 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2396 		dv = NULL;
   2397 	mutex_exit(&alldevs_lock);
   2398 
   2399 	return dv;
   2400 }
   2401 
   2402 /*
   2403  * device_lookup_private:
   2404  *
   2405  *	Look up a softc instance for a given driver.
   2406  */
   2407 void *
   2408 device_lookup_private(cfdriver_t cd, int unit)
   2409 {
   2410 
   2411 	return device_private(device_lookup(cd, unit));
   2412 }
   2413 
   2414 /*
   2415  * device_find_by_xname:
   2416  *
   2417  *	Returns the device of the given name or NULL if it doesn't exist.
   2418  */
   2419 device_t
   2420 device_find_by_xname(const char *name)
   2421 {
   2422 	device_t dv;
   2423 	deviter_t di;
   2424 
   2425 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2426 		if (strcmp(device_xname(dv), name) == 0)
   2427 			break;
   2428 	}
   2429 	deviter_release(&di);
   2430 
   2431 	return dv;
   2432 }
   2433 
   2434 /*
   2435  * device_find_by_driver_unit:
   2436  *
   2437  *	Returns the device of the given driver name and unit or
   2438  *	NULL if it doesn't exist.
   2439  */
   2440 device_t
   2441 device_find_by_driver_unit(const char *name, int unit)
   2442 {
   2443 	struct cfdriver *cd;
   2444 
   2445 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2446 		return NULL;
   2447 	return device_lookup(cd, unit);
   2448 }
   2449 
   2450 static bool
   2451 match_strcmp(const char * const s1, const char * const s2)
   2452 {
   2453 	return strcmp(s1, s2) == 0;
   2454 }
   2455 
   2456 static bool
   2457 match_pmatch(const char * const s1, const char * const s2)
   2458 {
   2459 	return pmatch(s1, s2, NULL) == 2;
   2460 }
   2461 
   2462 static bool
   2463 strarray_match_internal(const char ** const strings,
   2464     unsigned int const nstrings, const char * const str,
   2465     unsigned int * const indexp,
   2466     bool (*match_fn)(const char *, const char *))
   2467 {
   2468 	unsigned int i;
   2469 
   2470 	if (strings == NULL || nstrings == 0) {
   2471 		return false;
   2472 	}
   2473 
   2474 	for (i = 0; i < nstrings; i++) {
   2475 		if ((*match_fn)(strings[i], str)) {
   2476 			*indexp = i;
   2477 			return true;
   2478 		}
   2479 	}
   2480 
   2481 	return false;
   2482 }
   2483 
   2484 static int
   2485 strarray_match(const char ** const strings, unsigned int const nstrings,
   2486     const char * const str)
   2487 {
   2488 	unsigned int idx;
   2489 
   2490 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2491 				    match_strcmp)) {
   2492 		return (int)(nstrings - idx);
   2493 	}
   2494 	return 0;
   2495 }
   2496 
   2497 static int
   2498 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2499     const char * const pattern)
   2500 {
   2501 	unsigned int idx;
   2502 
   2503 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2504 				    match_pmatch)) {
   2505 		return (int)(nstrings - idx);
   2506 	}
   2507 	return 0;
   2508 }
   2509 
   2510 static int
   2511 device_compatible_match_strarray_internal(
   2512     const char **device_compats, int ndevice_compats,
   2513     const struct device_compatible_entry *driver_compats,
   2514     const struct device_compatible_entry **matching_entryp,
   2515     int (*match_fn)(const char **, unsigned int, const char *))
   2516 {
   2517 	const struct device_compatible_entry *dce = NULL;
   2518 	int rv;
   2519 
   2520 	if (ndevice_compats == 0 || device_compats == NULL ||
   2521 	    driver_compats == NULL)
   2522 		return 0;
   2523 
   2524 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2525 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2526 		if (rv != 0) {
   2527 			if (matching_entryp != NULL) {
   2528 				*matching_entryp = dce;
   2529 			}
   2530 			return rv;
   2531 		}
   2532 	}
   2533 	return 0;
   2534 }
   2535 
   2536 /*
   2537  * device_compatible_match:
   2538  *
   2539  *	Match a driver's "compatible" data against a device's
   2540  *	"compatible" strings.  Returns resulted weighted by
   2541  *	which device "compatible" string was matched.
   2542  */
   2543 int
   2544 device_compatible_match(const char **device_compats, int ndevice_compats,
   2545     const struct device_compatible_entry *driver_compats)
   2546 {
   2547 	return device_compatible_match_strarray_internal(device_compats,
   2548 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2549 }
   2550 
   2551 /*
   2552  * device_compatible_pmatch:
   2553  *
   2554  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2555  *	the device "compatible" strings against patterns in the
   2556  *	driver's "compatible" data.
   2557  */
   2558 int
   2559 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2560     const struct device_compatible_entry *driver_compats)
   2561 {
   2562 	return device_compatible_match_strarray_internal(device_compats,
   2563 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2564 }
   2565 
   2566 static int
   2567 device_compatible_match_strlist_internal(
   2568     const char * const device_compats, size_t const device_compatsize,
   2569     const struct device_compatible_entry *driver_compats,
   2570     const struct device_compatible_entry **matching_entryp,
   2571     int (*match_fn)(const char *, size_t, const char *))
   2572 {
   2573 	const struct device_compatible_entry *dce = NULL;
   2574 	int rv;
   2575 
   2576 	if (device_compats == NULL || device_compatsize == 0 ||
   2577 	    driver_compats == NULL)
   2578 		return 0;
   2579 
   2580 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2581 		rv = (*match_fn)(device_compats, device_compatsize,
   2582 		    dce->compat);
   2583 		if (rv != 0) {
   2584 			if (matching_entryp != NULL) {
   2585 				*matching_entryp = dce;
   2586 			}
   2587 			return rv;
   2588 		}
   2589 	}
   2590 	return 0;
   2591 }
   2592 
   2593 /*
   2594  * device_compatible_match_strlist:
   2595  *
   2596  *	Like device_compatible_match(), but take the device
   2597  *	"compatible" strings as an OpenFirmware-style string
   2598  *	list.
   2599  */
   2600 int
   2601 device_compatible_match_strlist(
   2602     const char * const device_compats, size_t const device_compatsize,
   2603     const struct device_compatible_entry *driver_compats)
   2604 {
   2605 	return device_compatible_match_strlist_internal(device_compats,
   2606 	    device_compatsize, driver_compats, NULL, strlist_match);
   2607 }
   2608 
   2609 /*
   2610  * device_compatible_pmatch_strlist:
   2611  *
   2612  *	Like device_compatible_pmatch(), but take the device
   2613  *	"compatible" strings as an OpenFirmware-style string
   2614  *	list.
   2615  */
   2616 int
   2617 device_compatible_pmatch_strlist(
   2618     const char * const device_compats, size_t const device_compatsize,
   2619     const struct device_compatible_entry *driver_compats)
   2620 {
   2621 	return device_compatible_match_strlist_internal(device_compats,
   2622 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2623 }
   2624 
   2625 static int
   2626 device_compatible_match_id_internal(
   2627     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2628     const struct device_compatible_entry *driver_compats,
   2629     const struct device_compatible_entry **matching_entryp)
   2630 {
   2631 	const struct device_compatible_entry *dce = NULL;
   2632 
   2633 	if (mask == 0)
   2634 		return 0;
   2635 
   2636 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2637 		if ((id & mask) == dce->id) {
   2638 			if (matching_entryp != NULL) {
   2639 				*matching_entryp = dce;
   2640 			}
   2641 			return 1;
   2642 		}
   2643 	}
   2644 	return 0;
   2645 }
   2646 
   2647 /*
   2648  * device_compatible_match_id:
   2649  *
   2650  *	Like device_compatible_match(), but takes a single
   2651  *	unsigned integer device ID.
   2652  */
   2653 int
   2654 device_compatible_match_id(
   2655     uintptr_t const id, uintptr_t const sentinel_id,
   2656     const struct device_compatible_entry *driver_compats)
   2657 {
   2658 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2659 	    sentinel_id, driver_compats, NULL);
   2660 }
   2661 
   2662 /*
   2663  * device_compatible_lookup:
   2664  *
   2665  *	Look up and return the device_compatible_entry, using the
   2666  *	same matching criteria used by device_compatible_match().
   2667  */
   2668 const struct device_compatible_entry *
   2669 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2670 			 const struct device_compatible_entry *driver_compats)
   2671 {
   2672 	const struct device_compatible_entry *dce;
   2673 
   2674 	if (device_compatible_match_strarray_internal(device_compats,
   2675 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2676 		return dce;
   2677 	}
   2678 	return NULL;
   2679 }
   2680 
   2681 /*
   2682  * device_compatible_plookup:
   2683  *
   2684  *	Look up and return the device_compatible_entry, using the
   2685  *	same matching criteria used by device_compatible_pmatch().
   2686  */
   2687 const struct device_compatible_entry *
   2688 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2689 			  const struct device_compatible_entry *driver_compats)
   2690 {
   2691 	const struct device_compatible_entry *dce;
   2692 
   2693 	if (device_compatible_match_strarray_internal(device_compats,
   2694 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2695 		return dce;
   2696 	}
   2697 	return NULL;
   2698 }
   2699 
   2700 /*
   2701  * device_compatible_lookup_strlist:
   2702  *
   2703  *	Like device_compatible_lookup(), but take the device
   2704  *	"compatible" strings as an OpenFirmware-style string
   2705  *	list.
   2706  */
   2707 const struct device_compatible_entry *
   2708 device_compatible_lookup_strlist(
   2709     const char * const device_compats, size_t const device_compatsize,
   2710     const struct device_compatible_entry *driver_compats)
   2711 {
   2712 	const struct device_compatible_entry *dce;
   2713 
   2714 	if (device_compatible_match_strlist_internal(device_compats,
   2715 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2716 		return dce;
   2717 	}
   2718 	return NULL;
   2719 }
   2720 
   2721 /*
   2722  * device_compatible_plookup_strlist:
   2723  *
   2724  *	Like device_compatible_plookup(), but take the device
   2725  *	"compatible" strings as an OpenFirmware-style string
   2726  *	list.
   2727  */
   2728 const struct device_compatible_entry *
   2729 device_compatible_plookup_strlist(
   2730     const char * const device_compats, size_t const device_compatsize,
   2731     const struct device_compatible_entry *driver_compats)
   2732 {
   2733 	const struct device_compatible_entry *dce;
   2734 
   2735 	if (device_compatible_match_strlist_internal(device_compats,
   2736 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2737 		return dce;
   2738 	}
   2739 	return NULL;
   2740 }
   2741 
   2742 /*
   2743  * device_compatible_lookup_id:
   2744  *
   2745  *	Like device_compatible_lookup(), but takes a single
   2746  *	unsigned integer device ID.
   2747  */
   2748 const struct device_compatible_entry *
   2749 device_compatible_lookup_id(
   2750     uintptr_t const id, uintptr_t const sentinel_id,
   2751     const struct device_compatible_entry *driver_compats)
   2752 {
   2753 	const struct device_compatible_entry *dce;
   2754 
   2755 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2756 	    sentinel_id, driver_compats, &dce)) {
   2757 		return dce;
   2758 	}
   2759 	return NULL;
   2760 }
   2761 
   2762 /*
   2763  * Power management related functions.
   2764  */
   2765 
   2766 bool
   2767 device_pmf_is_registered(device_t dev)
   2768 {
   2769 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2770 }
   2771 
   2772 bool
   2773 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2774 {
   2775 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2776 		return true;
   2777 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2778 		return false;
   2779 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2780 	    dev->dv_driver_suspend != NULL &&
   2781 	    !(*dev->dv_driver_suspend)(dev, qual))
   2782 		return false;
   2783 
   2784 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2785 	return true;
   2786 }
   2787 
   2788 bool
   2789 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2790 {
   2791 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2792 		return true;
   2793 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2794 		return false;
   2795 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2796 	    dev->dv_driver_resume != NULL &&
   2797 	    !(*dev->dv_driver_resume)(dev, qual))
   2798 		return false;
   2799 
   2800 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2801 	return true;
   2802 }
   2803 
   2804 bool
   2805 device_pmf_driver_shutdown(device_t dev, int how)
   2806 {
   2807 
   2808 	if (*dev->dv_driver_shutdown != NULL &&
   2809 	    !(*dev->dv_driver_shutdown)(dev, how))
   2810 		return false;
   2811 	return true;
   2812 }
   2813 
   2814 bool
   2815 device_pmf_driver_register(device_t dev,
   2816     bool (*suspend)(device_t, const pmf_qual_t *),
   2817     bool (*resume)(device_t, const pmf_qual_t *),
   2818     bool (*shutdown)(device_t, int))
   2819 {
   2820 	dev->dv_driver_suspend = suspend;
   2821 	dev->dv_driver_resume = resume;
   2822 	dev->dv_driver_shutdown = shutdown;
   2823 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2824 	return true;
   2825 }
   2826 
   2827 static const char *
   2828 curlwp_name(void)
   2829 {
   2830 	if (curlwp->l_name != NULL)
   2831 		return curlwp->l_name;
   2832 	else
   2833 		return curlwp->l_proc->p_comm;
   2834 }
   2835 
   2836 void
   2837 device_pmf_driver_deregister(device_t dev)
   2838 {
   2839 	device_lock_t dvl = device_getlock(dev);
   2840 
   2841 	dev->dv_driver_suspend = NULL;
   2842 	dev->dv_driver_resume = NULL;
   2843 
   2844 	mutex_enter(&dvl->dvl_mtx);
   2845 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2846 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2847 		/* Wake a thread that waits for the lock.  That
   2848 		 * thread will fail to acquire the lock, and then
   2849 		 * it will wake the next thread that waits for the
   2850 		 * lock, or else it will wake us.
   2851 		 */
   2852 		cv_signal(&dvl->dvl_cv);
   2853 		pmflock_debug(dev, __func__, __LINE__);
   2854 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2855 		pmflock_debug(dev, __func__, __LINE__);
   2856 	}
   2857 	mutex_exit(&dvl->dvl_mtx);
   2858 }
   2859 
   2860 bool
   2861 device_pmf_driver_child_register(device_t dev)
   2862 {
   2863 	device_t parent = device_parent(dev);
   2864 
   2865 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2866 		return true;
   2867 	return (*parent->dv_driver_child_register)(dev);
   2868 }
   2869 
   2870 void
   2871 device_pmf_driver_set_child_register(device_t dev,
   2872     bool (*child_register)(device_t))
   2873 {
   2874 	dev->dv_driver_child_register = child_register;
   2875 }
   2876 
   2877 static void
   2878 pmflock_debug(device_t dev, const char *func, int line)
   2879 {
   2880 	device_lock_t dvl = device_getlock(dev);
   2881 
   2882 	aprint_debug_dev(dev,
   2883 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2884 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2885 }
   2886 
   2887 static bool
   2888 device_pmf_lock1(device_t dev)
   2889 {
   2890 	device_lock_t dvl = device_getlock(dev);
   2891 
   2892 	while (device_pmf_is_registered(dev) &&
   2893 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2894 		dvl->dvl_nwait++;
   2895 		pmflock_debug(dev, __func__, __LINE__);
   2896 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2897 		pmflock_debug(dev, __func__, __LINE__);
   2898 		dvl->dvl_nwait--;
   2899 	}
   2900 	if (!device_pmf_is_registered(dev)) {
   2901 		pmflock_debug(dev, __func__, __LINE__);
   2902 		/* We could not acquire the lock, but some other thread may
   2903 		 * wait for it, also.  Wake that thread.
   2904 		 */
   2905 		cv_signal(&dvl->dvl_cv);
   2906 		return false;
   2907 	}
   2908 	dvl->dvl_nlock++;
   2909 	dvl->dvl_holder = curlwp;
   2910 	pmflock_debug(dev, __func__, __LINE__);
   2911 	return true;
   2912 }
   2913 
   2914 bool
   2915 device_pmf_lock(device_t dev)
   2916 {
   2917 	bool rc;
   2918 	device_lock_t dvl = device_getlock(dev);
   2919 
   2920 	mutex_enter(&dvl->dvl_mtx);
   2921 	rc = device_pmf_lock1(dev);
   2922 	mutex_exit(&dvl->dvl_mtx);
   2923 
   2924 	return rc;
   2925 }
   2926 
   2927 void
   2928 device_pmf_unlock(device_t dev)
   2929 {
   2930 	device_lock_t dvl = device_getlock(dev);
   2931 
   2932 	KASSERT(dvl->dvl_nlock > 0);
   2933 	mutex_enter(&dvl->dvl_mtx);
   2934 	if (--dvl->dvl_nlock == 0)
   2935 		dvl->dvl_holder = NULL;
   2936 	cv_signal(&dvl->dvl_cv);
   2937 	pmflock_debug(dev, __func__, __LINE__);
   2938 	mutex_exit(&dvl->dvl_mtx);
   2939 }
   2940 
   2941 device_lock_t
   2942 device_getlock(device_t dev)
   2943 {
   2944 	return &dev->dv_lock;
   2945 }
   2946 
   2947 void *
   2948 device_pmf_bus_private(device_t dev)
   2949 {
   2950 	return dev->dv_bus_private;
   2951 }
   2952 
   2953 bool
   2954 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2955 {
   2956 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2957 		return true;
   2958 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2959 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2960 		return false;
   2961 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2962 	    dev->dv_bus_suspend != NULL &&
   2963 	    !(*dev->dv_bus_suspend)(dev, qual))
   2964 		return false;
   2965 
   2966 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2967 	return true;
   2968 }
   2969 
   2970 bool
   2971 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2972 {
   2973 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2974 		return true;
   2975 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2976 	    dev->dv_bus_resume != NULL &&
   2977 	    !(*dev->dv_bus_resume)(dev, qual))
   2978 		return false;
   2979 
   2980 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2981 	return true;
   2982 }
   2983 
   2984 bool
   2985 device_pmf_bus_shutdown(device_t dev, int how)
   2986 {
   2987 
   2988 	if (*dev->dv_bus_shutdown != NULL &&
   2989 	    !(*dev->dv_bus_shutdown)(dev, how))
   2990 		return false;
   2991 	return true;
   2992 }
   2993 
   2994 void
   2995 device_pmf_bus_register(device_t dev, void *priv,
   2996     bool (*suspend)(device_t, const pmf_qual_t *),
   2997     bool (*resume)(device_t, const pmf_qual_t *),
   2998     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2999 {
   3000 	dev->dv_bus_private = priv;
   3001 	dev->dv_bus_resume = resume;
   3002 	dev->dv_bus_suspend = suspend;
   3003 	dev->dv_bus_shutdown = shutdown;
   3004 	dev->dv_bus_deregister = deregister;
   3005 }
   3006 
   3007 void
   3008 device_pmf_bus_deregister(device_t dev)
   3009 {
   3010 	if (dev->dv_bus_deregister == NULL)
   3011 		return;
   3012 	(*dev->dv_bus_deregister)(dev);
   3013 	dev->dv_bus_private = NULL;
   3014 	dev->dv_bus_suspend = NULL;
   3015 	dev->dv_bus_resume = NULL;
   3016 	dev->dv_bus_deregister = NULL;
   3017 }
   3018 
   3019 void *
   3020 device_pmf_class_private(device_t dev)
   3021 {
   3022 	return dev->dv_class_private;
   3023 }
   3024 
   3025 bool
   3026 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3027 {
   3028 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3029 		return true;
   3030 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3031 	    dev->dv_class_suspend != NULL &&
   3032 	    !(*dev->dv_class_suspend)(dev, qual))
   3033 		return false;
   3034 
   3035 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3036 	return true;
   3037 }
   3038 
   3039 bool
   3040 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3041 {
   3042 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3043 		return true;
   3044 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3045 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3046 		return false;
   3047 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3048 	    dev->dv_class_resume != NULL &&
   3049 	    !(*dev->dv_class_resume)(dev, qual))
   3050 		return false;
   3051 
   3052 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3053 	return true;
   3054 }
   3055 
   3056 void
   3057 device_pmf_class_register(device_t dev, void *priv,
   3058     bool (*suspend)(device_t, const pmf_qual_t *),
   3059     bool (*resume)(device_t, const pmf_qual_t *),
   3060     void (*deregister)(device_t))
   3061 {
   3062 	dev->dv_class_private = priv;
   3063 	dev->dv_class_suspend = suspend;
   3064 	dev->dv_class_resume = resume;
   3065 	dev->dv_class_deregister = deregister;
   3066 }
   3067 
   3068 void
   3069 device_pmf_class_deregister(device_t dev)
   3070 {
   3071 	if (dev->dv_class_deregister == NULL)
   3072 		return;
   3073 	(*dev->dv_class_deregister)(dev);
   3074 	dev->dv_class_private = NULL;
   3075 	dev->dv_class_suspend = NULL;
   3076 	dev->dv_class_resume = NULL;
   3077 	dev->dv_class_deregister = NULL;
   3078 }
   3079 
   3080 bool
   3081 device_active(device_t dev, devactive_t type)
   3082 {
   3083 	size_t i;
   3084 
   3085 	if (dev->dv_activity_count == 0)
   3086 		return false;
   3087 
   3088 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3089 		if (dev->dv_activity_handlers[i] == NULL)
   3090 			break;
   3091 		(*dev->dv_activity_handlers[i])(dev, type);
   3092 	}
   3093 
   3094 	return true;
   3095 }
   3096 
   3097 bool
   3098 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3099 {
   3100 	void (**new_handlers)(device_t, devactive_t);
   3101 	void (**old_handlers)(device_t, devactive_t);
   3102 	size_t i, old_size, new_size;
   3103 	int s;
   3104 
   3105 	old_handlers = dev->dv_activity_handlers;
   3106 	old_size = dev->dv_activity_count;
   3107 
   3108 	KASSERT(old_size == 0 || old_handlers != NULL);
   3109 
   3110 	for (i = 0; i < old_size; ++i) {
   3111 		KASSERT(old_handlers[i] != handler);
   3112 		if (old_handlers[i] == NULL) {
   3113 			old_handlers[i] = handler;
   3114 			return true;
   3115 		}
   3116 	}
   3117 
   3118 	new_size = old_size + 4;
   3119 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3120 
   3121 	for (i = 0; i < old_size; ++i)
   3122 		new_handlers[i] = old_handlers[i];
   3123 	new_handlers[old_size] = handler;
   3124 	for (i = old_size+1; i < new_size; ++i)
   3125 		new_handlers[i] = NULL;
   3126 
   3127 	s = splhigh();
   3128 	dev->dv_activity_count = new_size;
   3129 	dev->dv_activity_handlers = new_handlers;
   3130 	splx(s);
   3131 
   3132 	if (old_size > 0)
   3133 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3134 
   3135 	return true;
   3136 }
   3137 
   3138 void
   3139 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3140 {
   3141 	void (**old_handlers)(device_t, devactive_t);
   3142 	size_t i, old_size;
   3143 	int s;
   3144 
   3145 	old_handlers = dev->dv_activity_handlers;
   3146 	old_size = dev->dv_activity_count;
   3147 
   3148 	for (i = 0; i < old_size; ++i) {
   3149 		if (old_handlers[i] == handler)
   3150 			break;
   3151 		if (old_handlers[i] == NULL)
   3152 			return; /* XXX panic? */
   3153 	}
   3154 
   3155 	if (i == old_size)
   3156 		return; /* XXX panic? */
   3157 
   3158 	for (; i < old_size - 1; ++i) {
   3159 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3160 			continue;
   3161 
   3162 		if (i == 0) {
   3163 			s = splhigh();
   3164 			dev->dv_activity_count = 0;
   3165 			dev->dv_activity_handlers = NULL;
   3166 			splx(s);
   3167 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3168 		}
   3169 		return;
   3170 	}
   3171 	old_handlers[i] = NULL;
   3172 }
   3173 
   3174 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3175 static bool
   3176 device_exists_at(device_t dv, devgen_t gen)
   3177 {
   3178 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3179 	    dv->dv_add_gen <= gen;
   3180 }
   3181 
   3182 static bool
   3183 deviter_visits(const deviter_t *di, device_t dv)
   3184 {
   3185 	return device_exists_at(dv, di->di_gen);
   3186 }
   3187 
   3188 /*
   3189  * Device Iteration
   3190  *
   3191  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3192  *     each device_t's in the device tree.
   3193  *
   3194  * deviter_init(di, flags): initialize the device iterator `di'
   3195  *     to "walk" the device tree.  deviter_next(di) will return
   3196  *     the first device_t in the device tree, or NULL if there are
   3197  *     no devices.
   3198  *
   3199  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3200  *     caller intends to modify the device tree by calling
   3201  *     config_detach(9) on devices in the order that the iterator
   3202  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3203  *     nearest the "root" of the device tree to be returned, first;
   3204  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3205  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3206  *     indicating both that deviter_init() should not respect any
   3207  *     locks on the device tree, and that deviter_next(di) may run
   3208  *     in more than one LWP before the walk has finished.
   3209  *
   3210  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3211  *     once.
   3212  *
   3213  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3214  *
   3215  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3216  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3217  *
   3218  * deviter_first(di, flags): initialize the device iterator `di'
   3219  *     and return the first device_t in the device tree, or NULL
   3220  *     if there are no devices.  The statement
   3221  *
   3222  *         dv = deviter_first(di);
   3223  *
   3224  *     is shorthand for
   3225  *
   3226  *         deviter_init(di);
   3227  *         dv = deviter_next(di);
   3228  *
   3229  * deviter_next(di): return the next device_t in the device tree,
   3230  *     or NULL if there are no more devices.  deviter_next(di)
   3231  *     is undefined if `di' was not initialized with deviter_init() or
   3232  *     deviter_first().
   3233  *
   3234  * deviter_release(di): stops iteration (subsequent calls to
   3235  *     deviter_next() will return NULL), releases any locks and
   3236  *     resources held by the device iterator.
   3237  *
   3238  * Device iteration does not return device_t's in any particular
   3239  * order.  An iterator will never return the same device_t twice.
   3240  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3241  * is called repeatedly on the same `di', it will eventually return
   3242  * NULL.  It is ok to attach/detach devices during device iteration.
   3243  */
   3244 void
   3245 deviter_init(deviter_t *di, deviter_flags_t flags)
   3246 {
   3247 	device_t dv;
   3248 
   3249 	memset(di, 0, sizeof(*di));
   3250 
   3251 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3252 		flags |= DEVITER_F_RW;
   3253 
   3254 	mutex_enter(&alldevs_lock);
   3255 	if ((flags & DEVITER_F_RW) != 0)
   3256 		alldevs_nwrite++;
   3257 	else
   3258 		alldevs_nread++;
   3259 	di->di_gen = alldevs_gen++;
   3260 	di->di_flags = flags;
   3261 
   3262 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3263 	case DEVITER_F_LEAVES_FIRST:
   3264 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3265 			if (!deviter_visits(di, dv))
   3266 				continue;
   3267 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3268 		}
   3269 		break;
   3270 	case DEVITER_F_ROOT_FIRST:
   3271 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3272 			if (!deviter_visits(di, dv))
   3273 				continue;
   3274 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3275 		}
   3276 		break;
   3277 	default:
   3278 		break;
   3279 	}
   3280 
   3281 	deviter_reinit(di);
   3282 	mutex_exit(&alldevs_lock);
   3283 }
   3284 
   3285 static void
   3286 deviter_reinit(deviter_t *di)
   3287 {
   3288 
   3289 	KASSERT(mutex_owned(&alldevs_lock));
   3290 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3291 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3292 	else
   3293 		di->di_prev = TAILQ_FIRST(&alldevs);
   3294 }
   3295 
   3296 device_t
   3297 deviter_first(deviter_t *di, deviter_flags_t flags)
   3298 {
   3299 
   3300 	deviter_init(di, flags);
   3301 	return deviter_next(di);
   3302 }
   3303 
   3304 static device_t
   3305 deviter_next2(deviter_t *di)
   3306 {
   3307 	device_t dv;
   3308 
   3309 	KASSERT(mutex_owned(&alldevs_lock));
   3310 
   3311 	dv = di->di_prev;
   3312 
   3313 	if (dv == NULL)
   3314 		return NULL;
   3315 
   3316 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3317 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3318 	else
   3319 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3320 
   3321 	return dv;
   3322 }
   3323 
   3324 static device_t
   3325 deviter_next1(deviter_t *di)
   3326 {
   3327 	device_t dv;
   3328 
   3329 	KASSERT(mutex_owned(&alldevs_lock));
   3330 
   3331 	do {
   3332 		dv = deviter_next2(di);
   3333 	} while (dv != NULL && !deviter_visits(di, dv));
   3334 
   3335 	return dv;
   3336 }
   3337 
   3338 device_t
   3339 deviter_next(deviter_t *di)
   3340 {
   3341 	device_t dv = NULL;
   3342 
   3343 	mutex_enter(&alldevs_lock);
   3344 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3345 	case 0:
   3346 		dv = deviter_next1(di);
   3347 		break;
   3348 	case DEVITER_F_LEAVES_FIRST:
   3349 		while (di->di_curdepth >= 0) {
   3350 			if ((dv = deviter_next1(di)) == NULL) {
   3351 				di->di_curdepth--;
   3352 				deviter_reinit(di);
   3353 			} else if (dv->dv_depth == di->di_curdepth)
   3354 				break;
   3355 		}
   3356 		break;
   3357 	case DEVITER_F_ROOT_FIRST:
   3358 		while (di->di_curdepth <= di->di_maxdepth) {
   3359 			if ((dv = deviter_next1(di)) == NULL) {
   3360 				di->di_curdepth++;
   3361 				deviter_reinit(di);
   3362 			} else if (dv->dv_depth == di->di_curdepth)
   3363 				break;
   3364 		}
   3365 		break;
   3366 	default:
   3367 		break;
   3368 	}
   3369 	mutex_exit(&alldevs_lock);
   3370 
   3371 	return dv;
   3372 }
   3373 
   3374 void
   3375 deviter_release(deviter_t *di)
   3376 {
   3377 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3378 
   3379 	mutex_enter(&alldevs_lock);
   3380 	if (rw)
   3381 		--alldevs_nwrite;
   3382 	else
   3383 		--alldevs_nread;
   3384 	/* XXX wake a garbage-collection thread */
   3385 	mutex_exit(&alldevs_lock);
   3386 }
   3387 
   3388 const char *
   3389 cfdata_ifattr(const struct cfdata *cf)
   3390 {
   3391 	return cf->cf_pspec->cfp_iattr;
   3392 }
   3393 
   3394 bool
   3395 ifattr_match(const char *snull, const char *t)
   3396 {
   3397 	return (snull == NULL) || strcmp(snull, t) == 0;
   3398 }
   3399 
   3400 void
   3401 null_childdetached(device_t self, device_t child)
   3402 {
   3403 	/* do nothing */
   3404 }
   3405 
   3406 static void
   3407 sysctl_detach_setup(struct sysctllog **clog)
   3408 {
   3409 
   3410 	sysctl_createv(clog, 0, NULL, NULL,
   3411 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3412 		CTLTYPE_BOOL, "detachall",
   3413 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3414 		NULL, 0, &detachall, 0,
   3415 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3416 }
   3417