subr_autoconf.c revision 1.277.2.12 1 /* $NetBSD: subr_autoconf.c,v 1.277.2.12 2021/04/04 19:23:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.12 2021/04/04 19:23:53 thorpej Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 static krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_vattach(device_t, cfdata_t, void *, cfprint_t, cfarg_t,
172 va_list);
173 static void config_devdelete(device_t);
174 static void config_devunlink(device_t, struct devicelist *);
175 static void config_makeroom(int, struct cfdriver *);
176 static void config_devlink(device_t);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 static struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 static struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 static int interrupt_config_threads = 8;
202 static struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 static int mountroot_config_threads = 2;
205 static lwp_t **mountroot_config_lwpids;
206 static size_t mountroot_config_lwpids_size;
207 bool root_is_mounted = false;
208
209 static void config_process_deferred(struct deferred_config_head *, device_t);
210
211 /* Hooks to finalize configuration once all real devices have been found. */
212 struct finalize_hook {
213 TAILQ_ENTRY(finalize_hook) f_list;
214 int (*f_func)(device_t);
215 device_t f_dev;
216 };
217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
218 TAILQ_HEAD_INITIALIZER(config_finalize_list);
219 static int config_finalize_done;
220
221 /* list of all devices */
222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
223 static kmutex_t alldevs_lock __cacheline_aligned;
224 static devgen_t alldevs_gen = 1;
225 static int alldevs_nread = 0;
226 static int alldevs_nwrite = 0;
227 static bool alldevs_garbage = false;
228
229 static struct devicelist config_pending =
230 TAILQ_HEAD_INITIALIZER(config_pending);
231 static kmutex_t config_misc_lock;
232 static kcondvar_t config_misc_cv;
233
234 static bool detachall = false;
235
236 #define STREQ(s1, s2) \
237 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
238
239 static bool config_initialized = false; /* config_init() has been called. */
240
241 static int config_do_twiddle;
242 static callout_t config_twiddle_ch;
243
244 static void sysctl_detach_setup(struct sysctllog **);
245
246 int no_devmon_insert(const char *, prop_dictionary_t);
247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
248
249 typedef int (*cfdriver_fn)(struct cfdriver *);
250 static int
251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
252 cfdriver_fn drv_do, cfdriver_fn drv_undo,
253 const char *style, bool dopanic)
254 {
255 void (*pr)(const char *, ...) __printflike(1, 2) =
256 dopanic ? panic : printf;
257 int i, error = 0, e2 __diagused;
258
259 for (i = 0; cfdriverv[i] != NULL; i++) {
260 if ((error = drv_do(cfdriverv[i])) != 0) {
261 pr("configure: `%s' driver %s failed: %d",
262 cfdriverv[i]->cd_name, style, error);
263 goto bad;
264 }
265 }
266
267 KASSERT(error == 0);
268 return 0;
269
270 bad:
271 printf("\n");
272 for (i--; i >= 0; i--) {
273 e2 = drv_undo(cfdriverv[i]);
274 KASSERT(e2 == 0);
275 }
276
277 return error;
278 }
279
280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
281 static int
282 frob_cfattachvec(const struct cfattachinit *cfattachv,
283 cfattach_fn att_do, cfattach_fn att_undo,
284 const char *style, bool dopanic)
285 {
286 const struct cfattachinit *cfai = NULL;
287 void (*pr)(const char *, ...) __printflike(1, 2) =
288 dopanic ? panic : printf;
289 int j = 0, error = 0, e2 __diagused;
290
291 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
292 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
293 if ((error = att_do(cfai->cfai_name,
294 cfai->cfai_list[j])) != 0) {
295 pr("configure: attachment `%s' "
296 "of `%s' driver %s failed: %d",
297 cfai->cfai_list[j]->ca_name,
298 cfai->cfai_name, style, error);
299 goto bad;
300 }
301 }
302 }
303
304 KASSERT(error == 0);
305 return 0;
306
307 bad:
308 /*
309 * Rollback in reverse order. dunno if super-important, but
310 * do that anyway. Although the code looks a little like
311 * someone did a little integration (in the math sense).
312 */
313 printf("\n");
314 if (cfai) {
315 bool last;
316
317 for (last = false; last == false; ) {
318 if (cfai == &cfattachv[0])
319 last = true;
320 for (j--; j >= 0; j--) {
321 e2 = att_undo(cfai->cfai_name,
322 cfai->cfai_list[j]);
323 KASSERT(e2 == 0);
324 }
325 if (!last) {
326 cfai--;
327 for (j = 0; cfai->cfai_list[j] != NULL; j++)
328 ;
329 }
330 }
331 }
332
333 return error;
334 }
335
336 /*
337 * Initialize the autoconfiguration data structures. Normally this
338 * is done by configure(), but some platforms need to do this very
339 * early (to e.g. initialize the console).
340 */
341 void
342 config_init(void)
343 {
344
345 KASSERT(config_initialized == false);
346
347 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
348
349 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
350 cv_init(&config_misc_cv, "cfgmisc");
351
352 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
353
354 frob_cfdrivervec(cfdriver_list_initial,
355 config_cfdriver_attach, NULL, "bootstrap", true);
356 frob_cfattachvec(cfattachinit,
357 config_cfattach_attach, NULL, "bootstrap", true);
358
359 initcftable.ct_cfdata = cfdata;
360 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
361
362 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
363 RND_FLAG_COLLECT_TIME);
364
365 config_initialized = true;
366 }
367
368 /*
369 * Init or fini drivers and attachments. Either all or none
370 * are processed (via rollback). It would be nice if this were
371 * atomic to outside consumers, but with the current state of
372 * locking ...
373 */
374 int
375 config_init_component(struct cfdriver * const *cfdriverv,
376 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
377 {
378 int error;
379
380 if ((error = frob_cfdrivervec(cfdriverv,
381 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
382 return error;
383 if ((error = frob_cfattachvec(cfattachv,
384 config_cfattach_attach, config_cfattach_detach,
385 "init", false)) != 0) {
386 frob_cfdrivervec(cfdriverv,
387 config_cfdriver_detach, NULL, "init rollback", true);
388 return error;
389 }
390 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
391 frob_cfattachvec(cfattachv,
392 config_cfattach_detach, NULL, "init rollback", true);
393 frob_cfdrivervec(cfdriverv,
394 config_cfdriver_detach, NULL, "init rollback", true);
395 return error;
396 }
397
398 return 0;
399 }
400
401 int
402 config_fini_component(struct cfdriver * const *cfdriverv,
403 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
404 {
405 int error;
406
407 if ((error = config_cfdata_detach(cfdatav)) != 0)
408 return error;
409 if ((error = frob_cfattachvec(cfattachv,
410 config_cfattach_detach, config_cfattach_attach,
411 "fini", false)) != 0) {
412 if (config_cfdata_attach(cfdatav, 0) != 0)
413 panic("config_cfdata fini rollback failed");
414 return error;
415 }
416 if ((error = frob_cfdrivervec(cfdriverv,
417 config_cfdriver_detach, config_cfdriver_attach,
418 "fini", false)) != 0) {
419 frob_cfattachvec(cfattachv,
420 config_cfattach_attach, NULL, "fini rollback", true);
421 if (config_cfdata_attach(cfdatav, 0) != 0)
422 panic("config_cfdata fini rollback failed");
423 return error;
424 }
425
426 return 0;
427 }
428
429 void
430 config_init_mi(void)
431 {
432
433 if (!config_initialized)
434 config_init();
435
436 sysctl_detach_setup(NULL);
437 }
438
439 void
440 config_deferred(device_t dev)
441 {
442 config_process_deferred(&deferred_config_queue, dev);
443 config_process_deferred(&interrupt_config_queue, dev);
444 config_process_deferred(&mountroot_config_queue, dev);
445 }
446
447 static void
448 config_interrupts_thread(void *cookie)
449 {
450 struct deferred_config *dc;
451 device_t dev;
452
453 mutex_enter(&config_misc_lock);
454 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 mutex_exit(&config_misc_lock);
457
458 dev = dc->dc_dev;
459 (*dc->dc_func)(dev);
460 if (!device_pmf_is_registered(dev))
461 aprint_debug_dev(dev,
462 "WARNING: power management not supported\n");
463 config_pending_decr(dev);
464 kmem_free(dc, sizeof(*dc));
465
466 mutex_enter(&config_misc_lock);
467 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
468 }
469 mutex_exit(&config_misc_lock);
470
471 kthread_exit(0);
472 }
473
474 void
475 config_create_interruptthreads(void)
476 {
477 int i;
478
479 for (i = 0; i < interrupt_config_threads; i++) {
480 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
481 config_interrupts_thread, NULL, NULL, "configintr");
482 }
483 }
484
485 static void
486 config_mountroot_thread(void *cookie)
487 {
488 struct deferred_config *dc;
489
490 mutex_enter(&config_misc_lock);
491 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
492 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
493 mutex_exit(&config_misc_lock);
494
495 (*dc->dc_func)(dc->dc_dev);
496 kmem_free(dc, sizeof(*dc));
497
498 mutex_enter(&config_misc_lock);
499 }
500 mutex_exit(&config_misc_lock);
501
502 kthread_exit(0);
503 }
504
505 void
506 config_create_mountrootthreads(void)
507 {
508 int i;
509
510 if (!root_is_mounted)
511 root_is_mounted = true;
512
513 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
514 mountroot_config_threads;
515 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
516 KM_NOSLEEP);
517 KASSERT(mountroot_config_lwpids);
518 for (i = 0; i < mountroot_config_threads; i++) {
519 mountroot_config_lwpids[i] = 0;
520 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
521 NULL, config_mountroot_thread, NULL,
522 &mountroot_config_lwpids[i],
523 "configroot");
524 }
525 }
526
527 void
528 config_finalize_mountroot(void)
529 {
530 int i, error;
531
532 for (i = 0; i < mountroot_config_threads; i++) {
533 if (mountroot_config_lwpids[i] == 0)
534 continue;
535
536 error = kthread_join(mountroot_config_lwpids[i]);
537 if (error)
538 printf("%s: thread %x joined with error %d\n",
539 __func__, i, error);
540 }
541 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
542 }
543
544 /*
545 * Announce device attach/detach to userland listeners.
546 */
547
548 int
549 no_devmon_insert(const char *name, prop_dictionary_t p)
550 {
551
552 return ENODEV;
553 }
554
555 static void
556 devmon_report_device(device_t dev, bool isattach)
557 {
558 prop_dictionary_t ev, dict = device_properties(dev);
559 const char *parent;
560 const char *what;
561 const char *where;
562 device_t pdev = device_parent(dev);
563
564 /* If currently no drvctl device, just return */
565 if (devmon_insert_vec == no_devmon_insert)
566 return;
567
568 ev = prop_dictionary_create();
569 if (ev == NULL)
570 return;
571
572 what = (isattach ? "device-attach" : "device-detach");
573 parent = (pdev == NULL ? "root" : device_xname(pdev));
574 if (prop_dictionary_get_string(dict, "location", &where)) {
575 prop_dictionary_set_string(ev, "location", where);
576 aprint_debug("ev: %s %s at %s in [%s]\n",
577 what, device_xname(dev), parent, where);
578 }
579 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
580 !prop_dictionary_set_string(ev, "parent", parent)) {
581 prop_object_release(ev);
582 return;
583 }
584
585 if ((*devmon_insert_vec)(what, ev) != 0)
586 prop_object_release(ev);
587 }
588
589 /*
590 * Add a cfdriver to the system.
591 */
592 int
593 config_cfdriver_attach(struct cfdriver *cd)
594 {
595 struct cfdriver *lcd;
596
597 /* Make sure this driver isn't already in the system. */
598 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
599 if (STREQ(lcd->cd_name, cd->cd_name))
600 return EEXIST;
601 }
602
603 LIST_INIT(&cd->cd_attach);
604 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
605
606 return 0;
607 }
608
609 /*
610 * Remove a cfdriver from the system.
611 */
612 int
613 config_cfdriver_detach(struct cfdriver *cd)
614 {
615 struct alldevs_foray af;
616 int i, rc = 0;
617
618 config_alldevs_enter(&af);
619 /* Make sure there are no active instances. */
620 for (i = 0; i < cd->cd_ndevs; i++) {
621 if (cd->cd_devs[i] != NULL) {
622 rc = EBUSY;
623 break;
624 }
625 }
626 config_alldevs_exit(&af);
627
628 if (rc != 0)
629 return rc;
630
631 /* ...and no attachments loaded. */
632 if (LIST_EMPTY(&cd->cd_attach) == 0)
633 return EBUSY;
634
635 LIST_REMOVE(cd, cd_list);
636
637 KASSERT(cd->cd_devs == NULL);
638
639 return 0;
640 }
641
642 /*
643 * Look up a cfdriver by name.
644 */
645 struct cfdriver *
646 config_cfdriver_lookup(const char *name)
647 {
648 struct cfdriver *cd;
649
650 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
651 if (STREQ(cd->cd_name, name))
652 return cd;
653 }
654
655 return NULL;
656 }
657
658 /*
659 * Add a cfattach to the specified driver.
660 */
661 int
662 config_cfattach_attach(const char *driver, struct cfattach *ca)
663 {
664 struct cfattach *lca;
665 struct cfdriver *cd;
666
667 cd = config_cfdriver_lookup(driver);
668 if (cd == NULL)
669 return ESRCH;
670
671 /* Make sure this attachment isn't already on this driver. */
672 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
673 if (STREQ(lca->ca_name, ca->ca_name))
674 return EEXIST;
675 }
676
677 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
678
679 return 0;
680 }
681
682 /*
683 * Remove a cfattach from the specified driver.
684 */
685 int
686 config_cfattach_detach(const char *driver, struct cfattach *ca)
687 {
688 struct alldevs_foray af;
689 struct cfdriver *cd;
690 device_t dev;
691 int i, rc = 0;
692
693 cd = config_cfdriver_lookup(driver);
694 if (cd == NULL)
695 return ESRCH;
696
697 config_alldevs_enter(&af);
698 /* Make sure there are no active instances. */
699 for (i = 0; i < cd->cd_ndevs; i++) {
700 if ((dev = cd->cd_devs[i]) == NULL)
701 continue;
702 if (dev->dv_cfattach == ca) {
703 rc = EBUSY;
704 break;
705 }
706 }
707 config_alldevs_exit(&af);
708
709 if (rc != 0)
710 return rc;
711
712 LIST_REMOVE(ca, ca_list);
713
714 return 0;
715 }
716
717 /*
718 * Look up a cfattach by name.
719 */
720 static struct cfattach *
721 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
722 {
723 struct cfattach *ca;
724
725 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
726 if (STREQ(ca->ca_name, atname))
727 return ca;
728 }
729
730 return NULL;
731 }
732
733 /*
734 * Look up a cfattach by driver/attachment name.
735 */
736 struct cfattach *
737 config_cfattach_lookup(const char *name, const char *atname)
738 {
739 struct cfdriver *cd;
740
741 cd = config_cfdriver_lookup(name);
742 if (cd == NULL)
743 return NULL;
744
745 return config_cfattach_lookup_cd(cd, atname);
746 }
747
748 /*
749 * Apply the matching function and choose the best. This is used
750 * a few times and we want to keep the code small.
751 */
752 static void
753 mapply(struct matchinfo *m, cfdata_t cf)
754 {
755 int pri;
756
757 if (m->fn != NULL) {
758 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
759 } else {
760 pri = config_match(m->parent, cf, m->aux);
761 }
762 if (pri > m->pri) {
763 m->match = cf;
764 m->pri = pri;
765 }
766 }
767
768 int
769 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
770 {
771 const struct cfiattrdata *ci;
772 const struct cflocdesc *cl;
773 int nlocs, i;
774
775 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
776 KASSERT(ci);
777 nlocs = ci->ci_loclen;
778 KASSERT(!nlocs || locs);
779 for (i = 0; i < nlocs; i++) {
780 cl = &ci->ci_locdesc[i];
781 if (cl->cld_defaultstr != NULL &&
782 cf->cf_loc[i] == cl->cld_default)
783 continue;
784 if (cf->cf_loc[i] == locs[i])
785 continue;
786 return 0;
787 }
788
789 return config_match(parent, cf, aux);
790 }
791
792 /*
793 * Helper function: check whether the driver supports the interface attribute
794 * and return its descriptor structure.
795 */
796 static const struct cfiattrdata *
797 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
798 {
799 const struct cfiattrdata * const *cpp;
800
801 if (cd->cd_attrs == NULL)
802 return 0;
803
804 for (cpp = cd->cd_attrs; *cpp; cpp++) {
805 if (STREQ((*cpp)->ci_name, ia)) {
806 /* Match. */
807 return *cpp;
808 }
809 }
810 return 0;
811 }
812
813 #if defined(DIAGNOSTIC)
814 static int
815 cfdriver_iattr_count(const struct cfdriver *cd)
816 {
817 const struct cfiattrdata * const *cpp;
818 int i;
819
820 if (cd->cd_attrs == NULL)
821 return 0;
822
823 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
824 i++;
825 }
826 return i;
827 }
828 #endif /* DIAGNOSTIC */
829
830 /*
831 * Lookup an interface attribute description by name.
832 * If the driver is given, consider only its supported attributes.
833 */
834 const struct cfiattrdata *
835 cfiattr_lookup(const char *name, const struct cfdriver *cd)
836 {
837 const struct cfdriver *d;
838 const struct cfiattrdata *ia;
839
840 if (cd)
841 return cfdriver_get_iattr(cd, name);
842
843 LIST_FOREACH(d, &allcfdrivers, cd_list) {
844 ia = cfdriver_get_iattr(d, name);
845 if (ia)
846 return ia;
847 }
848 return 0;
849 }
850
851 /*
852 * Determine if `parent' is a potential parent for a device spec based
853 * on `cfp'.
854 */
855 static int
856 cfparent_match(const device_t parent, const struct cfparent *cfp)
857 {
858 struct cfdriver *pcd;
859
860 /* We don't match root nodes here. */
861 if (cfp == NULL)
862 return 0;
863
864 pcd = parent->dv_cfdriver;
865 KASSERT(pcd != NULL);
866
867 /*
868 * First, ensure this parent has the correct interface
869 * attribute.
870 */
871 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
872 return 0;
873
874 /*
875 * If no specific parent device instance was specified (i.e.
876 * we're attaching to the attribute only), we're done!
877 */
878 if (cfp->cfp_parent == NULL)
879 return 1;
880
881 /*
882 * Check the parent device's name.
883 */
884 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
885 return 0; /* not the same parent */
886
887 /*
888 * Make sure the unit number matches.
889 */
890 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
891 cfp->cfp_unit == parent->dv_unit)
892 return 1;
893
894 /* Unit numbers don't match. */
895 return 0;
896 }
897
898 /*
899 * Helper for config_cfdata_attach(): check all devices whether it could be
900 * parent any attachment in the config data table passed, and rescan.
901 */
902 static void
903 rescan_with_cfdata(const struct cfdata *cf)
904 {
905 device_t d;
906 const struct cfdata *cf1;
907 deviter_t di;
908
909
910 /*
911 * "alldevs" is likely longer than a modules's cfdata, so make it
912 * the outer loop.
913 */
914 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
915
916 if (!(d->dv_cfattach->ca_rescan))
917 continue;
918
919 for (cf1 = cf; cf1->cf_name; cf1++) {
920
921 if (!cfparent_match(d, cf1->cf_pspec))
922 continue;
923
924 (*d->dv_cfattach->ca_rescan)(d,
925 cfdata_ifattr(cf1), cf1->cf_loc);
926
927 config_deferred(d);
928 }
929 }
930 deviter_release(&di);
931 }
932
933 /*
934 * Attach a supplemental config data table and rescan potential
935 * parent devices if required.
936 */
937 int
938 config_cfdata_attach(cfdata_t cf, int scannow)
939 {
940 struct cftable *ct;
941
942 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
943 ct->ct_cfdata = cf;
944 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
945
946 if (scannow)
947 rescan_with_cfdata(cf);
948
949 return 0;
950 }
951
952 /*
953 * Helper for config_cfdata_detach: check whether a device is
954 * found through any attachment in the config data table.
955 */
956 static int
957 dev_in_cfdata(device_t d, cfdata_t cf)
958 {
959 const struct cfdata *cf1;
960
961 for (cf1 = cf; cf1->cf_name; cf1++)
962 if (d->dv_cfdata == cf1)
963 return 1;
964
965 return 0;
966 }
967
968 /*
969 * Detach a supplemental config data table. Detach all devices found
970 * through that table (and thus keeping references to it) before.
971 */
972 int
973 config_cfdata_detach(cfdata_t cf)
974 {
975 device_t d;
976 int error = 0;
977 struct cftable *ct;
978 deviter_t di;
979
980 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
981 d = deviter_next(&di)) {
982 if (!dev_in_cfdata(d, cf))
983 continue;
984 if ((error = config_detach(d, 0)) != 0)
985 break;
986 }
987 deviter_release(&di);
988 if (error) {
989 aprint_error_dev(d, "unable to detach instance\n");
990 return error;
991 }
992
993 TAILQ_FOREACH(ct, &allcftables, ct_list) {
994 if (ct->ct_cfdata == cf) {
995 TAILQ_REMOVE(&allcftables, ct, ct_list);
996 kmem_free(ct, sizeof(*ct));
997 return 0;
998 }
999 }
1000
1001 /* not found -- shouldn't happen */
1002 return EINVAL;
1003 }
1004
1005 /*
1006 * Invoke the "match" routine for a cfdata entry on behalf of
1007 * an external caller, usually a direct config "submatch" routine.
1008 */
1009 int
1010 config_match(device_t parent, cfdata_t cf, void *aux)
1011 {
1012 struct cfattach *ca;
1013
1014 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1015 if (ca == NULL) {
1016 /* No attachment for this entry, oh well. */
1017 return 0;
1018 }
1019
1020 return (*ca->ca_match)(parent, cf, aux);
1021 }
1022
1023 /*
1024 * Invoke the "probe" routine for a cfdata entry on behalf of
1025 * an external caller, usually an indirect config "search" routine.
1026 */
1027 int
1028 config_probe(device_t parent, cfdata_t cf, void *aux)
1029 {
1030 /*
1031 * This is currently a synonym for config_match(), but this
1032 * is an implementation detail; "match" and "probe" routines
1033 * have different behaviors.
1034 */
1035 return config_match(parent, cf, aux);
1036 }
1037
1038 static void
1039 config_get_cfargs(cfarg_t tag,
1040 cfsubmatch_t *fnp, /* output */
1041 const char **ifattrp, /* output */
1042 const int **locsp, /* output */
1043 devhandle_t *handlep, /* output */
1044 va_list ap)
1045 {
1046 cfsubmatch_t fn = NULL;
1047 const char *ifattr = NULL;
1048 const int *locs = NULL;
1049 devhandle_t handle;
1050
1051 devhandle_invalidate(&handle);
1052
1053 while (tag != CFARG_EOL) {
1054 switch (tag) {
1055 /*
1056 * CFARG_SUBMATCH and CFARG_SEARCH are synonyms, but this
1057 * is merely an implementation detail. They are distinct
1058 * from the caller's point of view.
1059 */
1060 case CFARG_SUBMATCH:
1061 case CFARG_SEARCH:
1062 /* Only allow one function to be specified. */
1063 if (fn != NULL) {
1064 panic("%s: caller specified both "
1065 "SUBMATCH and SEARCH", __func__);
1066 }
1067 fn = va_arg(ap, cfsubmatch_t);
1068 break;
1069
1070 case CFARG_IATTR:
1071 ifattr = va_arg(ap, const char *);
1072 break;
1073
1074 case CFARG_LOCATORS:
1075 locs = va_arg(ap, const int *);
1076 break;
1077
1078 case CFARG_DEVHANDLE:
1079 handle = va_arg(ap, devhandle_t);
1080 break;
1081
1082 default:
1083 panic("%s: unknown cfarg tag: %d\n",
1084 __func__, tag);
1085 }
1086 tag = va_arg(ap, cfarg_t);
1087 }
1088
1089 if (fnp != NULL)
1090 *fnp = fn;
1091 if (ifattrp != NULL)
1092 *ifattrp = ifattr;
1093 if (locsp != NULL)
1094 *locsp = locs;
1095 if (handlep != NULL)
1096 *handlep = handle;
1097 }
1098
1099 /*
1100 * Iterate over all potential children of some device, calling the given
1101 * function (default being the child's match function) for each one.
1102 * Nonzero returns are matches; the highest value returned is considered
1103 * the best match. Return the `found child' if we got a match, or NULL
1104 * otherwise. The `aux' pointer is simply passed on through.
1105 *
1106 * Note that this function is designed so that it can be used to apply
1107 * an arbitrary function to all potential children (its return value
1108 * can be ignored).
1109 */
1110 static cfdata_t
1111 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1112 {
1113 cfsubmatch_t fn;
1114 const char *ifattr;
1115 const int *locs;
1116 struct cftable *ct;
1117 cfdata_t cf;
1118 struct matchinfo m;
1119
1120 config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
1121
1122 KASSERT(config_initialized);
1123 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1124 KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1125
1126 m.fn = fn;
1127 m.parent = parent;
1128 m.locs = locs;
1129 m.aux = aux;
1130 m.match = NULL;
1131 m.pri = 0;
1132
1133 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1134 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1135
1136 /* We don't match root nodes here. */
1137 if (!cf->cf_pspec)
1138 continue;
1139
1140 /*
1141 * Skip cf if no longer eligible, otherwise scan
1142 * through parents for one matching `parent', and
1143 * try match function.
1144 */
1145 if (cf->cf_fstate == FSTATE_FOUND)
1146 continue;
1147 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1148 cf->cf_fstate == FSTATE_DSTAR)
1149 continue;
1150
1151 /*
1152 * If an interface attribute was specified,
1153 * consider only children which attach to
1154 * that attribute.
1155 */
1156 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1157 continue;
1158
1159 if (cfparent_match(parent, cf->cf_pspec))
1160 mapply(&m, cf);
1161 }
1162 }
1163 return m.match;
1164 }
1165
1166 cfdata_t
1167 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1168 {
1169 cfdata_t cf;
1170 va_list ap;
1171
1172 va_start(ap, tag);
1173 cf = config_vsearch(parent, aux, tag, ap);
1174 va_end(ap);
1175
1176 return cf;
1177 }
1178
1179 /*
1180 * Find the given root device.
1181 * This is much like config_search, but there is no parent.
1182 * Don't bother with multiple cfdata tables; the root node
1183 * must always be in the initial table.
1184 */
1185 cfdata_t
1186 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1187 {
1188 cfdata_t cf;
1189 const short *p;
1190 struct matchinfo m;
1191
1192 m.fn = fn;
1193 m.parent = ROOT;
1194 m.aux = aux;
1195 m.match = NULL;
1196 m.pri = 0;
1197 m.locs = 0;
1198 /*
1199 * Look at root entries for matching name. We do not bother
1200 * with found-state here since only one root should ever be
1201 * searched (and it must be done first).
1202 */
1203 for (p = cfroots; *p >= 0; p++) {
1204 cf = &cfdata[*p];
1205 if (strcmp(cf->cf_name, rootname) == 0)
1206 mapply(&m, cf);
1207 }
1208 return m.match;
1209 }
1210
1211 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1212
1213 /*
1214 * The given `aux' argument describes a device that has been found
1215 * on the given parent, but not necessarily configured. Locate the
1216 * configuration data for that device (using the submatch function
1217 * provided, or using candidates' cd_match configuration driver
1218 * functions) and attach it, and return its device_t. If the device was
1219 * not configured, call the given `print' function and return NULL.
1220 */
1221 static device_t
1222 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
1223 va_list ap)
1224 {
1225 cfdata_t cf;
1226 va_list nap;
1227
1228 va_copy(nap, ap);
1229 cf = config_vsearch(parent, aux, tag, nap);
1230 va_end(nap);
1231
1232 if (cf != NULL) {
1233 return config_vattach(parent, cf, aux, print, tag, ap);
1234 }
1235
1236 if (print) {
1237 if (config_do_twiddle && cold)
1238 twiddle();
1239 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1240 }
1241
1242 /*
1243 * This has the effect of mixing in a single timestamp to the
1244 * entropy pool. Experiments indicate the estimator will almost
1245 * always attribute one bit of entropy to this sample; analysis
1246 * of device attach/detach timestamps on FreeBSD indicates 4
1247 * bits of entropy/sample so this seems appropriately conservative.
1248 */
1249 rnd_add_uint32(&rnd_autoconf_source, 0);
1250 return NULL;
1251 }
1252
1253 device_t
1254 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
1255 {
1256 device_t dev;
1257 va_list ap;
1258
1259 va_start(ap, tag);
1260 dev = config_vfound(parent, aux, print, tag, ap);
1261 va_end(ap);
1262
1263 return dev;
1264 }
1265
1266 /*
1267 * As above, but for root devices.
1268 */
1269 device_t
1270 config_rootfound(const char *rootname, void *aux)
1271 {
1272 cfdata_t cf;
1273
1274 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1275 return config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
1276 aprint_error("root device %s not configured\n", rootname);
1277 return NULL;
1278 }
1279
1280 /* just like sprintf(buf, "%d") except that it works from the end */
1281 static char *
1282 number(char *ep, int n)
1283 {
1284
1285 *--ep = 0;
1286 while (n >= 10) {
1287 *--ep = (n % 10) + '0';
1288 n /= 10;
1289 }
1290 *--ep = n + '0';
1291 return ep;
1292 }
1293
1294 /*
1295 * Expand the size of the cd_devs array if necessary.
1296 *
1297 * The caller must hold alldevs_lock. config_makeroom() may release and
1298 * re-acquire alldevs_lock, so callers should re-check conditions such
1299 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1300 * returns.
1301 */
1302 static void
1303 config_makeroom(int n, struct cfdriver *cd)
1304 {
1305 int ondevs, nndevs;
1306 device_t *osp, *nsp;
1307
1308 KASSERT(mutex_owned(&alldevs_lock));
1309 alldevs_nwrite++;
1310
1311 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1312 ;
1313
1314 while (n >= cd->cd_ndevs) {
1315 /*
1316 * Need to expand the array.
1317 */
1318 ondevs = cd->cd_ndevs;
1319 osp = cd->cd_devs;
1320
1321 /*
1322 * Release alldevs_lock around allocation, which may
1323 * sleep.
1324 */
1325 mutex_exit(&alldevs_lock);
1326 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1327 mutex_enter(&alldevs_lock);
1328
1329 /*
1330 * If another thread moved the array while we did
1331 * not hold alldevs_lock, try again.
1332 */
1333 if (cd->cd_devs != osp) {
1334 mutex_exit(&alldevs_lock);
1335 kmem_free(nsp, sizeof(device_t) * nndevs);
1336 mutex_enter(&alldevs_lock);
1337 continue;
1338 }
1339
1340 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1341 if (ondevs != 0)
1342 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1343
1344 cd->cd_ndevs = nndevs;
1345 cd->cd_devs = nsp;
1346 if (ondevs != 0) {
1347 mutex_exit(&alldevs_lock);
1348 kmem_free(osp, sizeof(device_t) * ondevs);
1349 mutex_enter(&alldevs_lock);
1350 }
1351 }
1352 KASSERT(mutex_owned(&alldevs_lock));
1353 alldevs_nwrite--;
1354 }
1355
1356 /*
1357 * Put dev into the devices list.
1358 */
1359 static void
1360 config_devlink(device_t dev)
1361 {
1362
1363 mutex_enter(&alldevs_lock);
1364
1365 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1366
1367 dev->dv_add_gen = alldevs_gen;
1368 /* It is safe to add a device to the tail of the list while
1369 * readers and writers are in the list.
1370 */
1371 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1372 mutex_exit(&alldevs_lock);
1373 }
1374
1375 static void
1376 config_devfree(device_t dev)
1377 {
1378 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1379
1380 if (dev->dv_cfattach->ca_devsize > 0)
1381 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1382 kmem_free(dev, sizeof(*dev));
1383 }
1384
1385 /*
1386 * Caller must hold alldevs_lock.
1387 */
1388 static void
1389 config_devunlink(device_t dev, struct devicelist *garbage)
1390 {
1391 struct device_garbage *dg = &dev->dv_garbage;
1392 cfdriver_t cd = device_cfdriver(dev);
1393 int i;
1394
1395 KASSERT(mutex_owned(&alldevs_lock));
1396
1397 /* Unlink from device list. Link to garbage list. */
1398 TAILQ_REMOVE(&alldevs, dev, dv_list);
1399 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1400
1401 /* Remove from cfdriver's array. */
1402 cd->cd_devs[dev->dv_unit] = NULL;
1403
1404 /*
1405 * If the device now has no units in use, unlink its softc array.
1406 */
1407 for (i = 0; i < cd->cd_ndevs; i++) {
1408 if (cd->cd_devs[i] != NULL)
1409 break;
1410 }
1411 /* Nothing found. Unlink, now. Deallocate, later. */
1412 if (i == cd->cd_ndevs) {
1413 dg->dg_ndevs = cd->cd_ndevs;
1414 dg->dg_devs = cd->cd_devs;
1415 cd->cd_devs = NULL;
1416 cd->cd_ndevs = 0;
1417 }
1418 }
1419
1420 static void
1421 config_devdelete(device_t dev)
1422 {
1423 struct device_garbage *dg = &dev->dv_garbage;
1424 device_lock_t dvl = device_getlock(dev);
1425
1426 if (dg->dg_devs != NULL)
1427 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1428
1429 cv_destroy(&dvl->dvl_cv);
1430 mutex_destroy(&dvl->dvl_mtx);
1431
1432 KASSERT(dev->dv_properties != NULL);
1433 prop_object_release(dev->dv_properties);
1434
1435 if (dev->dv_activity_handlers)
1436 panic("%s with registered handlers", __func__);
1437
1438 if (dev->dv_locators) {
1439 size_t amount = *--dev->dv_locators;
1440 kmem_free(dev->dv_locators, amount);
1441 }
1442
1443 config_devfree(dev);
1444 }
1445
1446 static int
1447 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1448 {
1449 int unit;
1450
1451 if (cf->cf_fstate == FSTATE_STAR) {
1452 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1453 if (cd->cd_devs[unit] == NULL)
1454 break;
1455 /*
1456 * unit is now the unit of the first NULL device pointer,
1457 * or max(cd->cd_ndevs,cf->cf_unit).
1458 */
1459 } else {
1460 unit = cf->cf_unit;
1461 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1462 unit = -1;
1463 }
1464 return unit;
1465 }
1466
1467 static int
1468 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1469 {
1470 struct alldevs_foray af;
1471 int unit;
1472
1473 config_alldevs_enter(&af);
1474 for (;;) {
1475 unit = config_unit_nextfree(cd, cf);
1476 if (unit == -1)
1477 break;
1478 if (unit < cd->cd_ndevs) {
1479 cd->cd_devs[unit] = dev;
1480 dev->dv_unit = unit;
1481 break;
1482 }
1483 config_makeroom(unit, cd);
1484 }
1485 config_alldevs_exit(&af);
1486
1487 return unit;
1488 }
1489
1490 static device_t
1491 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
1492 va_list ap)
1493 {
1494 cfdriver_t cd;
1495 cfattach_t ca;
1496 size_t lname, lunit;
1497 const char *xunit;
1498 int myunit;
1499 char num[10];
1500 device_t dev;
1501 void *dev_private;
1502 const struct cfiattrdata *ia;
1503 device_lock_t dvl;
1504 const int *locs;
1505
1506 cd = config_cfdriver_lookup(cf->cf_name);
1507 if (cd == NULL)
1508 return NULL;
1509
1510 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1511 if (ca == NULL)
1512 return NULL;
1513
1514 /* get memory for all device vars */
1515 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1516 if (ca->ca_devsize > 0) {
1517 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1518 } else {
1519 dev_private = NULL;
1520 }
1521 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1522
1523 /*
1524 * If a handle was supplied to config_attach(), we'll get it
1525 * assigned automatically here. If not, then we'll get the
1526 * default invalid handle.
1527 */
1528 config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
1529
1530 dev->dv_class = cd->cd_class;
1531 dev->dv_cfdata = cf;
1532 dev->dv_cfdriver = cd;
1533 dev->dv_cfattach = ca;
1534 dev->dv_activity_count = 0;
1535 dev->dv_activity_handlers = NULL;
1536 dev->dv_private = dev_private;
1537 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1538
1539 myunit = config_unit_alloc(dev, cd, cf);
1540 if (myunit == -1) {
1541 config_devfree(dev);
1542 return NULL;
1543 }
1544
1545 /* compute length of name and decimal expansion of unit number */
1546 lname = strlen(cd->cd_name);
1547 xunit = number(&num[sizeof(num)], myunit);
1548 lunit = &num[sizeof(num)] - xunit;
1549 if (lname + lunit > sizeof(dev->dv_xname))
1550 panic("config_vdevalloc: device name too long");
1551
1552 dvl = device_getlock(dev);
1553
1554 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1555 cv_init(&dvl->dvl_cv, "pmfsusp");
1556
1557 memcpy(dev->dv_xname, cd->cd_name, lname);
1558 memcpy(dev->dv_xname + lname, xunit, lunit);
1559 dev->dv_parent = parent;
1560 if (parent != NULL)
1561 dev->dv_depth = parent->dv_depth + 1;
1562 else
1563 dev->dv_depth = 0;
1564 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1565 if (locs) {
1566 KASSERT(parent); /* no locators at root */
1567 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1568 dev->dv_locators =
1569 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1570 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1571 memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1572 }
1573 dev->dv_properties = prop_dictionary_create();
1574 KASSERT(dev->dv_properties != NULL);
1575
1576 prop_dictionary_set_string_nocopy(dev->dv_properties,
1577 "device-driver", dev->dv_cfdriver->cd_name);
1578 prop_dictionary_set_uint16(dev->dv_properties,
1579 "device-unit", dev->dv_unit);
1580 if (parent != NULL) {
1581 prop_dictionary_set_string(dev->dv_properties,
1582 "device-parent", device_xname(parent));
1583 }
1584
1585 if (dev->dv_cfdriver->cd_attrs != NULL)
1586 config_add_attrib_dict(dev);
1587
1588 return dev;
1589 }
1590
1591 static device_t
1592 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
1593 {
1594 device_t dev;
1595 va_list ap;
1596
1597 va_start(ap, tag);
1598 dev = config_vdevalloc(parent, cf, tag, ap);
1599 va_end(ap);
1600
1601 return dev;
1602 }
1603
1604 /*
1605 * Create an array of device attach attributes and add it
1606 * to the device's dv_properties dictionary.
1607 *
1608 * <key>interface-attributes</key>
1609 * <array>
1610 * <dict>
1611 * <key>attribute-name</key>
1612 * <string>foo</string>
1613 * <key>locators</key>
1614 * <array>
1615 * <dict>
1616 * <key>loc-name</key>
1617 * <string>foo-loc1</string>
1618 * </dict>
1619 * <dict>
1620 * <key>loc-name</key>
1621 * <string>foo-loc2</string>
1622 * <key>default</key>
1623 * <string>foo-loc2-default</string>
1624 * </dict>
1625 * ...
1626 * </array>
1627 * </dict>
1628 * ...
1629 * </array>
1630 */
1631
1632 static void
1633 config_add_attrib_dict(device_t dev)
1634 {
1635 int i, j;
1636 const struct cfiattrdata *ci;
1637 prop_dictionary_t attr_dict, loc_dict;
1638 prop_array_t attr_array, loc_array;
1639
1640 if ((attr_array = prop_array_create()) == NULL)
1641 return;
1642
1643 for (i = 0; ; i++) {
1644 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1645 break;
1646 if ((attr_dict = prop_dictionary_create()) == NULL)
1647 break;
1648 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1649 ci->ci_name);
1650
1651 /* Create an array of the locator names and defaults */
1652
1653 if (ci->ci_loclen != 0 &&
1654 (loc_array = prop_array_create()) != NULL) {
1655 for (j = 0; j < ci->ci_loclen; j++) {
1656 loc_dict = prop_dictionary_create();
1657 if (loc_dict == NULL)
1658 continue;
1659 prop_dictionary_set_string_nocopy(loc_dict,
1660 "loc-name", ci->ci_locdesc[j].cld_name);
1661 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1662 prop_dictionary_set_string_nocopy(
1663 loc_dict, "default",
1664 ci->ci_locdesc[j].cld_defaultstr);
1665 prop_array_set(loc_array, j, loc_dict);
1666 prop_object_release(loc_dict);
1667 }
1668 prop_dictionary_set_and_rel(attr_dict, "locators",
1669 loc_array);
1670 }
1671 prop_array_add(attr_array, attr_dict);
1672 prop_object_release(attr_dict);
1673 }
1674 if (i == 0)
1675 prop_object_release(attr_array);
1676 else
1677 prop_dictionary_set_and_rel(dev->dv_properties,
1678 "interface-attributes", attr_array);
1679
1680 return;
1681 }
1682
1683 /*
1684 * Attach a found device.
1685 */
1686 static device_t
1687 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1688 cfarg_t tag, va_list ap)
1689 {
1690 device_t dev;
1691 struct cftable *ct;
1692 const char *drvname;
1693
1694 dev = config_vdevalloc(parent, cf, tag, ap);
1695 if (!dev)
1696 panic("config_attach: allocation of device softc failed");
1697
1698 /* XXX redundant - see below? */
1699 if (cf->cf_fstate != FSTATE_STAR) {
1700 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1701 cf->cf_fstate = FSTATE_FOUND;
1702 }
1703
1704 config_devlink(dev);
1705
1706 if (config_do_twiddle && cold)
1707 twiddle();
1708 else
1709 aprint_naive("Found ");
1710 /*
1711 * We want the next two printfs for normal, verbose, and quiet,
1712 * but not silent (in which case, we're twiddling, instead).
1713 */
1714 if (parent == ROOT) {
1715 aprint_naive("%s (root)", device_xname(dev));
1716 aprint_normal("%s (root)", device_xname(dev));
1717 } else {
1718 aprint_naive("%s at %s", device_xname(dev),
1719 device_xname(parent));
1720 aprint_normal("%s at %s", device_xname(dev),
1721 device_xname(parent));
1722 if (print)
1723 (void) (*print)(aux, NULL);
1724 }
1725
1726 /*
1727 * Before attaching, clobber any unfound devices that are
1728 * otherwise identical.
1729 * XXX code above is redundant?
1730 */
1731 drvname = dev->dv_cfdriver->cd_name;
1732 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1733 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1734 if (STREQ(cf->cf_name, drvname) &&
1735 cf->cf_unit == dev->dv_unit) {
1736 if (cf->cf_fstate == FSTATE_NOTFOUND)
1737 cf->cf_fstate = FSTATE_FOUND;
1738 }
1739 }
1740 }
1741 device_register(dev, aux);
1742
1743 /* Let userland know */
1744 devmon_report_device(dev, true);
1745
1746 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1747
1748 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1749 && !device_pmf_is_registered(dev))
1750 aprint_debug_dev(dev,
1751 "WARNING: power management not supported\n");
1752
1753 config_process_deferred(&deferred_config_queue, dev);
1754
1755 device_register_post_config(dev, aux);
1756 return dev;
1757 }
1758
1759 device_t
1760 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1761 cfarg_t tag, ...)
1762 {
1763 device_t dev;
1764 va_list ap;
1765
1766 va_start(ap, tag);
1767 dev = config_vattach(parent, cf, aux, print, tag, ap);
1768 va_end(ap);
1769
1770 return dev;
1771 }
1772
1773 /*
1774 * As above, but for pseudo-devices. Pseudo-devices attached in this
1775 * way are silently inserted into the device tree, and their children
1776 * attached.
1777 *
1778 * Note that because pseudo-devices are attached silently, any information
1779 * the attach routine wishes to print should be prefixed with the device
1780 * name by the attach routine.
1781 */
1782 device_t
1783 config_attach_pseudo(cfdata_t cf)
1784 {
1785 device_t dev;
1786
1787 dev = config_devalloc(ROOT, cf, CFARG_EOL);
1788 if (!dev)
1789 return NULL;
1790
1791 /* XXX mark busy in cfdata */
1792
1793 if (cf->cf_fstate != FSTATE_STAR) {
1794 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1795 cf->cf_fstate = FSTATE_FOUND;
1796 }
1797
1798 config_devlink(dev);
1799
1800 #if 0 /* XXXJRT not yet */
1801 device_register(dev, NULL); /* like a root node */
1802 #endif
1803
1804 /* Let userland know */
1805 devmon_report_device(dev, true);
1806
1807 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1808
1809 config_process_deferred(&deferred_config_queue, dev);
1810 return dev;
1811 }
1812
1813 /*
1814 * Caller must hold alldevs_lock.
1815 */
1816 static void
1817 config_collect_garbage(struct devicelist *garbage)
1818 {
1819 device_t dv;
1820
1821 KASSERT(!cpu_intr_p());
1822 KASSERT(!cpu_softintr_p());
1823 KASSERT(mutex_owned(&alldevs_lock));
1824
1825 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1826 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1827 if (dv->dv_del_gen != 0)
1828 break;
1829 }
1830 if (dv == NULL) {
1831 alldevs_garbage = false;
1832 break;
1833 }
1834 config_devunlink(dv, garbage);
1835 }
1836 KASSERT(mutex_owned(&alldevs_lock));
1837 }
1838
1839 static void
1840 config_dump_garbage(struct devicelist *garbage)
1841 {
1842 device_t dv;
1843
1844 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1845 TAILQ_REMOVE(garbage, dv, dv_list);
1846 config_devdelete(dv);
1847 }
1848 }
1849
1850 /*
1851 * Detach a device. Optionally forced (e.g. because of hardware
1852 * removal) and quiet. Returns zero if successful, non-zero
1853 * (an error code) otherwise.
1854 *
1855 * Note that this code wants to be run from a process context, so
1856 * that the detach can sleep to allow processes which have a device
1857 * open to run and unwind their stacks.
1858 */
1859 int
1860 config_detach(device_t dev, int flags)
1861 {
1862 struct alldevs_foray af;
1863 struct cftable *ct;
1864 cfdata_t cf;
1865 const struct cfattach *ca;
1866 struct cfdriver *cd;
1867 device_t d __diagused;
1868 int rv = 0;
1869
1870 cf = dev->dv_cfdata;
1871 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1872 cf->cf_fstate == FSTATE_STAR),
1873 "config_detach: %s: bad device fstate: %d",
1874 device_xname(dev), cf ? cf->cf_fstate : -1);
1875
1876 cd = dev->dv_cfdriver;
1877 KASSERT(cd != NULL);
1878
1879 ca = dev->dv_cfattach;
1880 KASSERT(ca != NULL);
1881
1882 mutex_enter(&alldevs_lock);
1883 if (dev->dv_del_gen != 0) {
1884 mutex_exit(&alldevs_lock);
1885 #ifdef DIAGNOSTIC
1886 printf("%s: %s is already detached\n", __func__,
1887 device_xname(dev));
1888 #endif /* DIAGNOSTIC */
1889 return ENOENT;
1890 }
1891 alldevs_nwrite++;
1892 mutex_exit(&alldevs_lock);
1893
1894 if (!detachall &&
1895 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1896 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1897 rv = EOPNOTSUPP;
1898 } else if (ca->ca_detach != NULL) {
1899 rv = (*ca->ca_detach)(dev, flags);
1900 } else
1901 rv = EOPNOTSUPP;
1902
1903 /*
1904 * If it was not possible to detach the device, then we either
1905 * panic() (for the forced but failed case), or return an error.
1906 *
1907 * If it was possible to detach the device, ensure that the
1908 * device is deactivated.
1909 */
1910 if (rv == 0)
1911 dev->dv_flags &= ~DVF_ACTIVE;
1912 else if ((flags & DETACH_FORCE) == 0)
1913 goto out;
1914 else {
1915 panic("config_detach: forced detach of %s failed (%d)",
1916 device_xname(dev), rv);
1917 }
1918
1919 /*
1920 * The device has now been successfully detached.
1921 */
1922
1923 /* Let userland know */
1924 devmon_report_device(dev, false);
1925
1926 #ifdef DIAGNOSTIC
1927 /*
1928 * Sanity: If you're successfully detached, you should have no
1929 * children. (Note that because children must be attached
1930 * after parents, we only need to search the latter part of
1931 * the list.)
1932 */
1933 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1934 d = TAILQ_NEXT(d, dv_list)) {
1935 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1936 printf("config_detach: detached device %s"
1937 " has children %s\n", device_xname(dev),
1938 device_xname(d));
1939 panic("config_detach");
1940 }
1941 }
1942 #endif
1943
1944 /* notify the parent that the child is gone */
1945 if (dev->dv_parent) {
1946 device_t p = dev->dv_parent;
1947 if (p->dv_cfattach->ca_childdetached)
1948 (*p->dv_cfattach->ca_childdetached)(p, dev);
1949 }
1950
1951 /*
1952 * Mark cfdata to show that the unit can be reused, if possible.
1953 */
1954 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1955 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1956 if (STREQ(cf->cf_name, cd->cd_name)) {
1957 if (cf->cf_fstate == FSTATE_FOUND &&
1958 cf->cf_unit == dev->dv_unit)
1959 cf->cf_fstate = FSTATE_NOTFOUND;
1960 }
1961 }
1962 }
1963
1964 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1965 aprint_normal_dev(dev, "detached\n");
1966
1967 out:
1968 config_alldevs_enter(&af);
1969 KASSERT(alldevs_nwrite != 0);
1970 --alldevs_nwrite;
1971 if (rv == 0 && dev->dv_del_gen == 0) {
1972 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1973 config_devunlink(dev, &af.af_garbage);
1974 else {
1975 dev->dv_del_gen = alldevs_gen;
1976 alldevs_garbage = true;
1977 }
1978 }
1979 config_alldevs_exit(&af);
1980
1981 return rv;
1982 }
1983
1984 int
1985 config_detach_children(device_t parent, int flags)
1986 {
1987 device_t dv;
1988 deviter_t di;
1989 int error = 0;
1990
1991 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1992 dv = deviter_next(&di)) {
1993 if (device_parent(dv) != parent)
1994 continue;
1995 if ((error = config_detach(dv, flags)) != 0)
1996 break;
1997 }
1998 deviter_release(&di);
1999 return error;
2000 }
2001
2002 device_t
2003 shutdown_first(struct shutdown_state *s)
2004 {
2005 if (!s->initialized) {
2006 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
2007 s->initialized = true;
2008 }
2009 return shutdown_next(s);
2010 }
2011
2012 device_t
2013 shutdown_next(struct shutdown_state *s)
2014 {
2015 device_t dv;
2016
2017 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
2018 ;
2019
2020 if (dv == NULL)
2021 s->initialized = false;
2022
2023 return dv;
2024 }
2025
2026 bool
2027 config_detach_all(int how)
2028 {
2029 static struct shutdown_state s;
2030 device_t curdev;
2031 bool progress = false;
2032 int flags;
2033
2034 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
2035 return false;
2036
2037 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
2038 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
2039 else
2040 flags = DETACH_SHUTDOWN;
2041
2042 for (curdev = shutdown_first(&s); curdev != NULL;
2043 curdev = shutdown_next(&s)) {
2044 aprint_debug(" detaching %s, ", device_xname(curdev));
2045 if (config_detach(curdev, flags) == 0) {
2046 progress = true;
2047 aprint_debug("success.");
2048 } else
2049 aprint_debug("failed.");
2050 }
2051 return progress;
2052 }
2053
2054 static bool
2055 device_is_ancestor_of(device_t ancestor, device_t descendant)
2056 {
2057 device_t dv;
2058
2059 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2060 if (device_parent(dv) == ancestor)
2061 return true;
2062 }
2063 return false;
2064 }
2065
2066 int
2067 config_deactivate(device_t dev)
2068 {
2069 deviter_t di;
2070 const struct cfattach *ca;
2071 device_t descendant;
2072 int s, rv = 0, oflags;
2073
2074 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2075 descendant != NULL;
2076 descendant = deviter_next(&di)) {
2077 if (dev != descendant &&
2078 !device_is_ancestor_of(dev, descendant))
2079 continue;
2080
2081 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2082 continue;
2083
2084 ca = descendant->dv_cfattach;
2085 oflags = descendant->dv_flags;
2086
2087 descendant->dv_flags &= ~DVF_ACTIVE;
2088 if (ca->ca_activate == NULL)
2089 continue;
2090 s = splhigh();
2091 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2092 splx(s);
2093 if (rv != 0)
2094 descendant->dv_flags = oflags;
2095 }
2096 deviter_release(&di);
2097 return rv;
2098 }
2099
2100 /*
2101 * Defer the configuration of the specified device until all
2102 * of its parent's devices have been attached.
2103 */
2104 void
2105 config_defer(device_t dev, void (*func)(device_t))
2106 {
2107 struct deferred_config *dc;
2108
2109 if (dev->dv_parent == NULL)
2110 panic("config_defer: can't defer config of a root device");
2111
2112 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2113
2114 config_pending_incr(dev);
2115
2116 mutex_enter(&config_misc_lock);
2117 #ifdef DIAGNOSTIC
2118 struct deferred_config *odc;
2119 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2120 if (odc->dc_dev == dev)
2121 panic("config_defer: deferred twice");
2122 }
2123 #endif
2124 dc->dc_dev = dev;
2125 dc->dc_func = func;
2126 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2127 mutex_exit(&config_misc_lock);
2128 }
2129
2130 /*
2131 * Defer some autoconfiguration for a device until after interrupts
2132 * are enabled.
2133 */
2134 void
2135 config_interrupts(device_t dev, void (*func)(device_t))
2136 {
2137 struct deferred_config *dc;
2138
2139 /*
2140 * If interrupts are enabled, callback now.
2141 */
2142 if (cold == 0) {
2143 (*func)(dev);
2144 return;
2145 }
2146
2147 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2148
2149 config_pending_incr(dev);
2150
2151 mutex_enter(&config_misc_lock);
2152 #ifdef DIAGNOSTIC
2153 struct deferred_config *odc;
2154 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2155 if (odc->dc_dev == dev)
2156 panic("config_interrupts: deferred twice");
2157 }
2158 #endif
2159 dc->dc_dev = dev;
2160 dc->dc_func = func;
2161 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2162 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2163 mutex_exit(&config_misc_lock);
2164 }
2165
2166 /*
2167 * Defer some autoconfiguration for a device until after root file system
2168 * is mounted (to load firmware etc).
2169 */
2170 void
2171 config_mountroot(device_t dev, void (*func)(device_t))
2172 {
2173 struct deferred_config *dc;
2174
2175 /*
2176 * If root file system is mounted, callback now.
2177 */
2178 if (root_is_mounted) {
2179 (*func)(dev);
2180 return;
2181 }
2182
2183 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2184
2185 mutex_enter(&config_misc_lock);
2186 #ifdef DIAGNOSTIC
2187 struct deferred_config *odc;
2188 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2189 if (odc->dc_dev == dev)
2190 panic("%s: deferred twice", __func__);
2191 }
2192 #endif
2193
2194 dc->dc_dev = dev;
2195 dc->dc_func = func;
2196 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2197 mutex_exit(&config_misc_lock);
2198 }
2199
2200 /*
2201 * Process a deferred configuration queue.
2202 */
2203 static void
2204 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2205 {
2206 struct deferred_config *dc;
2207
2208 mutex_enter(&config_misc_lock);
2209 dc = TAILQ_FIRST(queue);
2210 while (dc) {
2211 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2212 TAILQ_REMOVE(queue, dc, dc_queue);
2213 mutex_exit(&config_misc_lock);
2214
2215 (*dc->dc_func)(dc->dc_dev);
2216 config_pending_decr(dc->dc_dev);
2217 kmem_free(dc, sizeof(*dc));
2218
2219 mutex_enter(&config_misc_lock);
2220 /* Restart, queue might have changed */
2221 dc = TAILQ_FIRST(queue);
2222 } else {
2223 dc = TAILQ_NEXT(dc, dc_queue);
2224 }
2225 }
2226 mutex_exit(&config_misc_lock);
2227 }
2228
2229 /*
2230 * Manipulate the config_pending semaphore.
2231 */
2232 void
2233 config_pending_incr(device_t dev)
2234 {
2235
2236 mutex_enter(&config_misc_lock);
2237 KASSERTMSG(dev->dv_pending < INT_MAX,
2238 "%s: excess config_pending_incr", device_xname(dev));
2239 if (dev->dv_pending++ == 0)
2240 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2241 #ifdef DEBUG_AUTOCONF
2242 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2243 #endif
2244 mutex_exit(&config_misc_lock);
2245 }
2246
2247 void
2248 config_pending_decr(device_t dev)
2249 {
2250
2251 mutex_enter(&config_misc_lock);
2252 KASSERTMSG(dev->dv_pending > 0,
2253 "%s: excess config_pending_decr", device_xname(dev));
2254 if (--dev->dv_pending == 0)
2255 TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2256 #ifdef DEBUG_AUTOCONF
2257 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2258 #endif
2259 if (TAILQ_EMPTY(&config_pending))
2260 cv_broadcast(&config_misc_cv);
2261 mutex_exit(&config_misc_lock);
2262 }
2263
2264 /*
2265 * Register a "finalization" routine. Finalization routines are
2266 * called iteratively once all real devices have been found during
2267 * autoconfiguration, for as long as any one finalizer has done
2268 * any work.
2269 */
2270 int
2271 config_finalize_register(device_t dev, int (*fn)(device_t))
2272 {
2273 struct finalize_hook *f;
2274
2275 /*
2276 * If finalization has already been done, invoke the
2277 * callback function now.
2278 */
2279 if (config_finalize_done) {
2280 while ((*fn)(dev) != 0)
2281 /* loop */ ;
2282 return 0;
2283 }
2284
2285 /* Ensure this isn't already on the list. */
2286 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2287 if (f->f_func == fn && f->f_dev == dev)
2288 return EEXIST;
2289 }
2290
2291 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2292 f->f_func = fn;
2293 f->f_dev = dev;
2294 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2295
2296 return 0;
2297 }
2298
2299 void
2300 config_finalize(void)
2301 {
2302 struct finalize_hook *f;
2303 struct pdevinit *pdev;
2304 extern struct pdevinit pdevinit[];
2305 int errcnt, rv;
2306
2307 /*
2308 * Now that device driver threads have been created, wait for
2309 * them to finish any deferred autoconfiguration.
2310 */
2311 mutex_enter(&config_misc_lock);
2312 while (!TAILQ_EMPTY(&config_pending)) {
2313 device_t dev;
2314 TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2315 aprint_debug_dev(dev, "holding up boot\n");
2316 cv_wait(&config_misc_cv, &config_misc_lock);
2317 }
2318 mutex_exit(&config_misc_lock);
2319
2320 KERNEL_LOCK(1, NULL);
2321
2322 /* Attach pseudo-devices. */
2323 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2324 (*pdev->pdev_attach)(pdev->pdev_count);
2325
2326 /* Run the hooks until none of them does any work. */
2327 do {
2328 rv = 0;
2329 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2330 rv |= (*f->f_func)(f->f_dev);
2331 } while (rv != 0);
2332
2333 config_finalize_done = 1;
2334
2335 /* Now free all the hooks. */
2336 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2337 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2338 kmem_free(f, sizeof(*f));
2339 }
2340
2341 KERNEL_UNLOCK_ONE(NULL);
2342
2343 errcnt = aprint_get_error_count();
2344 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2345 (boothowto & AB_VERBOSE) == 0) {
2346 mutex_enter(&config_misc_lock);
2347 if (config_do_twiddle) {
2348 config_do_twiddle = 0;
2349 printf_nolog(" done.\n");
2350 }
2351 mutex_exit(&config_misc_lock);
2352 }
2353 if (errcnt != 0) {
2354 printf("WARNING: %d error%s while detecting hardware; "
2355 "check system log.\n", errcnt,
2356 errcnt == 1 ? "" : "s");
2357 }
2358 }
2359
2360 void
2361 config_twiddle_init(void)
2362 {
2363
2364 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2365 config_do_twiddle = 1;
2366 }
2367 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2368 }
2369
2370 void
2371 config_twiddle_fn(void *cookie)
2372 {
2373
2374 mutex_enter(&config_misc_lock);
2375 if (config_do_twiddle) {
2376 twiddle();
2377 callout_schedule(&config_twiddle_ch, mstohz(100));
2378 }
2379 mutex_exit(&config_misc_lock);
2380 }
2381
2382 static void
2383 config_alldevs_enter(struct alldevs_foray *af)
2384 {
2385 TAILQ_INIT(&af->af_garbage);
2386 mutex_enter(&alldevs_lock);
2387 config_collect_garbage(&af->af_garbage);
2388 }
2389
2390 static void
2391 config_alldevs_exit(struct alldevs_foray *af)
2392 {
2393 mutex_exit(&alldevs_lock);
2394 config_dump_garbage(&af->af_garbage);
2395 }
2396
2397 /*
2398 * device_lookup:
2399 *
2400 * Look up a device instance for a given driver.
2401 */
2402 device_t
2403 device_lookup(cfdriver_t cd, int unit)
2404 {
2405 device_t dv;
2406
2407 mutex_enter(&alldevs_lock);
2408 if (unit < 0 || unit >= cd->cd_ndevs)
2409 dv = NULL;
2410 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2411 dv = NULL;
2412 mutex_exit(&alldevs_lock);
2413
2414 return dv;
2415 }
2416
2417 /*
2418 * device_lookup_private:
2419 *
2420 * Look up a softc instance for a given driver.
2421 */
2422 void *
2423 device_lookup_private(cfdriver_t cd, int unit)
2424 {
2425
2426 return device_private(device_lookup(cd, unit));
2427 }
2428
2429 /*
2430 * device_find_by_xname:
2431 *
2432 * Returns the device of the given name or NULL if it doesn't exist.
2433 */
2434 device_t
2435 device_find_by_xname(const char *name)
2436 {
2437 device_t dv;
2438 deviter_t di;
2439
2440 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2441 if (strcmp(device_xname(dv), name) == 0)
2442 break;
2443 }
2444 deviter_release(&di);
2445
2446 return dv;
2447 }
2448
2449 /*
2450 * device_find_by_driver_unit:
2451 *
2452 * Returns the device of the given driver name and unit or
2453 * NULL if it doesn't exist.
2454 */
2455 device_t
2456 device_find_by_driver_unit(const char *name, int unit)
2457 {
2458 struct cfdriver *cd;
2459
2460 if ((cd = config_cfdriver_lookup(name)) == NULL)
2461 return NULL;
2462 return device_lookup(cd, unit);
2463 }
2464
2465 static bool
2466 match_strcmp(const char * const s1, const char * const s2)
2467 {
2468 return strcmp(s1, s2) == 0;
2469 }
2470
2471 static bool
2472 match_pmatch(const char * const s1, const char * const s2)
2473 {
2474 return pmatch(s1, s2, NULL) == 2;
2475 }
2476
2477 static bool
2478 strarray_match_internal(const char ** const strings,
2479 unsigned int const nstrings, const char * const str,
2480 unsigned int * const indexp,
2481 bool (*match_fn)(const char *, const char *))
2482 {
2483 unsigned int i;
2484
2485 if (strings == NULL || nstrings == 0) {
2486 return false;
2487 }
2488
2489 for (i = 0; i < nstrings; i++) {
2490 if ((*match_fn)(strings[i], str)) {
2491 *indexp = i;
2492 return true;
2493 }
2494 }
2495
2496 return false;
2497 }
2498
2499 static int
2500 strarray_match(const char ** const strings, unsigned int const nstrings,
2501 const char * const str)
2502 {
2503 unsigned int idx;
2504
2505 if (strarray_match_internal(strings, nstrings, str, &idx,
2506 match_strcmp)) {
2507 return (int)(nstrings - idx);
2508 }
2509 return 0;
2510 }
2511
2512 static int
2513 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2514 const char * const pattern)
2515 {
2516 unsigned int idx;
2517
2518 if (strarray_match_internal(strings, nstrings, pattern, &idx,
2519 match_pmatch)) {
2520 return (int)(nstrings - idx);
2521 }
2522 return 0;
2523 }
2524
2525 static int
2526 device_compatible_match_strarray_internal(
2527 const char **device_compats, int ndevice_compats,
2528 const struct device_compatible_entry *driver_compats,
2529 const struct device_compatible_entry **matching_entryp,
2530 int (*match_fn)(const char **, unsigned int, const char *))
2531 {
2532 const struct device_compatible_entry *dce = NULL;
2533 int rv;
2534
2535 if (ndevice_compats == 0 || device_compats == NULL ||
2536 driver_compats == NULL)
2537 return 0;
2538
2539 for (dce = driver_compats; dce->compat != NULL; dce++) {
2540 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2541 if (rv != 0) {
2542 if (matching_entryp != NULL) {
2543 *matching_entryp = dce;
2544 }
2545 return rv;
2546 }
2547 }
2548 return 0;
2549 }
2550
2551 /*
2552 * device_compatible_match:
2553 *
2554 * Match a driver's "compatible" data against a device's
2555 * "compatible" strings. Returns resulted weighted by
2556 * which device "compatible" string was matched.
2557 */
2558 int
2559 device_compatible_match(const char **device_compats, int ndevice_compats,
2560 const struct device_compatible_entry *driver_compats)
2561 {
2562 return device_compatible_match_strarray_internal(device_compats,
2563 ndevice_compats, driver_compats, NULL, strarray_match);
2564 }
2565
2566 /*
2567 * device_compatible_pmatch:
2568 *
2569 * Like device_compatible_match(), but uses pmatch(9) to compare
2570 * the device "compatible" strings against patterns in the
2571 * driver's "compatible" data.
2572 */
2573 int
2574 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2575 const struct device_compatible_entry *driver_compats)
2576 {
2577 return device_compatible_match_strarray_internal(device_compats,
2578 ndevice_compats, driver_compats, NULL, strarray_pmatch);
2579 }
2580
2581 static int
2582 device_compatible_match_strlist_internal(
2583 const char * const device_compats, size_t const device_compatsize,
2584 const struct device_compatible_entry *driver_compats,
2585 const struct device_compatible_entry **matching_entryp,
2586 int (*match_fn)(const char *, size_t, const char *))
2587 {
2588 const struct device_compatible_entry *dce = NULL;
2589 int rv;
2590
2591 if (device_compats == NULL || device_compatsize == 0 ||
2592 driver_compats == NULL)
2593 return 0;
2594
2595 for (dce = driver_compats; dce->compat != NULL; dce++) {
2596 rv = (*match_fn)(device_compats, device_compatsize,
2597 dce->compat);
2598 if (rv != 0) {
2599 if (matching_entryp != NULL) {
2600 *matching_entryp = dce;
2601 }
2602 return rv;
2603 }
2604 }
2605 return 0;
2606 }
2607
2608 /*
2609 * device_compatible_match_strlist:
2610 *
2611 * Like device_compatible_match(), but take the device
2612 * "compatible" strings as an OpenFirmware-style string
2613 * list.
2614 */
2615 int
2616 device_compatible_match_strlist(
2617 const char * const device_compats, size_t const device_compatsize,
2618 const struct device_compatible_entry *driver_compats)
2619 {
2620 return device_compatible_match_strlist_internal(device_compats,
2621 device_compatsize, driver_compats, NULL, strlist_match);
2622 }
2623
2624 /*
2625 * device_compatible_pmatch_strlist:
2626 *
2627 * Like device_compatible_pmatch(), but take the device
2628 * "compatible" strings as an OpenFirmware-style string
2629 * list.
2630 */
2631 int
2632 device_compatible_pmatch_strlist(
2633 const char * const device_compats, size_t const device_compatsize,
2634 const struct device_compatible_entry *driver_compats)
2635 {
2636 return device_compatible_match_strlist_internal(device_compats,
2637 device_compatsize, driver_compats, NULL, strlist_pmatch);
2638 }
2639
2640 static int
2641 device_compatible_match_id_internal(
2642 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2643 const struct device_compatible_entry *driver_compats,
2644 const struct device_compatible_entry **matching_entryp)
2645 {
2646 const struct device_compatible_entry *dce = NULL;
2647
2648 if (mask == 0)
2649 return 0;
2650
2651 for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2652 if ((id & mask) == dce->id) {
2653 if (matching_entryp != NULL) {
2654 *matching_entryp = dce;
2655 }
2656 return 1;
2657 }
2658 }
2659 return 0;
2660 }
2661
2662 /*
2663 * device_compatible_match_id:
2664 *
2665 * Like device_compatible_match(), but takes a single
2666 * unsigned integer device ID.
2667 */
2668 int
2669 device_compatible_match_id(
2670 uintptr_t const id, uintptr_t const sentinel_id,
2671 const struct device_compatible_entry *driver_compats)
2672 {
2673 return device_compatible_match_id_internal(id, (uintptr_t)-1,
2674 sentinel_id, driver_compats, NULL);
2675 }
2676
2677 /*
2678 * device_compatible_lookup:
2679 *
2680 * Look up and return the device_compatible_entry, using the
2681 * same matching criteria used by device_compatible_match().
2682 */
2683 const struct device_compatible_entry *
2684 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2685 const struct device_compatible_entry *driver_compats)
2686 {
2687 const struct device_compatible_entry *dce;
2688
2689 if (device_compatible_match_strarray_internal(device_compats,
2690 ndevice_compats, driver_compats, &dce, strarray_match)) {
2691 return dce;
2692 }
2693 return NULL;
2694 }
2695
2696 /*
2697 * device_compatible_plookup:
2698 *
2699 * Look up and return the device_compatible_entry, using the
2700 * same matching criteria used by device_compatible_pmatch().
2701 */
2702 const struct device_compatible_entry *
2703 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2704 const struct device_compatible_entry *driver_compats)
2705 {
2706 const struct device_compatible_entry *dce;
2707
2708 if (device_compatible_match_strarray_internal(device_compats,
2709 ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2710 return dce;
2711 }
2712 return NULL;
2713 }
2714
2715 /*
2716 * device_compatible_lookup_strlist:
2717 *
2718 * Like device_compatible_lookup(), but take the device
2719 * "compatible" strings as an OpenFirmware-style string
2720 * list.
2721 */
2722 const struct device_compatible_entry *
2723 device_compatible_lookup_strlist(
2724 const char * const device_compats, size_t const device_compatsize,
2725 const struct device_compatible_entry *driver_compats)
2726 {
2727 const struct device_compatible_entry *dce;
2728
2729 if (device_compatible_match_strlist_internal(device_compats,
2730 device_compatsize, driver_compats, &dce, strlist_match)) {
2731 return dce;
2732 }
2733 return NULL;
2734 }
2735
2736 /*
2737 * device_compatible_plookup_strlist:
2738 *
2739 * Like device_compatible_plookup(), but take the device
2740 * "compatible" strings as an OpenFirmware-style string
2741 * list.
2742 */
2743 const struct device_compatible_entry *
2744 device_compatible_plookup_strlist(
2745 const char * const device_compats, size_t const device_compatsize,
2746 const struct device_compatible_entry *driver_compats)
2747 {
2748 const struct device_compatible_entry *dce;
2749
2750 if (device_compatible_match_strlist_internal(device_compats,
2751 device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2752 return dce;
2753 }
2754 return NULL;
2755 }
2756
2757 /*
2758 * device_compatible_lookup_id:
2759 *
2760 * Like device_compatible_lookup(), but takes a single
2761 * unsigned integer device ID.
2762 */
2763 const struct device_compatible_entry *
2764 device_compatible_lookup_id(
2765 uintptr_t const id, uintptr_t const sentinel_id,
2766 const struct device_compatible_entry *driver_compats)
2767 {
2768 const struct device_compatible_entry *dce;
2769
2770 if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2771 sentinel_id, driver_compats, &dce)) {
2772 return dce;
2773 }
2774 return NULL;
2775 }
2776
2777 /*
2778 * Power management related functions.
2779 */
2780
2781 bool
2782 device_pmf_is_registered(device_t dev)
2783 {
2784 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2785 }
2786
2787 bool
2788 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2789 {
2790 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2791 return true;
2792 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2793 return false;
2794 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2795 dev->dv_driver_suspend != NULL &&
2796 !(*dev->dv_driver_suspend)(dev, qual))
2797 return false;
2798
2799 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2800 return true;
2801 }
2802
2803 bool
2804 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2805 {
2806 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2807 return true;
2808 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2809 return false;
2810 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2811 dev->dv_driver_resume != NULL &&
2812 !(*dev->dv_driver_resume)(dev, qual))
2813 return false;
2814
2815 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2816 return true;
2817 }
2818
2819 bool
2820 device_pmf_driver_shutdown(device_t dev, int how)
2821 {
2822
2823 if (*dev->dv_driver_shutdown != NULL &&
2824 !(*dev->dv_driver_shutdown)(dev, how))
2825 return false;
2826 return true;
2827 }
2828
2829 bool
2830 device_pmf_driver_register(device_t dev,
2831 bool (*suspend)(device_t, const pmf_qual_t *),
2832 bool (*resume)(device_t, const pmf_qual_t *),
2833 bool (*shutdown)(device_t, int))
2834 {
2835 dev->dv_driver_suspend = suspend;
2836 dev->dv_driver_resume = resume;
2837 dev->dv_driver_shutdown = shutdown;
2838 dev->dv_flags |= DVF_POWER_HANDLERS;
2839 return true;
2840 }
2841
2842 static const char *
2843 curlwp_name(void)
2844 {
2845 if (curlwp->l_name != NULL)
2846 return curlwp->l_name;
2847 else
2848 return curlwp->l_proc->p_comm;
2849 }
2850
2851 void
2852 device_pmf_driver_deregister(device_t dev)
2853 {
2854 device_lock_t dvl = device_getlock(dev);
2855
2856 dev->dv_driver_suspend = NULL;
2857 dev->dv_driver_resume = NULL;
2858
2859 mutex_enter(&dvl->dvl_mtx);
2860 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2861 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2862 /* Wake a thread that waits for the lock. That
2863 * thread will fail to acquire the lock, and then
2864 * it will wake the next thread that waits for the
2865 * lock, or else it will wake us.
2866 */
2867 cv_signal(&dvl->dvl_cv);
2868 pmflock_debug(dev, __func__, __LINE__);
2869 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2870 pmflock_debug(dev, __func__, __LINE__);
2871 }
2872 mutex_exit(&dvl->dvl_mtx);
2873 }
2874
2875 bool
2876 device_pmf_driver_child_register(device_t dev)
2877 {
2878 device_t parent = device_parent(dev);
2879
2880 if (parent == NULL || parent->dv_driver_child_register == NULL)
2881 return true;
2882 return (*parent->dv_driver_child_register)(dev);
2883 }
2884
2885 void
2886 device_pmf_driver_set_child_register(device_t dev,
2887 bool (*child_register)(device_t))
2888 {
2889 dev->dv_driver_child_register = child_register;
2890 }
2891
2892 static void
2893 pmflock_debug(device_t dev, const char *func, int line)
2894 {
2895 device_lock_t dvl = device_getlock(dev);
2896
2897 aprint_debug_dev(dev,
2898 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2899 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2900 }
2901
2902 static bool
2903 device_pmf_lock1(device_t dev)
2904 {
2905 device_lock_t dvl = device_getlock(dev);
2906
2907 while (device_pmf_is_registered(dev) &&
2908 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2909 dvl->dvl_nwait++;
2910 pmflock_debug(dev, __func__, __LINE__);
2911 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2912 pmflock_debug(dev, __func__, __LINE__);
2913 dvl->dvl_nwait--;
2914 }
2915 if (!device_pmf_is_registered(dev)) {
2916 pmflock_debug(dev, __func__, __LINE__);
2917 /* We could not acquire the lock, but some other thread may
2918 * wait for it, also. Wake that thread.
2919 */
2920 cv_signal(&dvl->dvl_cv);
2921 return false;
2922 }
2923 dvl->dvl_nlock++;
2924 dvl->dvl_holder = curlwp;
2925 pmflock_debug(dev, __func__, __LINE__);
2926 return true;
2927 }
2928
2929 bool
2930 device_pmf_lock(device_t dev)
2931 {
2932 bool rc;
2933 device_lock_t dvl = device_getlock(dev);
2934
2935 mutex_enter(&dvl->dvl_mtx);
2936 rc = device_pmf_lock1(dev);
2937 mutex_exit(&dvl->dvl_mtx);
2938
2939 return rc;
2940 }
2941
2942 void
2943 device_pmf_unlock(device_t dev)
2944 {
2945 device_lock_t dvl = device_getlock(dev);
2946
2947 KASSERT(dvl->dvl_nlock > 0);
2948 mutex_enter(&dvl->dvl_mtx);
2949 if (--dvl->dvl_nlock == 0)
2950 dvl->dvl_holder = NULL;
2951 cv_signal(&dvl->dvl_cv);
2952 pmflock_debug(dev, __func__, __LINE__);
2953 mutex_exit(&dvl->dvl_mtx);
2954 }
2955
2956 device_lock_t
2957 device_getlock(device_t dev)
2958 {
2959 return &dev->dv_lock;
2960 }
2961
2962 void *
2963 device_pmf_bus_private(device_t dev)
2964 {
2965 return dev->dv_bus_private;
2966 }
2967
2968 bool
2969 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2970 {
2971 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2972 return true;
2973 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2974 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2975 return false;
2976 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2977 dev->dv_bus_suspend != NULL &&
2978 !(*dev->dv_bus_suspend)(dev, qual))
2979 return false;
2980
2981 dev->dv_flags |= DVF_BUS_SUSPENDED;
2982 return true;
2983 }
2984
2985 bool
2986 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2987 {
2988 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2989 return true;
2990 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2991 dev->dv_bus_resume != NULL &&
2992 !(*dev->dv_bus_resume)(dev, qual))
2993 return false;
2994
2995 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2996 return true;
2997 }
2998
2999 bool
3000 device_pmf_bus_shutdown(device_t dev, int how)
3001 {
3002
3003 if (*dev->dv_bus_shutdown != NULL &&
3004 !(*dev->dv_bus_shutdown)(dev, how))
3005 return false;
3006 return true;
3007 }
3008
3009 void
3010 device_pmf_bus_register(device_t dev, void *priv,
3011 bool (*suspend)(device_t, const pmf_qual_t *),
3012 bool (*resume)(device_t, const pmf_qual_t *),
3013 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
3014 {
3015 dev->dv_bus_private = priv;
3016 dev->dv_bus_resume = resume;
3017 dev->dv_bus_suspend = suspend;
3018 dev->dv_bus_shutdown = shutdown;
3019 dev->dv_bus_deregister = deregister;
3020 }
3021
3022 void
3023 device_pmf_bus_deregister(device_t dev)
3024 {
3025 if (dev->dv_bus_deregister == NULL)
3026 return;
3027 (*dev->dv_bus_deregister)(dev);
3028 dev->dv_bus_private = NULL;
3029 dev->dv_bus_suspend = NULL;
3030 dev->dv_bus_resume = NULL;
3031 dev->dv_bus_deregister = NULL;
3032 }
3033
3034 void *
3035 device_pmf_class_private(device_t dev)
3036 {
3037 return dev->dv_class_private;
3038 }
3039
3040 bool
3041 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
3042 {
3043 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
3044 return true;
3045 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3046 dev->dv_class_suspend != NULL &&
3047 !(*dev->dv_class_suspend)(dev, qual))
3048 return false;
3049
3050 dev->dv_flags |= DVF_CLASS_SUSPENDED;
3051 return true;
3052 }
3053
3054 bool
3055 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3056 {
3057 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3058 return true;
3059 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3060 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3061 return false;
3062 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3063 dev->dv_class_resume != NULL &&
3064 !(*dev->dv_class_resume)(dev, qual))
3065 return false;
3066
3067 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3068 return true;
3069 }
3070
3071 void
3072 device_pmf_class_register(device_t dev, void *priv,
3073 bool (*suspend)(device_t, const pmf_qual_t *),
3074 bool (*resume)(device_t, const pmf_qual_t *),
3075 void (*deregister)(device_t))
3076 {
3077 dev->dv_class_private = priv;
3078 dev->dv_class_suspend = suspend;
3079 dev->dv_class_resume = resume;
3080 dev->dv_class_deregister = deregister;
3081 }
3082
3083 void
3084 device_pmf_class_deregister(device_t dev)
3085 {
3086 if (dev->dv_class_deregister == NULL)
3087 return;
3088 (*dev->dv_class_deregister)(dev);
3089 dev->dv_class_private = NULL;
3090 dev->dv_class_suspend = NULL;
3091 dev->dv_class_resume = NULL;
3092 dev->dv_class_deregister = NULL;
3093 }
3094
3095 bool
3096 device_active(device_t dev, devactive_t type)
3097 {
3098 size_t i;
3099
3100 if (dev->dv_activity_count == 0)
3101 return false;
3102
3103 for (i = 0; i < dev->dv_activity_count; ++i) {
3104 if (dev->dv_activity_handlers[i] == NULL)
3105 break;
3106 (*dev->dv_activity_handlers[i])(dev, type);
3107 }
3108
3109 return true;
3110 }
3111
3112 bool
3113 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3114 {
3115 void (**new_handlers)(device_t, devactive_t);
3116 void (**old_handlers)(device_t, devactive_t);
3117 size_t i, old_size, new_size;
3118 int s;
3119
3120 old_handlers = dev->dv_activity_handlers;
3121 old_size = dev->dv_activity_count;
3122
3123 KASSERT(old_size == 0 || old_handlers != NULL);
3124
3125 for (i = 0; i < old_size; ++i) {
3126 KASSERT(old_handlers[i] != handler);
3127 if (old_handlers[i] == NULL) {
3128 old_handlers[i] = handler;
3129 return true;
3130 }
3131 }
3132
3133 new_size = old_size + 4;
3134 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3135
3136 for (i = 0; i < old_size; ++i)
3137 new_handlers[i] = old_handlers[i];
3138 new_handlers[old_size] = handler;
3139 for (i = old_size+1; i < new_size; ++i)
3140 new_handlers[i] = NULL;
3141
3142 s = splhigh();
3143 dev->dv_activity_count = new_size;
3144 dev->dv_activity_handlers = new_handlers;
3145 splx(s);
3146
3147 if (old_size > 0)
3148 kmem_free(old_handlers, sizeof(void *) * old_size);
3149
3150 return true;
3151 }
3152
3153 void
3154 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3155 {
3156 void (**old_handlers)(device_t, devactive_t);
3157 size_t i, old_size;
3158 int s;
3159
3160 old_handlers = dev->dv_activity_handlers;
3161 old_size = dev->dv_activity_count;
3162
3163 for (i = 0; i < old_size; ++i) {
3164 if (old_handlers[i] == handler)
3165 break;
3166 if (old_handlers[i] == NULL)
3167 return; /* XXX panic? */
3168 }
3169
3170 if (i == old_size)
3171 return; /* XXX panic? */
3172
3173 for (; i < old_size - 1; ++i) {
3174 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3175 continue;
3176
3177 if (i == 0) {
3178 s = splhigh();
3179 dev->dv_activity_count = 0;
3180 dev->dv_activity_handlers = NULL;
3181 splx(s);
3182 kmem_free(old_handlers, sizeof(void *) * old_size);
3183 }
3184 return;
3185 }
3186 old_handlers[i] = NULL;
3187 }
3188
3189 /* Return true iff the device_t `dev' exists at generation `gen'. */
3190 static bool
3191 device_exists_at(device_t dv, devgen_t gen)
3192 {
3193 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3194 dv->dv_add_gen <= gen;
3195 }
3196
3197 static bool
3198 deviter_visits(const deviter_t *di, device_t dv)
3199 {
3200 return device_exists_at(dv, di->di_gen);
3201 }
3202
3203 /*
3204 * Device Iteration
3205 *
3206 * deviter_t: a device iterator. Holds state for a "walk" visiting
3207 * each device_t's in the device tree.
3208 *
3209 * deviter_init(di, flags): initialize the device iterator `di'
3210 * to "walk" the device tree. deviter_next(di) will return
3211 * the first device_t in the device tree, or NULL if there are
3212 * no devices.
3213 *
3214 * `flags' is one or more of DEVITER_F_RW, indicating that the
3215 * caller intends to modify the device tree by calling
3216 * config_detach(9) on devices in the order that the iterator
3217 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3218 * nearest the "root" of the device tree to be returned, first;
3219 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3220 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3221 * indicating both that deviter_init() should not respect any
3222 * locks on the device tree, and that deviter_next(di) may run
3223 * in more than one LWP before the walk has finished.
3224 *
3225 * Only one DEVITER_F_RW iterator may be in the device tree at
3226 * once.
3227 *
3228 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3229 *
3230 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3231 * DEVITER_F_LEAVES_FIRST are used in combination.
3232 *
3233 * deviter_first(di, flags): initialize the device iterator `di'
3234 * and return the first device_t in the device tree, or NULL
3235 * if there are no devices. The statement
3236 *
3237 * dv = deviter_first(di);
3238 *
3239 * is shorthand for
3240 *
3241 * deviter_init(di);
3242 * dv = deviter_next(di);
3243 *
3244 * deviter_next(di): return the next device_t in the device tree,
3245 * or NULL if there are no more devices. deviter_next(di)
3246 * is undefined if `di' was not initialized with deviter_init() or
3247 * deviter_first().
3248 *
3249 * deviter_release(di): stops iteration (subsequent calls to
3250 * deviter_next() will return NULL), releases any locks and
3251 * resources held by the device iterator.
3252 *
3253 * Device iteration does not return device_t's in any particular
3254 * order. An iterator will never return the same device_t twice.
3255 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3256 * is called repeatedly on the same `di', it will eventually return
3257 * NULL. It is ok to attach/detach devices during device iteration.
3258 */
3259 void
3260 deviter_init(deviter_t *di, deviter_flags_t flags)
3261 {
3262 device_t dv;
3263
3264 memset(di, 0, sizeof(*di));
3265
3266 if ((flags & DEVITER_F_SHUTDOWN) != 0)
3267 flags |= DEVITER_F_RW;
3268
3269 mutex_enter(&alldevs_lock);
3270 if ((flags & DEVITER_F_RW) != 0)
3271 alldevs_nwrite++;
3272 else
3273 alldevs_nread++;
3274 di->di_gen = alldevs_gen++;
3275 di->di_flags = flags;
3276
3277 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3278 case DEVITER_F_LEAVES_FIRST:
3279 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3280 if (!deviter_visits(di, dv))
3281 continue;
3282 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3283 }
3284 break;
3285 case DEVITER_F_ROOT_FIRST:
3286 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3287 if (!deviter_visits(di, dv))
3288 continue;
3289 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3290 }
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 deviter_reinit(di);
3297 mutex_exit(&alldevs_lock);
3298 }
3299
3300 static void
3301 deviter_reinit(deviter_t *di)
3302 {
3303
3304 KASSERT(mutex_owned(&alldevs_lock));
3305 if ((di->di_flags & DEVITER_F_RW) != 0)
3306 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3307 else
3308 di->di_prev = TAILQ_FIRST(&alldevs);
3309 }
3310
3311 device_t
3312 deviter_first(deviter_t *di, deviter_flags_t flags)
3313 {
3314
3315 deviter_init(di, flags);
3316 return deviter_next(di);
3317 }
3318
3319 static device_t
3320 deviter_next2(deviter_t *di)
3321 {
3322 device_t dv;
3323
3324 KASSERT(mutex_owned(&alldevs_lock));
3325
3326 dv = di->di_prev;
3327
3328 if (dv == NULL)
3329 return NULL;
3330
3331 if ((di->di_flags & DEVITER_F_RW) != 0)
3332 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3333 else
3334 di->di_prev = TAILQ_NEXT(dv, dv_list);
3335
3336 return dv;
3337 }
3338
3339 static device_t
3340 deviter_next1(deviter_t *di)
3341 {
3342 device_t dv;
3343
3344 KASSERT(mutex_owned(&alldevs_lock));
3345
3346 do {
3347 dv = deviter_next2(di);
3348 } while (dv != NULL && !deviter_visits(di, dv));
3349
3350 return dv;
3351 }
3352
3353 device_t
3354 deviter_next(deviter_t *di)
3355 {
3356 device_t dv = NULL;
3357
3358 mutex_enter(&alldevs_lock);
3359 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3360 case 0:
3361 dv = deviter_next1(di);
3362 break;
3363 case DEVITER_F_LEAVES_FIRST:
3364 while (di->di_curdepth >= 0) {
3365 if ((dv = deviter_next1(di)) == NULL) {
3366 di->di_curdepth--;
3367 deviter_reinit(di);
3368 } else if (dv->dv_depth == di->di_curdepth)
3369 break;
3370 }
3371 break;
3372 case DEVITER_F_ROOT_FIRST:
3373 while (di->di_curdepth <= di->di_maxdepth) {
3374 if ((dv = deviter_next1(di)) == NULL) {
3375 di->di_curdepth++;
3376 deviter_reinit(di);
3377 } else if (dv->dv_depth == di->di_curdepth)
3378 break;
3379 }
3380 break;
3381 default:
3382 break;
3383 }
3384 mutex_exit(&alldevs_lock);
3385
3386 return dv;
3387 }
3388
3389 void
3390 deviter_release(deviter_t *di)
3391 {
3392 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3393
3394 mutex_enter(&alldevs_lock);
3395 if (rw)
3396 --alldevs_nwrite;
3397 else
3398 --alldevs_nread;
3399 /* XXX wake a garbage-collection thread */
3400 mutex_exit(&alldevs_lock);
3401 }
3402
3403 const char *
3404 cfdata_ifattr(const struct cfdata *cf)
3405 {
3406 return cf->cf_pspec->cfp_iattr;
3407 }
3408
3409 bool
3410 ifattr_match(const char *snull, const char *t)
3411 {
3412 return (snull == NULL) || strcmp(snull, t) == 0;
3413 }
3414
3415 void
3416 null_childdetached(device_t self, device_t child)
3417 {
3418 /* do nothing */
3419 }
3420
3421 static void
3422 sysctl_detach_setup(struct sysctllog **clog)
3423 {
3424
3425 sysctl_createv(clog, 0, NULL, NULL,
3426 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3427 CTLTYPE_BOOL, "detachall",
3428 SYSCTL_DESCR("Detach all devices at shutdown"),
3429 NULL, 0, &detachall, 0,
3430 CTL_KERN, CTL_CREATE, CTL_EOL);
3431 }
3432