Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.2
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.2 2021/03/21 17:58:40 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.2 2021/03/21 17:58:40 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 static struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 static struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 static int interrupt_config_threads = 8;
    201 static struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 static int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    222 static kmutex_t alldevs_lock __cacheline_aligned;
    223 static devgen_t alldevs_gen = 1;
    224 static int alldevs_nread = 0;
    225 static int alldevs_nwrite = 0;
    226 static bool alldevs_garbage = false;
    227 
    228 static struct devicelist config_pending =
    229     TAILQ_HEAD_INITIALIZER(config_pending);
    230 static kmutex_t config_misc_lock;
    231 static kcondvar_t config_misc_cv;
    232 
    233 static bool detachall = false;
    234 
    235 #define	STREQ(s1, s2)			\
    236 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    237 
    238 static bool config_initialized = false;	/* config_init() has been called. */
    239 
    240 static int config_do_twiddle;
    241 static callout_t config_twiddle_ch;
    242 
    243 static void sysctl_detach_setup(struct sysctllog **);
    244 
    245 int no_devmon_insert(const char *, prop_dictionary_t);
    246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    247 
    248 typedef int (*cfdriver_fn)(struct cfdriver *);
    249 static int
    250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    251 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    252 	const char *style, bool dopanic)
    253 {
    254 	void (*pr)(const char *, ...) __printflike(1, 2) =
    255 	    dopanic ? panic : printf;
    256 	int i, error = 0, e2 __diagused;
    257 
    258 	for (i = 0; cfdriverv[i] != NULL; i++) {
    259 		if ((error = drv_do(cfdriverv[i])) != 0) {
    260 			pr("configure: `%s' driver %s failed: %d",
    261 			    cfdriverv[i]->cd_name, style, error);
    262 			goto bad;
    263 		}
    264 	}
    265 
    266 	KASSERT(error == 0);
    267 	return 0;
    268 
    269  bad:
    270 	printf("\n");
    271 	for (i--; i >= 0; i--) {
    272 		e2 = drv_undo(cfdriverv[i]);
    273 		KASSERT(e2 == 0);
    274 	}
    275 
    276 	return error;
    277 }
    278 
    279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    280 static int
    281 frob_cfattachvec(const struct cfattachinit *cfattachv,
    282 	cfattach_fn att_do, cfattach_fn att_undo,
    283 	const char *style, bool dopanic)
    284 {
    285 	const struct cfattachinit *cfai = NULL;
    286 	void (*pr)(const char *, ...) __printflike(1, 2) =
    287 	    dopanic ? panic : printf;
    288 	int j = 0, error = 0, e2 __diagused;
    289 
    290 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    291 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    292 			if ((error = att_do(cfai->cfai_name,
    293 			    cfai->cfai_list[j])) != 0) {
    294 				pr("configure: attachment `%s' "
    295 				    "of `%s' driver %s failed: %d",
    296 				    cfai->cfai_list[j]->ca_name,
    297 				    cfai->cfai_name, style, error);
    298 				goto bad;
    299 			}
    300 		}
    301 	}
    302 
    303 	KASSERT(error == 0);
    304 	return 0;
    305 
    306  bad:
    307 	/*
    308 	 * Rollback in reverse order.  dunno if super-important, but
    309 	 * do that anyway.  Although the code looks a little like
    310 	 * someone did a little integration (in the math sense).
    311 	 */
    312 	printf("\n");
    313 	if (cfai) {
    314 		bool last;
    315 
    316 		for (last = false; last == false; ) {
    317 			if (cfai == &cfattachv[0])
    318 				last = true;
    319 			for (j--; j >= 0; j--) {
    320 				e2 = att_undo(cfai->cfai_name,
    321 				    cfai->cfai_list[j]);
    322 				KASSERT(e2 == 0);
    323 			}
    324 			if (!last) {
    325 				cfai--;
    326 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    327 					;
    328 			}
    329 		}
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Initialize the autoconfiguration data structures.  Normally this
    337  * is done by configure(), but some platforms need to do this very
    338  * early (to e.g. initialize the console).
    339  */
    340 void
    341 config_init(void)
    342 {
    343 
    344 	KASSERT(config_initialized == false);
    345 
    346 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    347 
    348 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&config_misc_cv, "cfgmisc");
    350 
    351 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    352 
    353 	frob_cfdrivervec(cfdriver_list_initial,
    354 	    config_cfdriver_attach, NULL, "bootstrap", true);
    355 	frob_cfattachvec(cfattachinit,
    356 	    config_cfattach_attach, NULL, "bootstrap", true);
    357 
    358 	initcftable.ct_cfdata = cfdata;
    359 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    360 
    361 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    362 	    RND_FLAG_COLLECT_TIME);
    363 
    364 	config_initialized = true;
    365 }
    366 
    367 /*
    368  * Init or fini drivers and attachments.  Either all or none
    369  * are processed (via rollback).  It would be nice if this were
    370  * atomic to outside consumers, but with the current state of
    371  * locking ...
    372  */
    373 int
    374 config_init_component(struct cfdriver * const *cfdriverv,
    375 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    376 {
    377 	int error;
    378 
    379 	if ((error = frob_cfdrivervec(cfdriverv,
    380 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    381 		return error;
    382 	if ((error = frob_cfattachvec(cfattachv,
    383 	    config_cfattach_attach, config_cfattach_detach,
    384 	    "init", false)) != 0) {
    385 		frob_cfdrivervec(cfdriverv,
    386 	            config_cfdriver_detach, NULL, "init rollback", true);
    387 		return error;
    388 	}
    389 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    390 		frob_cfattachvec(cfattachv,
    391 		    config_cfattach_detach, NULL, "init rollback", true);
    392 		frob_cfdrivervec(cfdriverv,
    393 	            config_cfdriver_detach, NULL, "init rollback", true);
    394 		return error;
    395 	}
    396 
    397 	return 0;
    398 }
    399 
    400 int
    401 config_fini_component(struct cfdriver * const *cfdriverv,
    402 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    403 {
    404 	int error;
    405 
    406 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    407 		return error;
    408 	if ((error = frob_cfattachvec(cfattachv,
    409 	    config_cfattach_detach, config_cfattach_attach,
    410 	    "fini", false)) != 0) {
    411 		if (config_cfdata_attach(cfdatav, 0) != 0)
    412 			panic("config_cfdata fini rollback failed");
    413 		return error;
    414 	}
    415 	if ((error = frob_cfdrivervec(cfdriverv,
    416 	    config_cfdriver_detach, config_cfdriver_attach,
    417 	    "fini", false)) != 0) {
    418 		frob_cfattachvec(cfattachv,
    419 	            config_cfattach_attach, NULL, "fini rollback", true);
    420 		if (config_cfdata_attach(cfdatav, 0) != 0)
    421 			panic("config_cfdata fini rollback failed");
    422 		return error;
    423 	}
    424 
    425 	return 0;
    426 }
    427 
    428 void
    429 config_init_mi(void)
    430 {
    431 
    432 	if (!config_initialized)
    433 		config_init();
    434 
    435 	sysctl_detach_setup(NULL);
    436 }
    437 
    438 void
    439 config_deferred(device_t dev)
    440 {
    441 	config_process_deferred(&deferred_config_queue, dev);
    442 	config_process_deferred(&interrupt_config_queue, dev);
    443 	config_process_deferred(&mountroot_config_queue, dev);
    444 }
    445 
    446 static void
    447 config_interrupts_thread(void *cookie)
    448 {
    449 	struct deferred_config *dc;
    450 	device_t dev;
    451 
    452 	mutex_enter(&config_misc_lock);
    453 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    454 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    455 		mutex_exit(&config_misc_lock);
    456 
    457 		dev = dc->dc_dev;
    458 		(*dc->dc_func)(dev);
    459 		if (!device_pmf_is_registered(dev))
    460 			aprint_debug_dev(dev,
    461 			    "WARNING: power management not supported\n");
    462 		config_pending_decr(dev);
    463 		kmem_free(dc, sizeof(*dc));
    464 
    465 		mutex_enter(&config_misc_lock);
    466 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    467 	}
    468 	mutex_exit(&config_misc_lock);
    469 
    470 	kthread_exit(0);
    471 }
    472 
    473 void
    474 config_create_interruptthreads(void)
    475 {
    476 	int i;
    477 
    478 	for (i = 0; i < interrupt_config_threads; i++) {
    479 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    480 		    config_interrupts_thread, NULL, NULL, "configintr");
    481 	}
    482 }
    483 
    484 static void
    485 config_mountroot_thread(void *cookie)
    486 {
    487 	struct deferred_config *dc;
    488 
    489 	mutex_enter(&config_misc_lock);
    490 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    491 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    492 		mutex_exit(&config_misc_lock);
    493 
    494 		(*dc->dc_func)(dc->dc_dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_mountrootthreads(void)
    506 {
    507 	int i;
    508 
    509 	if (!root_is_mounted)
    510 		root_is_mounted = true;
    511 
    512 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    513 				       mountroot_config_threads;
    514 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    515 					     KM_NOSLEEP);
    516 	KASSERT(mountroot_config_lwpids);
    517 	for (i = 0; i < mountroot_config_threads; i++) {
    518 		mountroot_config_lwpids[i] = 0;
    519 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    520 				     NULL, config_mountroot_thread, NULL,
    521 				     &mountroot_config_lwpids[i],
    522 				     "configroot");
    523 	}
    524 }
    525 
    526 void
    527 config_finalize_mountroot(void)
    528 {
    529 	int i, error;
    530 
    531 	for (i = 0; i < mountroot_config_threads; i++) {
    532 		if (mountroot_config_lwpids[i] == 0)
    533 			continue;
    534 
    535 		error = kthread_join(mountroot_config_lwpids[i]);
    536 		if (error)
    537 			printf("%s: thread %x joined with error %d\n",
    538 			       __func__, i, error);
    539 	}
    540 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    541 }
    542 
    543 /*
    544  * Announce device attach/detach to userland listeners.
    545  */
    546 
    547 int
    548 no_devmon_insert(const char *name, prop_dictionary_t p)
    549 {
    550 
    551 	return ENODEV;
    552 }
    553 
    554 static void
    555 devmon_report_device(device_t dev, bool isattach)
    556 {
    557 	prop_dictionary_t ev, dict = device_properties(dev);
    558 	const char *parent;
    559 	const char *what;
    560 	const char *where;
    561 	device_t pdev = device_parent(dev);
    562 
    563 	/* If currently no drvctl device, just return */
    564 	if (devmon_insert_vec == no_devmon_insert)
    565 		return;
    566 
    567 	ev = prop_dictionary_create();
    568 	if (ev == NULL)
    569 		return;
    570 
    571 	what = (isattach ? "device-attach" : "device-detach");
    572 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    573 	if (prop_dictionary_get_string(dict, "location", &where)) {
    574 		prop_dictionary_set_string(ev, "location", where);
    575 		aprint_debug("ev: %s %s at %s in [%s]\n",
    576 		    what, device_xname(dev), parent, where);
    577 	}
    578 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    579 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    580 		prop_object_release(ev);
    581 		return;
    582 	}
    583 
    584 	if ((*devmon_insert_vec)(what, ev) != 0)
    585 		prop_object_release(ev);
    586 }
    587 
    588 /*
    589  * Add a cfdriver to the system.
    590  */
    591 int
    592 config_cfdriver_attach(struct cfdriver *cd)
    593 {
    594 	struct cfdriver *lcd;
    595 
    596 	/* Make sure this driver isn't already in the system. */
    597 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    598 		if (STREQ(lcd->cd_name, cd->cd_name))
    599 			return EEXIST;
    600 	}
    601 
    602 	LIST_INIT(&cd->cd_attach);
    603 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * Remove a cfdriver from the system.
    610  */
    611 int
    612 config_cfdriver_detach(struct cfdriver *cd)
    613 {
    614 	struct alldevs_foray af;
    615 	int i, rc = 0;
    616 
    617 	config_alldevs_enter(&af);
    618 	/* Make sure there are no active instances. */
    619 	for (i = 0; i < cd->cd_ndevs; i++) {
    620 		if (cd->cd_devs[i] != NULL) {
    621 			rc = EBUSY;
    622 			break;
    623 		}
    624 	}
    625 	config_alldevs_exit(&af);
    626 
    627 	if (rc != 0)
    628 		return rc;
    629 
    630 	/* ...and no attachments loaded. */
    631 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    632 		return EBUSY;
    633 
    634 	LIST_REMOVE(cd, cd_list);
    635 
    636 	KASSERT(cd->cd_devs == NULL);
    637 
    638 	return 0;
    639 }
    640 
    641 /*
    642  * Look up a cfdriver by name.
    643  */
    644 struct cfdriver *
    645 config_cfdriver_lookup(const char *name)
    646 {
    647 	struct cfdriver *cd;
    648 
    649 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    650 		if (STREQ(cd->cd_name, name))
    651 			return cd;
    652 	}
    653 
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * Add a cfattach to the specified driver.
    659  */
    660 int
    661 config_cfattach_attach(const char *driver, struct cfattach *ca)
    662 {
    663 	struct cfattach *lca;
    664 	struct cfdriver *cd;
    665 
    666 	cd = config_cfdriver_lookup(driver);
    667 	if (cd == NULL)
    668 		return ESRCH;
    669 
    670 	/* Make sure this attachment isn't already on this driver. */
    671 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    672 		if (STREQ(lca->ca_name, ca->ca_name))
    673 			return EEXIST;
    674 	}
    675 
    676 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    677 
    678 	return 0;
    679 }
    680 
    681 /*
    682  * Remove a cfattach from the specified driver.
    683  */
    684 int
    685 config_cfattach_detach(const char *driver, struct cfattach *ca)
    686 {
    687 	struct alldevs_foray af;
    688 	struct cfdriver *cd;
    689 	device_t dev;
    690 	int i, rc = 0;
    691 
    692 	cd = config_cfdriver_lookup(driver);
    693 	if (cd == NULL)
    694 		return ESRCH;
    695 
    696 	config_alldevs_enter(&af);
    697 	/* Make sure there are no active instances. */
    698 	for (i = 0; i < cd->cd_ndevs; i++) {
    699 		if ((dev = cd->cd_devs[i]) == NULL)
    700 			continue;
    701 		if (dev->dv_cfattach == ca) {
    702 			rc = EBUSY;
    703 			break;
    704 		}
    705 	}
    706 	config_alldevs_exit(&af);
    707 
    708 	if (rc != 0)
    709 		return rc;
    710 
    711 	LIST_REMOVE(ca, ca_list);
    712 
    713 	return 0;
    714 }
    715 
    716 /*
    717  * Look up a cfattach by name.
    718  */
    719 static struct cfattach *
    720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    721 {
    722 	struct cfattach *ca;
    723 
    724 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    725 		if (STREQ(ca->ca_name, atname))
    726 			return ca;
    727 	}
    728 
    729 	return NULL;
    730 }
    731 
    732 /*
    733  * Look up a cfattach by driver/attachment name.
    734  */
    735 struct cfattach *
    736 config_cfattach_lookup(const char *name, const char *atname)
    737 {
    738 	struct cfdriver *cd;
    739 
    740 	cd = config_cfdriver_lookup(name);
    741 	if (cd == NULL)
    742 		return NULL;
    743 
    744 	return config_cfattach_lookup_cd(cd, atname);
    745 }
    746 
    747 /*
    748  * Apply the matching function and choose the best.  This is used
    749  * a few times and we want to keep the code small.
    750  */
    751 static void
    752 mapply(struct matchinfo *m, cfdata_t cf)
    753 {
    754 	int pri;
    755 
    756 	if (m->fn != NULL) {
    757 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    758 	} else {
    759 		pri = config_match(m->parent, cf, m->aux);
    760 	}
    761 	if (pri > m->pri) {
    762 		m->match = cf;
    763 		m->pri = pri;
    764 	}
    765 }
    766 
    767 int
    768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    769 {
    770 	const struct cfiattrdata *ci;
    771 	const struct cflocdesc *cl;
    772 	int nlocs, i;
    773 
    774 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    775 	KASSERT(ci);
    776 	nlocs = ci->ci_loclen;
    777 	KASSERT(!nlocs || locs);
    778 	for (i = 0; i < nlocs; i++) {
    779 		cl = &ci->ci_locdesc[i];
    780 		if (cl->cld_defaultstr != NULL &&
    781 		    cf->cf_loc[i] == cl->cld_default)
    782 			continue;
    783 		if (cf->cf_loc[i] == locs[i])
    784 			continue;
    785 		return 0;
    786 	}
    787 
    788 	return config_match(parent, cf, aux);
    789 }
    790 
    791 /*
    792  * Helper function: check whether the driver supports the interface attribute
    793  * and return its descriptor structure.
    794  */
    795 static const struct cfiattrdata *
    796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    797 {
    798 	const struct cfiattrdata * const *cpp;
    799 
    800 	if (cd->cd_attrs == NULL)
    801 		return 0;
    802 
    803 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    804 		if (STREQ((*cpp)->ci_name, ia)) {
    805 			/* Match. */
    806 			return *cpp;
    807 		}
    808 	}
    809 	return 0;
    810 }
    811 
    812 #if defined(DIAGNOSTIC)
    813 static int
    814 cfdriver_iattr_count(const struct cfdriver *cd)
    815 {
    816 	const struct cfiattrdata * const *cpp;
    817 	int i;
    818 
    819 	if (cd->cd_attrs == NULL)
    820 		return 0;
    821 
    822 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    823 		i++;
    824 	}
    825 	return i;
    826 }
    827 #endif /* DIAGNOSTIC */
    828 
    829 /*
    830  * Lookup an interface attribute description by name.
    831  * If the driver is given, consider only its supported attributes.
    832  */
    833 const struct cfiattrdata *
    834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    835 {
    836 	const struct cfdriver *d;
    837 	const struct cfiattrdata *ia;
    838 
    839 	if (cd)
    840 		return cfdriver_get_iattr(cd, name);
    841 
    842 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    843 		ia = cfdriver_get_iattr(d, name);
    844 		if (ia)
    845 			return ia;
    846 	}
    847 	return 0;
    848 }
    849 
    850 /*
    851  * Determine if `parent' is a potential parent for a device spec based
    852  * on `cfp'.
    853  */
    854 static int
    855 cfparent_match(const device_t parent, const struct cfparent *cfp)
    856 {
    857 	struct cfdriver *pcd;
    858 
    859 	/* We don't match root nodes here. */
    860 	if (cfp == NULL)
    861 		return 0;
    862 
    863 	pcd = parent->dv_cfdriver;
    864 	KASSERT(pcd != NULL);
    865 
    866 	/*
    867 	 * First, ensure this parent has the correct interface
    868 	 * attribute.
    869 	 */
    870 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    871 		return 0;
    872 
    873 	/*
    874 	 * If no specific parent device instance was specified (i.e.
    875 	 * we're attaching to the attribute only), we're done!
    876 	 */
    877 	if (cfp->cfp_parent == NULL)
    878 		return 1;
    879 
    880 	/*
    881 	 * Check the parent device's name.
    882 	 */
    883 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    884 		return 0;	/* not the same parent */
    885 
    886 	/*
    887 	 * Make sure the unit number matches.
    888 	 */
    889 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    890 	    cfp->cfp_unit == parent->dv_unit)
    891 		return 1;
    892 
    893 	/* Unit numbers don't match. */
    894 	return 0;
    895 }
    896 
    897 /*
    898  * Helper for config_cfdata_attach(): check all devices whether it could be
    899  * parent any attachment in the config data table passed, and rescan.
    900  */
    901 static void
    902 rescan_with_cfdata(const struct cfdata *cf)
    903 {
    904 	device_t d;
    905 	const struct cfdata *cf1;
    906 	deviter_t di;
    907 
    908 
    909 	/*
    910 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    911 	 * the outer loop.
    912 	 */
    913 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    914 
    915 		if (!(d->dv_cfattach->ca_rescan))
    916 			continue;
    917 
    918 		for (cf1 = cf; cf1->cf_name; cf1++) {
    919 
    920 			if (!cfparent_match(d, cf1->cf_pspec))
    921 				continue;
    922 
    923 			(*d->dv_cfattach->ca_rescan)(d,
    924 				cfdata_ifattr(cf1), cf1->cf_loc);
    925 
    926 			config_deferred(d);
    927 		}
    928 	}
    929 	deviter_release(&di);
    930 }
    931 
    932 /*
    933  * Attach a supplemental config data table and rescan potential
    934  * parent devices if required.
    935  */
    936 int
    937 config_cfdata_attach(cfdata_t cf, int scannow)
    938 {
    939 	struct cftable *ct;
    940 
    941 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    942 	ct->ct_cfdata = cf;
    943 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    944 
    945 	if (scannow)
    946 		rescan_with_cfdata(cf);
    947 
    948 	return 0;
    949 }
    950 
    951 /*
    952  * Helper for config_cfdata_detach: check whether a device is
    953  * found through any attachment in the config data table.
    954  */
    955 static int
    956 dev_in_cfdata(device_t d, cfdata_t cf)
    957 {
    958 	const struct cfdata *cf1;
    959 
    960 	for (cf1 = cf; cf1->cf_name; cf1++)
    961 		if (d->dv_cfdata == cf1)
    962 			return 1;
    963 
    964 	return 0;
    965 }
    966 
    967 /*
    968  * Detach a supplemental config data table. Detach all devices found
    969  * through that table (and thus keeping references to it) before.
    970  */
    971 int
    972 config_cfdata_detach(cfdata_t cf)
    973 {
    974 	device_t d;
    975 	int error = 0;
    976 	struct cftable *ct;
    977 	deviter_t di;
    978 
    979 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    980 	     d = deviter_next(&di)) {
    981 		if (!dev_in_cfdata(d, cf))
    982 			continue;
    983 		if ((error = config_detach(d, 0)) != 0)
    984 			break;
    985 	}
    986 	deviter_release(&di);
    987 	if (error) {
    988 		aprint_error_dev(d, "unable to detach instance\n");
    989 		return error;
    990 	}
    991 
    992 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    993 		if (ct->ct_cfdata == cf) {
    994 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    995 			kmem_free(ct, sizeof(*ct));
    996 			return 0;
    997 		}
    998 	}
    999 
   1000 	/* not found -- shouldn't happen */
   1001 	return EINVAL;
   1002 }
   1003 
   1004 /*
   1005  * Invoke the "match" routine for a cfdata entry on behalf of
   1006  * an external caller, usually a "submatch" routine.
   1007  */
   1008 int
   1009 config_match(device_t parent, cfdata_t cf, void *aux)
   1010 {
   1011 	struct cfattach *ca;
   1012 
   1013 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1014 	if (ca == NULL) {
   1015 		/* No attachment for this entry, oh well. */
   1016 		return 0;
   1017 	}
   1018 
   1019 	return (*ca->ca_match)(parent, cf, aux);
   1020 }
   1021 
   1022 static void
   1023 config_get_cfargs(cfarg_t tag,
   1024 		  cfsubmatch_t *fnp,		/* output */
   1025 		  const char **ifattrp,		/* output */
   1026 		  const int **locsp,		/* output */
   1027 		  va_list ap)
   1028 {
   1029 	cfsubmatch_t fn = NULL;
   1030 	const char *ifattr = NULL;
   1031 	const int *locs = NULL;
   1032 
   1033 	while (tag != CFARG_EOL) {
   1034 		switch (tag) {
   1035 		case CFARG_SUBMATCH:
   1036 			fn = va_arg(ap, cfsubmatch_t);
   1037 			break;
   1038 
   1039 		case CFARG_IATTR:
   1040 			ifattr = va_arg(ap, const char *);
   1041 			break;
   1042 
   1043 		case CFARG_LOCATORS:
   1044 			locs = va_arg(ap, const int *);
   1045 			break;
   1046 
   1047 		default:
   1048 			/* XXX panic? */
   1049 			/* XXX dump stack backtrace? */
   1050 			aprint_error("%s: unknown cfarg tag: %d\n",
   1051 			    __func__, tag);
   1052 			goto out;
   1053 		}
   1054 		tag = va_arg(ap, cfarg_t);
   1055 	}
   1056 
   1057  out:
   1058 	if (fnp != NULL)
   1059 		*fnp = fn;
   1060 	if (ifattrp != NULL)
   1061 		*ifattrp = ifattr;
   1062 	if (locsp != NULL)
   1063 		*locsp = locs;
   1064 }
   1065 
   1066 /*
   1067  * Iterate over all potential children of some device, calling the given
   1068  * function (default being the child's match function) for each one.
   1069  * Nonzero returns are matches; the highest value returned is considered
   1070  * the best match.  Return the `found child' if we got a match, or NULL
   1071  * otherwise.  The `aux' pointer is simply passed on through.
   1072  *
   1073  * Note that this function is designed so that it can be used to apply
   1074  * an arbitrary function to all potential children (its return value
   1075  * can be ignored).
   1076  */
   1077 static cfdata_t
   1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1079 {
   1080 	cfsubmatch_t fn;
   1081 	const char *ifattr;
   1082 	const int *locs;
   1083 	struct cftable *ct;
   1084 	cfdata_t cf;
   1085 	struct matchinfo m;
   1086 
   1087 	config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
   1088 
   1089 	KASSERT(config_initialized);
   1090 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1091 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1092 
   1093 	m.fn = fn;
   1094 	m.parent = parent;
   1095 	m.locs = locs;
   1096 	m.aux = aux;
   1097 	m.match = NULL;
   1098 	m.pri = 0;
   1099 
   1100 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1101 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1102 
   1103 			/* We don't match root nodes here. */
   1104 			if (!cf->cf_pspec)
   1105 				continue;
   1106 
   1107 			/*
   1108 			 * Skip cf if no longer eligible, otherwise scan
   1109 			 * through parents for one matching `parent', and
   1110 			 * try match function.
   1111 			 */
   1112 			if (cf->cf_fstate == FSTATE_FOUND)
   1113 				continue;
   1114 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1115 			    cf->cf_fstate == FSTATE_DSTAR)
   1116 				continue;
   1117 
   1118 			/*
   1119 			 * If an interface attribute was specified,
   1120 			 * consider only children which attach to
   1121 			 * that attribute.
   1122 			 */
   1123 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1124 				continue;
   1125 
   1126 			if (cfparent_match(parent, cf->cf_pspec))
   1127 				mapply(&m, cf);
   1128 		}
   1129 	}
   1130 	return m.match;
   1131 }
   1132 
   1133 cfdata_t
   1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1135 {
   1136 	cfdata_t cf;
   1137 	va_list ap;
   1138 
   1139 	va_start(ap, tag);
   1140 	cf = config_vsearch(parent, aux, tag, ap);
   1141 	va_end(ap);
   1142 
   1143 	return cf;
   1144 }
   1145 
   1146 /*
   1147  * Find the given root device.
   1148  * This is much like config_search, but there is no parent.
   1149  * Don't bother with multiple cfdata tables; the root node
   1150  * must always be in the initial table.
   1151  */
   1152 cfdata_t
   1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1154 {
   1155 	cfdata_t cf;
   1156 	const short *p;
   1157 	struct matchinfo m;
   1158 
   1159 	m.fn = fn;
   1160 	m.parent = ROOT;
   1161 	m.aux = aux;
   1162 	m.match = NULL;
   1163 	m.pri = 0;
   1164 	m.locs = 0;
   1165 	/*
   1166 	 * Look at root entries for matching name.  We do not bother
   1167 	 * with found-state here since only one root should ever be
   1168 	 * searched (and it must be done first).
   1169 	 */
   1170 	for (p = cfroots; *p >= 0; p++) {
   1171 		cf = &cfdata[*p];
   1172 		if (strcmp(cf->cf_name, rootname) == 0)
   1173 			mapply(&m, cf);
   1174 	}
   1175 	return m.match;
   1176 }
   1177 
   1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1179 
   1180 /*
   1181  * The given `aux' argument describes a device that has been found
   1182  * on the given parent, but not necessarily configured.  Locate the
   1183  * configuration data for that device (using the submatch function
   1184  * provided, or using candidates' cd_match configuration driver
   1185  * functions) and attach it, and return its device_t.  If the device was
   1186  * not configured, call the given `print' function and return NULL.
   1187  */
   1188 device_t
   1189 config_found_sm_loc(device_t parent,
   1190 		const char *ifattr, const int *locs, void *aux,
   1191 		cfprint_t print, cfsubmatch_t submatch)
   1192 {
   1193 	cfdata_t cf;
   1194 
   1195 	if ((cf = config_search(parent, aux,
   1196 				CFARG_SUBMATCH, submatch,
   1197 				CFARG_IATTR, ifattr,
   1198 				CFARG_LOCATORS, locs,
   1199 				CFARG_EOL)))
   1200 		return(config_attach_loc(parent, cf, locs, aux, print));
   1201 	if (print) {
   1202 		if (config_do_twiddle && cold)
   1203 			twiddle();
   1204 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1205 	}
   1206 
   1207 	/*
   1208 	 * This has the effect of mixing in a single timestamp to the
   1209 	 * entropy pool.  Experiments indicate the estimator will almost
   1210 	 * always attribute one bit of entropy to this sample; analysis
   1211 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1212 	 * bits of entropy/sample so this seems appropriately conservative.
   1213 	 */
   1214 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1215 	return NULL;
   1216 }
   1217 
   1218 device_t
   1219 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1220     cfprint_t print)
   1221 {
   1222 
   1223 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1224 }
   1225 
   1226 device_t
   1227 config_found(device_t parent, void *aux, cfprint_t print)
   1228 {
   1229 
   1230 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1231 }
   1232 
   1233 /*
   1234  * As above, but for root devices.
   1235  */
   1236 device_t
   1237 config_rootfound(const char *rootname, void *aux)
   1238 {
   1239 	cfdata_t cf;
   1240 
   1241 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1242 		return config_attach(ROOT, cf, aux, NULL);
   1243 	aprint_error("root device %s not configured\n", rootname);
   1244 	return NULL;
   1245 }
   1246 
   1247 /* just like sprintf(buf, "%d") except that it works from the end */
   1248 static char *
   1249 number(char *ep, int n)
   1250 {
   1251 
   1252 	*--ep = 0;
   1253 	while (n >= 10) {
   1254 		*--ep = (n % 10) + '0';
   1255 		n /= 10;
   1256 	}
   1257 	*--ep = n + '0';
   1258 	return ep;
   1259 }
   1260 
   1261 /*
   1262  * Expand the size of the cd_devs array if necessary.
   1263  *
   1264  * The caller must hold alldevs_lock. config_makeroom() may release and
   1265  * re-acquire alldevs_lock, so callers should re-check conditions such
   1266  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1267  * returns.
   1268  */
   1269 static void
   1270 config_makeroom(int n, struct cfdriver *cd)
   1271 {
   1272 	int ondevs, nndevs;
   1273 	device_t *osp, *nsp;
   1274 
   1275 	KASSERT(mutex_owned(&alldevs_lock));
   1276 	alldevs_nwrite++;
   1277 
   1278 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1279 		;
   1280 
   1281 	while (n >= cd->cd_ndevs) {
   1282 		/*
   1283 		 * Need to expand the array.
   1284 		 */
   1285 		ondevs = cd->cd_ndevs;
   1286 		osp = cd->cd_devs;
   1287 
   1288 		/*
   1289 		 * Release alldevs_lock around allocation, which may
   1290 		 * sleep.
   1291 		 */
   1292 		mutex_exit(&alldevs_lock);
   1293 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1294 		mutex_enter(&alldevs_lock);
   1295 
   1296 		/*
   1297 		 * If another thread moved the array while we did
   1298 		 * not hold alldevs_lock, try again.
   1299 		 */
   1300 		if (cd->cd_devs != osp) {
   1301 			mutex_exit(&alldevs_lock);
   1302 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1303 			mutex_enter(&alldevs_lock);
   1304 			continue;
   1305 		}
   1306 
   1307 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1308 		if (ondevs != 0)
   1309 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1310 
   1311 		cd->cd_ndevs = nndevs;
   1312 		cd->cd_devs = nsp;
   1313 		if (ondevs != 0) {
   1314 			mutex_exit(&alldevs_lock);
   1315 			kmem_free(osp, sizeof(device_t) * ondevs);
   1316 			mutex_enter(&alldevs_lock);
   1317 		}
   1318 	}
   1319 	KASSERT(mutex_owned(&alldevs_lock));
   1320 	alldevs_nwrite--;
   1321 }
   1322 
   1323 /*
   1324  * Put dev into the devices list.
   1325  */
   1326 static void
   1327 config_devlink(device_t dev)
   1328 {
   1329 
   1330 	mutex_enter(&alldevs_lock);
   1331 
   1332 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1333 
   1334 	dev->dv_add_gen = alldevs_gen;
   1335 	/* It is safe to add a device to the tail of the list while
   1336 	 * readers and writers are in the list.
   1337 	 */
   1338 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1339 	mutex_exit(&alldevs_lock);
   1340 }
   1341 
   1342 static void
   1343 config_devfree(device_t dev)
   1344 {
   1345 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1346 
   1347 	if (dev->dv_cfattach->ca_devsize > 0)
   1348 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1349 	kmem_free(dev, sizeof(*dev));
   1350 }
   1351 
   1352 /*
   1353  * Caller must hold alldevs_lock.
   1354  */
   1355 static void
   1356 config_devunlink(device_t dev, struct devicelist *garbage)
   1357 {
   1358 	struct device_garbage *dg = &dev->dv_garbage;
   1359 	cfdriver_t cd = device_cfdriver(dev);
   1360 	int i;
   1361 
   1362 	KASSERT(mutex_owned(&alldevs_lock));
   1363 
   1364  	/* Unlink from device list.  Link to garbage list. */
   1365 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1366 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1367 
   1368 	/* Remove from cfdriver's array. */
   1369 	cd->cd_devs[dev->dv_unit] = NULL;
   1370 
   1371 	/*
   1372 	 * If the device now has no units in use, unlink its softc array.
   1373 	 */
   1374 	for (i = 0; i < cd->cd_ndevs; i++) {
   1375 		if (cd->cd_devs[i] != NULL)
   1376 			break;
   1377 	}
   1378 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1379 	if (i == cd->cd_ndevs) {
   1380 		dg->dg_ndevs = cd->cd_ndevs;
   1381 		dg->dg_devs = cd->cd_devs;
   1382 		cd->cd_devs = NULL;
   1383 		cd->cd_ndevs = 0;
   1384 	}
   1385 }
   1386 
   1387 static void
   1388 config_devdelete(device_t dev)
   1389 {
   1390 	struct device_garbage *dg = &dev->dv_garbage;
   1391 	device_lock_t dvl = device_getlock(dev);
   1392 
   1393 	if (dg->dg_devs != NULL)
   1394 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1395 
   1396 	cv_destroy(&dvl->dvl_cv);
   1397 	mutex_destroy(&dvl->dvl_mtx);
   1398 
   1399 	KASSERT(dev->dv_properties != NULL);
   1400 	prop_object_release(dev->dv_properties);
   1401 
   1402 	if (dev->dv_activity_handlers)
   1403 		panic("%s with registered handlers", __func__);
   1404 
   1405 	if (dev->dv_locators) {
   1406 		size_t amount = *--dev->dv_locators;
   1407 		kmem_free(dev->dv_locators, amount);
   1408 	}
   1409 
   1410 	config_devfree(dev);
   1411 }
   1412 
   1413 static int
   1414 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1415 {
   1416 	int unit;
   1417 
   1418 	if (cf->cf_fstate == FSTATE_STAR) {
   1419 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1420 			if (cd->cd_devs[unit] == NULL)
   1421 				break;
   1422 		/*
   1423 		 * unit is now the unit of the first NULL device pointer,
   1424 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1425 		 */
   1426 	} else {
   1427 		unit = cf->cf_unit;
   1428 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1429 			unit = -1;
   1430 	}
   1431 	return unit;
   1432 }
   1433 
   1434 static int
   1435 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1436 {
   1437 	struct alldevs_foray af;
   1438 	int unit;
   1439 
   1440 	config_alldevs_enter(&af);
   1441 	for (;;) {
   1442 		unit = config_unit_nextfree(cd, cf);
   1443 		if (unit == -1)
   1444 			break;
   1445 		if (unit < cd->cd_ndevs) {
   1446 			cd->cd_devs[unit] = dev;
   1447 			dev->dv_unit = unit;
   1448 			break;
   1449 		}
   1450 		config_makeroom(unit, cd);
   1451 	}
   1452 	config_alldevs_exit(&af);
   1453 
   1454 	return unit;
   1455 }
   1456 
   1457 static device_t
   1458 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1459 {
   1460 	cfdriver_t cd;
   1461 	cfattach_t ca;
   1462 	size_t lname, lunit;
   1463 	const char *xunit;
   1464 	int myunit;
   1465 	char num[10];
   1466 	device_t dev;
   1467 	void *dev_private;
   1468 	const struct cfiattrdata *ia;
   1469 	device_lock_t dvl;
   1470 
   1471 	cd = config_cfdriver_lookup(cf->cf_name);
   1472 	if (cd == NULL)
   1473 		return NULL;
   1474 
   1475 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1476 	if (ca == NULL)
   1477 		return NULL;
   1478 
   1479 	/* get memory for all device vars */
   1480 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1481 	if (ca->ca_devsize > 0) {
   1482 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1483 	} else {
   1484 		dev_private = NULL;
   1485 	}
   1486 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1487 
   1488 	dev->dv_class = cd->cd_class;
   1489 	dev->dv_cfdata = cf;
   1490 	dev->dv_cfdriver = cd;
   1491 	dev->dv_cfattach = ca;
   1492 	dev->dv_activity_count = 0;
   1493 	dev->dv_activity_handlers = NULL;
   1494 	dev->dv_private = dev_private;
   1495 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1496 
   1497 	myunit = config_unit_alloc(dev, cd, cf);
   1498 	if (myunit == -1) {
   1499 		config_devfree(dev);
   1500 		return NULL;
   1501 	}
   1502 
   1503 	/* compute length of name and decimal expansion of unit number */
   1504 	lname = strlen(cd->cd_name);
   1505 	xunit = number(&num[sizeof(num)], myunit);
   1506 	lunit = &num[sizeof(num)] - xunit;
   1507 	if (lname + lunit > sizeof(dev->dv_xname))
   1508 		panic("config_devalloc: device name too long");
   1509 
   1510 	dvl = device_getlock(dev);
   1511 
   1512 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1513 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1514 
   1515 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1516 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1517 	dev->dv_parent = parent;
   1518 	if (parent != NULL)
   1519 		dev->dv_depth = parent->dv_depth + 1;
   1520 	else
   1521 		dev->dv_depth = 0;
   1522 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1523 	if (locs) {
   1524 		KASSERT(parent); /* no locators at root */
   1525 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1526 		dev->dv_locators =
   1527 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1528 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1529 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1530 	}
   1531 	dev->dv_properties = prop_dictionary_create();
   1532 	KASSERT(dev->dv_properties != NULL);
   1533 
   1534 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1535 	    "device-driver", dev->dv_cfdriver->cd_name);
   1536 	prop_dictionary_set_uint16(dev->dv_properties,
   1537 	    "device-unit", dev->dv_unit);
   1538 	if (parent != NULL) {
   1539 		prop_dictionary_set_string(dev->dv_properties,
   1540 		    "device-parent", device_xname(parent));
   1541 	}
   1542 
   1543 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1544 		config_add_attrib_dict(dev);
   1545 
   1546 	return dev;
   1547 }
   1548 
   1549 /*
   1550  * Create an array of device attach attributes and add it
   1551  * to the device's dv_properties dictionary.
   1552  *
   1553  * <key>interface-attributes</key>
   1554  * <array>
   1555  *    <dict>
   1556  *       <key>attribute-name</key>
   1557  *       <string>foo</string>
   1558  *       <key>locators</key>
   1559  *       <array>
   1560  *          <dict>
   1561  *             <key>loc-name</key>
   1562  *             <string>foo-loc1</string>
   1563  *          </dict>
   1564  *          <dict>
   1565  *             <key>loc-name</key>
   1566  *             <string>foo-loc2</string>
   1567  *             <key>default</key>
   1568  *             <string>foo-loc2-default</string>
   1569  *          </dict>
   1570  *          ...
   1571  *       </array>
   1572  *    </dict>
   1573  *    ...
   1574  * </array>
   1575  */
   1576 
   1577 static void
   1578 config_add_attrib_dict(device_t dev)
   1579 {
   1580 	int i, j;
   1581 	const struct cfiattrdata *ci;
   1582 	prop_dictionary_t attr_dict, loc_dict;
   1583 	prop_array_t attr_array, loc_array;
   1584 
   1585 	if ((attr_array = prop_array_create()) == NULL)
   1586 		return;
   1587 
   1588 	for (i = 0; ; i++) {
   1589 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1590 			break;
   1591 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1592 			break;
   1593 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1594 		    ci->ci_name);
   1595 
   1596 		/* Create an array of the locator names and defaults */
   1597 
   1598 		if (ci->ci_loclen != 0 &&
   1599 		    (loc_array = prop_array_create()) != NULL) {
   1600 			for (j = 0; j < ci->ci_loclen; j++) {
   1601 				loc_dict = prop_dictionary_create();
   1602 				if (loc_dict == NULL)
   1603 					continue;
   1604 				prop_dictionary_set_string_nocopy(loc_dict,
   1605 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1606 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1607 					prop_dictionary_set_string_nocopy(
   1608 					    loc_dict, "default",
   1609 					    ci->ci_locdesc[j].cld_defaultstr);
   1610 				prop_array_set(loc_array, j, loc_dict);
   1611 				prop_object_release(loc_dict);
   1612 			}
   1613 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1614 			    loc_array);
   1615 		}
   1616 		prop_array_add(attr_array, attr_dict);
   1617 		prop_object_release(attr_dict);
   1618 	}
   1619 	if (i == 0)
   1620 		prop_object_release(attr_array);
   1621 	else
   1622 		prop_dictionary_set_and_rel(dev->dv_properties,
   1623 		    "interface-attributes", attr_array);
   1624 
   1625 	return;
   1626 }
   1627 
   1628 /*
   1629  * Attach a found device.
   1630  */
   1631 device_t
   1632 config_attach_loc(device_t parent, cfdata_t cf,
   1633 	const int *locs, void *aux, cfprint_t print)
   1634 {
   1635 	device_t dev;
   1636 	struct cftable *ct;
   1637 	const char *drvname;
   1638 
   1639 	dev = config_devalloc(parent, cf, locs);
   1640 	if (!dev)
   1641 		panic("config_attach: allocation of device softc failed");
   1642 
   1643 	/* XXX redundant - see below? */
   1644 	if (cf->cf_fstate != FSTATE_STAR) {
   1645 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1646 		cf->cf_fstate = FSTATE_FOUND;
   1647 	}
   1648 
   1649 	config_devlink(dev);
   1650 
   1651 	if (config_do_twiddle && cold)
   1652 		twiddle();
   1653 	else
   1654 		aprint_naive("Found ");
   1655 	/*
   1656 	 * We want the next two printfs for normal, verbose, and quiet,
   1657 	 * but not silent (in which case, we're twiddling, instead).
   1658 	 */
   1659 	if (parent == ROOT) {
   1660 		aprint_naive("%s (root)", device_xname(dev));
   1661 		aprint_normal("%s (root)", device_xname(dev));
   1662 	} else {
   1663 		aprint_naive("%s at %s", device_xname(dev),
   1664 		    device_xname(parent));
   1665 		aprint_normal("%s at %s", device_xname(dev),
   1666 		    device_xname(parent));
   1667 		if (print)
   1668 			(void) (*print)(aux, NULL);
   1669 	}
   1670 
   1671 	/*
   1672 	 * Before attaching, clobber any unfound devices that are
   1673 	 * otherwise identical.
   1674 	 * XXX code above is redundant?
   1675 	 */
   1676 	drvname = dev->dv_cfdriver->cd_name;
   1677 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1678 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1679 			if (STREQ(cf->cf_name, drvname) &&
   1680 			    cf->cf_unit == dev->dv_unit) {
   1681 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1682 					cf->cf_fstate = FSTATE_FOUND;
   1683 			}
   1684 		}
   1685 	}
   1686 	device_register(dev, aux);
   1687 
   1688 	/* Let userland know */
   1689 	devmon_report_device(dev, true);
   1690 
   1691 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1692 
   1693 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1694 	    && !device_pmf_is_registered(dev))
   1695 		aprint_debug_dev(dev,
   1696 		    "WARNING: power management not supported\n");
   1697 
   1698 	config_process_deferred(&deferred_config_queue, dev);
   1699 
   1700 	device_register_post_config(dev, aux);
   1701 	return dev;
   1702 }
   1703 
   1704 device_t
   1705 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1706 {
   1707 
   1708 	return config_attach_loc(parent, cf, NULL, aux, print);
   1709 }
   1710 
   1711 /*
   1712  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1713  * way are silently inserted into the device tree, and their children
   1714  * attached.
   1715  *
   1716  * Note that because pseudo-devices are attached silently, any information
   1717  * the attach routine wishes to print should be prefixed with the device
   1718  * name by the attach routine.
   1719  */
   1720 device_t
   1721 config_attach_pseudo(cfdata_t cf)
   1722 {
   1723 	device_t dev;
   1724 
   1725 	dev = config_devalloc(ROOT, cf, NULL);
   1726 	if (!dev)
   1727 		return NULL;
   1728 
   1729 	/* XXX mark busy in cfdata */
   1730 
   1731 	if (cf->cf_fstate != FSTATE_STAR) {
   1732 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1733 		cf->cf_fstate = FSTATE_FOUND;
   1734 	}
   1735 
   1736 	config_devlink(dev);
   1737 
   1738 #if 0	/* XXXJRT not yet */
   1739 	device_register(dev, NULL);	/* like a root node */
   1740 #endif
   1741 
   1742 	/* Let userland know */
   1743 	devmon_report_device(dev, true);
   1744 
   1745 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1746 
   1747 	config_process_deferred(&deferred_config_queue, dev);
   1748 	return dev;
   1749 }
   1750 
   1751 /*
   1752  * Caller must hold alldevs_lock.
   1753  */
   1754 static void
   1755 config_collect_garbage(struct devicelist *garbage)
   1756 {
   1757 	device_t dv;
   1758 
   1759 	KASSERT(!cpu_intr_p());
   1760 	KASSERT(!cpu_softintr_p());
   1761 	KASSERT(mutex_owned(&alldevs_lock));
   1762 
   1763 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1764 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1765 			if (dv->dv_del_gen != 0)
   1766 				break;
   1767 		}
   1768 		if (dv == NULL) {
   1769 			alldevs_garbage = false;
   1770 			break;
   1771 		}
   1772 		config_devunlink(dv, garbage);
   1773 	}
   1774 	KASSERT(mutex_owned(&alldevs_lock));
   1775 }
   1776 
   1777 static void
   1778 config_dump_garbage(struct devicelist *garbage)
   1779 {
   1780 	device_t dv;
   1781 
   1782 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1783 		TAILQ_REMOVE(garbage, dv, dv_list);
   1784 		config_devdelete(dv);
   1785 	}
   1786 }
   1787 
   1788 /*
   1789  * Detach a device.  Optionally forced (e.g. because of hardware
   1790  * removal) and quiet.  Returns zero if successful, non-zero
   1791  * (an error code) otherwise.
   1792  *
   1793  * Note that this code wants to be run from a process context, so
   1794  * that the detach can sleep to allow processes which have a device
   1795  * open to run and unwind their stacks.
   1796  */
   1797 int
   1798 config_detach(device_t dev, int flags)
   1799 {
   1800 	struct alldevs_foray af;
   1801 	struct cftable *ct;
   1802 	cfdata_t cf;
   1803 	const struct cfattach *ca;
   1804 	struct cfdriver *cd;
   1805 	device_t d __diagused;
   1806 	int rv = 0;
   1807 
   1808 	cf = dev->dv_cfdata;
   1809 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1810 		cf->cf_fstate == FSTATE_STAR),
   1811 	    "config_detach: %s: bad device fstate: %d",
   1812 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1813 
   1814 	cd = dev->dv_cfdriver;
   1815 	KASSERT(cd != NULL);
   1816 
   1817 	ca = dev->dv_cfattach;
   1818 	KASSERT(ca != NULL);
   1819 
   1820 	mutex_enter(&alldevs_lock);
   1821 	if (dev->dv_del_gen != 0) {
   1822 		mutex_exit(&alldevs_lock);
   1823 #ifdef DIAGNOSTIC
   1824 		printf("%s: %s is already detached\n", __func__,
   1825 		    device_xname(dev));
   1826 #endif /* DIAGNOSTIC */
   1827 		return ENOENT;
   1828 	}
   1829 	alldevs_nwrite++;
   1830 	mutex_exit(&alldevs_lock);
   1831 
   1832 	if (!detachall &&
   1833 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1834 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1835 		rv = EOPNOTSUPP;
   1836 	} else if (ca->ca_detach != NULL) {
   1837 		rv = (*ca->ca_detach)(dev, flags);
   1838 	} else
   1839 		rv = EOPNOTSUPP;
   1840 
   1841 	/*
   1842 	 * If it was not possible to detach the device, then we either
   1843 	 * panic() (for the forced but failed case), or return an error.
   1844 	 *
   1845 	 * If it was possible to detach the device, ensure that the
   1846 	 * device is deactivated.
   1847 	 */
   1848 	if (rv == 0)
   1849 		dev->dv_flags &= ~DVF_ACTIVE;
   1850 	else if ((flags & DETACH_FORCE) == 0)
   1851 		goto out;
   1852 	else {
   1853 		panic("config_detach: forced detach of %s failed (%d)",
   1854 		    device_xname(dev), rv);
   1855 	}
   1856 
   1857 	/*
   1858 	 * The device has now been successfully detached.
   1859 	 */
   1860 
   1861 	/* Let userland know */
   1862 	devmon_report_device(dev, false);
   1863 
   1864 #ifdef DIAGNOSTIC
   1865 	/*
   1866 	 * Sanity: If you're successfully detached, you should have no
   1867 	 * children.  (Note that because children must be attached
   1868 	 * after parents, we only need to search the latter part of
   1869 	 * the list.)
   1870 	 */
   1871 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1872 	    d = TAILQ_NEXT(d, dv_list)) {
   1873 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1874 			printf("config_detach: detached device %s"
   1875 			    " has children %s\n", device_xname(dev),
   1876 			    device_xname(d));
   1877 			panic("config_detach");
   1878 		}
   1879 	}
   1880 #endif
   1881 
   1882 	/* notify the parent that the child is gone */
   1883 	if (dev->dv_parent) {
   1884 		device_t p = dev->dv_parent;
   1885 		if (p->dv_cfattach->ca_childdetached)
   1886 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1887 	}
   1888 
   1889 	/*
   1890 	 * Mark cfdata to show that the unit can be reused, if possible.
   1891 	 */
   1892 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1893 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1894 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1895 				if (cf->cf_fstate == FSTATE_FOUND &&
   1896 				    cf->cf_unit == dev->dv_unit)
   1897 					cf->cf_fstate = FSTATE_NOTFOUND;
   1898 			}
   1899 		}
   1900 	}
   1901 
   1902 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1903 		aprint_normal_dev(dev, "detached\n");
   1904 
   1905 out:
   1906 	config_alldevs_enter(&af);
   1907 	KASSERT(alldevs_nwrite != 0);
   1908 	--alldevs_nwrite;
   1909 	if (rv == 0 && dev->dv_del_gen == 0) {
   1910 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1911 			config_devunlink(dev, &af.af_garbage);
   1912 		else {
   1913 			dev->dv_del_gen = alldevs_gen;
   1914 			alldevs_garbage = true;
   1915 		}
   1916 	}
   1917 	config_alldevs_exit(&af);
   1918 
   1919 	return rv;
   1920 }
   1921 
   1922 int
   1923 config_detach_children(device_t parent, int flags)
   1924 {
   1925 	device_t dv;
   1926 	deviter_t di;
   1927 	int error = 0;
   1928 
   1929 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1930 	     dv = deviter_next(&di)) {
   1931 		if (device_parent(dv) != parent)
   1932 			continue;
   1933 		if ((error = config_detach(dv, flags)) != 0)
   1934 			break;
   1935 	}
   1936 	deviter_release(&di);
   1937 	return error;
   1938 }
   1939 
   1940 device_t
   1941 shutdown_first(struct shutdown_state *s)
   1942 {
   1943 	if (!s->initialized) {
   1944 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1945 		s->initialized = true;
   1946 	}
   1947 	return shutdown_next(s);
   1948 }
   1949 
   1950 device_t
   1951 shutdown_next(struct shutdown_state *s)
   1952 {
   1953 	device_t dv;
   1954 
   1955 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1956 		;
   1957 
   1958 	if (dv == NULL)
   1959 		s->initialized = false;
   1960 
   1961 	return dv;
   1962 }
   1963 
   1964 bool
   1965 config_detach_all(int how)
   1966 {
   1967 	static struct shutdown_state s;
   1968 	device_t curdev;
   1969 	bool progress = false;
   1970 	int flags;
   1971 
   1972 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1973 		return false;
   1974 
   1975 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1976 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1977 	else
   1978 		flags = DETACH_SHUTDOWN;
   1979 
   1980 	for (curdev = shutdown_first(&s); curdev != NULL;
   1981 	     curdev = shutdown_next(&s)) {
   1982 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1983 		if (config_detach(curdev, flags) == 0) {
   1984 			progress = true;
   1985 			aprint_debug("success.");
   1986 		} else
   1987 			aprint_debug("failed.");
   1988 	}
   1989 	return progress;
   1990 }
   1991 
   1992 static bool
   1993 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1994 {
   1995 	device_t dv;
   1996 
   1997 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1998 		if (device_parent(dv) == ancestor)
   1999 			return true;
   2000 	}
   2001 	return false;
   2002 }
   2003 
   2004 int
   2005 config_deactivate(device_t dev)
   2006 {
   2007 	deviter_t di;
   2008 	const struct cfattach *ca;
   2009 	device_t descendant;
   2010 	int s, rv = 0, oflags;
   2011 
   2012 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2013 	     descendant != NULL;
   2014 	     descendant = deviter_next(&di)) {
   2015 		if (dev != descendant &&
   2016 		    !device_is_ancestor_of(dev, descendant))
   2017 			continue;
   2018 
   2019 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2020 			continue;
   2021 
   2022 		ca = descendant->dv_cfattach;
   2023 		oflags = descendant->dv_flags;
   2024 
   2025 		descendant->dv_flags &= ~DVF_ACTIVE;
   2026 		if (ca->ca_activate == NULL)
   2027 			continue;
   2028 		s = splhigh();
   2029 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2030 		splx(s);
   2031 		if (rv != 0)
   2032 			descendant->dv_flags = oflags;
   2033 	}
   2034 	deviter_release(&di);
   2035 	return rv;
   2036 }
   2037 
   2038 /*
   2039  * Defer the configuration of the specified device until all
   2040  * of its parent's devices have been attached.
   2041  */
   2042 void
   2043 config_defer(device_t dev, void (*func)(device_t))
   2044 {
   2045 	struct deferred_config *dc;
   2046 
   2047 	if (dev->dv_parent == NULL)
   2048 		panic("config_defer: can't defer config of a root device");
   2049 
   2050 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2051 
   2052 	config_pending_incr(dev);
   2053 
   2054 	mutex_enter(&config_misc_lock);
   2055 #ifdef DIAGNOSTIC
   2056 	struct deferred_config *odc;
   2057 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2058 		if (odc->dc_dev == dev)
   2059 			panic("config_defer: deferred twice");
   2060 	}
   2061 #endif
   2062 	dc->dc_dev = dev;
   2063 	dc->dc_func = func;
   2064 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2065 	mutex_exit(&config_misc_lock);
   2066 }
   2067 
   2068 /*
   2069  * Defer some autoconfiguration for a device until after interrupts
   2070  * are enabled.
   2071  */
   2072 void
   2073 config_interrupts(device_t dev, void (*func)(device_t))
   2074 {
   2075 	struct deferred_config *dc;
   2076 
   2077 	/*
   2078 	 * If interrupts are enabled, callback now.
   2079 	 */
   2080 	if (cold == 0) {
   2081 		(*func)(dev);
   2082 		return;
   2083 	}
   2084 
   2085 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2086 
   2087 	config_pending_incr(dev);
   2088 
   2089 	mutex_enter(&config_misc_lock);
   2090 #ifdef DIAGNOSTIC
   2091 	struct deferred_config *odc;
   2092 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2093 		if (odc->dc_dev == dev)
   2094 			panic("config_interrupts: deferred twice");
   2095 	}
   2096 #endif
   2097 	dc->dc_dev = dev;
   2098 	dc->dc_func = func;
   2099 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2100 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2101 	mutex_exit(&config_misc_lock);
   2102 }
   2103 
   2104 /*
   2105  * Defer some autoconfiguration for a device until after root file system
   2106  * is mounted (to load firmware etc).
   2107  */
   2108 void
   2109 config_mountroot(device_t dev, void (*func)(device_t))
   2110 {
   2111 	struct deferred_config *dc;
   2112 
   2113 	/*
   2114 	 * If root file system is mounted, callback now.
   2115 	 */
   2116 	if (root_is_mounted) {
   2117 		(*func)(dev);
   2118 		return;
   2119 	}
   2120 
   2121 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2122 
   2123 	mutex_enter(&config_misc_lock);
   2124 #ifdef DIAGNOSTIC
   2125 	struct deferred_config *odc;
   2126 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2127 		if (odc->dc_dev == dev)
   2128 			panic("%s: deferred twice", __func__);
   2129 	}
   2130 #endif
   2131 
   2132 	dc->dc_dev = dev;
   2133 	dc->dc_func = func;
   2134 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2135 	mutex_exit(&config_misc_lock);
   2136 }
   2137 
   2138 /*
   2139  * Process a deferred configuration queue.
   2140  */
   2141 static void
   2142 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2143 {
   2144 	struct deferred_config *dc;
   2145 
   2146 	mutex_enter(&config_misc_lock);
   2147 	dc = TAILQ_FIRST(queue);
   2148 	while (dc) {
   2149 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2150 			TAILQ_REMOVE(queue, dc, dc_queue);
   2151 			mutex_exit(&config_misc_lock);
   2152 
   2153 			(*dc->dc_func)(dc->dc_dev);
   2154 			config_pending_decr(dc->dc_dev);
   2155 			kmem_free(dc, sizeof(*dc));
   2156 
   2157 			mutex_enter(&config_misc_lock);
   2158 			/* Restart, queue might have changed */
   2159 			dc = TAILQ_FIRST(queue);
   2160 		} else {
   2161 			dc = TAILQ_NEXT(dc, dc_queue);
   2162 		}
   2163 	}
   2164 	mutex_exit(&config_misc_lock);
   2165 }
   2166 
   2167 /*
   2168  * Manipulate the config_pending semaphore.
   2169  */
   2170 void
   2171 config_pending_incr(device_t dev)
   2172 {
   2173 
   2174 	mutex_enter(&config_misc_lock);
   2175 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2176 	    "%s: excess config_pending_incr", device_xname(dev));
   2177 	if (dev->dv_pending++ == 0)
   2178 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2179 #ifdef DEBUG_AUTOCONF
   2180 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2181 #endif
   2182 	mutex_exit(&config_misc_lock);
   2183 }
   2184 
   2185 void
   2186 config_pending_decr(device_t dev)
   2187 {
   2188 
   2189 	mutex_enter(&config_misc_lock);
   2190 	KASSERTMSG(dev->dv_pending > 0,
   2191 	    "%s: excess config_pending_decr", device_xname(dev));
   2192 	if (--dev->dv_pending == 0)
   2193 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2194 #ifdef DEBUG_AUTOCONF
   2195 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2196 #endif
   2197 	if (TAILQ_EMPTY(&config_pending))
   2198 		cv_broadcast(&config_misc_cv);
   2199 	mutex_exit(&config_misc_lock);
   2200 }
   2201 
   2202 /*
   2203  * Register a "finalization" routine.  Finalization routines are
   2204  * called iteratively once all real devices have been found during
   2205  * autoconfiguration, for as long as any one finalizer has done
   2206  * any work.
   2207  */
   2208 int
   2209 config_finalize_register(device_t dev, int (*fn)(device_t))
   2210 {
   2211 	struct finalize_hook *f;
   2212 
   2213 	/*
   2214 	 * If finalization has already been done, invoke the
   2215 	 * callback function now.
   2216 	 */
   2217 	if (config_finalize_done) {
   2218 		while ((*fn)(dev) != 0)
   2219 			/* loop */ ;
   2220 		return 0;
   2221 	}
   2222 
   2223 	/* Ensure this isn't already on the list. */
   2224 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2225 		if (f->f_func == fn && f->f_dev == dev)
   2226 			return EEXIST;
   2227 	}
   2228 
   2229 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2230 	f->f_func = fn;
   2231 	f->f_dev = dev;
   2232 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2233 
   2234 	return 0;
   2235 }
   2236 
   2237 void
   2238 config_finalize(void)
   2239 {
   2240 	struct finalize_hook *f;
   2241 	struct pdevinit *pdev;
   2242 	extern struct pdevinit pdevinit[];
   2243 	int errcnt, rv;
   2244 
   2245 	/*
   2246 	 * Now that device driver threads have been created, wait for
   2247 	 * them to finish any deferred autoconfiguration.
   2248 	 */
   2249 	mutex_enter(&config_misc_lock);
   2250 	while (!TAILQ_EMPTY(&config_pending)) {
   2251 		device_t dev;
   2252 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2253 			aprint_debug_dev(dev, "holding up boot\n");
   2254 		cv_wait(&config_misc_cv, &config_misc_lock);
   2255 	}
   2256 	mutex_exit(&config_misc_lock);
   2257 
   2258 	KERNEL_LOCK(1, NULL);
   2259 
   2260 	/* Attach pseudo-devices. */
   2261 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2262 		(*pdev->pdev_attach)(pdev->pdev_count);
   2263 
   2264 	/* Run the hooks until none of them does any work. */
   2265 	do {
   2266 		rv = 0;
   2267 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2268 			rv |= (*f->f_func)(f->f_dev);
   2269 	} while (rv != 0);
   2270 
   2271 	config_finalize_done = 1;
   2272 
   2273 	/* Now free all the hooks. */
   2274 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2275 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2276 		kmem_free(f, sizeof(*f));
   2277 	}
   2278 
   2279 	KERNEL_UNLOCK_ONE(NULL);
   2280 
   2281 	errcnt = aprint_get_error_count();
   2282 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2283 	    (boothowto & AB_VERBOSE) == 0) {
   2284 		mutex_enter(&config_misc_lock);
   2285 		if (config_do_twiddle) {
   2286 			config_do_twiddle = 0;
   2287 			printf_nolog(" done.\n");
   2288 		}
   2289 		mutex_exit(&config_misc_lock);
   2290 	}
   2291 	if (errcnt != 0) {
   2292 		printf("WARNING: %d error%s while detecting hardware; "
   2293 		    "check system log.\n", errcnt,
   2294 		    errcnt == 1 ? "" : "s");
   2295 	}
   2296 }
   2297 
   2298 void
   2299 config_twiddle_init(void)
   2300 {
   2301 
   2302 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2303 		config_do_twiddle = 1;
   2304 	}
   2305 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2306 }
   2307 
   2308 void
   2309 config_twiddle_fn(void *cookie)
   2310 {
   2311 
   2312 	mutex_enter(&config_misc_lock);
   2313 	if (config_do_twiddle) {
   2314 		twiddle();
   2315 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2316 	}
   2317 	mutex_exit(&config_misc_lock);
   2318 }
   2319 
   2320 static void
   2321 config_alldevs_enter(struct alldevs_foray *af)
   2322 {
   2323 	TAILQ_INIT(&af->af_garbage);
   2324 	mutex_enter(&alldevs_lock);
   2325 	config_collect_garbage(&af->af_garbage);
   2326 }
   2327 
   2328 static void
   2329 config_alldevs_exit(struct alldevs_foray *af)
   2330 {
   2331 	mutex_exit(&alldevs_lock);
   2332 	config_dump_garbage(&af->af_garbage);
   2333 }
   2334 
   2335 /*
   2336  * device_lookup:
   2337  *
   2338  *	Look up a device instance for a given driver.
   2339  */
   2340 device_t
   2341 device_lookup(cfdriver_t cd, int unit)
   2342 {
   2343 	device_t dv;
   2344 
   2345 	mutex_enter(&alldevs_lock);
   2346 	if (unit < 0 || unit >= cd->cd_ndevs)
   2347 		dv = NULL;
   2348 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2349 		dv = NULL;
   2350 	mutex_exit(&alldevs_lock);
   2351 
   2352 	return dv;
   2353 }
   2354 
   2355 /*
   2356  * device_lookup_private:
   2357  *
   2358  *	Look up a softc instance for a given driver.
   2359  */
   2360 void *
   2361 device_lookup_private(cfdriver_t cd, int unit)
   2362 {
   2363 
   2364 	return device_private(device_lookup(cd, unit));
   2365 }
   2366 
   2367 /*
   2368  * device_find_by_xname:
   2369  *
   2370  *	Returns the device of the given name or NULL if it doesn't exist.
   2371  */
   2372 device_t
   2373 device_find_by_xname(const char *name)
   2374 {
   2375 	device_t dv;
   2376 	deviter_t di;
   2377 
   2378 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2379 		if (strcmp(device_xname(dv), name) == 0)
   2380 			break;
   2381 	}
   2382 	deviter_release(&di);
   2383 
   2384 	return dv;
   2385 }
   2386 
   2387 /*
   2388  * device_find_by_driver_unit:
   2389  *
   2390  *	Returns the device of the given driver name and unit or
   2391  *	NULL if it doesn't exist.
   2392  */
   2393 device_t
   2394 device_find_by_driver_unit(const char *name, int unit)
   2395 {
   2396 	struct cfdriver *cd;
   2397 
   2398 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2399 		return NULL;
   2400 	return device_lookup(cd, unit);
   2401 }
   2402 
   2403 static bool
   2404 match_strcmp(const char * const s1, const char * const s2)
   2405 {
   2406 	return strcmp(s1, s2) == 0;
   2407 }
   2408 
   2409 static bool
   2410 match_pmatch(const char * const s1, const char * const s2)
   2411 {
   2412 	return pmatch(s1, s2, NULL) == 2;
   2413 }
   2414 
   2415 static bool
   2416 strarray_match_internal(const char ** const strings,
   2417     unsigned int const nstrings, const char * const str,
   2418     unsigned int * const indexp,
   2419     bool (*match_fn)(const char *, const char *))
   2420 {
   2421 	unsigned int i;
   2422 
   2423 	if (strings == NULL || nstrings == 0) {
   2424 		return false;
   2425 	}
   2426 
   2427 	for (i = 0; i < nstrings; i++) {
   2428 		if ((*match_fn)(strings[i], str)) {
   2429 			*indexp = i;
   2430 			return true;
   2431 		}
   2432 	}
   2433 
   2434 	return false;
   2435 }
   2436 
   2437 static int
   2438 strarray_match(const char ** const strings, unsigned int const nstrings,
   2439     const char * const str)
   2440 {
   2441 	unsigned int idx;
   2442 
   2443 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2444 				    match_strcmp)) {
   2445 		return (int)(nstrings - idx);
   2446 	}
   2447 	return 0;
   2448 }
   2449 
   2450 static int
   2451 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2452     const char * const pattern)
   2453 {
   2454 	unsigned int idx;
   2455 
   2456 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2457 				    match_pmatch)) {
   2458 		return (int)(nstrings - idx);
   2459 	}
   2460 	return 0;
   2461 }
   2462 
   2463 static int
   2464 device_compatible_match_strarray_internal(
   2465     const char **device_compats, int ndevice_compats,
   2466     const struct device_compatible_entry *driver_compats,
   2467     const struct device_compatible_entry **matching_entryp,
   2468     int (*match_fn)(const char **, unsigned int, const char *))
   2469 {
   2470 	const struct device_compatible_entry *dce = NULL;
   2471 	int rv;
   2472 
   2473 	if (ndevice_compats == 0 || device_compats == NULL ||
   2474 	    driver_compats == NULL)
   2475 		return 0;
   2476 
   2477 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2478 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2479 		if (rv != 0) {
   2480 			if (matching_entryp != NULL) {
   2481 				*matching_entryp = dce;
   2482 			}
   2483 			return rv;
   2484 		}
   2485 	}
   2486 	return 0;
   2487 }
   2488 
   2489 /*
   2490  * device_compatible_match:
   2491  *
   2492  *	Match a driver's "compatible" data against a device's
   2493  *	"compatible" strings.  Returns resulted weighted by
   2494  *	which device "compatible" string was matched.
   2495  */
   2496 int
   2497 device_compatible_match(const char **device_compats, int ndevice_compats,
   2498     const struct device_compatible_entry *driver_compats)
   2499 {
   2500 	return device_compatible_match_strarray_internal(device_compats,
   2501 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2502 }
   2503 
   2504 /*
   2505  * device_compatible_pmatch:
   2506  *
   2507  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2508  *	the device "compatible" strings against patterns in the
   2509  *	driver's "compatible" data.
   2510  */
   2511 int
   2512 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2513     const struct device_compatible_entry *driver_compats)
   2514 {
   2515 	return device_compatible_match_strarray_internal(device_compats,
   2516 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2517 }
   2518 
   2519 static int
   2520 device_compatible_match_strlist_internal(
   2521     const char * const device_compats, size_t const device_compatsize,
   2522     const struct device_compatible_entry *driver_compats,
   2523     const struct device_compatible_entry **matching_entryp,
   2524     int (*match_fn)(const char *, size_t, const char *))
   2525 {
   2526 	const struct device_compatible_entry *dce = NULL;
   2527 	int rv;
   2528 
   2529 	if (device_compats == NULL || device_compatsize == 0 ||
   2530 	    driver_compats == NULL)
   2531 		return 0;
   2532 
   2533 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2534 		rv = (*match_fn)(device_compats, device_compatsize,
   2535 		    dce->compat);
   2536 		if (rv != 0) {
   2537 			if (matching_entryp != NULL) {
   2538 				*matching_entryp = dce;
   2539 			}
   2540 			return rv;
   2541 		}
   2542 	}
   2543 	return 0;
   2544 }
   2545 
   2546 /*
   2547  * device_compatible_match_strlist:
   2548  *
   2549  *	Like device_compatible_match(), but take the device
   2550  *	"compatible" strings as an OpenFirmware-style string
   2551  *	list.
   2552  */
   2553 int
   2554 device_compatible_match_strlist(
   2555     const char * const device_compats, size_t const device_compatsize,
   2556     const struct device_compatible_entry *driver_compats)
   2557 {
   2558 	return device_compatible_match_strlist_internal(device_compats,
   2559 	    device_compatsize, driver_compats, NULL, strlist_match);
   2560 }
   2561 
   2562 /*
   2563  * device_compatible_pmatch_strlist:
   2564  *
   2565  *	Like device_compatible_pmatch(), but take the device
   2566  *	"compatible" strings as an OpenFirmware-style string
   2567  *	list.
   2568  */
   2569 int
   2570 device_compatible_pmatch_strlist(
   2571     const char * const device_compats, size_t const device_compatsize,
   2572     const struct device_compatible_entry *driver_compats)
   2573 {
   2574 	return device_compatible_match_strlist_internal(device_compats,
   2575 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2576 }
   2577 
   2578 static int
   2579 device_compatible_match_id_internal(
   2580     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2581     const struct device_compatible_entry *driver_compats,
   2582     const struct device_compatible_entry **matching_entryp)
   2583 {
   2584 	const struct device_compatible_entry *dce = NULL;
   2585 
   2586 	if (mask == 0)
   2587 		return 0;
   2588 
   2589 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2590 		if ((id & mask) == dce->id) {
   2591 			if (matching_entryp != NULL) {
   2592 				*matching_entryp = dce;
   2593 			}
   2594 			return 1;
   2595 		}
   2596 	}
   2597 	return 0;
   2598 }
   2599 
   2600 /*
   2601  * device_compatible_match_id:
   2602  *
   2603  *	Like device_compatible_match(), but takes a single
   2604  *	unsigned integer device ID.
   2605  */
   2606 int
   2607 device_compatible_match_id(
   2608     uintptr_t const id, uintptr_t const sentinel_id,
   2609     const struct device_compatible_entry *driver_compats)
   2610 {
   2611 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2612 	    sentinel_id, driver_compats, NULL);
   2613 }
   2614 
   2615 /*
   2616  * device_compatible_lookup:
   2617  *
   2618  *	Look up and return the device_compatible_entry, using the
   2619  *	same matching criteria used by device_compatible_match().
   2620  */
   2621 const struct device_compatible_entry *
   2622 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2623 			 const struct device_compatible_entry *driver_compats)
   2624 {
   2625 	const struct device_compatible_entry *dce;
   2626 
   2627 	if (device_compatible_match_strarray_internal(device_compats,
   2628 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2629 		return dce;
   2630 	}
   2631 	return NULL;
   2632 }
   2633 
   2634 /*
   2635  * device_compatible_plookup:
   2636  *
   2637  *	Look up and return the device_compatible_entry, using the
   2638  *	same matching criteria used by device_compatible_pmatch().
   2639  */
   2640 const struct device_compatible_entry *
   2641 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2642 			  const struct device_compatible_entry *driver_compats)
   2643 {
   2644 	const struct device_compatible_entry *dce;
   2645 
   2646 	if (device_compatible_match_strarray_internal(device_compats,
   2647 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2648 		return dce;
   2649 	}
   2650 	return NULL;
   2651 }
   2652 
   2653 /*
   2654  * device_compatible_lookup_strlist:
   2655  *
   2656  *	Like device_compatible_lookup(), but take the device
   2657  *	"compatible" strings as an OpenFirmware-style string
   2658  *	list.
   2659  */
   2660 const struct device_compatible_entry *
   2661 device_compatible_lookup_strlist(
   2662     const char * const device_compats, size_t const device_compatsize,
   2663     const struct device_compatible_entry *driver_compats)
   2664 {
   2665 	const struct device_compatible_entry *dce;
   2666 
   2667 	if (device_compatible_match_strlist_internal(device_compats,
   2668 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2669 		return dce;
   2670 	}
   2671 	return NULL;
   2672 }
   2673 
   2674 /*
   2675  * device_compatible_plookup_strlist:
   2676  *
   2677  *	Like device_compatible_plookup(), but take the device
   2678  *	"compatible" strings as an OpenFirmware-style string
   2679  *	list.
   2680  */
   2681 const struct device_compatible_entry *
   2682 device_compatible_plookup_strlist(
   2683     const char * const device_compats, size_t const device_compatsize,
   2684     const struct device_compatible_entry *driver_compats)
   2685 {
   2686 	const struct device_compatible_entry *dce;
   2687 
   2688 	if (device_compatible_match_strlist_internal(device_compats,
   2689 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2690 		return dce;
   2691 	}
   2692 	return NULL;
   2693 }
   2694 
   2695 /*
   2696  * device_compatible_lookup_id:
   2697  *
   2698  *	Like device_compatible_lookup(), but takes a single
   2699  *	unsigned integer device ID.
   2700  */
   2701 const struct device_compatible_entry *
   2702 device_compatible_lookup_id(
   2703     uintptr_t const id, uintptr_t const sentinel_id,
   2704     const struct device_compatible_entry *driver_compats)
   2705 {
   2706 	const struct device_compatible_entry *dce;
   2707 
   2708 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2709 	    sentinel_id, driver_compats, &dce)) {
   2710 		return dce;
   2711 	}
   2712 	return NULL;
   2713 }
   2714 
   2715 /*
   2716  * Power management related functions.
   2717  */
   2718 
   2719 bool
   2720 device_pmf_is_registered(device_t dev)
   2721 {
   2722 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2723 }
   2724 
   2725 bool
   2726 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2727 {
   2728 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2729 		return true;
   2730 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2731 		return false;
   2732 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2733 	    dev->dv_driver_suspend != NULL &&
   2734 	    !(*dev->dv_driver_suspend)(dev, qual))
   2735 		return false;
   2736 
   2737 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2738 	return true;
   2739 }
   2740 
   2741 bool
   2742 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2743 {
   2744 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2745 		return true;
   2746 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2747 		return false;
   2748 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2749 	    dev->dv_driver_resume != NULL &&
   2750 	    !(*dev->dv_driver_resume)(dev, qual))
   2751 		return false;
   2752 
   2753 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2754 	return true;
   2755 }
   2756 
   2757 bool
   2758 device_pmf_driver_shutdown(device_t dev, int how)
   2759 {
   2760 
   2761 	if (*dev->dv_driver_shutdown != NULL &&
   2762 	    !(*dev->dv_driver_shutdown)(dev, how))
   2763 		return false;
   2764 	return true;
   2765 }
   2766 
   2767 bool
   2768 device_pmf_driver_register(device_t dev,
   2769     bool (*suspend)(device_t, const pmf_qual_t *),
   2770     bool (*resume)(device_t, const pmf_qual_t *),
   2771     bool (*shutdown)(device_t, int))
   2772 {
   2773 	dev->dv_driver_suspend = suspend;
   2774 	dev->dv_driver_resume = resume;
   2775 	dev->dv_driver_shutdown = shutdown;
   2776 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2777 	return true;
   2778 }
   2779 
   2780 static const char *
   2781 curlwp_name(void)
   2782 {
   2783 	if (curlwp->l_name != NULL)
   2784 		return curlwp->l_name;
   2785 	else
   2786 		return curlwp->l_proc->p_comm;
   2787 }
   2788 
   2789 void
   2790 device_pmf_driver_deregister(device_t dev)
   2791 {
   2792 	device_lock_t dvl = device_getlock(dev);
   2793 
   2794 	dev->dv_driver_suspend = NULL;
   2795 	dev->dv_driver_resume = NULL;
   2796 
   2797 	mutex_enter(&dvl->dvl_mtx);
   2798 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2799 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2800 		/* Wake a thread that waits for the lock.  That
   2801 		 * thread will fail to acquire the lock, and then
   2802 		 * it will wake the next thread that waits for the
   2803 		 * lock, or else it will wake us.
   2804 		 */
   2805 		cv_signal(&dvl->dvl_cv);
   2806 		pmflock_debug(dev, __func__, __LINE__);
   2807 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2808 		pmflock_debug(dev, __func__, __LINE__);
   2809 	}
   2810 	mutex_exit(&dvl->dvl_mtx);
   2811 }
   2812 
   2813 bool
   2814 device_pmf_driver_child_register(device_t dev)
   2815 {
   2816 	device_t parent = device_parent(dev);
   2817 
   2818 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2819 		return true;
   2820 	return (*parent->dv_driver_child_register)(dev);
   2821 }
   2822 
   2823 void
   2824 device_pmf_driver_set_child_register(device_t dev,
   2825     bool (*child_register)(device_t))
   2826 {
   2827 	dev->dv_driver_child_register = child_register;
   2828 }
   2829 
   2830 static void
   2831 pmflock_debug(device_t dev, const char *func, int line)
   2832 {
   2833 	device_lock_t dvl = device_getlock(dev);
   2834 
   2835 	aprint_debug_dev(dev,
   2836 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2837 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2838 }
   2839 
   2840 static bool
   2841 device_pmf_lock1(device_t dev)
   2842 {
   2843 	device_lock_t dvl = device_getlock(dev);
   2844 
   2845 	while (device_pmf_is_registered(dev) &&
   2846 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2847 		dvl->dvl_nwait++;
   2848 		pmflock_debug(dev, __func__, __LINE__);
   2849 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2850 		pmflock_debug(dev, __func__, __LINE__);
   2851 		dvl->dvl_nwait--;
   2852 	}
   2853 	if (!device_pmf_is_registered(dev)) {
   2854 		pmflock_debug(dev, __func__, __LINE__);
   2855 		/* We could not acquire the lock, but some other thread may
   2856 		 * wait for it, also.  Wake that thread.
   2857 		 */
   2858 		cv_signal(&dvl->dvl_cv);
   2859 		return false;
   2860 	}
   2861 	dvl->dvl_nlock++;
   2862 	dvl->dvl_holder = curlwp;
   2863 	pmflock_debug(dev, __func__, __LINE__);
   2864 	return true;
   2865 }
   2866 
   2867 bool
   2868 device_pmf_lock(device_t dev)
   2869 {
   2870 	bool rc;
   2871 	device_lock_t dvl = device_getlock(dev);
   2872 
   2873 	mutex_enter(&dvl->dvl_mtx);
   2874 	rc = device_pmf_lock1(dev);
   2875 	mutex_exit(&dvl->dvl_mtx);
   2876 
   2877 	return rc;
   2878 }
   2879 
   2880 void
   2881 device_pmf_unlock(device_t dev)
   2882 {
   2883 	device_lock_t dvl = device_getlock(dev);
   2884 
   2885 	KASSERT(dvl->dvl_nlock > 0);
   2886 	mutex_enter(&dvl->dvl_mtx);
   2887 	if (--dvl->dvl_nlock == 0)
   2888 		dvl->dvl_holder = NULL;
   2889 	cv_signal(&dvl->dvl_cv);
   2890 	pmflock_debug(dev, __func__, __LINE__);
   2891 	mutex_exit(&dvl->dvl_mtx);
   2892 }
   2893 
   2894 device_lock_t
   2895 device_getlock(device_t dev)
   2896 {
   2897 	return &dev->dv_lock;
   2898 }
   2899 
   2900 void *
   2901 device_pmf_bus_private(device_t dev)
   2902 {
   2903 	return dev->dv_bus_private;
   2904 }
   2905 
   2906 bool
   2907 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2908 {
   2909 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2910 		return true;
   2911 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2912 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2913 		return false;
   2914 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2915 	    dev->dv_bus_suspend != NULL &&
   2916 	    !(*dev->dv_bus_suspend)(dev, qual))
   2917 		return false;
   2918 
   2919 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2920 	return true;
   2921 }
   2922 
   2923 bool
   2924 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2925 {
   2926 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2927 		return true;
   2928 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2929 	    dev->dv_bus_resume != NULL &&
   2930 	    !(*dev->dv_bus_resume)(dev, qual))
   2931 		return false;
   2932 
   2933 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2934 	return true;
   2935 }
   2936 
   2937 bool
   2938 device_pmf_bus_shutdown(device_t dev, int how)
   2939 {
   2940 
   2941 	if (*dev->dv_bus_shutdown != NULL &&
   2942 	    !(*dev->dv_bus_shutdown)(dev, how))
   2943 		return false;
   2944 	return true;
   2945 }
   2946 
   2947 void
   2948 device_pmf_bus_register(device_t dev, void *priv,
   2949     bool (*suspend)(device_t, const pmf_qual_t *),
   2950     bool (*resume)(device_t, const pmf_qual_t *),
   2951     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2952 {
   2953 	dev->dv_bus_private = priv;
   2954 	dev->dv_bus_resume = resume;
   2955 	dev->dv_bus_suspend = suspend;
   2956 	dev->dv_bus_shutdown = shutdown;
   2957 	dev->dv_bus_deregister = deregister;
   2958 }
   2959 
   2960 void
   2961 device_pmf_bus_deregister(device_t dev)
   2962 {
   2963 	if (dev->dv_bus_deregister == NULL)
   2964 		return;
   2965 	(*dev->dv_bus_deregister)(dev);
   2966 	dev->dv_bus_private = NULL;
   2967 	dev->dv_bus_suspend = NULL;
   2968 	dev->dv_bus_resume = NULL;
   2969 	dev->dv_bus_deregister = NULL;
   2970 }
   2971 
   2972 void *
   2973 device_pmf_class_private(device_t dev)
   2974 {
   2975 	return dev->dv_class_private;
   2976 }
   2977 
   2978 bool
   2979 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2980 {
   2981 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2982 		return true;
   2983 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2984 	    dev->dv_class_suspend != NULL &&
   2985 	    !(*dev->dv_class_suspend)(dev, qual))
   2986 		return false;
   2987 
   2988 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2989 	return true;
   2990 }
   2991 
   2992 bool
   2993 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2994 {
   2995 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2996 		return true;
   2997 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2998 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2999 		return false;
   3000 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3001 	    dev->dv_class_resume != NULL &&
   3002 	    !(*dev->dv_class_resume)(dev, qual))
   3003 		return false;
   3004 
   3005 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3006 	return true;
   3007 }
   3008 
   3009 void
   3010 device_pmf_class_register(device_t dev, void *priv,
   3011     bool (*suspend)(device_t, const pmf_qual_t *),
   3012     bool (*resume)(device_t, const pmf_qual_t *),
   3013     void (*deregister)(device_t))
   3014 {
   3015 	dev->dv_class_private = priv;
   3016 	dev->dv_class_suspend = suspend;
   3017 	dev->dv_class_resume = resume;
   3018 	dev->dv_class_deregister = deregister;
   3019 }
   3020 
   3021 void
   3022 device_pmf_class_deregister(device_t dev)
   3023 {
   3024 	if (dev->dv_class_deregister == NULL)
   3025 		return;
   3026 	(*dev->dv_class_deregister)(dev);
   3027 	dev->dv_class_private = NULL;
   3028 	dev->dv_class_suspend = NULL;
   3029 	dev->dv_class_resume = NULL;
   3030 	dev->dv_class_deregister = NULL;
   3031 }
   3032 
   3033 bool
   3034 device_active(device_t dev, devactive_t type)
   3035 {
   3036 	size_t i;
   3037 
   3038 	if (dev->dv_activity_count == 0)
   3039 		return false;
   3040 
   3041 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3042 		if (dev->dv_activity_handlers[i] == NULL)
   3043 			break;
   3044 		(*dev->dv_activity_handlers[i])(dev, type);
   3045 	}
   3046 
   3047 	return true;
   3048 }
   3049 
   3050 bool
   3051 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3052 {
   3053 	void (**new_handlers)(device_t, devactive_t);
   3054 	void (**old_handlers)(device_t, devactive_t);
   3055 	size_t i, old_size, new_size;
   3056 	int s;
   3057 
   3058 	old_handlers = dev->dv_activity_handlers;
   3059 	old_size = dev->dv_activity_count;
   3060 
   3061 	KASSERT(old_size == 0 || old_handlers != NULL);
   3062 
   3063 	for (i = 0; i < old_size; ++i) {
   3064 		KASSERT(old_handlers[i] != handler);
   3065 		if (old_handlers[i] == NULL) {
   3066 			old_handlers[i] = handler;
   3067 			return true;
   3068 		}
   3069 	}
   3070 
   3071 	new_size = old_size + 4;
   3072 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3073 
   3074 	for (i = 0; i < old_size; ++i)
   3075 		new_handlers[i] = old_handlers[i];
   3076 	new_handlers[old_size] = handler;
   3077 	for (i = old_size+1; i < new_size; ++i)
   3078 		new_handlers[i] = NULL;
   3079 
   3080 	s = splhigh();
   3081 	dev->dv_activity_count = new_size;
   3082 	dev->dv_activity_handlers = new_handlers;
   3083 	splx(s);
   3084 
   3085 	if (old_size > 0)
   3086 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3087 
   3088 	return true;
   3089 }
   3090 
   3091 void
   3092 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3093 {
   3094 	void (**old_handlers)(device_t, devactive_t);
   3095 	size_t i, old_size;
   3096 	int s;
   3097 
   3098 	old_handlers = dev->dv_activity_handlers;
   3099 	old_size = dev->dv_activity_count;
   3100 
   3101 	for (i = 0; i < old_size; ++i) {
   3102 		if (old_handlers[i] == handler)
   3103 			break;
   3104 		if (old_handlers[i] == NULL)
   3105 			return; /* XXX panic? */
   3106 	}
   3107 
   3108 	if (i == old_size)
   3109 		return; /* XXX panic? */
   3110 
   3111 	for (; i < old_size - 1; ++i) {
   3112 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3113 			continue;
   3114 
   3115 		if (i == 0) {
   3116 			s = splhigh();
   3117 			dev->dv_activity_count = 0;
   3118 			dev->dv_activity_handlers = NULL;
   3119 			splx(s);
   3120 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3121 		}
   3122 		return;
   3123 	}
   3124 	old_handlers[i] = NULL;
   3125 }
   3126 
   3127 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3128 static bool
   3129 device_exists_at(device_t dv, devgen_t gen)
   3130 {
   3131 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3132 	    dv->dv_add_gen <= gen;
   3133 }
   3134 
   3135 static bool
   3136 deviter_visits(const deviter_t *di, device_t dv)
   3137 {
   3138 	return device_exists_at(dv, di->di_gen);
   3139 }
   3140 
   3141 /*
   3142  * Device Iteration
   3143  *
   3144  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3145  *     each device_t's in the device tree.
   3146  *
   3147  * deviter_init(di, flags): initialize the device iterator `di'
   3148  *     to "walk" the device tree.  deviter_next(di) will return
   3149  *     the first device_t in the device tree, or NULL if there are
   3150  *     no devices.
   3151  *
   3152  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3153  *     caller intends to modify the device tree by calling
   3154  *     config_detach(9) on devices in the order that the iterator
   3155  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3156  *     nearest the "root" of the device tree to be returned, first;
   3157  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3158  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3159  *     indicating both that deviter_init() should not respect any
   3160  *     locks on the device tree, and that deviter_next(di) may run
   3161  *     in more than one LWP before the walk has finished.
   3162  *
   3163  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3164  *     once.
   3165  *
   3166  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3167  *
   3168  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3169  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3170  *
   3171  * deviter_first(di, flags): initialize the device iterator `di'
   3172  *     and return the first device_t in the device tree, or NULL
   3173  *     if there are no devices.  The statement
   3174  *
   3175  *         dv = deviter_first(di);
   3176  *
   3177  *     is shorthand for
   3178  *
   3179  *         deviter_init(di);
   3180  *         dv = deviter_next(di);
   3181  *
   3182  * deviter_next(di): return the next device_t in the device tree,
   3183  *     or NULL if there are no more devices.  deviter_next(di)
   3184  *     is undefined if `di' was not initialized with deviter_init() or
   3185  *     deviter_first().
   3186  *
   3187  * deviter_release(di): stops iteration (subsequent calls to
   3188  *     deviter_next() will return NULL), releases any locks and
   3189  *     resources held by the device iterator.
   3190  *
   3191  * Device iteration does not return device_t's in any particular
   3192  * order.  An iterator will never return the same device_t twice.
   3193  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3194  * is called repeatedly on the same `di', it will eventually return
   3195  * NULL.  It is ok to attach/detach devices during device iteration.
   3196  */
   3197 void
   3198 deviter_init(deviter_t *di, deviter_flags_t flags)
   3199 {
   3200 	device_t dv;
   3201 
   3202 	memset(di, 0, sizeof(*di));
   3203 
   3204 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3205 		flags |= DEVITER_F_RW;
   3206 
   3207 	mutex_enter(&alldevs_lock);
   3208 	if ((flags & DEVITER_F_RW) != 0)
   3209 		alldevs_nwrite++;
   3210 	else
   3211 		alldevs_nread++;
   3212 	di->di_gen = alldevs_gen++;
   3213 	di->di_flags = flags;
   3214 
   3215 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3216 	case DEVITER_F_LEAVES_FIRST:
   3217 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3218 			if (!deviter_visits(di, dv))
   3219 				continue;
   3220 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3221 		}
   3222 		break;
   3223 	case DEVITER_F_ROOT_FIRST:
   3224 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3225 			if (!deviter_visits(di, dv))
   3226 				continue;
   3227 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3228 		}
   3229 		break;
   3230 	default:
   3231 		break;
   3232 	}
   3233 
   3234 	deviter_reinit(di);
   3235 	mutex_exit(&alldevs_lock);
   3236 }
   3237 
   3238 static void
   3239 deviter_reinit(deviter_t *di)
   3240 {
   3241 
   3242 	KASSERT(mutex_owned(&alldevs_lock));
   3243 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3244 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3245 	else
   3246 		di->di_prev = TAILQ_FIRST(&alldevs);
   3247 }
   3248 
   3249 device_t
   3250 deviter_first(deviter_t *di, deviter_flags_t flags)
   3251 {
   3252 
   3253 	deviter_init(di, flags);
   3254 	return deviter_next(di);
   3255 }
   3256 
   3257 static device_t
   3258 deviter_next2(deviter_t *di)
   3259 {
   3260 	device_t dv;
   3261 
   3262 	KASSERT(mutex_owned(&alldevs_lock));
   3263 
   3264 	dv = di->di_prev;
   3265 
   3266 	if (dv == NULL)
   3267 		return NULL;
   3268 
   3269 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3270 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3271 	else
   3272 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3273 
   3274 	return dv;
   3275 }
   3276 
   3277 static device_t
   3278 deviter_next1(deviter_t *di)
   3279 {
   3280 	device_t dv;
   3281 
   3282 	KASSERT(mutex_owned(&alldevs_lock));
   3283 
   3284 	do {
   3285 		dv = deviter_next2(di);
   3286 	} while (dv != NULL && !deviter_visits(di, dv));
   3287 
   3288 	return dv;
   3289 }
   3290 
   3291 device_t
   3292 deviter_next(deviter_t *di)
   3293 {
   3294 	device_t dv = NULL;
   3295 
   3296 	mutex_enter(&alldevs_lock);
   3297 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3298 	case 0:
   3299 		dv = deviter_next1(di);
   3300 		break;
   3301 	case DEVITER_F_LEAVES_FIRST:
   3302 		while (di->di_curdepth >= 0) {
   3303 			if ((dv = deviter_next1(di)) == NULL) {
   3304 				di->di_curdepth--;
   3305 				deviter_reinit(di);
   3306 			} else if (dv->dv_depth == di->di_curdepth)
   3307 				break;
   3308 		}
   3309 		break;
   3310 	case DEVITER_F_ROOT_FIRST:
   3311 		while (di->di_curdepth <= di->di_maxdepth) {
   3312 			if ((dv = deviter_next1(di)) == NULL) {
   3313 				di->di_curdepth++;
   3314 				deviter_reinit(di);
   3315 			} else if (dv->dv_depth == di->di_curdepth)
   3316 				break;
   3317 		}
   3318 		break;
   3319 	default:
   3320 		break;
   3321 	}
   3322 	mutex_exit(&alldevs_lock);
   3323 
   3324 	return dv;
   3325 }
   3326 
   3327 void
   3328 deviter_release(deviter_t *di)
   3329 {
   3330 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3331 
   3332 	mutex_enter(&alldevs_lock);
   3333 	if (rw)
   3334 		--alldevs_nwrite;
   3335 	else
   3336 		--alldevs_nread;
   3337 	/* XXX wake a garbage-collection thread */
   3338 	mutex_exit(&alldevs_lock);
   3339 }
   3340 
   3341 const char *
   3342 cfdata_ifattr(const struct cfdata *cf)
   3343 {
   3344 	return cf->cf_pspec->cfp_iattr;
   3345 }
   3346 
   3347 bool
   3348 ifattr_match(const char *snull, const char *t)
   3349 {
   3350 	return (snull == NULL) || strcmp(snull, t) == 0;
   3351 }
   3352 
   3353 void
   3354 null_childdetached(device_t self, device_t child)
   3355 {
   3356 	/* do nothing */
   3357 }
   3358 
   3359 static void
   3360 sysctl_detach_setup(struct sysctllog **clog)
   3361 {
   3362 
   3363 	sysctl_createv(clog, 0, NULL, NULL,
   3364 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3365 		CTLTYPE_BOOL, "detachall",
   3366 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3367 		NULL, 0, &detachall, 0,
   3368 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3369 }
   3370