subr_autoconf.c revision 1.277.2.2 1 /* $NetBSD: subr_autoconf.c,v 1.277.2.2 2021/03/21 17:58:40 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.2 2021/03/21 17:58:40 thorpej Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 static krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 static struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 static struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 static int interrupt_config_threads = 8;
201 static struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 static int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
222 static kmutex_t alldevs_lock __cacheline_aligned;
223 static devgen_t alldevs_gen = 1;
224 static int alldevs_nread = 0;
225 static int alldevs_nwrite = 0;
226 static bool alldevs_garbage = false;
227
228 static struct devicelist config_pending =
229 TAILQ_HEAD_INITIALIZER(config_pending);
230 static kmutex_t config_misc_lock;
231 static kcondvar_t config_misc_cv;
232
233 static bool detachall = false;
234
235 #define STREQ(s1, s2) \
236 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
237
238 static bool config_initialized = false; /* config_init() has been called. */
239
240 static int config_do_twiddle;
241 static callout_t config_twiddle_ch;
242
243 static void sysctl_detach_setup(struct sysctllog **);
244
245 int no_devmon_insert(const char *, prop_dictionary_t);
246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
247
248 typedef int (*cfdriver_fn)(struct cfdriver *);
249 static int
250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
251 cfdriver_fn drv_do, cfdriver_fn drv_undo,
252 const char *style, bool dopanic)
253 {
254 void (*pr)(const char *, ...) __printflike(1, 2) =
255 dopanic ? panic : printf;
256 int i, error = 0, e2 __diagused;
257
258 for (i = 0; cfdriverv[i] != NULL; i++) {
259 if ((error = drv_do(cfdriverv[i])) != 0) {
260 pr("configure: `%s' driver %s failed: %d",
261 cfdriverv[i]->cd_name, style, error);
262 goto bad;
263 }
264 }
265
266 KASSERT(error == 0);
267 return 0;
268
269 bad:
270 printf("\n");
271 for (i--; i >= 0; i--) {
272 e2 = drv_undo(cfdriverv[i]);
273 KASSERT(e2 == 0);
274 }
275
276 return error;
277 }
278
279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
280 static int
281 frob_cfattachvec(const struct cfattachinit *cfattachv,
282 cfattach_fn att_do, cfattach_fn att_undo,
283 const char *style, bool dopanic)
284 {
285 const struct cfattachinit *cfai = NULL;
286 void (*pr)(const char *, ...) __printflike(1, 2) =
287 dopanic ? panic : printf;
288 int j = 0, error = 0, e2 __diagused;
289
290 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
291 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
292 if ((error = att_do(cfai->cfai_name,
293 cfai->cfai_list[j])) != 0) {
294 pr("configure: attachment `%s' "
295 "of `%s' driver %s failed: %d",
296 cfai->cfai_list[j]->ca_name,
297 cfai->cfai_name, style, error);
298 goto bad;
299 }
300 }
301 }
302
303 KASSERT(error == 0);
304 return 0;
305
306 bad:
307 /*
308 * Rollback in reverse order. dunno if super-important, but
309 * do that anyway. Although the code looks a little like
310 * someone did a little integration (in the math sense).
311 */
312 printf("\n");
313 if (cfai) {
314 bool last;
315
316 for (last = false; last == false; ) {
317 if (cfai == &cfattachv[0])
318 last = true;
319 for (j--; j >= 0; j--) {
320 e2 = att_undo(cfai->cfai_name,
321 cfai->cfai_list[j]);
322 KASSERT(e2 == 0);
323 }
324 if (!last) {
325 cfai--;
326 for (j = 0; cfai->cfai_list[j] != NULL; j++)
327 ;
328 }
329 }
330 }
331
332 return error;
333 }
334
335 /*
336 * Initialize the autoconfiguration data structures. Normally this
337 * is done by configure(), but some platforms need to do this very
338 * early (to e.g. initialize the console).
339 */
340 void
341 config_init(void)
342 {
343
344 KASSERT(config_initialized == false);
345
346 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
347
348 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
349 cv_init(&config_misc_cv, "cfgmisc");
350
351 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
352
353 frob_cfdrivervec(cfdriver_list_initial,
354 config_cfdriver_attach, NULL, "bootstrap", true);
355 frob_cfattachvec(cfattachinit,
356 config_cfattach_attach, NULL, "bootstrap", true);
357
358 initcftable.ct_cfdata = cfdata;
359 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
360
361 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
362 RND_FLAG_COLLECT_TIME);
363
364 config_initialized = true;
365 }
366
367 /*
368 * Init or fini drivers and attachments. Either all or none
369 * are processed (via rollback). It would be nice if this were
370 * atomic to outside consumers, but with the current state of
371 * locking ...
372 */
373 int
374 config_init_component(struct cfdriver * const *cfdriverv,
375 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
376 {
377 int error;
378
379 if ((error = frob_cfdrivervec(cfdriverv,
380 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
381 return error;
382 if ((error = frob_cfattachvec(cfattachv,
383 config_cfattach_attach, config_cfattach_detach,
384 "init", false)) != 0) {
385 frob_cfdrivervec(cfdriverv,
386 config_cfdriver_detach, NULL, "init rollback", true);
387 return error;
388 }
389 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
390 frob_cfattachvec(cfattachv,
391 config_cfattach_detach, NULL, "init rollback", true);
392 frob_cfdrivervec(cfdriverv,
393 config_cfdriver_detach, NULL, "init rollback", true);
394 return error;
395 }
396
397 return 0;
398 }
399
400 int
401 config_fini_component(struct cfdriver * const *cfdriverv,
402 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
403 {
404 int error;
405
406 if ((error = config_cfdata_detach(cfdatav)) != 0)
407 return error;
408 if ((error = frob_cfattachvec(cfattachv,
409 config_cfattach_detach, config_cfattach_attach,
410 "fini", false)) != 0) {
411 if (config_cfdata_attach(cfdatav, 0) != 0)
412 panic("config_cfdata fini rollback failed");
413 return error;
414 }
415 if ((error = frob_cfdrivervec(cfdriverv,
416 config_cfdriver_detach, config_cfdriver_attach,
417 "fini", false)) != 0) {
418 frob_cfattachvec(cfattachv,
419 config_cfattach_attach, NULL, "fini rollback", true);
420 if (config_cfdata_attach(cfdatav, 0) != 0)
421 panic("config_cfdata fini rollback failed");
422 return error;
423 }
424
425 return 0;
426 }
427
428 void
429 config_init_mi(void)
430 {
431
432 if (!config_initialized)
433 config_init();
434
435 sysctl_detach_setup(NULL);
436 }
437
438 void
439 config_deferred(device_t dev)
440 {
441 config_process_deferred(&deferred_config_queue, dev);
442 config_process_deferred(&interrupt_config_queue, dev);
443 config_process_deferred(&mountroot_config_queue, dev);
444 }
445
446 static void
447 config_interrupts_thread(void *cookie)
448 {
449 struct deferred_config *dc;
450 device_t dev;
451
452 mutex_enter(&config_misc_lock);
453 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
454 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
455 mutex_exit(&config_misc_lock);
456
457 dev = dc->dc_dev;
458 (*dc->dc_func)(dev);
459 if (!device_pmf_is_registered(dev))
460 aprint_debug_dev(dev,
461 "WARNING: power management not supported\n");
462 config_pending_decr(dev);
463 kmem_free(dc, sizeof(*dc));
464
465 mutex_enter(&config_misc_lock);
466 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
467 }
468 mutex_exit(&config_misc_lock);
469
470 kthread_exit(0);
471 }
472
473 void
474 config_create_interruptthreads(void)
475 {
476 int i;
477
478 for (i = 0; i < interrupt_config_threads; i++) {
479 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
480 config_interrupts_thread, NULL, NULL, "configintr");
481 }
482 }
483
484 static void
485 config_mountroot_thread(void *cookie)
486 {
487 struct deferred_config *dc;
488
489 mutex_enter(&config_misc_lock);
490 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
491 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
492 mutex_exit(&config_misc_lock);
493
494 (*dc->dc_func)(dc->dc_dev);
495 kmem_free(dc, sizeof(*dc));
496
497 mutex_enter(&config_misc_lock);
498 }
499 mutex_exit(&config_misc_lock);
500
501 kthread_exit(0);
502 }
503
504 void
505 config_create_mountrootthreads(void)
506 {
507 int i;
508
509 if (!root_is_mounted)
510 root_is_mounted = true;
511
512 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
513 mountroot_config_threads;
514 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
515 KM_NOSLEEP);
516 KASSERT(mountroot_config_lwpids);
517 for (i = 0; i < mountroot_config_threads; i++) {
518 mountroot_config_lwpids[i] = 0;
519 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
520 NULL, config_mountroot_thread, NULL,
521 &mountroot_config_lwpids[i],
522 "configroot");
523 }
524 }
525
526 void
527 config_finalize_mountroot(void)
528 {
529 int i, error;
530
531 for (i = 0; i < mountroot_config_threads; i++) {
532 if (mountroot_config_lwpids[i] == 0)
533 continue;
534
535 error = kthread_join(mountroot_config_lwpids[i]);
536 if (error)
537 printf("%s: thread %x joined with error %d\n",
538 __func__, i, error);
539 }
540 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
541 }
542
543 /*
544 * Announce device attach/detach to userland listeners.
545 */
546
547 int
548 no_devmon_insert(const char *name, prop_dictionary_t p)
549 {
550
551 return ENODEV;
552 }
553
554 static void
555 devmon_report_device(device_t dev, bool isattach)
556 {
557 prop_dictionary_t ev, dict = device_properties(dev);
558 const char *parent;
559 const char *what;
560 const char *where;
561 device_t pdev = device_parent(dev);
562
563 /* If currently no drvctl device, just return */
564 if (devmon_insert_vec == no_devmon_insert)
565 return;
566
567 ev = prop_dictionary_create();
568 if (ev == NULL)
569 return;
570
571 what = (isattach ? "device-attach" : "device-detach");
572 parent = (pdev == NULL ? "root" : device_xname(pdev));
573 if (prop_dictionary_get_string(dict, "location", &where)) {
574 prop_dictionary_set_string(ev, "location", where);
575 aprint_debug("ev: %s %s at %s in [%s]\n",
576 what, device_xname(dev), parent, where);
577 }
578 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
579 !prop_dictionary_set_string(ev, "parent", parent)) {
580 prop_object_release(ev);
581 return;
582 }
583
584 if ((*devmon_insert_vec)(what, ev) != 0)
585 prop_object_release(ev);
586 }
587
588 /*
589 * Add a cfdriver to the system.
590 */
591 int
592 config_cfdriver_attach(struct cfdriver *cd)
593 {
594 struct cfdriver *lcd;
595
596 /* Make sure this driver isn't already in the system. */
597 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
598 if (STREQ(lcd->cd_name, cd->cd_name))
599 return EEXIST;
600 }
601
602 LIST_INIT(&cd->cd_attach);
603 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
604
605 return 0;
606 }
607
608 /*
609 * Remove a cfdriver from the system.
610 */
611 int
612 config_cfdriver_detach(struct cfdriver *cd)
613 {
614 struct alldevs_foray af;
615 int i, rc = 0;
616
617 config_alldevs_enter(&af);
618 /* Make sure there are no active instances. */
619 for (i = 0; i < cd->cd_ndevs; i++) {
620 if (cd->cd_devs[i] != NULL) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 /* ...and no attachments loaded. */
631 if (LIST_EMPTY(&cd->cd_attach) == 0)
632 return EBUSY;
633
634 LIST_REMOVE(cd, cd_list);
635
636 KASSERT(cd->cd_devs == NULL);
637
638 return 0;
639 }
640
641 /*
642 * Look up a cfdriver by name.
643 */
644 struct cfdriver *
645 config_cfdriver_lookup(const char *name)
646 {
647 struct cfdriver *cd;
648
649 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
650 if (STREQ(cd->cd_name, name))
651 return cd;
652 }
653
654 return NULL;
655 }
656
657 /*
658 * Add a cfattach to the specified driver.
659 */
660 int
661 config_cfattach_attach(const char *driver, struct cfattach *ca)
662 {
663 struct cfattach *lca;
664 struct cfdriver *cd;
665
666 cd = config_cfdriver_lookup(driver);
667 if (cd == NULL)
668 return ESRCH;
669
670 /* Make sure this attachment isn't already on this driver. */
671 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
672 if (STREQ(lca->ca_name, ca->ca_name))
673 return EEXIST;
674 }
675
676 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
677
678 return 0;
679 }
680
681 /*
682 * Remove a cfattach from the specified driver.
683 */
684 int
685 config_cfattach_detach(const char *driver, struct cfattach *ca)
686 {
687 struct alldevs_foray af;
688 struct cfdriver *cd;
689 device_t dev;
690 int i, rc = 0;
691
692 cd = config_cfdriver_lookup(driver);
693 if (cd == NULL)
694 return ESRCH;
695
696 config_alldevs_enter(&af);
697 /* Make sure there are no active instances. */
698 for (i = 0; i < cd->cd_ndevs; i++) {
699 if ((dev = cd->cd_devs[i]) == NULL)
700 continue;
701 if (dev->dv_cfattach == ca) {
702 rc = EBUSY;
703 break;
704 }
705 }
706 config_alldevs_exit(&af);
707
708 if (rc != 0)
709 return rc;
710
711 LIST_REMOVE(ca, ca_list);
712
713 return 0;
714 }
715
716 /*
717 * Look up a cfattach by name.
718 */
719 static struct cfattach *
720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
721 {
722 struct cfattach *ca;
723
724 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
725 if (STREQ(ca->ca_name, atname))
726 return ca;
727 }
728
729 return NULL;
730 }
731
732 /*
733 * Look up a cfattach by driver/attachment name.
734 */
735 struct cfattach *
736 config_cfattach_lookup(const char *name, const char *atname)
737 {
738 struct cfdriver *cd;
739
740 cd = config_cfdriver_lookup(name);
741 if (cd == NULL)
742 return NULL;
743
744 return config_cfattach_lookup_cd(cd, atname);
745 }
746
747 /*
748 * Apply the matching function and choose the best. This is used
749 * a few times and we want to keep the code small.
750 */
751 static void
752 mapply(struct matchinfo *m, cfdata_t cf)
753 {
754 int pri;
755
756 if (m->fn != NULL) {
757 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
758 } else {
759 pri = config_match(m->parent, cf, m->aux);
760 }
761 if (pri > m->pri) {
762 m->match = cf;
763 m->pri = pri;
764 }
765 }
766
767 int
768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
769 {
770 const struct cfiattrdata *ci;
771 const struct cflocdesc *cl;
772 int nlocs, i;
773
774 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
775 KASSERT(ci);
776 nlocs = ci->ci_loclen;
777 KASSERT(!nlocs || locs);
778 for (i = 0; i < nlocs; i++) {
779 cl = &ci->ci_locdesc[i];
780 if (cl->cld_defaultstr != NULL &&
781 cf->cf_loc[i] == cl->cld_default)
782 continue;
783 if (cf->cf_loc[i] == locs[i])
784 continue;
785 return 0;
786 }
787
788 return config_match(parent, cf, aux);
789 }
790
791 /*
792 * Helper function: check whether the driver supports the interface attribute
793 * and return its descriptor structure.
794 */
795 static const struct cfiattrdata *
796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
797 {
798 const struct cfiattrdata * const *cpp;
799
800 if (cd->cd_attrs == NULL)
801 return 0;
802
803 for (cpp = cd->cd_attrs; *cpp; cpp++) {
804 if (STREQ((*cpp)->ci_name, ia)) {
805 /* Match. */
806 return *cpp;
807 }
808 }
809 return 0;
810 }
811
812 #if defined(DIAGNOSTIC)
813 static int
814 cfdriver_iattr_count(const struct cfdriver *cd)
815 {
816 const struct cfiattrdata * const *cpp;
817 int i;
818
819 if (cd->cd_attrs == NULL)
820 return 0;
821
822 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
823 i++;
824 }
825 return i;
826 }
827 #endif /* DIAGNOSTIC */
828
829 /*
830 * Lookup an interface attribute description by name.
831 * If the driver is given, consider only its supported attributes.
832 */
833 const struct cfiattrdata *
834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
835 {
836 const struct cfdriver *d;
837 const struct cfiattrdata *ia;
838
839 if (cd)
840 return cfdriver_get_iattr(cd, name);
841
842 LIST_FOREACH(d, &allcfdrivers, cd_list) {
843 ia = cfdriver_get_iattr(d, name);
844 if (ia)
845 return ia;
846 }
847 return 0;
848 }
849
850 /*
851 * Determine if `parent' is a potential parent for a device spec based
852 * on `cfp'.
853 */
854 static int
855 cfparent_match(const device_t parent, const struct cfparent *cfp)
856 {
857 struct cfdriver *pcd;
858
859 /* We don't match root nodes here. */
860 if (cfp == NULL)
861 return 0;
862
863 pcd = parent->dv_cfdriver;
864 KASSERT(pcd != NULL);
865
866 /*
867 * First, ensure this parent has the correct interface
868 * attribute.
869 */
870 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
871 return 0;
872
873 /*
874 * If no specific parent device instance was specified (i.e.
875 * we're attaching to the attribute only), we're done!
876 */
877 if (cfp->cfp_parent == NULL)
878 return 1;
879
880 /*
881 * Check the parent device's name.
882 */
883 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
884 return 0; /* not the same parent */
885
886 /*
887 * Make sure the unit number matches.
888 */
889 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
890 cfp->cfp_unit == parent->dv_unit)
891 return 1;
892
893 /* Unit numbers don't match. */
894 return 0;
895 }
896
897 /*
898 * Helper for config_cfdata_attach(): check all devices whether it could be
899 * parent any attachment in the config data table passed, and rescan.
900 */
901 static void
902 rescan_with_cfdata(const struct cfdata *cf)
903 {
904 device_t d;
905 const struct cfdata *cf1;
906 deviter_t di;
907
908
909 /*
910 * "alldevs" is likely longer than a modules's cfdata, so make it
911 * the outer loop.
912 */
913 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
914
915 if (!(d->dv_cfattach->ca_rescan))
916 continue;
917
918 for (cf1 = cf; cf1->cf_name; cf1++) {
919
920 if (!cfparent_match(d, cf1->cf_pspec))
921 continue;
922
923 (*d->dv_cfattach->ca_rescan)(d,
924 cfdata_ifattr(cf1), cf1->cf_loc);
925
926 config_deferred(d);
927 }
928 }
929 deviter_release(&di);
930 }
931
932 /*
933 * Attach a supplemental config data table and rescan potential
934 * parent devices if required.
935 */
936 int
937 config_cfdata_attach(cfdata_t cf, int scannow)
938 {
939 struct cftable *ct;
940
941 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
942 ct->ct_cfdata = cf;
943 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
944
945 if (scannow)
946 rescan_with_cfdata(cf);
947
948 return 0;
949 }
950
951 /*
952 * Helper for config_cfdata_detach: check whether a device is
953 * found through any attachment in the config data table.
954 */
955 static int
956 dev_in_cfdata(device_t d, cfdata_t cf)
957 {
958 const struct cfdata *cf1;
959
960 for (cf1 = cf; cf1->cf_name; cf1++)
961 if (d->dv_cfdata == cf1)
962 return 1;
963
964 return 0;
965 }
966
967 /*
968 * Detach a supplemental config data table. Detach all devices found
969 * through that table (and thus keeping references to it) before.
970 */
971 int
972 config_cfdata_detach(cfdata_t cf)
973 {
974 device_t d;
975 int error = 0;
976 struct cftable *ct;
977 deviter_t di;
978
979 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
980 d = deviter_next(&di)) {
981 if (!dev_in_cfdata(d, cf))
982 continue;
983 if ((error = config_detach(d, 0)) != 0)
984 break;
985 }
986 deviter_release(&di);
987 if (error) {
988 aprint_error_dev(d, "unable to detach instance\n");
989 return error;
990 }
991
992 TAILQ_FOREACH(ct, &allcftables, ct_list) {
993 if (ct->ct_cfdata == cf) {
994 TAILQ_REMOVE(&allcftables, ct, ct_list);
995 kmem_free(ct, sizeof(*ct));
996 return 0;
997 }
998 }
999
1000 /* not found -- shouldn't happen */
1001 return EINVAL;
1002 }
1003
1004 /*
1005 * Invoke the "match" routine for a cfdata entry on behalf of
1006 * an external caller, usually a "submatch" routine.
1007 */
1008 int
1009 config_match(device_t parent, cfdata_t cf, void *aux)
1010 {
1011 struct cfattach *ca;
1012
1013 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1014 if (ca == NULL) {
1015 /* No attachment for this entry, oh well. */
1016 return 0;
1017 }
1018
1019 return (*ca->ca_match)(parent, cf, aux);
1020 }
1021
1022 static void
1023 config_get_cfargs(cfarg_t tag,
1024 cfsubmatch_t *fnp, /* output */
1025 const char **ifattrp, /* output */
1026 const int **locsp, /* output */
1027 va_list ap)
1028 {
1029 cfsubmatch_t fn = NULL;
1030 const char *ifattr = NULL;
1031 const int *locs = NULL;
1032
1033 while (tag != CFARG_EOL) {
1034 switch (tag) {
1035 case CFARG_SUBMATCH:
1036 fn = va_arg(ap, cfsubmatch_t);
1037 break;
1038
1039 case CFARG_IATTR:
1040 ifattr = va_arg(ap, const char *);
1041 break;
1042
1043 case CFARG_LOCATORS:
1044 locs = va_arg(ap, const int *);
1045 break;
1046
1047 default:
1048 /* XXX panic? */
1049 /* XXX dump stack backtrace? */
1050 aprint_error("%s: unknown cfarg tag: %d\n",
1051 __func__, tag);
1052 goto out;
1053 }
1054 tag = va_arg(ap, cfarg_t);
1055 }
1056
1057 out:
1058 if (fnp != NULL)
1059 *fnp = fn;
1060 if (ifattrp != NULL)
1061 *ifattrp = ifattr;
1062 if (locsp != NULL)
1063 *locsp = locs;
1064 }
1065
1066 /*
1067 * Iterate over all potential children of some device, calling the given
1068 * function (default being the child's match function) for each one.
1069 * Nonzero returns are matches; the highest value returned is considered
1070 * the best match. Return the `found child' if we got a match, or NULL
1071 * otherwise. The `aux' pointer is simply passed on through.
1072 *
1073 * Note that this function is designed so that it can be used to apply
1074 * an arbitrary function to all potential children (its return value
1075 * can be ignored).
1076 */
1077 static cfdata_t
1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1079 {
1080 cfsubmatch_t fn;
1081 const char *ifattr;
1082 const int *locs;
1083 struct cftable *ct;
1084 cfdata_t cf;
1085 struct matchinfo m;
1086
1087 config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
1088
1089 KASSERT(config_initialized);
1090 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1091 KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1092
1093 m.fn = fn;
1094 m.parent = parent;
1095 m.locs = locs;
1096 m.aux = aux;
1097 m.match = NULL;
1098 m.pri = 0;
1099
1100 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1101 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1102
1103 /* We don't match root nodes here. */
1104 if (!cf->cf_pspec)
1105 continue;
1106
1107 /*
1108 * Skip cf if no longer eligible, otherwise scan
1109 * through parents for one matching `parent', and
1110 * try match function.
1111 */
1112 if (cf->cf_fstate == FSTATE_FOUND)
1113 continue;
1114 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1115 cf->cf_fstate == FSTATE_DSTAR)
1116 continue;
1117
1118 /*
1119 * If an interface attribute was specified,
1120 * consider only children which attach to
1121 * that attribute.
1122 */
1123 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1124 continue;
1125
1126 if (cfparent_match(parent, cf->cf_pspec))
1127 mapply(&m, cf);
1128 }
1129 }
1130 return m.match;
1131 }
1132
1133 cfdata_t
1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1135 {
1136 cfdata_t cf;
1137 va_list ap;
1138
1139 va_start(ap, tag);
1140 cf = config_vsearch(parent, aux, tag, ap);
1141 va_end(ap);
1142
1143 return cf;
1144 }
1145
1146 /*
1147 * Find the given root device.
1148 * This is much like config_search, but there is no parent.
1149 * Don't bother with multiple cfdata tables; the root node
1150 * must always be in the initial table.
1151 */
1152 cfdata_t
1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1154 {
1155 cfdata_t cf;
1156 const short *p;
1157 struct matchinfo m;
1158
1159 m.fn = fn;
1160 m.parent = ROOT;
1161 m.aux = aux;
1162 m.match = NULL;
1163 m.pri = 0;
1164 m.locs = 0;
1165 /*
1166 * Look at root entries for matching name. We do not bother
1167 * with found-state here since only one root should ever be
1168 * searched (and it must be done first).
1169 */
1170 for (p = cfroots; *p >= 0; p++) {
1171 cf = &cfdata[*p];
1172 if (strcmp(cf->cf_name, rootname) == 0)
1173 mapply(&m, cf);
1174 }
1175 return m.match;
1176 }
1177
1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1179
1180 /*
1181 * The given `aux' argument describes a device that has been found
1182 * on the given parent, but not necessarily configured. Locate the
1183 * configuration data for that device (using the submatch function
1184 * provided, or using candidates' cd_match configuration driver
1185 * functions) and attach it, and return its device_t. If the device was
1186 * not configured, call the given `print' function and return NULL.
1187 */
1188 device_t
1189 config_found_sm_loc(device_t parent,
1190 const char *ifattr, const int *locs, void *aux,
1191 cfprint_t print, cfsubmatch_t submatch)
1192 {
1193 cfdata_t cf;
1194
1195 if ((cf = config_search(parent, aux,
1196 CFARG_SUBMATCH, submatch,
1197 CFARG_IATTR, ifattr,
1198 CFARG_LOCATORS, locs,
1199 CFARG_EOL)))
1200 return(config_attach_loc(parent, cf, locs, aux, print));
1201 if (print) {
1202 if (config_do_twiddle && cold)
1203 twiddle();
1204 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1205 }
1206
1207 /*
1208 * This has the effect of mixing in a single timestamp to the
1209 * entropy pool. Experiments indicate the estimator will almost
1210 * always attribute one bit of entropy to this sample; analysis
1211 * of device attach/detach timestamps on FreeBSD indicates 4
1212 * bits of entropy/sample so this seems appropriately conservative.
1213 */
1214 rnd_add_uint32(&rnd_autoconf_source, 0);
1215 return NULL;
1216 }
1217
1218 device_t
1219 config_found_ia(device_t parent, const char *ifattr, void *aux,
1220 cfprint_t print)
1221 {
1222
1223 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1224 }
1225
1226 device_t
1227 config_found(device_t parent, void *aux, cfprint_t print)
1228 {
1229
1230 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1231 }
1232
1233 /*
1234 * As above, but for root devices.
1235 */
1236 device_t
1237 config_rootfound(const char *rootname, void *aux)
1238 {
1239 cfdata_t cf;
1240
1241 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1242 return config_attach(ROOT, cf, aux, NULL);
1243 aprint_error("root device %s not configured\n", rootname);
1244 return NULL;
1245 }
1246
1247 /* just like sprintf(buf, "%d") except that it works from the end */
1248 static char *
1249 number(char *ep, int n)
1250 {
1251
1252 *--ep = 0;
1253 while (n >= 10) {
1254 *--ep = (n % 10) + '0';
1255 n /= 10;
1256 }
1257 *--ep = n + '0';
1258 return ep;
1259 }
1260
1261 /*
1262 * Expand the size of the cd_devs array if necessary.
1263 *
1264 * The caller must hold alldevs_lock. config_makeroom() may release and
1265 * re-acquire alldevs_lock, so callers should re-check conditions such
1266 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1267 * returns.
1268 */
1269 static void
1270 config_makeroom(int n, struct cfdriver *cd)
1271 {
1272 int ondevs, nndevs;
1273 device_t *osp, *nsp;
1274
1275 KASSERT(mutex_owned(&alldevs_lock));
1276 alldevs_nwrite++;
1277
1278 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1279 ;
1280
1281 while (n >= cd->cd_ndevs) {
1282 /*
1283 * Need to expand the array.
1284 */
1285 ondevs = cd->cd_ndevs;
1286 osp = cd->cd_devs;
1287
1288 /*
1289 * Release alldevs_lock around allocation, which may
1290 * sleep.
1291 */
1292 mutex_exit(&alldevs_lock);
1293 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1294 mutex_enter(&alldevs_lock);
1295
1296 /*
1297 * If another thread moved the array while we did
1298 * not hold alldevs_lock, try again.
1299 */
1300 if (cd->cd_devs != osp) {
1301 mutex_exit(&alldevs_lock);
1302 kmem_free(nsp, sizeof(device_t) * nndevs);
1303 mutex_enter(&alldevs_lock);
1304 continue;
1305 }
1306
1307 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1308 if (ondevs != 0)
1309 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1310
1311 cd->cd_ndevs = nndevs;
1312 cd->cd_devs = nsp;
1313 if (ondevs != 0) {
1314 mutex_exit(&alldevs_lock);
1315 kmem_free(osp, sizeof(device_t) * ondevs);
1316 mutex_enter(&alldevs_lock);
1317 }
1318 }
1319 KASSERT(mutex_owned(&alldevs_lock));
1320 alldevs_nwrite--;
1321 }
1322
1323 /*
1324 * Put dev into the devices list.
1325 */
1326 static void
1327 config_devlink(device_t dev)
1328 {
1329
1330 mutex_enter(&alldevs_lock);
1331
1332 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1333
1334 dev->dv_add_gen = alldevs_gen;
1335 /* It is safe to add a device to the tail of the list while
1336 * readers and writers are in the list.
1337 */
1338 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1339 mutex_exit(&alldevs_lock);
1340 }
1341
1342 static void
1343 config_devfree(device_t dev)
1344 {
1345 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1346
1347 if (dev->dv_cfattach->ca_devsize > 0)
1348 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1349 kmem_free(dev, sizeof(*dev));
1350 }
1351
1352 /*
1353 * Caller must hold alldevs_lock.
1354 */
1355 static void
1356 config_devunlink(device_t dev, struct devicelist *garbage)
1357 {
1358 struct device_garbage *dg = &dev->dv_garbage;
1359 cfdriver_t cd = device_cfdriver(dev);
1360 int i;
1361
1362 KASSERT(mutex_owned(&alldevs_lock));
1363
1364 /* Unlink from device list. Link to garbage list. */
1365 TAILQ_REMOVE(&alldevs, dev, dv_list);
1366 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1367
1368 /* Remove from cfdriver's array. */
1369 cd->cd_devs[dev->dv_unit] = NULL;
1370
1371 /*
1372 * If the device now has no units in use, unlink its softc array.
1373 */
1374 for (i = 0; i < cd->cd_ndevs; i++) {
1375 if (cd->cd_devs[i] != NULL)
1376 break;
1377 }
1378 /* Nothing found. Unlink, now. Deallocate, later. */
1379 if (i == cd->cd_ndevs) {
1380 dg->dg_ndevs = cd->cd_ndevs;
1381 dg->dg_devs = cd->cd_devs;
1382 cd->cd_devs = NULL;
1383 cd->cd_ndevs = 0;
1384 }
1385 }
1386
1387 static void
1388 config_devdelete(device_t dev)
1389 {
1390 struct device_garbage *dg = &dev->dv_garbage;
1391 device_lock_t dvl = device_getlock(dev);
1392
1393 if (dg->dg_devs != NULL)
1394 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1395
1396 cv_destroy(&dvl->dvl_cv);
1397 mutex_destroy(&dvl->dvl_mtx);
1398
1399 KASSERT(dev->dv_properties != NULL);
1400 prop_object_release(dev->dv_properties);
1401
1402 if (dev->dv_activity_handlers)
1403 panic("%s with registered handlers", __func__);
1404
1405 if (dev->dv_locators) {
1406 size_t amount = *--dev->dv_locators;
1407 kmem_free(dev->dv_locators, amount);
1408 }
1409
1410 config_devfree(dev);
1411 }
1412
1413 static int
1414 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1415 {
1416 int unit;
1417
1418 if (cf->cf_fstate == FSTATE_STAR) {
1419 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1420 if (cd->cd_devs[unit] == NULL)
1421 break;
1422 /*
1423 * unit is now the unit of the first NULL device pointer,
1424 * or max(cd->cd_ndevs,cf->cf_unit).
1425 */
1426 } else {
1427 unit = cf->cf_unit;
1428 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1429 unit = -1;
1430 }
1431 return unit;
1432 }
1433
1434 static int
1435 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1436 {
1437 struct alldevs_foray af;
1438 int unit;
1439
1440 config_alldevs_enter(&af);
1441 for (;;) {
1442 unit = config_unit_nextfree(cd, cf);
1443 if (unit == -1)
1444 break;
1445 if (unit < cd->cd_ndevs) {
1446 cd->cd_devs[unit] = dev;
1447 dev->dv_unit = unit;
1448 break;
1449 }
1450 config_makeroom(unit, cd);
1451 }
1452 config_alldevs_exit(&af);
1453
1454 return unit;
1455 }
1456
1457 static device_t
1458 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1459 {
1460 cfdriver_t cd;
1461 cfattach_t ca;
1462 size_t lname, lunit;
1463 const char *xunit;
1464 int myunit;
1465 char num[10];
1466 device_t dev;
1467 void *dev_private;
1468 const struct cfiattrdata *ia;
1469 device_lock_t dvl;
1470
1471 cd = config_cfdriver_lookup(cf->cf_name);
1472 if (cd == NULL)
1473 return NULL;
1474
1475 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1476 if (ca == NULL)
1477 return NULL;
1478
1479 /* get memory for all device vars */
1480 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1481 if (ca->ca_devsize > 0) {
1482 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1483 } else {
1484 dev_private = NULL;
1485 }
1486 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1487
1488 dev->dv_class = cd->cd_class;
1489 dev->dv_cfdata = cf;
1490 dev->dv_cfdriver = cd;
1491 dev->dv_cfattach = ca;
1492 dev->dv_activity_count = 0;
1493 dev->dv_activity_handlers = NULL;
1494 dev->dv_private = dev_private;
1495 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1496
1497 myunit = config_unit_alloc(dev, cd, cf);
1498 if (myunit == -1) {
1499 config_devfree(dev);
1500 return NULL;
1501 }
1502
1503 /* compute length of name and decimal expansion of unit number */
1504 lname = strlen(cd->cd_name);
1505 xunit = number(&num[sizeof(num)], myunit);
1506 lunit = &num[sizeof(num)] - xunit;
1507 if (lname + lunit > sizeof(dev->dv_xname))
1508 panic("config_devalloc: device name too long");
1509
1510 dvl = device_getlock(dev);
1511
1512 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1513 cv_init(&dvl->dvl_cv, "pmfsusp");
1514
1515 memcpy(dev->dv_xname, cd->cd_name, lname);
1516 memcpy(dev->dv_xname + lname, xunit, lunit);
1517 dev->dv_parent = parent;
1518 if (parent != NULL)
1519 dev->dv_depth = parent->dv_depth + 1;
1520 else
1521 dev->dv_depth = 0;
1522 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1523 if (locs) {
1524 KASSERT(parent); /* no locators at root */
1525 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1526 dev->dv_locators =
1527 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1528 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1529 memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1530 }
1531 dev->dv_properties = prop_dictionary_create();
1532 KASSERT(dev->dv_properties != NULL);
1533
1534 prop_dictionary_set_string_nocopy(dev->dv_properties,
1535 "device-driver", dev->dv_cfdriver->cd_name);
1536 prop_dictionary_set_uint16(dev->dv_properties,
1537 "device-unit", dev->dv_unit);
1538 if (parent != NULL) {
1539 prop_dictionary_set_string(dev->dv_properties,
1540 "device-parent", device_xname(parent));
1541 }
1542
1543 if (dev->dv_cfdriver->cd_attrs != NULL)
1544 config_add_attrib_dict(dev);
1545
1546 return dev;
1547 }
1548
1549 /*
1550 * Create an array of device attach attributes and add it
1551 * to the device's dv_properties dictionary.
1552 *
1553 * <key>interface-attributes</key>
1554 * <array>
1555 * <dict>
1556 * <key>attribute-name</key>
1557 * <string>foo</string>
1558 * <key>locators</key>
1559 * <array>
1560 * <dict>
1561 * <key>loc-name</key>
1562 * <string>foo-loc1</string>
1563 * </dict>
1564 * <dict>
1565 * <key>loc-name</key>
1566 * <string>foo-loc2</string>
1567 * <key>default</key>
1568 * <string>foo-loc2-default</string>
1569 * </dict>
1570 * ...
1571 * </array>
1572 * </dict>
1573 * ...
1574 * </array>
1575 */
1576
1577 static void
1578 config_add_attrib_dict(device_t dev)
1579 {
1580 int i, j;
1581 const struct cfiattrdata *ci;
1582 prop_dictionary_t attr_dict, loc_dict;
1583 prop_array_t attr_array, loc_array;
1584
1585 if ((attr_array = prop_array_create()) == NULL)
1586 return;
1587
1588 for (i = 0; ; i++) {
1589 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1590 break;
1591 if ((attr_dict = prop_dictionary_create()) == NULL)
1592 break;
1593 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1594 ci->ci_name);
1595
1596 /* Create an array of the locator names and defaults */
1597
1598 if (ci->ci_loclen != 0 &&
1599 (loc_array = prop_array_create()) != NULL) {
1600 for (j = 0; j < ci->ci_loclen; j++) {
1601 loc_dict = prop_dictionary_create();
1602 if (loc_dict == NULL)
1603 continue;
1604 prop_dictionary_set_string_nocopy(loc_dict,
1605 "loc-name", ci->ci_locdesc[j].cld_name);
1606 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1607 prop_dictionary_set_string_nocopy(
1608 loc_dict, "default",
1609 ci->ci_locdesc[j].cld_defaultstr);
1610 prop_array_set(loc_array, j, loc_dict);
1611 prop_object_release(loc_dict);
1612 }
1613 prop_dictionary_set_and_rel(attr_dict, "locators",
1614 loc_array);
1615 }
1616 prop_array_add(attr_array, attr_dict);
1617 prop_object_release(attr_dict);
1618 }
1619 if (i == 0)
1620 prop_object_release(attr_array);
1621 else
1622 prop_dictionary_set_and_rel(dev->dv_properties,
1623 "interface-attributes", attr_array);
1624
1625 return;
1626 }
1627
1628 /*
1629 * Attach a found device.
1630 */
1631 device_t
1632 config_attach_loc(device_t parent, cfdata_t cf,
1633 const int *locs, void *aux, cfprint_t print)
1634 {
1635 device_t dev;
1636 struct cftable *ct;
1637 const char *drvname;
1638
1639 dev = config_devalloc(parent, cf, locs);
1640 if (!dev)
1641 panic("config_attach: allocation of device softc failed");
1642
1643 /* XXX redundant - see below? */
1644 if (cf->cf_fstate != FSTATE_STAR) {
1645 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1646 cf->cf_fstate = FSTATE_FOUND;
1647 }
1648
1649 config_devlink(dev);
1650
1651 if (config_do_twiddle && cold)
1652 twiddle();
1653 else
1654 aprint_naive("Found ");
1655 /*
1656 * We want the next two printfs for normal, verbose, and quiet,
1657 * but not silent (in which case, we're twiddling, instead).
1658 */
1659 if (parent == ROOT) {
1660 aprint_naive("%s (root)", device_xname(dev));
1661 aprint_normal("%s (root)", device_xname(dev));
1662 } else {
1663 aprint_naive("%s at %s", device_xname(dev),
1664 device_xname(parent));
1665 aprint_normal("%s at %s", device_xname(dev),
1666 device_xname(parent));
1667 if (print)
1668 (void) (*print)(aux, NULL);
1669 }
1670
1671 /*
1672 * Before attaching, clobber any unfound devices that are
1673 * otherwise identical.
1674 * XXX code above is redundant?
1675 */
1676 drvname = dev->dv_cfdriver->cd_name;
1677 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1678 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1679 if (STREQ(cf->cf_name, drvname) &&
1680 cf->cf_unit == dev->dv_unit) {
1681 if (cf->cf_fstate == FSTATE_NOTFOUND)
1682 cf->cf_fstate = FSTATE_FOUND;
1683 }
1684 }
1685 }
1686 device_register(dev, aux);
1687
1688 /* Let userland know */
1689 devmon_report_device(dev, true);
1690
1691 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1692
1693 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1694 && !device_pmf_is_registered(dev))
1695 aprint_debug_dev(dev,
1696 "WARNING: power management not supported\n");
1697
1698 config_process_deferred(&deferred_config_queue, dev);
1699
1700 device_register_post_config(dev, aux);
1701 return dev;
1702 }
1703
1704 device_t
1705 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1706 {
1707
1708 return config_attach_loc(parent, cf, NULL, aux, print);
1709 }
1710
1711 /*
1712 * As above, but for pseudo-devices. Pseudo-devices attached in this
1713 * way are silently inserted into the device tree, and their children
1714 * attached.
1715 *
1716 * Note that because pseudo-devices are attached silently, any information
1717 * the attach routine wishes to print should be prefixed with the device
1718 * name by the attach routine.
1719 */
1720 device_t
1721 config_attach_pseudo(cfdata_t cf)
1722 {
1723 device_t dev;
1724
1725 dev = config_devalloc(ROOT, cf, NULL);
1726 if (!dev)
1727 return NULL;
1728
1729 /* XXX mark busy in cfdata */
1730
1731 if (cf->cf_fstate != FSTATE_STAR) {
1732 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1733 cf->cf_fstate = FSTATE_FOUND;
1734 }
1735
1736 config_devlink(dev);
1737
1738 #if 0 /* XXXJRT not yet */
1739 device_register(dev, NULL); /* like a root node */
1740 #endif
1741
1742 /* Let userland know */
1743 devmon_report_device(dev, true);
1744
1745 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1746
1747 config_process_deferred(&deferred_config_queue, dev);
1748 return dev;
1749 }
1750
1751 /*
1752 * Caller must hold alldevs_lock.
1753 */
1754 static void
1755 config_collect_garbage(struct devicelist *garbage)
1756 {
1757 device_t dv;
1758
1759 KASSERT(!cpu_intr_p());
1760 KASSERT(!cpu_softintr_p());
1761 KASSERT(mutex_owned(&alldevs_lock));
1762
1763 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1764 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1765 if (dv->dv_del_gen != 0)
1766 break;
1767 }
1768 if (dv == NULL) {
1769 alldevs_garbage = false;
1770 break;
1771 }
1772 config_devunlink(dv, garbage);
1773 }
1774 KASSERT(mutex_owned(&alldevs_lock));
1775 }
1776
1777 static void
1778 config_dump_garbage(struct devicelist *garbage)
1779 {
1780 device_t dv;
1781
1782 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1783 TAILQ_REMOVE(garbage, dv, dv_list);
1784 config_devdelete(dv);
1785 }
1786 }
1787
1788 /*
1789 * Detach a device. Optionally forced (e.g. because of hardware
1790 * removal) and quiet. Returns zero if successful, non-zero
1791 * (an error code) otherwise.
1792 *
1793 * Note that this code wants to be run from a process context, so
1794 * that the detach can sleep to allow processes which have a device
1795 * open to run and unwind their stacks.
1796 */
1797 int
1798 config_detach(device_t dev, int flags)
1799 {
1800 struct alldevs_foray af;
1801 struct cftable *ct;
1802 cfdata_t cf;
1803 const struct cfattach *ca;
1804 struct cfdriver *cd;
1805 device_t d __diagused;
1806 int rv = 0;
1807
1808 cf = dev->dv_cfdata;
1809 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1810 cf->cf_fstate == FSTATE_STAR),
1811 "config_detach: %s: bad device fstate: %d",
1812 device_xname(dev), cf ? cf->cf_fstate : -1);
1813
1814 cd = dev->dv_cfdriver;
1815 KASSERT(cd != NULL);
1816
1817 ca = dev->dv_cfattach;
1818 KASSERT(ca != NULL);
1819
1820 mutex_enter(&alldevs_lock);
1821 if (dev->dv_del_gen != 0) {
1822 mutex_exit(&alldevs_lock);
1823 #ifdef DIAGNOSTIC
1824 printf("%s: %s is already detached\n", __func__,
1825 device_xname(dev));
1826 #endif /* DIAGNOSTIC */
1827 return ENOENT;
1828 }
1829 alldevs_nwrite++;
1830 mutex_exit(&alldevs_lock);
1831
1832 if (!detachall &&
1833 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1834 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1835 rv = EOPNOTSUPP;
1836 } else if (ca->ca_detach != NULL) {
1837 rv = (*ca->ca_detach)(dev, flags);
1838 } else
1839 rv = EOPNOTSUPP;
1840
1841 /*
1842 * If it was not possible to detach the device, then we either
1843 * panic() (for the forced but failed case), or return an error.
1844 *
1845 * If it was possible to detach the device, ensure that the
1846 * device is deactivated.
1847 */
1848 if (rv == 0)
1849 dev->dv_flags &= ~DVF_ACTIVE;
1850 else if ((flags & DETACH_FORCE) == 0)
1851 goto out;
1852 else {
1853 panic("config_detach: forced detach of %s failed (%d)",
1854 device_xname(dev), rv);
1855 }
1856
1857 /*
1858 * The device has now been successfully detached.
1859 */
1860
1861 /* Let userland know */
1862 devmon_report_device(dev, false);
1863
1864 #ifdef DIAGNOSTIC
1865 /*
1866 * Sanity: If you're successfully detached, you should have no
1867 * children. (Note that because children must be attached
1868 * after parents, we only need to search the latter part of
1869 * the list.)
1870 */
1871 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1872 d = TAILQ_NEXT(d, dv_list)) {
1873 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1874 printf("config_detach: detached device %s"
1875 " has children %s\n", device_xname(dev),
1876 device_xname(d));
1877 panic("config_detach");
1878 }
1879 }
1880 #endif
1881
1882 /* notify the parent that the child is gone */
1883 if (dev->dv_parent) {
1884 device_t p = dev->dv_parent;
1885 if (p->dv_cfattach->ca_childdetached)
1886 (*p->dv_cfattach->ca_childdetached)(p, dev);
1887 }
1888
1889 /*
1890 * Mark cfdata to show that the unit can be reused, if possible.
1891 */
1892 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1893 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1894 if (STREQ(cf->cf_name, cd->cd_name)) {
1895 if (cf->cf_fstate == FSTATE_FOUND &&
1896 cf->cf_unit == dev->dv_unit)
1897 cf->cf_fstate = FSTATE_NOTFOUND;
1898 }
1899 }
1900 }
1901
1902 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1903 aprint_normal_dev(dev, "detached\n");
1904
1905 out:
1906 config_alldevs_enter(&af);
1907 KASSERT(alldevs_nwrite != 0);
1908 --alldevs_nwrite;
1909 if (rv == 0 && dev->dv_del_gen == 0) {
1910 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1911 config_devunlink(dev, &af.af_garbage);
1912 else {
1913 dev->dv_del_gen = alldevs_gen;
1914 alldevs_garbage = true;
1915 }
1916 }
1917 config_alldevs_exit(&af);
1918
1919 return rv;
1920 }
1921
1922 int
1923 config_detach_children(device_t parent, int flags)
1924 {
1925 device_t dv;
1926 deviter_t di;
1927 int error = 0;
1928
1929 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1930 dv = deviter_next(&di)) {
1931 if (device_parent(dv) != parent)
1932 continue;
1933 if ((error = config_detach(dv, flags)) != 0)
1934 break;
1935 }
1936 deviter_release(&di);
1937 return error;
1938 }
1939
1940 device_t
1941 shutdown_first(struct shutdown_state *s)
1942 {
1943 if (!s->initialized) {
1944 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1945 s->initialized = true;
1946 }
1947 return shutdown_next(s);
1948 }
1949
1950 device_t
1951 shutdown_next(struct shutdown_state *s)
1952 {
1953 device_t dv;
1954
1955 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1956 ;
1957
1958 if (dv == NULL)
1959 s->initialized = false;
1960
1961 return dv;
1962 }
1963
1964 bool
1965 config_detach_all(int how)
1966 {
1967 static struct shutdown_state s;
1968 device_t curdev;
1969 bool progress = false;
1970 int flags;
1971
1972 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1973 return false;
1974
1975 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1976 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1977 else
1978 flags = DETACH_SHUTDOWN;
1979
1980 for (curdev = shutdown_first(&s); curdev != NULL;
1981 curdev = shutdown_next(&s)) {
1982 aprint_debug(" detaching %s, ", device_xname(curdev));
1983 if (config_detach(curdev, flags) == 0) {
1984 progress = true;
1985 aprint_debug("success.");
1986 } else
1987 aprint_debug("failed.");
1988 }
1989 return progress;
1990 }
1991
1992 static bool
1993 device_is_ancestor_of(device_t ancestor, device_t descendant)
1994 {
1995 device_t dv;
1996
1997 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1998 if (device_parent(dv) == ancestor)
1999 return true;
2000 }
2001 return false;
2002 }
2003
2004 int
2005 config_deactivate(device_t dev)
2006 {
2007 deviter_t di;
2008 const struct cfattach *ca;
2009 device_t descendant;
2010 int s, rv = 0, oflags;
2011
2012 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2013 descendant != NULL;
2014 descendant = deviter_next(&di)) {
2015 if (dev != descendant &&
2016 !device_is_ancestor_of(dev, descendant))
2017 continue;
2018
2019 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2020 continue;
2021
2022 ca = descendant->dv_cfattach;
2023 oflags = descendant->dv_flags;
2024
2025 descendant->dv_flags &= ~DVF_ACTIVE;
2026 if (ca->ca_activate == NULL)
2027 continue;
2028 s = splhigh();
2029 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2030 splx(s);
2031 if (rv != 0)
2032 descendant->dv_flags = oflags;
2033 }
2034 deviter_release(&di);
2035 return rv;
2036 }
2037
2038 /*
2039 * Defer the configuration of the specified device until all
2040 * of its parent's devices have been attached.
2041 */
2042 void
2043 config_defer(device_t dev, void (*func)(device_t))
2044 {
2045 struct deferred_config *dc;
2046
2047 if (dev->dv_parent == NULL)
2048 panic("config_defer: can't defer config of a root device");
2049
2050 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2051
2052 config_pending_incr(dev);
2053
2054 mutex_enter(&config_misc_lock);
2055 #ifdef DIAGNOSTIC
2056 struct deferred_config *odc;
2057 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2058 if (odc->dc_dev == dev)
2059 panic("config_defer: deferred twice");
2060 }
2061 #endif
2062 dc->dc_dev = dev;
2063 dc->dc_func = func;
2064 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2065 mutex_exit(&config_misc_lock);
2066 }
2067
2068 /*
2069 * Defer some autoconfiguration for a device until after interrupts
2070 * are enabled.
2071 */
2072 void
2073 config_interrupts(device_t dev, void (*func)(device_t))
2074 {
2075 struct deferred_config *dc;
2076
2077 /*
2078 * If interrupts are enabled, callback now.
2079 */
2080 if (cold == 0) {
2081 (*func)(dev);
2082 return;
2083 }
2084
2085 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2086
2087 config_pending_incr(dev);
2088
2089 mutex_enter(&config_misc_lock);
2090 #ifdef DIAGNOSTIC
2091 struct deferred_config *odc;
2092 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2093 if (odc->dc_dev == dev)
2094 panic("config_interrupts: deferred twice");
2095 }
2096 #endif
2097 dc->dc_dev = dev;
2098 dc->dc_func = func;
2099 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2100 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2101 mutex_exit(&config_misc_lock);
2102 }
2103
2104 /*
2105 * Defer some autoconfiguration for a device until after root file system
2106 * is mounted (to load firmware etc).
2107 */
2108 void
2109 config_mountroot(device_t dev, void (*func)(device_t))
2110 {
2111 struct deferred_config *dc;
2112
2113 /*
2114 * If root file system is mounted, callback now.
2115 */
2116 if (root_is_mounted) {
2117 (*func)(dev);
2118 return;
2119 }
2120
2121 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2122
2123 mutex_enter(&config_misc_lock);
2124 #ifdef DIAGNOSTIC
2125 struct deferred_config *odc;
2126 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2127 if (odc->dc_dev == dev)
2128 panic("%s: deferred twice", __func__);
2129 }
2130 #endif
2131
2132 dc->dc_dev = dev;
2133 dc->dc_func = func;
2134 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2135 mutex_exit(&config_misc_lock);
2136 }
2137
2138 /*
2139 * Process a deferred configuration queue.
2140 */
2141 static void
2142 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2143 {
2144 struct deferred_config *dc;
2145
2146 mutex_enter(&config_misc_lock);
2147 dc = TAILQ_FIRST(queue);
2148 while (dc) {
2149 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2150 TAILQ_REMOVE(queue, dc, dc_queue);
2151 mutex_exit(&config_misc_lock);
2152
2153 (*dc->dc_func)(dc->dc_dev);
2154 config_pending_decr(dc->dc_dev);
2155 kmem_free(dc, sizeof(*dc));
2156
2157 mutex_enter(&config_misc_lock);
2158 /* Restart, queue might have changed */
2159 dc = TAILQ_FIRST(queue);
2160 } else {
2161 dc = TAILQ_NEXT(dc, dc_queue);
2162 }
2163 }
2164 mutex_exit(&config_misc_lock);
2165 }
2166
2167 /*
2168 * Manipulate the config_pending semaphore.
2169 */
2170 void
2171 config_pending_incr(device_t dev)
2172 {
2173
2174 mutex_enter(&config_misc_lock);
2175 KASSERTMSG(dev->dv_pending < INT_MAX,
2176 "%s: excess config_pending_incr", device_xname(dev));
2177 if (dev->dv_pending++ == 0)
2178 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2179 #ifdef DEBUG_AUTOCONF
2180 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2181 #endif
2182 mutex_exit(&config_misc_lock);
2183 }
2184
2185 void
2186 config_pending_decr(device_t dev)
2187 {
2188
2189 mutex_enter(&config_misc_lock);
2190 KASSERTMSG(dev->dv_pending > 0,
2191 "%s: excess config_pending_decr", device_xname(dev));
2192 if (--dev->dv_pending == 0)
2193 TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2194 #ifdef DEBUG_AUTOCONF
2195 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2196 #endif
2197 if (TAILQ_EMPTY(&config_pending))
2198 cv_broadcast(&config_misc_cv);
2199 mutex_exit(&config_misc_lock);
2200 }
2201
2202 /*
2203 * Register a "finalization" routine. Finalization routines are
2204 * called iteratively once all real devices have been found during
2205 * autoconfiguration, for as long as any one finalizer has done
2206 * any work.
2207 */
2208 int
2209 config_finalize_register(device_t dev, int (*fn)(device_t))
2210 {
2211 struct finalize_hook *f;
2212
2213 /*
2214 * If finalization has already been done, invoke the
2215 * callback function now.
2216 */
2217 if (config_finalize_done) {
2218 while ((*fn)(dev) != 0)
2219 /* loop */ ;
2220 return 0;
2221 }
2222
2223 /* Ensure this isn't already on the list. */
2224 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2225 if (f->f_func == fn && f->f_dev == dev)
2226 return EEXIST;
2227 }
2228
2229 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2230 f->f_func = fn;
2231 f->f_dev = dev;
2232 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2233
2234 return 0;
2235 }
2236
2237 void
2238 config_finalize(void)
2239 {
2240 struct finalize_hook *f;
2241 struct pdevinit *pdev;
2242 extern struct pdevinit pdevinit[];
2243 int errcnt, rv;
2244
2245 /*
2246 * Now that device driver threads have been created, wait for
2247 * them to finish any deferred autoconfiguration.
2248 */
2249 mutex_enter(&config_misc_lock);
2250 while (!TAILQ_EMPTY(&config_pending)) {
2251 device_t dev;
2252 TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2253 aprint_debug_dev(dev, "holding up boot\n");
2254 cv_wait(&config_misc_cv, &config_misc_lock);
2255 }
2256 mutex_exit(&config_misc_lock);
2257
2258 KERNEL_LOCK(1, NULL);
2259
2260 /* Attach pseudo-devices. */
2261 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2262 (*pdev->pdev_attach)(pdev->pdev_count);
2263
2264 /* Run the hooks until none of them does any work. */
2265 do {
2266 rv = 0;
2267 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2268 rv |= (*f->f_func)(f->f_dev);
2269 } while (rv != 0);
2270
2271 config_finalize_done = 1;
2272
2273 /* Now free all the hooks. */
2274 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2275 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2276 kmem_free(f, sizeof(*f));
2277 }
2278
2279 KERNEL_UNLOCK_ONE(NULL);
2280
2281 errcnt = aprint_get_error_count();
2282 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2283 (boothowto & AB_VERBOSE) == 0) {
2284 mutex_enter(&config_misc_lock);
2285 if (config_do_twiddle) {
2286 config_do_twiddle = 0;
2287 printf_nolog(" done.\n");
2288 }
2289 mutex_exit(&config_misc_lock);
2290 }
2291 if (errcnt != 0) {
2292 printf("WARNING: %d error%s while detecting hardware; "
2293 "check system log.\n", errcnt,
2294 errcnt == 1 ? "" : "s");
2295 }
2296 }
2297
2298 void
2299 config_twiddle_init(void)
2300 {
2301
2302 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2303 config_do_twiddle = 1;
2304 }
2305 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2306 }
2307
2308 void
2309 config_twiddle_fn(void *cookie)
2310 {
2311
2312 mutex_enter(&config_misc_lock);
2313 if (config_do_twiddle) {
2314 twiddle();
2315 callout_schedule(&config_twiddle_ch, mstohz(100));
2316 }
2317 mutex_exit(&config_misc_lock);
2318 }
2319
2320 static void
2321 config_alldevs_enter(struct alldevs_foray *af)
2322 {
2323 TAILQ_INIT(&af->af_garbage);
2324 mutex_enter(&alldevs_lock);
2325 config_collect_garbage(&af->af_garbage);
2326 }
2327
2328 static void
2329 config_alldevs_exit(struct alldevs_foray *af)
2330 {
2331 mutex_exit(&alldevs_lock);
2332 config_dump_garbage(&af->af_garbage);
2333 }
2334
2335 /*
2336 * device_lookup:
2337 *
2338 * Look up a device instance for a given driver.
2339 */
2340 device_t
2341 device_lookup(cfdriver_t cd, int unit)
2342 {
2343 device_t dv;
2344
2345 mutex_enter(&alldevs_lock);
2346 if (unit < 0 || unit >= cd->cd_ndevs)
2347 dv = NULL;
2348 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2349 dv = NULL;
2350 mutex_exit(&alldevs_lock);
2351
2352 return dv;
2353 }
2354
2355 /*
2356 * device_lookup_private:
2357 *
2358 * Look up a softc instance for a given driver.
2359 */
2360 void *
2361 device_lookup_private(cfdriver_t cd, int unit)
2362 {
2363
2364 return device_private(device_lookup(cd, unit));
2365 }
2366
2367 /*
2368 * device_find_by_xname:
2369 *
2370 * Returns the device of the given name or NULL if it doesn't exist.
2371 */
2372 device_t
2373 device_find_by_xname(const char *name)
2374 {
2375 device_t dv;
2376 deviter_t di;
2377
2378 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2379 if (strcmp(device_xname(dv), name) == 0)
2380 break;
2381 }
2382 deviter_release(&di);
2383
2384 return dv;
2385 }
2386
2387 /*
2388 * device_find_by_driver_unit:
2389 *
2390 * Returns the device of the given driver name and unit or
2391 * NULL if it doesn't exist.
2392 */
2393 device_t
2394 device_find_by_driver_unit(const char *name, int unit)
2395 {
2396 struct cfdriver *cd;
2397
2398 if ((cd = config_cfdriver_lookup(name)) == NULL)
2399 return NULL;
2400 return device_lookup(cd, unit);
2401 }
2402
2403 static bool
2404 match_strcmp(const char * const s1, const char * const s2)
2405 {
2406 return strcmp(s1, s2) == 0;
2407 }
2408
2409 static bool
2410 match_pmatch(const char * const s1, const char * const s2)
2411 {
2412 return pmatch(s1, s2, NULL) == 2;
2413 }
2414
2415 static bool
2416 strarray_match_internal(const char ** const strings,
2417 unsigned int const nstrings, const char * const str,
2418 unsigned int * const indexp,
2419 bool (*match_fn)(const char *, const char *))
2420 {
2421 unsigned int i;
2422
2423 if (strings == NULL || nstrings == 0) {
2424 return false;
2425 }
2426
2427 for (i = 0; i < nstrings; i++) {
2428 if ((*match_fn)(strings[i], str)) {
2429 *indexp = i;
2430 return true;
2431 }
2432 }
2433
2434 return false;
2435 }
2436
2437 static int
2438 strarray_match(const char ** const strings, unsigned int const nstrings,
2439 const char * const str)
2440 {
2441 unsigned int idx;
2442
2443 if (strarray_match_internal(strings, nstrings, str, &idx,
2444 match_strcmp)) {
2445 return (int)(nstrings - idx);
2446 }
2447 return 0;
2448 }
2449
2450 static int
2451 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2452 const char * const pattern)
2453 {
2454 unsigned int idx;
2455
2456 if (strarray_match_internal(strings, nstrings, pattern, &idx,
2457 match_pmatch)) {
2458 return (int)(nstrings - idx);
2459 }
2460 return 0;
2461 }
2462
2463 static int
2464 device_compatible_match_strarray_internal(
2465 const char **device_compats, int ndevice_compats,
2466 const struct device_compatible_entry *driver_compats,
2467 const struct device_compatible_entry **matching_entryp,
2468 int (*match_fn)(const char **, unsigned int, const char *))
2469 {
2470 const struct device_compatible_entry *dce = NULL;
2471 int rv;
2472
2473 if (ndevice_compats == 0 || device_compats == NULL ||
2474 driver_compats == NULL)
2475 return 0;
2476
2477 for (dce = driver_compats; dce->compat != NULL; dce++) {
2478 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2479 if (rv != 0) {
2480 if (matching_entryp != NULL) {
2481 *matching_entryp = dce;
2482 }
2483 return rv;
2484 }
2485 }
2486 return 0;
2487 }
2488
2489 /*
2490 * device_compatible_match:
2491 *
2492 * Match a driver's "compatible" data against a device's
2493 * "compatible" strings. Returns resulted weighted by
2494 * which device "compatible" string was matched.
2495 */
2496 int
2497 device_compatible_match(const char **device_compats, int ndevice_compats,
2498 const struct device_compatible_entry *driver_compats)
2499 {
2500 return device_compatible_match_strarray_internal(device_compats,
2501 ndevice_compats, driver_compats, NULL, strarray_match);
2502 }
2503
2504 /*
2505 * device_compatible_pmatch:
2506 *
2507 * Like device_compatible_match(), but uses pmatch(9) to compare
2508 * the device "compatible" strings against patterns in the
2509 * driver's "compatible" data.
2510 */
2511 int
2512 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2513 const struct device_compatible_entry *driver_compats)
2514 {
2515 return device_compatible_match_strarray_internal(device_compats,
2516 ndevice_compats, driver_compats, NULL, strarray_pmatch);
2517 }
2518
2519 static int
2520 device_compatible_match_strlist_internal(
2521 const char * const device_compats, size_t const device_compatsize,
2522 const struct device_compatible_entry *driver_compats,
2523 const struct device_compatible_entry **matching_entryp,
2524 int (*match_fn)(const char *, size_t, const char *))
2525 {
2526 const struct device_compatible_entry *dce = NULL;
2527 int rv;
2528
2529 if (device_compats == NULL || device_compatsize == 0 ||
2530 driver_compats == NULL)
2531 return 0;
2532
2533 for (dce = driver_compats; dce->compat != NULL; dce++) {
2534 rv = (*match_fn)(device_compats, device_compatsize,
2535 dce->compat);
2536 if (rv != 0) {
2537 if (matching_entryp != NULL) {
2538 *matching_entryp = dce;
2539 }
2540 return rv;
2541 }
2542 }
2543 return 0;
2544 }
2545
2546 /*
2547 * device_compatible_match_strlist:
2548 *
2549 * Like device_compatible_match(), but take the device
2550 * "compatible" strings as an OpenFirmware-style string
2551 * list.
2552 */
2553 int
2554 device_compatible_match_strlist(
2555 const char * const device_compats, size_t const device_compatsize,
2556 const struct device_compatible_entry *driver_compats)
2557 {
2558 return device_compatible_match_strlist_internal(device_compats,
2559 device_compatsize, driver_compats, NULL, strlist_match);
2560 }
2561
2562 /*
2563 * device_compatible_pmatch_strlist:
2564 *
2565 * Like device_compatible_pmatch(), but take the device
2566 * "compatible" strings as an OpenFirmware-style string
2567 * list.
2568 */
2569 int
2570 device_compatible_pmatch_strlist(
2571 const char * const device_compats, size_t const device_compatsize,
2572 const struct device_compatible_entry *driver_compats)
2573 {
2574 return device_compatible_match_strlist_internal(device_compats,
2575 device_compatsize, driver_compats, NULL, strlist_pmatch);
2576 }
2577
2578 static int
2579 device_compatible_match_id_internal(
2580 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2581 const struct device_compatible_entry *driver_compats,
2582 const struct device_compatible_entry **matching_entryp)
2583 {
2584 const struct device_compatible_entry *dce = NULL;
2585
2586 if (mask == 0)
2587 return 0;
2588
2589 for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2590 if ((id & mask) == dce->id) {
2591 if (matching_entryp != NULL) {
2592 *matching_entryp = dce;
2593 }
2594 return 1;
2595 }
2596 }
2597 return 0;
2598 }
2599
2600 /*
2601 * device_compatible_match_id:
2602 *
2603 * Like device_compatible_match(), but takes a single
2604 * unsigned integer device ID.
2605 */
2606 int
2607 device_compatible_match_id(
2608 uintptr_t const id, uintptr_t const sentinel_id,
2609 const struct device_compatible_entry *driver_compats)
2610 {
2611 return device_compatible_match_id_internal(id, (uintptr_t)-1,
2612 sentinel_id, driver_compats, NULL);
2613 }
2614
2615 /*
2616 * device_compatible_lookup:
2617 *
2618 * Look up and return the device_compatible_entry, using the
2619 * same matching criteria used by device_compatible_match().
2620 */
2621 const struct device_compatible_entry *
2622 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2623 const struct device_compatible_entry *driver_compats)
2624 {
2625 const struct device_compatible_entry *dce;
2626
2627 if (device_compatible_match_strarray_internal(device_compats,
2628 ndevice_compats, driver_compats, &dce, strarray_match)) {
2629 return dce;
2630 }
2631 return NULL;
2632 }
2633
2634 /*
2635 * device_compatible_plookup:
2636 *
2637 * Look up and return the device_compatible_entry, using the
2638 * same matching criteria used by device_compatible_pmatch().
2639 */
2640 const struct device_compatible_entry *
2641 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2642 const struct device_compatible_entry *driver_compats)
2643 {
2644 const struct device_compatible_entry *dce;
2645
2646 if (device_compatible_match_strarray_internal(device_compats,
2647 ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2648 return dce;
2649 }
2650 return NULL;
2651 }
2652
2653 /*
2654 * device_compatible_lookup_strlist:
2655 *
2656 * Like device_compatible_lookup(), but take the device
2657 * "compatible" strings as an OpenFirmware-style string
2658 * list.
2659 */
2660 const struct device_compatible_entry *
2661 device_compatible_lookup_strlist(
2662 const char * const device_compats, size_t const device_compatsize,
2663 const struct device_compatible_entry *driver_compats)
2664 {
2665 const struct device_compatible_entry *dce;
2666
2667 if (device_compatible_match_strlist_internal(device_compats,
2668 device_compatsize, driver_compats, &dce, strlist_match)) {
2669 return dce;
2670 }
2671 return NULL;
2672 }
2673
2674 /*
2675 * device_compatible_plookup_strlist:
2676 *
2677 * Like device_compatible_plookup(), but take the device
2678 * "compatible" strings as an OpenFirmware-style string
2679 * list.
2680 */
2681 const struct device_compatible_entry *
2682 device_compatible_plookup_strlist(
2683 const char * const device_compats, size_t const device_compatsize,
2684 const struct device_compatible_entry *driver_compats)
2685 {
2686 const struct device_compatible_entry *dce;
2687
2688 if (device_compatible_match_strlist_internal(device_compats,
2689 device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2690 return dce;
2691 }
2692 return NULL;
2693 }
2694
2695 /*
2696 * device_compatible_lookup_id:
2697 *
2698 * Like device_compatible_lookup(), but takes a single
2699 * unsigned integer device ID.
2700 */
2701 const struct device_compatible_entry *
2702 device_compatible_lookup_id(
2703 uintptr_t const id, uintptr_t const sentinel_id,
2704 const struct device_compatible_entry *driver_compats)
2705 {
2706 const struct device_compatible_entry *dce;
2707
2708 if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2709 sentinel_id, driver_compats, &dce)) {
2710 return dce;
2711 }
2712 return NULL;
2713 }
2714
2715 /*
2716 * Power management related functions.
2717 */
2718
2719 bool
2720 device_pmf_is_registered(device_t dev)
2721 {
2722 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2723 }
2724
2725 bool
2726 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2727 {
2728 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2729 return true;
2730 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2731 return false;
2732 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2733 dev->dv_driver_suspend != NULL &&
2734 !(*dev->dv_driver_suspend)(dev, qual))
2735 return false;
2736
2737 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2738 return true;
2739 }
2740
2741 bool
2742 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2743 {
2744 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2745 return true;
2746 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2747 return false;
2748 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2749 dev->dv_driver_resume != NULL &&
2750 !(*dev->dv_driver_resume)(dev, qual))
2751 return false;
2752
2753 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2754 return true;
2755 }
2756
2757 bool
2758 device_pmf_driver_shutdown(device_t dev, int how)
2759 {
2760
2761 if (*dev->dv_driver_shutdown != NULL &&
2762 !(*dev->dv_driver_shutdown)(dev, how))
2763 return false;
2764 return true;
2765 }
2766
2767 bool
2768 device_pmf_driver_register(device_t dev,
2769 bool (*suspend)(device_t, const pmf_qual_t *),
2770 bool (*resume)(device_t, const pmf_qual_t *),
2771 bool (*shutdown)(device_t, int))
2772 {
2773 dev->dv_driver_suspend = suspend;
2774 dev->dv_driver_resume = resume;
2775 dev->dv_driver_shutdown = shutdown;
2776 dev->dv_flags |= DVF_POWER_HANDLERS;
2777 return true;
2778 }
2779
2780 static const char *
2781 curlwp_name(void)
2782 {
2783 if (curlwp->l_name != NULL)
2784 return curlwp->l_name;
2785 else
2786 return curlwp->l_proc->p_comm;
2787 }
2788
2789 void
2790 device_pmf_driver_deregister(device_t dev)
2791 {
2792 device_lock_t dvl = device_getlock(dev);
2793
2794 dev->dv_driver_suspend = NULL;
2795 dev->dv_driver_resume = NULL;
2796
2797 mutex_enter(&dvl->dvl_mtx);
2798 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2799 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2800 /* Wake a thread that waits for the lock. That
2801 * thread will fail to acquire the lock, and then
2802 * it will wake the next thread that waits for the
2803 * lock, or else it will wake us.
2804 */
2805 cv_signal(&dvl->dvl_cv);
2806 pmflock_debug(dev, __func__, __LINE__);
2807 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2808 pmflock_debug(dev, __func__, __LINE__);
2809 }
2810 mutex_exit(&dvl->dvl_mtx);
2811 }
2812
2813 bool
2814 device_pmf_driver_child_register(device_t dev)
2815 {
2816 device_t parent = device_parent(dev);
2817
2818 if (parent == NULL || parent->dv_driver_child_register == NULL)
2819 return true;
2820 return (*parent->dv_driver_child_register)(dev);
2821 }
2822
2823 void
2824 device_pmf_driver_set_child_register(device_t dev,
2825 bool (*child_register)(device_t))
2826 {
2827 dev->dv_driver_child_register = child_register;
2828 }
2829
2830 static void
2831 pmflock_debug(device_t dev, const char *func, int line)
2832 {
2833 device_lock_t dvl = device_getlock(dev);
2834
2835 aprint_debug_dev(dev,
2836 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2837 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2838 }
2839
2840 static bool
2841 device_pmf_lock1(device_t dev)
2842 {
2843 device_lock_t dvl = device_getlock(dev);
2844
2845 while (device_pmf_is_registered(dev) &&
2846 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2847 dvl->dvl_nwait++;
2848 pmflock_debug(dev, __func__, __LINE__);
2849 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2850 pmflock_debug(dev, __func__, __LINE__);
2851 dvl->dvl_nwait--;
2852 }
2853 if (!device_pmf_is_registered(dev)) {
2854 pmflock_debug(dev, __func__, __LINE__);
2855 /* We could not acquire the lock, but some other thread may
2856 * wait for it, also. Wake that thread.
2857 */
2858 cv_signal(&dvl->dvl_cv);
2859 return false;
2860 }
2861 dvl->dvl_nlock++;
2862 dvl->dvl_holder = curlwp;
2863 pmflock_debug(dev, __func__, __LINE__);
2864 return true;
2865 }
2866
2867 bool
2868 device_pmf_lock(device_t dev)
2869 {
2870 bool rc;
2871 device_lock_t dvl = device_getlock(dev);
2872
2873 mutex_enter(&dvl->dvl_mtx);
2874 rc = device_pmf_lock1(dev);
2875 mutex_exit(&dvl->dvl_mtx);
2876
2877 return rc;
2878 }
2879
2880 void
2881 device_pmf_unlock(device_t dev)
2882 {
2883 device_lock_t dvl = device_getlock(dev);
2884
2885 KASSERT(dvl->dvl_nlock > 0);
2886 mutex_enter(&dvl->dvl_mtx);
2887 if (--dvl->dvl_nlock == 0)
2888 dvl->dvl_holder = NULL;
2889 cv_signal(&dvl->dvl_cv);
2890 pmflock_debug(dev, __func__, __LINE__);
2891 mutex_exit(&dvl->dvl_mtx);
2892 }
2893
2894 device_lock_t
2895 device_getlock(device_t dev)
2896 {
2897 return &dev->dv_lock;
2898 }
2899
2900 void *
2901 device_pmf_bus_private(device_t dev)
2902 {
2903 return dev->dv_bus_private;
2904 }
2905
2906 bool
2907 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2908 {
2909 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2910 return true;
2911 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2912 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2913 return false;
2914 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2915 dev->dv_bus_suspend != NULL &&
2916 !(*dev->dv_bus_suspend)(dev, qual))
2917 return false;
2918
2919 dev->dv_flags |= DVF_BUS_SUSPENDED;
2920 return true;
2921 }
2922
2923 bool
2924 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2925 {
2926 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2927 return true;
2928 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2929 dev->dv_bus_resume != NULL &&
2930 !(*dev->dv_bus_resume)(dev, qual))
2931 return false;
2932
2933 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2934 return true;
2935 }
2936
2937 bool
2938 device_pmf_bus_shutdown(device_t dev, int how)
2939 {
2940
2941 if (*dev->dv_bus_shutdown != NULL &&
2942 !(*dev->dv_bus_shutdown)(dev, how))
2943 return false;
2944 return true;
2945 }
2946
2947 void
2948 device_pmf_bus_register(device_t dev, void *priv,
2949 bool (*suspend)(device_t, const pmf_qual_t *),
2950 bool (*resume)(device_t, const pmf_qual_t *),
2951 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2952 {
2953 dev->dv_bus_private = priv;
2954 dev->dv_bus_resume = resume;
2955 dev->dv_bus_suspend = suspend;
2956 dev->dv_bus_shutdown = shutdown;
2957 dev->dv_bus_deregister = deregister;
2958 }
2959
2960 void
2961 device_pmf_bus_deregister(device_t dev)
2962 {
2963 if (dev->dv_bus_deregister == NULL)
2964 return;
2965 (*dev->dv_bus_deregister)(dev);
2966 dev->dv_bus_private = NULL;
2967 dev->dv_bus_suspend = NULL;
2968 dev->dv_bus_resume = NULL;
2969 dev->dv_bus_deregister = NULL;
2970 }
2971
2972 void *
2973 device_pmf_class_private(device_t dev)
2974 {
2975 return dev->dv_class_private;
2976 }
2977
2978 bool
2979 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2980 {
2981 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2982 return true;
2983 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2984 dev->dv_class_suspend != NULL &&
2985 !(*dev->dv_class_suspend)(dev, qual))
2986 return false;
2987
2988 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2989 return true;
2990 }
2991
2992 bool
2993 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2994 {
2995 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2996 return true;
2997 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2998 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2999 return false;
3000 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3001 dev->dv_class_resume != NULL &&
3002 !(*dev->dv_class_resume)(dev, qual))
3003 return false;
3004
3005 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3006 return true;
3007 }
3008
3009 void
3010 device_pmf_class_register(device_t dev, void *priv,
3011 bool (*suspend)(device_t, const pmf_qual_t *),
3012 bool (*resume)(device_t, const pmf_qual_t *),
3013 void (*deregister)(device_t))
3014 {
3015 dev->dv_class_private = priv;
3016 dev->dv_class_suspend = suspend;
3017 dev->dv_class_resume = resume;
3018 dev->dv_class_deregister = deregister;
3019 }
3020
3021 void
3022 device_pmf_class_deregister(device_t dev)
3023 {
3024 if (dev->dv_class_deregister == NULL)
3025 return;
3026 (*dev->dv_class_deregister)(dev);
3027 dev->dv_class_private = NULL;
3028 dev->dv_class_suspend = NULL;
3029 dev->dv_class_resume = NULL;
3030 dev->dv_class_deregister = NULL;
3031 }
3032
3033 bool
3034 device_active(device_t dev, devactive_t type)
3035 {
3036 size_t i;
3037
3038 if (dev->dv_activity_count == 0)
3039 return false;
3040
3041 for (i = 0; i < dev->dv_activity_count; ++i) {
3042 if (dev->dv_activity_handlers[i] == NULL)
3043 break;
3044 (*dev->dv_activity_handlers[i])(dev, type);
3045 }
3046
3047 return true;
3048 }
3049
3050 bool
3051 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3052 {
3053 void (**new_handlers)(device_t, devactive_t);
3054 void (**old_handlers)(device_t, devactive_t);
3055 size_t i, old_size, new_size;
3056 int s;
3057
3058 old_handlers = dev->dv_activity_handlers;
3059 old_size = dev->dv_activity_count;
3060
3061 KASSERT(old_size == 0 || old_handlers != NULL);
3062
3063 for (i = 0; i < old_size; ++i) {
3064 KASSERT(old_handlers[i] != handler);
3065 if (old_handlers[i] == NULL) {
3066 old_handlers[i] = handler;
3067 return true;
3068 }
3069 }
3070
3071 new_size = old_size + 4;
3072 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3073
3074 for (i = 0; i < old_size; ++i)
3075 new_handlers[i] = old_handlers[i];
3076 new_handlers[old_size] = handler;
3077 for (i = old_size+1; i < new_size; ++i)
3078 new_handlers[i] = NULL;
3079
3080 s = splhigh();
3081 dev->dv_activity_count = new_size;
3082 dev->dv_activity_handlers = new_handlers;
3083 splx(s);
3084
3085 if (old_size > 0)
3086 kmem_free(old_handlers, sizeof(void *) * old_size);
3087
3088 return true;
3089 }
3090
3091 void
3092 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3093 {
3094 void (**old_handlers)(device_t, devactive_t);
3095 size_t i, old_size;
3096 int s;
3097
3098 old_handlers = dev->dv_activity_handlers;
3099 old_size = dev->dv_activity_count;
3100
3101 for (i = 0; i < old_size; ++i) {
3102 if (old_handlers[i] == handler)
3103 break;
3104 if (old_handlers[i] == NULL)
3105 return; /* XXX panic? */
3106 }
3107
3108 if (i == old_size)
3109 return; /* XXX panic? */
3110
3111 for (; i < old_size - 1; ++i) {
3112 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3113 continue;
3114
3115 if (i == 0) {
3116 s = splhigh();
3117 dev->dv_activity_count = 0;
3118 dev->dv_activity_handlers = NULL;
3119 splx(s);
3120 kmem_free(old_handlers, sizeof(void *) * old_size);
3121 }
3122 return;
3123 }
3124 old_handlers[i] = NULL;
3125 }
3126
3127 /* Return true iff the device_t `dev' exists at generation `gen'. */
3128 static bool
3129 device_exists_at(device_t dv, devgen_t gen)
3130 {
3131 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3132 dv->dv_add_gen <= gen;
3133 }
3134
3135 static bool
3136 deviter_visits(const deviter_t *di, device_t dv)
3137 {
3138 return device_exists_at(dv, di->di_gen);
3139 }
3140
3141 /*
3142 * Device Iteration
3143 *
3144 * deviter_t: a device iterator. Holds state for a "walk" visiting
3145 * each device_t's in the device tree.
3146 *
3147 * deviter_init(di, flags): initialize the device iterator `di'
3148 * to "walk" the device tree. deviter_next(di) will return
3149 * the first device_t in the device tree, or NULL if there are
3150 * no devices.
3151 *
3152 * `flags' is one or more of DEVITER_F_RW, indicating that the
3153 * caller intends to modify the device tree by calling
3154 * config_detach(9) on devices in the order that the iterator
3155 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3156 * nearest the "root" of the device tree to be returned, first;
3157 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3158 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3159 * indicating both that deviter_init() should not respect any
3160 * locks on the device tree, and that deviter_next(di) may run
3161 * in more than one LWP before the walk has finished.
3162 *
3163 * Only one DEVITER_F_RW iterator may be in the device tree at
3164 * once.
3165 *
3166 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3167 *
3168 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3169 * DEVITER_F_LEAVES_FIRST are used in combination.
3170 *
3171 * deviter_first(di, flags): initialize the device iterator `di'
3172 * and return the first device_t in the device tree, or NULL
3173 * if there are no devices. The statement
3174 *
3175 * dv = deviter_first(di);
3176 *
3177 * is shorthand for
3178 *
3179 * deviter_init(di);
3180 * dv = deviter_next(di);
3181 *
3182 * deviter_next(di): return the next device_t in the device tree,
3183 * or NULL if there are no more devices. deviter_next(di)
3184 * is undefined if `di' was not initialized with deviter_init() or
3185 * deviter_first().
3186 *
3187 * deviter_release(di): stops iteration (subsequent calls to
3188 * deviter_next() will return NULL), releases any locks and
3189 * resources held by the device iterator.
3190 *
3191 * Device iteration does not return device_t's in any particular
3192 * order. An iterator will never return the same device_t twice.
3193 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3194 * is called repeatedly on the same `di', it will eventually return
3195 * NULL. It is ok to attach/detach devices during device iteration.
3196 */
3197 void
3198 deviter_init(deviter_t *di, deviter_flags_t flags)
3199 {
3200 device_t dv;
3201
3202 memset(di, 0, sizeof(*di));
3203
3204 if ((flags & DEVITER_F_SHUTDOWN) != 0)
3205 flags |= DEVITER_F_RW;
3206
3207 mutex_enter(&alldevs_lock);
3208 if ((flags & DEVITER_F_RW) != 0)
3209 alldevs_nwrite++;
3210 else
3211 alldevs_nread++;
3212 di->di_gen = alldevs_gen++;
3213 di->di_flags = flags;
3214
3215 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3216 case DEVITER_F_LEAVES_FIRST:
3217 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3218 if (!deviter_visits(di, dv))
3219 continue;
3220 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3221 }
3222 break;
3223 case DEVITER_F_ROOT_FIRST:
3224 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3225 if (!deviter_visits(di, dv))
3226 continue;
3227 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3228 }
3229 break;
3230 default:
3231 break;
3232 }
3233
3234 deviter_reinit(di);
3235 mutex_exit(&alldevs_lock);
3236 }
3237
3238 static void
3239 deviter_reinit(deviter_t *di)
3240 {
3241
3242 KASSERT(mutex_owned(&alldevs_lock));
3243 if ((di->di_flags & DEVITER_F_RW) != 0)
3244 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3245 else
3246 di->di_prev = TAILQ_FIRST(&alldevs);
3247 }
3248
3249 device_t
3250 deviter_first(deviter_t *di, deviter_flags_t flags)
3251 {
3252
3253 deviter_init(di, flags);
3254 return deviter_next(di);
3255 }
3256
3257 static device_t
3258 deviter_next2(deviter_t *di)
3259 {
3260 device_t dv;
3261
3262 KASSERT(mutex_owned(&alldevs_lock));
3263
3264 dv = di->di_prev;
3265
3266 if (dv == NULL)
3267 return NULL;
3268
3269 if ((di->di_flags & DEVITER_F_RW) != 0)
3270 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3271 else
3272 di->di_prev = TAILQ_NEXT(dv, dv_list);
3273
3274 return dv;
3275 }
3276
3277 static device_t
3278 deviter_next1(deviter_t *di)
3279 {
3280 device_t dv;
3281
3282 KASSERT(mutex_owned(&alldevs_lock));
3283
3284 do {
3285 dv = deviter_next2(di);
3286 } while (dv != NULL && !deviter_visits(di, dv));
3287
3288 return dv;
3289 }
3290
3291 device_t
3292 deviter_next(deviter_t *di)
3293 {
3294 device_t dv = NULL;
3295
3296 mutex_enter(&alldevs_lock);
3297 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3298 case 0:
3299 dv = deviter_next1(di);
3300 break;
3301 case DEVITER_F_LEAVES_FIRST:
3302 while (di->di_curdepth >= 0) {
3303 if ((dv = deviter_next1(di)) == NULL) {
3304 di->di_curdepth--;
3305 deviter_reinit(di);
3306 } else if (dv->dv_depth == di->di_curdepth)
3307 break;
3308 }
3309 break;
3310 case DEVITER_F_ROOT_FIRST:
3311 while (di->di_curdepth <= di->di_maxdepth) {
3312 if ((dv = deviter_next1(di)) == NULL) {
3313 di->di_curdepth++;
3314 deviter_reinit(di);
3315 } else if (dv->dv_depth == di->di_curdepth)
3316 break;
3317 }
3318 break;
3319 default:
3320 break;
3321 }
3322 mutex_exit(&alldevs_lock);
3323
3324 return dv;
3325 }
3326
3327 void
3328 deviter_release(deviter_t *di)
3329 {
3330 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3331
3332 mutex_enter(&alldevs_lock);
3333 if (rw)
3334 --alldevs_nwrite;
3335 else
3336 --alldevs_nread;
3337 /* XXX wake a garbage-collection thread */
3338 mutex_exit(&alldevs_lock);
3339 }
3340
3341 const char *
3342 cfdata_ifattr(const struct cfdata *cf)
3343 {
3344 return cf->cf_pspec->cfp_iattr;
3345 }
3346
3347 bool
3348 ifattr_match(const char *snull, const char *t)
3349 {
3350 return (snull == NULL) || strcmp(snull, t) == 0;
3351 }
3352
3353 void
3354 null_childdetached(device_t self, device_t child)
3355 {
3356 /* do nothing */
3357 }
3358
3359 static void
3360 sysctl_detach_setup(struct sysctllog **clog)
3361 {
3362
3363 sysctl_createv(clog, 0, NULL, NULL,
3364 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3365 CTLTYPE_BOOL, "detachall",
3366 SYSCTL_DESCR("Detach all devices at shutdown"),
3367 NULL, 0, &detachall, 0,
3368 CTL_KERN, CTL_CREATE, CTL_EOL);
3369 }
3370