subr_autoconf.c revision 1.277.2.3 1 /* $NetBSD: subr_autoconf.c,v 1.277.2.3 2021/03/21 21:09:16 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.3 2021/03/21 21:09:16 thorpej Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 static krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 static struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 static struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 static int interrupt_config_threads = 8;
201 static struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 static int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
222 static kmutex_t alldevs_lock __cacheline_aligned;
223 static devgen_t alldevs_gen = 1;
224 static int alldevs_nread = 0;
225 static int alldevs_nwrite = 0;
226 static bool alldevs_garbage = false;
227
228 static struct devicelist config_pending =
229 TAILQ_HEAD_INITIALIZER(config_pending);
230 static kmutex_t config_misc_lock;
231 static kcondvar_t config_misc_cv;
232
233 static bool detachall = false;
234
235 #define STREQ(s1, s2) \
236 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
237
238 static bool config_initialized = false; /* config_init() has been called. */
239
240 static int config_do_twiddle;
241 static callout_t config_twiddle_ch;
242
243 static void sysctl_detach_setup(struct sysctllog **);
244
245 int no_devmon_insert(const char *, prop_dictionary_t);
246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
247
248 typedef int (*cfdriver_fn)(struct cfdriver *);
249 static int
250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
251 cfdriver_fn drv_do, cfdriver_fn drv_undo,
252 const char *style, bool dopanic)
253 {
254 void (*pr)(const char *, ...) __printflike(1, 2) =
255 dopanic ? panic : printf;
256 int i, error = 0, e2 __diagused;
257
258 for (i = 0; cfdriverv[i] != NULL; i++) {
259 if ((error = drv_do(cfdriverv[i])) != 0) {
260 pr("configure: `%s' driver %s failed: %d",
261 cfdriverv[i]->cd_name, style, error);
262 goto bad;
263 }
264 }
265
266 KASSERT(error == 0);
267 return 0;
268
269 bad:
270 printf("\n");
271 for (i--; i >= 0; i--) {
272 e2 = drv_undo(cfdriverv[i]);
273 KASSERT(e2 == 0);
274 }
275
276 return error;
277 }
278
279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
280 static int
281 frob_cfattachvec(const struct cfattachinit *cfattachv,
282 cfattach_fn att_do, cfattach_fn att_undo,
283 const char *style, bool dopanic)
284 {
285 const struct cfattachinit *cfai = NULL;
286 void (*pr)(const char *, ...) __printflike(1, 2) =
287 dopanic ? panic : printf;
288 int j = 0, error = 0, e2 __diagused;
289
290 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
291 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
292 if ((error = att_do(cfai->cfai_name,
293 cfai->cfai_list[j])) != 0) {
294 pr("configure: attachment `%s' "
295 "of `%s' driver %s failed: %d",
296 cfai->cfai_list[j]->ca_name,
297 cfai->cfai_name, style, error);
298 goto bad;
299 }
300 }
301 }
302
303 KASSERT(error == 0);
304 return 0;
305
306 bad:
307 /*
308 * Rollback in reverse order. dunno if super-important, but
309 * do that anyway. Although the code looks a little like
310 * someone did a little integration (in the math sense).
311 */
312 printf("\n");
313 if (cfai) {
314 bool last;
315
316 for (last = false; last == false; ) {
317 if (cfai == &cfattachv[0])
318 last = true;
319 for (j--; j >= 0; j--) {
320 e2 = att_undo(cfai->cfai_name,
321 cfai->cfai_list[j]);
322 KASSERT(e2 == 0);
323 }
324 if (!last) {
325 cfai--;
326 for (j = 0; cfai->cfai_list[j] != NULL; j++)
327 ;
328 }
329 }
330 }
331
332 return error;
333 }
334
335 /*
336 * Initialize the autoconfiguration data structures. Normally this
337 * is done by configure(), but some platforms need to do this very
338 * early (to e.g. initialize the console).
339 */
340 void
341 config_init(void)
342 {
343
344 KASSERT(config_initialized == false);
345
346 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
347
348 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
349 cv_init(&config_misc_cv, "cfgmisc");
350
351 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
352
353 frob_cfdrivervec(cfdriver_list_initial,
354 config_cfdriver_attach, NULL, "bootstrap", true);
355 frob_cfattachvec(cfattachinit,
356 config_cfattach_attach, NULL, "bootstrap", true);
357
358 initcftable.ct_cfdata = cfdata;
359 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
360
361 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
362 RND_FLAG_COLLECT_TIME);
363
364 config_initialized = true;
365 }
366
367 /*
368 * Init or fini drivers and attachments. Either all or none
369 * are processed (via rollback). It would be nice if this were
370 * atomic to outside consumers, but with the current state of
371 * locking ...
372 */
373 int
374 config_init_component(struct cfdriver * const *cfdriverv,
375 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
376 {
377 int error;
378
379 if ((error = frob_cfdrivervec(cfdriverv,
380 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
381 return error;
382 if ((error = frob_cfattachvec(cfattachv,
383 config_cfattach_attach, config_cfattach_detach,
384 "init", false)) != 0) {
385 frob_cfdrivervec(cfdriverv,
386 config_cfdriver_detach, NULL, "init rollback", true);
387 return error;
388 }
389 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
390 frob_cfattachvec(cfattachv,
391 config_cfattach_detach, NULL, "init rollback", true);
392 frob_cfdrivervec(cfdriverv,
393 config_cfdriver_detach, NULL, "init rollback", true);
394 return error;
395 }
396
397 return 0;
398 }
399
400 int
401 config_fini_component(struct cfdriver * const *cfdriverv,
402 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
403 {
404 int error;
405
406 if ((error = config_cfdata_detach(cfdatav)) != 0)
407 return error;
408 if ((error = frob_cfattachvec(cfattachv,
409 config_cfattach_detach, config_cfattach_attach,
410 "fini", false)) != 0) {
411 if (config_cfdata_attach(cfdatav, 0) != 0)
412 panic("config_cfdata fini rollback failed");
413 return error;
414 }
415 if ((error = frob_cfdrivervec(cfdriverv,
416 config_cfdriver_detach, config_cfdriver_attach,
417 "fini", false)) != 0) {
418 frob_cfattachvec(cfattachv,
419 config_cfattach_attach, NULL, "fini rollback", true);
420 if (config_cfdata_attach(cfdatav, 0) != 0)
421 panic("config_cfdata fini rollback failed");
422 return error;
423 }
424
425 return 0;
426 }
427
428 void
429 config_init_mi(void)
430 {
431
432 if (!config_initialized)
433 config_init();
434
435 sysctl_detach_setup(NULL);
436 }
437
438 void
439 config_deferred(device_t dev)
440 {
441 config_process_deferred(&deferred_config_queue, dev);
442 config_process_deferred(&interrupt_config_queue, dev);
443 config_process_deferred(&mountroot_config_queue, dev);
444 }
445
446 static void
447 config_interrupts_thread(void *cookie)
448 {
449 struct deferred_config *dc;
450 device_t dev;
451
452 mutex_enter(&config_misc_lock);
453 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
454 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
455 mutex_exit(&config_misc_lock);
456
457 dev = dc->dc_dev;
458 (*dc->dc_func)(dev);
459 if (!device_pmf_is_registered(dev))
460 aprint_debug_dev(dev,
461 "WARNING: power management not supported\n");
462 config_pending_decr(dev);
463 kmem_free(dc, sizeof(*dc));
464
465 mutex_enter(&config_misc_lock);
466 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
467 }
468 mutex_exit(&config_misc_lock);
469
470 kthread_exit(0);
471 }
472
473 void
474 config_create_interruptthreads(void)
475 {
476 int i;
477
478 for (i = 0; i < interrupt_config_threads; i++) {
479 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
480 config_interrupts_thread, NULL, NULL, "configintr");
481 }
482 }
483
484 static void
485 config_mountroot_thread(void *cookie)
486 {
487 struct deferred_config *dc;
488
489 mutex_enter(&config_misc_lock);
490 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
491 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
492 mutex_exit(&config_misc_lock);
493
494 (*dc->dc_func)(dc->dc_dev);
495 kmem_free(dc, sizeof(*dc));
496
497 mutex_enter(&config_misc_lock);
498 }
499 mutex_exit(&config_misc_lock);
500
501 kthread_exit(0);
502 }
503
504 void
505 config_create_mountrootthreads(void)
506 {
507 int i;
508
509 if (!root_is_mounted)
510 root_is_mounted = true;
511
512 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
513 mountroot_config_threads;
514 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
515 KM_NOSLEEP);
516 KASSERT(mountroot_config_lwpids);
517 for (i = 0; i < mountroot_config_threads; i++) {
518 mountroot_config_lwpids[i] = 0;
519 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
520 NULL, config_mountroot_thread, NULL,
521 &mountroot_config_lwpids[i],
522 "configroot");
523 }
524 }
525
526 void
527 config_finalize_mountroot(void)
528 {
529 int i, error;
530
531 for (i = 0; i < mountroot_config_threads; i++) {
532 if (mountroot_config_lwpids[i] == 0)
533 continue;
534
535 error = kthread_join(mountroot_config_lwpids[i]);
536 if (error)
537 printf("%s: thread %x joined with error %d\n",
538 __func__, i, error);
539 }
540 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
541 }
542
543 /*
544 * Announce device attach/detach to userland listeners.
545 */
546
547 int
548 no_devmon_insert(const char *name, prop_dictionary_t p)
549 {
550
551 return ENODEV;
552 }
553
554 static void
555 devmon_report_device(device_t dev, bool isattach)
556 {
557 prop_dictionary_t ev, dict = device_properties(dev);
558 const char *parent;
559 const char *what;
560 const char *where;
561 device_t pdev = device_parent(dev);
562
563 /* If currently no drvctl device, just return */
564 if (devmon_insert_vec == no_devmon_insert)
565 return;
566
567 ev = prop_dictionary_create();
568 if (ev == NULL)
569 return;
570
571 what = (isattach ? "device-attach" : "device-detach");
572 parent = (pdev == NULL ? "root" : device_xname(pdev));
573 if (prop_dictionary_get_string(dict, "location", &where)) {
574 prop_dictionary_set_string(ev, "location", where);
575 aprint_debug("ev: %s %s at %s in [%s]\n",
576 what, device_xname(dev), parent, where);
577 }
578 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
579 !prop_dictionary_set_string(ev, "parent", parent)) {
580 prop_object_release(ev);
581 return;
582 }
583
584 if ((*devmon_insert_vec)(what, ev) != 0)
585 prop_object_release(ev);
586 }
587
588 /*
589 * Add a cfdriver to the system.
590 */
591 int
592 config_cfdriver_attach(struct cfdriver *cd)
593 {
594 struct cfdriver *lcd;
595
596 /* Make sure this driver isn't already in the system. */
597 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
598 if (STREQ(lcd->cd_name, cd->cd_name))
599 return EEXIST;
600 }
601
602 LIST_INIT(&cd->cd_attach);
603 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
604
605 return 0;
606 }
607
608 /*
609 * Remove a cfdriver from the system.
610 */
611 int
612 config_cfdriver_detach(struct cfdriver *cd)
613 {
614 struct alldevs_foray af;
615 int i, rc = 0;
616
617 config_alldevs_enter(&af);
618 /* Make sure there are no active instances. */
619 for (i = 0; i < cd->cd_ndevs; i++) {
620 if (cd->cd_devs[i] != NULL) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 /* ...and no attachments loaded. */
631 if (LIST_EMPTY(&cd->cd_attach) == 0)
632 return EBUSY;
633
634 LIST_REMOVE(cd, cd_list);
635
636 KASSERT(cd->cd_devs == NULL);
637
638 return 0;
639 }
640
641 /*
642 * Look up a cfdriver by name.
643 */
644 struct cfdriver *
645 config_cfdriver_lookup(const char *name)
646 {
647 struct cfdriver *cd;
648
649 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
650 if (STREQ(cd->cd_name, name))
651 return cd;
652 }
653
654 return NULL;
655 }
656
657 /*
658 * Add a cfattach to the specified driver.
659 */
660 int
661 config_cfattach_attach(const char *driver, struct cfattach *ca)
662 {
663 struct cfattach *lca;
664 struct cfdriver *cd;
665
666 cd = config_cfdriver_lookup(driver);
667 if (cd == NULL)
668 return ESRCH;
669
670 /* Make sure this attachment isn't already on this driver. */
671 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
672 if (STREQ(lca->ca_name, ca->ca_name))
673 return EEXIST;
674 }
675
676 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
677
678 return 0;
679 }
680
681 /*
682 * Remove a cfattach from the specified driver.
683 */
684 int
685 config_cfattach_detach(const char *driver, struct cfattach *ca)
686 {
687 struct alldevs_foray af;
688 struct cfdriver *cd;
689 device_t dev;
690 int i, rc = 0;
691
692 cd = config_cfdriver_lookup(driver);
693 if (cd == NULL)
694 return ESRCH;
695
696 config_alldevs_enter(&af);
697 /* Make sure there are no active instances. */
698 for (i = 0; i < cd->cd_ndevs; i++) {
699 if ((dev = cd->cd_devs[i]) == NULL)
700 continue;
701 if (dev->dv_cfattach == ca) {
702 rc = EBUSY;
703 break;
704 }
705 }
706 config_alldevs_exit(&af);
707
708 if (rc != 0)
709 return rc;
710
711 LIST_REMOVE(ca, ca_list);
712
713 return 0;
714 }
715
716 /*
717 * Look up a cfattach by name.
718 */
719 static struct cfattach *
720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
721 {
722 struct cfattach *ca;
723
724 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
725 if (STREQ(ca->ca_name, atname))
726 return ca;
727 }
728
729 return NULL;
730 }
731
732 /*
733 * Look up a cfattach by driver/attachment name.
734 */
735 struct cfattach *
736 config_cfattach_lookup(const char *name, const char *atname)
737 {
738 struct cfdriver *cd;
739
740 cd = config_cfdriver_lookup(name);
741 if (cd == NULL)
742 return NULL;
743
744 return config_cfattach_lookup_cd(cd, atname);
745 }
746
747 /*
748 * Apply the matching function and choose the best. This is used
749 * a few times and we want to keep the code small.
750 */
751 static void
752 mapply(struct matchinfo *m, cfdata_t cf)
753 {
754 int pri;
755
756 if (m->fn != NULL) {
757 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
758 } else {
759 pri = config_match(m->parent, cf, m->aux);
760 }
761 if (pri > m->pri) {
762 m->match = cf;
763 m->pri = pri;
764 }
765 }
766
767 int
768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
769 {
770 const struct cfiattrdata *ci;
771 const struct cflocdesc *cl;
772 int nlocs, i;
773
774 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
775 KASSERT(ci);
776 nlocs = ci->ci_loclen;
777 KASSERT(!nlocs || locs);
778 for (i = 0; i < nlocs; i++) {
779 cl = &ci->ci_locdesc[i];
780 if (cl->cld_defaultstr != NULL &&
781 cf->cf_loc[i] == cl->cld_default)
782 continue;
783 if (cf->cf_loc[i] == locs[i])
784 continue;
785 return 0;
786 }
787
788 return config_match(parent, cf, aux);
789 }
790
791 /*
792 * Helper function: check whether the driver supports the interface attribute
793 * and return its descriptor structure.
794 */
795 static const struct cfiattrdata *
796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
797 {
798 const struct cfiattrdata * const *cpp;
799
800 if (cd->cd_attrs == NULL)
801 return 0;
802
803 for (cpp = cd->cd_attrs; *cpp; cpp++) {
804 if (STREQ((*cpp)->ci_name, ia)) {
805 /* Match. */
806 return *cpp;
807 }
808 }
809 return 0;
810 }
811
812 #if defined(DIAGNOSTIC)
813 static int
814 cfdriver_iattr_count(const struct cfdriver *cd)
815 {
816 const struct cfiattrdata * const *cpp;
817 int i;
818
819 if (cd->cd_attrs == NULL)
820 return 0;
821
822 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
823 i++;
824 }
825 return i;
826 }
827 #endif /* DIAGNOSTIC */
828
829 /*
830 * Lookup an interface attribute description by name.
831 * If the driver is given, consider only its supported attributes.
832 */
833 const struct cfiattrdata *
834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
835 {
836 const struct cfdriver *d;
837 const struct cfiattrdata *ia;
838
839 if (cd)
840 return cfdriver_get_iattr(cd, name);
841
842 LIST_FOREACH(d, &allcfdrivers, cd_list) {
843 ia = cfdriver_get_iattr(d, name);
844 if (ia)
845 return ia;
846 }
847 return 0;
848 }
849
850 /*
851 * Determine if `parent' is a potential parent for a device spec based
852 * on `cfp'.
853 */
854 static int
855 cfparent_match(const device_t parent, const struct cfparent *cfp)
856 {
857 struct cfdriver *pcd;
858
859 /* We don't match root nodes here. */
860 if (cfp == NULL)
861 return 0;
862
863 pcd = parent->dv_cfdriver;
864 KASSERT(pcd != NULL);
865
866 /*
867 * First, ensure this parent has the correct interface
868 * attribute.
869 */
870 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
871 return 0;
872
873 /*
874 * If no specific parent device instance was specified (i.e.
875 * we're attaching to the attribute only), we're done!
876 */
877 if (cfp->cfp_parent == NULL)
878 return 1;
879
880 /*
881 * Check the parent device's name.
882 */
883 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
884 return 0; /* not the same parent */
885
886 /*
887 * Make sure the unit number matches.
888 */
889 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
890 cfp->cfp_unit == parent->dv_unit)
891 return 1;
892
893 /* Unit numbers don't match. */
894 return 0;
895 }
896
897 /*
898 * Helper for config_cfdata_attach(): check all devices whether it could be
899 * parent any attachment in the config data table passed, and rescan.
900 */
901 static void
902 rescan_with_cfdata(const struct cfdata *cf)
903 {
904 device_t d;
905 const struct cfdata *cf1;
906 deviter_t di;
907
908
909 /*
910 * "alldevs" is likely longer than a modules's cfdata, so make it
911 * the outer loop.
912 */
913 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
914
915 if (!(d->dv_cfattach->ca_rescan))
916 continue;
917
918 for (cf1 = cf; cf1->cf_name; cf1++) {
919
920 if (!cfparent_match(d, cf1->cf_pspec))
921 continue;
922
923 (*d->dv_cfattach->ca_rescan)(d,
924 cfdata_ifattr(cf1), cf1->cf_loc);
925
926 config_deferred(d);
927 }
928 }
929 deviter_release(&di);
930 }
931
932 /*
933 * Attach a supplemental config data table and rescan potential
934 * parent devices if required.
935 */
936 int
937 config_cfdata_attach(cfdata_t cf, int scannow)
938 {
939 struct cftable *ct;
940
941 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
942 ct->ct_cfdata = cf;
943 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
944
945 if (scannow)
946 rescan_with_cfdata(cf);
947
948 return 0;
949 }
950
951 /*
952 * Helper for config_cfdata_detach: check whether a device is
953 * found through any attachment in the config data table.
954 */
955 static int
956 dev_in_cfdata(device_t d, cfdata_t cf)
957 {
958 const struct cfdata *cf1;
959
960 for (cf1 = cf; cf1->cf_name; cf1++)
961 if (d->dv_cfdata == cf1)
962 return 1;
963
964 return 0;
965 }
966
967 /*
968 * Detach a supplemental config data table. Detach all devices found
969 * through that table (and thus keeping references to it) before.
970 */
971 int
972 config_cfdata_detach(cfdata_t cf)
973 {
974 device_t d;
975 int error = 0;
976 struct cftable *ct;
977 deviter_t di;
978
979 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
980 d = deviter_next(&di)) {
981 if (!dev_in_cfdata(d, cf))
982 continue;
983 if ((error = config_detach(d, 0)) != 0)
984 break;
985 }
986 deviter_release(&di);
987 if (error) {
988 aprint_error_dev(d, "unable to detach instance\n");
989 return error;
990 }
991
992 TAILQ_FOREACH(ct, &allcftables, ct_list) {
993 if (ct->ct_cfdata == cf) {
994 TAILQ_REMOVE(&allcftables, ct, ct_list);
995 kmem_free(ct, sizeof(*ct));
996 return 0;
997 }
998 }
999
1000 /* not found -- shouldn't happen */
1001 return EINVAL;
1002 }
1003
1004 /*
1005 * Invoke the "match" routine for a cfdata entry on behalf of
1006 * an external caller, usually a "submatch" routine.
1007 */
1008 int
1009 config_match(device_t parent, cfdata_t cf, void *aux)
1010 {
1011 struct cfattach *ca;
1012
1013 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1014 if (ca == NULL) {
1015 /* No attachment for this entry, oh well. */
1016 return 0;
1017 }
1018
1019 return (*ca->ca_match)(parent, cf, aux);
1020 }
1021
1022 static void
1023 config_get_cfargs(cfarg_t tag,
1024 cfsubmatch_t *fnp, /* output */
1025 const char **ifattrp, /* output */
1026 const int **locsp, /* output */
1027 va_list ap)
1028 {
1029 cfsubmatch_t fn = NULL;
1030 const char *ifattr = NULL;
1031 const int *locs = NULL;
1032
1033 while (tag != CFARG_EOL) {
1034 switch (tag) {
1035 case CFARG_SUBMATCH:
1036 fn = va_arg(ap, cfsubmatch_t);
1037 break;
1038
1039 case CFARG_IATTR:
1040 ifattr = va_arg(ap, const char *);
1041 break;
1042
1043 case CFARG_LOCATORS:
1044 locs = va_arg(ap, const int *);
1045 break;
1046
1047 default:
1048 /* XXX panic? */
1049 /* XXX dump stack backtrace? */
1050 aprint_error("%s: unknown cfarg tag: %d\n",
1051 __func__, tag);
1052 goto out;
1053 }
1054 tag = va_arg(ap, cfarg_t);
1055 }
1056
1057 out:
1058 if (fnp != NULL)
1059 *fnp = fn;
1060 if (ifattrp != NULL)
1061 *ifattrp = ifattr;
1062 if (locsp != NULL)
1063 *locsp = locs;
1064 }
1065
1066 /*
1067 * Iterate over all potential children of some device, calling the given
1068 * function (default being the child's match function) for each one.
1069 * Nonzero returns are matches; the highest value returned is considered
1070 * the best match. Return the `found child' if we got a match, or NULL
1071 * otherwise. The `aux' pointer is simply passed on through.
1072 *
1073 * Note that this function is designed so that it can be used to apply
1074 * an arbitrary function to all potential children (its return value
1075 * can be ignored).
1076 */
1077 static cfdata_t
1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1079 {
1080 cfsubmatch_t fn;
1081 const char *ifattr;
1082 const int *locs;
1083 struct cftable *ct;
1084 cfdata_t cf;
1085 struct matchinfo m;
1086
1087 config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
1088
1089 KASSERT(config_initialized);
1090 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1091 KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1092
1093 m.fn = fn;
1094 m.parent = parent;
1095 m.locs = locs;
1096 m.aux = aux;
1097 m.match = NULL;
1098 m.pri = 0;
1099
1100 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1101 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1102
1103 /* We don't match root nodes here. */
1104 if (!cf->cf_pspec)
1105 continue;
1106
1107 /*
1108 * Skip cf if no longer eligible, otherwise scan
1109 * through parents for one matching `parent', and
1110 * try match function.
1111 */
1112 if (cf->cf_fstate == FSTATE_FOUND)
1113 continue;
1114 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1115 cf->cf_fstate == FSTATE_DSTAR)
1116 continue;
1117
1118 /*
1119 * If an interface attribute was specified,
1120 * consider only children which attach to
1121 * that attribute.
1122 */
1123 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1124 continue;
1125
1126 if (cfparent_match(parent, cf->cf_pspec))
1127 mapply(&m, cf);
1128 }
1129 }
1130 return m.match;
1131 }
1132
1133 cfdata_t
1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1135 {
1136 cfdata_t cf;
1137 va_list ap;
1138
1139 va_start(ap, tag);
1140 cf = config_vsearch(parent, aux, tag, ap);
1141 va_end(ap);
1142
1143 return cf;
1144 }
1145
1146 /*
1147 * Find the given root device.
1148 * This is much like config_search, but there is no parent.
1149 * Don't bother with multiple cfdata tables; the root node
1150 * must always be in the initial table.
1151 */
1152 cfdata_t
1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1154 {
1155 cfdata_t cf;
1156 const short *p;
1157 struct matchinfo m;
1158
1159 m.fn = fn;
1160 m.parent = ROOT;
1161 m.aux = aux;
1162 m.match = NULL;
1163 m.pri = 0;
1164 m.locs = 0;
1165 /*
1166 * Look at root entries for matching name. We do not bother
1167 * with found-state here since only one root should ever be
1168 * searched (and it must be done first).
1169 */
1170 for (p = cfroots; *p >= 0; p++) {
1171 cf = &cfdata[*p];
1172 if (strcmp(cf->cf_name, rootname) == 0)
1173 mapply(&m, cf);
1174 }
1175 return m.match;
1176 }
1177
1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1179
1180 /*
1181 * The given `aux' argument describes a device that has been found
1182 * on the given parent, but not necessarily configured. Locate the
1183 * configuration data for that device (using the submatch function
1184 * provided, or using candidates' cd_match configuration driver
1185 * functions) and attach it, and return its device_t. If the device was
1186 * not configured, call the given `print' function and return NULL.
1187 */
1188 static device_t
1189 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
1190 va_list ap)
1191 {
1192 cfsubmatch_t submatch;
1193 const char *ifattr;
1194 const int *locs;
1195 cfdata_t cf;
1196
1197 config_get_cfargs(tag, &submatch, &ifattr, &locs, ap);
1198
1199 if ((cf = config_search(parent, aux,
1200 CFARG_SUBMATCH, submatch,
1201 CFARG_IATTR, ifattr,
1202 CFARG_LOCATORS, locs,
1203 CFARG_EOL)))
1204 return config_attach_loc(parent, cf, locs, aux, print);
1205 if (print) {
1206 if (config_do_twiddle && cold)
1207 twiddle();
1208 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1209 }
1210
1211 /*
1212 * This has the effect of mixing in a single timestamp to the
1213 * entropy pool. Experiments indicate the estimator will almost
1214 * always attribute one bit of entropy to this sample; analysis
1215 * of device attach/detach timestamps on FreeBSD indicates 4
1216 * bits of entropy/sample so this seems appropriately conservative.
1217 */
1218 rnd_add_uint32(&rnd_autoconf_source, 0);
1219 return NULL;
1220 }
1221
1222 #if 0
1223 config_found_sm_loc(device_t parent,
1224 const char *ifattr, const int *locs, void *aux,
1225 cfprint_t print, cfsubmatch_t submatch)
1226
1227 device_t
1228 config_found_ia(device_t parent, const char *ifattr, void *aux,
1229 cfprint_t print)
1230 {
1231
1232 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1233 }
1234 #endif
1235
1236 device_t
1237 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
1238 {
1239 device_t dev;
1240 va_list ap;
1241
1242 va_start(ap, tag);
1243 dev = config_vfound(parent, aux, print, tag, ap);
1244 va_end(ap);
1245
1246 return dev;
1247 }
1248
1249 /*
1250 * As above, but for root devices.
1251 */
1252 device_t
1253 config_rootfound(const char *rootname, void *aux)
1254 {
1255 cfdata_t cf;
1256
1257 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1258 return config_attach(ROOT, cf, aux, NULL);
1259 aprint_error("root device %s not configured\n", rootname);
1260 return NULL;
1261 }
1262
1263 /* just like sprintf(buf, "%d") except that it works from the end */
1264 static char *
1265 number(char *ep, int n)
1266 {
1267
1268 *--ep = 0;
1269 while (n >= 10) {
1270 *--ep = (n % 10) + '0';
1271 n /= 10;
1272 }
1273 *--ep = n + '0';
1274 return ep;
1275 }
1276
1277 /*
1278 * Expand the size of the cd_devs array if necessary.
1279 *
1280 * The caller must hold alldevs_lock. config_makeroom() may release and
1281 * re-acquire alldevs_lock, so callers should re-check conditions such
1282 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1283 * returns.
1284 */
1285 static void
1286 config_makeroom(int n, struct cfdriver *cd)
1287 {
1288 int ondevs, nndevs;
1289 device_t *osp, *nsp;
1290
1291 KASSERT(mutex_owned(&alldevs_lock));
1292 alldevs_nwrite++;
1293
1294 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1295 ;
1296
1297 while (n >= cd->cd_ndevs) {
1298 /*
1299 * Need to expand the array.
1300 */
1301 ondevs = cd->cd_ndevs;
1302 osp = cd->cd_devs;
1303
1304 /*
1305 * Release alldevs_lock around allocation, which may
1306 * sleep.
1307 */
1308 mutex_exit(&alldevs_lock);
1309 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1310 mutex_enter(&alldevs_lock);
1311
1312 /*
1313 * If another thread moved the array while we did
1314 * not hold alldevs_lock, try again.
1315 */
1316 if (cd->cd_devs != osp) {
1317 mutex_exit(&alldevs_lock);
1318 kmem_free(nsp, sizeof(device_t) * nndevs);
1319 mutex_enter(&alldevs_lock);
1320 continue;
1321 }
1322
1323 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1324 if (ondevs != 0)
1325 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1326
1327 cd->cd_ndevs = nndevs;
1328 cd->cd_devs = nsp;
1329 if (ondevs != 0) {
1330 mutex_exit(&alldevs_lock);
1331 kmem_free(osp, sizeof(device_t) * ondevs);
1332 mutex_enter(&alldevs_lock);
1333 }
1334 }
1335 KASSERT(mutex_owned(&alldevs_lock));
1336 alldevs_nwrite--;
1337 }
1338
1339 /*
1340 * Put dev into the devices list.
1341 */
1342 static void
1343 config_devlink(device_t dev)
1344 {
1345
1346 mutex_enter(&alldevs_lock);
1347
1348 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1349
1350 dev->dv_add_gen = alldevs_gen;
1351 /* It is safe to add a device to the tail of the list while
1352 * readers and writers are in the list.
1353 */
1354 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1355 mutex_exit(&alldevs_lock);
1356 }
1357
1358 static void
1359 config_devfree(device_t dev)
1360 {
1361 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1362
1363 if (dev->dv_cfattach->ca_devsize > 0)
1364 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1365 kmem_free(dev, sizeof(*dev));
1366 }
1367
1368 /*
1369 * Caller must hold alldevs_lock.
1370 */
1371 static void
1372 config_devunlink(device_t dev, struct devicelist *garbage)
1373 {
1374 struct device_garbage *dg = &dev->dv_garbage;
1375 cfdriver_t cd = device_cfdriver(dev);
1376 int i;
1377
1378 KASSERT(mutex_owned(&alldevs_lock));
1379
1380 /* Unlink from device list. Link to garbage list. */
1381 TAILQ_REMOVE(&alldevs, dev, dv_list);
1382 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1383
1384 /* Remove from cfdriver's array. */
1385 cd->cd_devs[dev->dv_unit] = NULL;
1386
1387 /*
1388 * If the device now has no units in use, unlink its softc array.
1389 */
1390 for (i = 0; i < cd->cd_ndevs; i++) {
1391 if (cd->cd_devs[i] != NULL)
1392 break;
1393 }
1394 /* Nothing found. Unlink, now. Deallocate, later. */
1395 if (i == cd->cd_ndevs) {
1396 dg->dg_ndevs = cd->cd_ndevs;
1397 dg->dg_devs = cd->cd_devs;
1398 cd->cd_devs = NULL;
1399 cd->cd_ndevs = 0;
1400 }
1401 }
1402
1403 static void
1404 config_devdelete(device_t dev)
1405 {
1406 struct device_garbage *dg = &dev->dv_garbage;
1407 device_lock_t dvl = device_getlock(dev);
1408
1409 if (dg->dg_devs != NULL)
1410 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1411
1412 cv_destroy(&dvl->dvl_cv);
1413 mutex_destroy(&dvl->dvl_mtx);
1414
1415 KASSERT(dev->dv_properties != NULL);
1416 prop_object_release(dev->dv_properties);
1417
1418 if (dev->dv_activity_handlers)
1419 panic("%s with registered handlers", __func__);
1420
1421 if (dev->dv_locators) {
1422 size_t amount = *--dev->dv_locators;
1423 kmem_free(dev->dv_locators, amount);
1424 }
1425
1426 config_devfree(dev);
1427 }
1428
1429 static int
1430 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1431 {
1432 int unit;
1433
1434 if (cf->cf_fstate == FSTATE_STAR) {
1435 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1436 if (cd->cd_devs[unit] == NULL)
1437 break;
1438 /*
1439 * unit is now the unit of the first NULL device pointer,
1440 * or max(cd->cd_ndevs,cf->cf_unit).
1441 */
1442 } else {
1443 unit = cf->cf_unit;
1444 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1445 unit = -1;
1446 }
1447 return unit;
1448 }
1449
1450 static int
1451 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1452 {
1453 struct alldevs_foray af;
1454 int unit;
1455
1456 config_alldevs_enter(&af);
1457 for (;;) {
1458 unit = config_unit_nextfree(cd, cf);
1459 if (unit == -1)
1460 break;
1461 if (unit < cd->cd_ndevs) {
1462 cd->cd_devs[unit] = dev;
1463 dev->dv_unit = unit;
1464 break;
1465 }
1466 config_makeroom(unit, cd);
1467 }
1468 config_alldevs_exit(&af);
1469
1470 return unit;
1471 }
1472
1473 static device_t
1474 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1475 {
1476 cfdriver_t cd;
1477 cfattach_t ca;
1478 size_t lname, lunit;
1479 const char *xunit;
1480 int myunit;
1481 char num[10];
1482 device_t dev;
1483 void *dev_private;
1484 const struct cfiattrdata *ia;
1485 device_lock_t dvl;
1486
1487 cd = config_cfdriver_lookup(cf->cf_name);
1488 if (cd == NULL)
1489 return NULL;
1490
1491 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1492 if (ca == NULL)
1493 return NULL;
1494
1495 /* get memory for all device vars */
1496 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1497 if (ca->ca_devsize > 0) {
1498 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1499 } else {
1500 dev_private = NULL;
1501 }
1502 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1503
1504 dev->dv_class = cd->cd_class;
1505 dev->dv_cfdata = cf;
1506 dev->dv_cfdriver = cd;
1507 dev->dv_cfattach = ca;
1508 dev->dv_activity_count = 0;
1509 dev->dv_activity_handlers = NULL;
1510 dev->dv_private = dev_private;
1511 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1512
1513 myunit = config_unit_alloc(dev, cd, cf);
1514 if (myunit == -1) {
1515 config_devfree(dev);
1516 return NULL;
1517 }
1518
1519 /* compute length of name and decimal expansion of unit number */
1520 lname = strlen(cd->cd_name);
1521 xunit = number(&num[sizeof(num)], myunit);
1522 lunit = &num[sizeof(num)] - xunit;
1523 if (lname + lunit > sizeof(dev->dv_xname))
1524 panic("config_devalloc: device name too long");
1525
1526 dvl = device_getlock(dev);
1527
1528 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1529 cv_init(&dvl->dvl_cv, "pmfsusp");
1530
1531 memcpy(dev->dv_xname, cd->cd_name, lname);
1532 memcpy(dev->dv_xname + lname, xunit, lunit);
1533 dev->dv_parent = parent;
1534 if (parent != NULL)
1535 dev->dv_depth = parent->dv_depth + 1;
1536 else
1537 dev->dv_depth = 0;
1538 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1539 if (locs) {
1540 KASSERT(parent); /* no locators at root */
1541 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1542 dev->dv_locators =
1543 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1544 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1545 memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1546 }
1547 dev->dv_properties = prop_dictionary_create();
1548 KASSERT(dev->dv_properties != NULL);
1549
1550 prop_dictionary_set_string_nocopy(dev->dv_properties,
1551 "device-driver", dev->dv_cfdriver->cd_name);
1552 prop_dictionary_set_uint16(dev->dv_properties,
1553 "device-unit", dev->dv_unit);
1554 if (parent != NULL) {
1555 prop_dictionary_set_string(dev->dv_properties,
1556 "device-parent", device_xname(parent));
1557 }
1558
1559 if (dev->dv_cfdriver->cd_attrs != NULL)
1560 config_add_attrib_dict(dev);
1561
1562 return dev;
1563 }
1564
1565 /*
1566 * Create an array of device attach attributes and add it
1567 * to the device's dv_properties dictionary.
1568 *
1569 * <key>interface-attributes</key>
1570 * <array>
1571 * <dict>
1572 * <key>attribute-name</key>
1573 * <string>foo</string>
1574 * <key>locators</key>
1575 * <array>
1576 * <dict>
1577 * <key>loc-name</key>
1578 * <string>foo-loc1</string>
1579 * </dict>
1580 * <dict>
1581 * <key>loc-name</key>
1582 * <string>foo-loc2</string>
1583 * <key>default</key>
1584 * <string>foo-loc2-default</string>
1585 * </dict>
1586 * ...
1587 * </array>
1588 * </dict>
1589 * ...
1590 * </array>
1591 */
1592
1593 static void
1594 config_add_attrib_dict(device_t dev)
1595 {
1596 int i, j;
1597 const struct cfiattrdata *ci;
1598 prop_dictionary_t attr_dict, loc_dict;
1599 prop_array_t attr_array, loc_array;
1600
1601 if ((attr_array = prop_array_create()) == NULL)
1602 return;
1603
1604 for (i = 0; ; i++) {
1605 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1606 break;
1607 if ((attr_dict = prop_dictionary_create()) == NULL)
1608 break;
1609 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1610 ci->ci_name);
1611
1612 /* Create an array of the locator names and defaults */
1613
1614 if (ci->ci_loclen != 0 &&
1615 (loc_array = prop_array_create()) != NULL) {
1616 for (j = 0; j < ci->ci_loclen; j++) {
1617 loc_dict = prop_dictionary_create();
1618 if (loc_dict == NULL)
1619 continue;
1620 prop_dictionary_set_string_nocopy(loc_dict,
1621 "loc-name", ci->ci_locdesc[j].cld_name);
1622 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1623 prop_dictionary_set_string_nocopy(
1624 loc_dict, "default",
1625 ci->ci_locdesc[j].cld_defaultstr);
1626 prop_array_set(loc_array, j, loc_dict);
1627 prop_object_release(loc_dict);
1628 }
1629 prop_dictionary_set_and_rel(attr_dict, "locators",
1630 loc_array);
1631 }
1632 prop_array_add(attr_array, attr_dict);
1633 prop_object_release(attr_dict);
1634 }
1635 if (i == 0)
1636 prop_object_release(attr_array);
1637 else
1638 prop_dictionary_set_and_rel(dev->dv_properties,
1639 "interface-attributes", attr_array);
1640
1641 return;
1642 }
1643
1644 /*
1645 * Attach a found device.
1646 */
1647 device_t
1648 config_attach_loc(device_t parent, cfdata_t cf,
1649 const int *locs, void *aux, cfprint_t print)
1650 {
1651 device_t dev;
1652 struct cftable *ct;
1653 const char *drvname;
1654
1655 dev = config_devalloc(parent, cf, locs);
1656 if (!dev)
1657 panic("config_attach: allocation of device softc failed");
1658
1659 /* XXX redundant - see below? */
1660 if (cf->cf_fstate != FSTATE_STAR) {
1661 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1662 cf->cf_fstate = FSTATE_FOUND;
1663 }
1664
1665 config_devlink(dev);
1666
1667 if (config_do_twiddle && cold)
1668 twiddle();
1669 else
1670 aprint_naive("Found ");
1671 /*
1672 * We want the next two printfs for normal, verbose, and quiet,
1673 * but not silent (in which case, we're twiddling, instead).
1674 */
1675 if (parent == ROOT) {
1676 aprint_naive("%s (root)", device_xname(dev));
1677 aprint_normal("%s (root)", device_xname(dev));
1678 } else {
1679 aprint_naive("%s at %s", device_xname(dev),
1680 device_xname(parent));
1681 aprint_normal("%s at %s", device_xname(dev),
1682 device_xname(parent));
1683 if (print)
1684 (void) (*print)(aux, NULL);
1685 }
1686
1687 /*
1688 * Before attaching, clobber any unfound devices that are
1689 * otherwise identical.
1690 * XXX code above is redundant?
1691 */
1692 drvname = dev->dv_cfdriver->cd_name;
1693 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1694 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1695 if (STREQ(cf->cf_name, drvname) &&
1696 cf->cf_unit == dev->dv_unit) {
1697 if (cf->cf_fstate == FSTATE_NOTFOUND)
1698 cf->cf_fstate = FSTATE_FOUND;
1699 }
1700 }
1701 }
1702 device_register(dev, aux);
1703
1704 /* Let userland know */
1705 devmon_report_device(dev, true);
1706
1707 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1708
1709 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1710 && !device_pmf_is_registered(dev))
1711 aprint_debug_dev(dev,
1712 "WARNING: power management not supported\n");
1713
1714 config_process_deferred(&deferred_config_queue, dev);
1715
1716 device_register_post_config(dev, aux);
1717 return dev;
1718 }
1719
1720 device_t
1721 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1722 {
1723
1724 return config_attach_loc(parent, cf, NULL, aux, print);
1725 }
1726
1727 /*
1728 * As above, but for pseudo-devices. Pseudo-devices attached in this
1729 * way are silently inserted into the device tree, and their children
1730 * attached.
1731 *
1732 * Note that because pseudo-devices are attached silently, any information
1733 * the attach routine wishes to print should be prefixed with the device
1734 * name by the attach routine.
1735 */
1736 device_t
1737 config_attach_pseudo(cfdata_t cf)
1738 {
1739 device_t dev;
1740
1741 dev = config_devalloc(ROOT, cf, NULL);
1742 if (!dev)
1743 return NULL;
1744
1745 /* XXX mark busy in cfdata */
1746
1747 if (cf->cf_fstate != FSTATE_STAR) {
1748 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1749 cf->cf_fstate = FSTATE_FOUND;
1750 }
1751
1752 config_devlink(dev);
1753
1754 #if 0 /* XXXJRT not yet */
1755 device_register(dev, NULL); /* like a root node */
1756 #endif
1757
1758 /* Let userland know */
1759 devmon_report_device(dev, true);
1760
1761 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1762
1763 config_process_deferred(&deferred_config_queue, dev);
1764 return dev;
1765 }
1766
1767 /*
1768 * Caller must hold alldevs_lock.
1769 */
1770 static void
1771 config_collect_garbage(struct devicelist *garbage)
1772 {
1773 device_t dv;
1774
1775 KASSERT(!cpu_intr_p());
1776 KASSERT(!cpu_softintr_p());
1777 KASSERT(mutex_owned(&alldevs_lock));
1778
1779 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1780 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1781 if (dv->dv_del_gen != 0)
1782 break;
1783 }
1784 if (dv == NULL) {
1785 alldevs_garbage = false;
1786 break;
1787 }
1788 config_devunlink(dv, garbage);
1789 }
1790 KASSERT(mutex_owned(&alldevs_lock));
1791 }
1792
1793 static void
1794 config_dump_garbage(struct devicelist *garbage)
1795 {
1796 device_t dv;
1797
1798 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1799 TAILQ_REMOVE(garbage, dv, dv_list);
1800 config_devdelete(dv);
1801 }
1802 }
1803
1804 /*
1805 * Detach a device. Optionally forced (e.g. because of hardware
1806 * removal) and quiet. Returns zero if successful, non-zero
1807 * (an error code) otherwise.
1808 *
1809 * Note that this code wants to be run from a process context, so
1810 * that the detach can sleep to allow processes which have a device
1811 * open to run and unwind their stacks.
1812 */
1813 int
1814 config_detach(device_t dev, int flags)
1815 {
1816 struct alldevs_foray af;
1817 struct cftable *ct;
1818 cfdata_t cf;
1819 const struct cfattach *ca;
1820 struct cfdriver *cd;
1821 device_t d __diagused;
1822 int rv = 0;
1823
1824 cf = dev->dv_cfdata;
1825 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1826 cf->cf_fstate == FSTATE_STAR),
1827 "config_detach: %s: bad device fstate: %d",
1828 device_xname(dev), cf ? cf->cf_fstate : -1);
1829
1830 cd = dev->dv_cfdriver;
1831 KASSERT(cd != NULL);
1832
1833 ca = dev->dv_cfattach;
1834 KASSERT(ca != NULL);
1835
1836 mutex_enter(&alldevs_lock);
1837 if (dev->dv_del_gen != 0) {
1838 mutex_exit(&alldevs_lock);
1839 #ifdef DIAGNOSTIC
1840 printf("%s: %s is already detached\n", __func__,
1841 device_xname(dev));
1842 #endif /* DIAGNOSTIC */
1843 return ENOENT;
1844 }
1845 alldevs_nwrite++;
1846 mutex_exit(&alldevs_lock);
1847
1848 if (!detachall &&
1849 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1850 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1851 rv = EOPNOTSUPP;
1852 } else if (ca->ca_detach != NULL) {
1853 rv = (*ca->ca_detach)(dev, flags);
1854 } else
1855 rv = EOPNOTSUPP;
1856
1857 /*
1858 * If it was not possible to detach the device, then we either
1859 * panic() (for the forced but failed case), or return an error.
1860 *
1861 * If it was possible to detach the device, ensure that the
1862 * device is deactivated.
1863 */
1864 if (rv == 0)
1865 dev->dv_flags &= ~DVF_ACTIVE;
1866 else if ((flags & DETACH_FORCE) == 0)
1867 goto out;
1868 else {
1869 panic("config_detach: forced detach of %s failed (%d)",
1870 device_xname(dev), rv);
1871 }
1872
1873 /*
1874 * The device has now been successfully detached.
1875 */
1876
1877 /* Let userland know */
1878 devmon_report_device(dev, false);
1879
1880 #ifdef DIAGNOSTIC
1881 /*
1882 * Sanity: If you're successfully detached, you should have no
1883 * children. (Note that because children must be attached
1884 * after parents, we only need to search the latter part of
1885 * the list.)
1886 */
1887 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1888 d = TAILQ_NEXT(d, dv_list)) {
1889 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1890 printf("config_detach: detached device %s"
1891 " has children %s\n", device_xname(dev),
1892 device_xname(d));
1893 panic("config_detach");
1894 }
1895 }
1896 #endif
1897
1898 /* notify the parent that the child is gone */
1899 if (dev->dv_parent) {
1900 device_t p = dev->dv_parent;
1901 if (p->dv_cfattach->ca_childdetached)
1902 (*p->dv_cfattach->ca_childdetached)(p, dev);
1903 }
1904
1905 /*
1906 * Mark cfdata to show that the unit can be reused, if possible.
1907 */
1908 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1909 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1910 if (STREQ(cf->cf_name, cd->cd_name)) {
1911 if (cf->cf_fstate == FSTATE_FOUND &&
1912 cf->cf_unit == dev->dv_unit)
1913 cf->cf_fstate = FSTATE_NOTFOUND;
1914 }
1915 }
1916 }
1917
1918 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1919 aprint_normal_dev(dev, "detached\n");
1920
1921 out:
1922 config_alldevs_enter(&af);
1923 KASSERT(alldevs_nwrite != 0);
1924 --alldevs_nwrite;
1925 if (rv == 0 && dev->dv_del_gen == 0) {
1926 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1927 config_devunlink(dev, &af.af_garbage);
1928 else {
1929 dev->dv_del_gen = alldevs_gen;
1930 alldevs_garbage = true;
1931 }
1932 }
1933 config_alldevs_exit(&af);
1934
1935 return rv;
1936 }
1937
1938 int
1939 config_detach_children(device_t parent, int flags)
1940 {
1941 device_t dv;
1942 deviter_t di;
1943 int error = 0;
1944
1945 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1946 dv = deviter_next(&di)) {
1947 if (device_parent(dv) != parent)
1948 continue;
1949 if ((error = config_detach(dv, flags)) != 0)
1950 break;
1951 }
1952 deviter_release(&di);
1953 return error;
1954 }
1955
1956 device_t
1957 shutdown_first(struct shutdown_state *s)
1958 {
1959 if (!s->initialized) {
1960 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1961 s->initialized = true;
1962 }
1963 return shutdown_next(s);
1964 }
1965
1966 device_t
1967 shutdown_next(struct shutdown_state *s)
1968 {
1969 device_t dv;
1970
1971 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1972 ;
1973
1974 if (dv == NULL)
1975 s->initialized = false;
1976
1977 return dv;
1978 }
1979
1980 bool
1981 config_detach_all(int how)
1982 {
1983 static struct shutdown_state s;
1984 device_t curdev;
1985 bool progress = false;
1986 int flags;
1987
1988 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1989 return false;
1990
1991 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1992 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1993 else
1994 flags = DETACH_SHUTDOWN;
1995
1996 for (curdev = shutdown_first(&s); curdev != NULL;
1997 curdev = shutdown_next(&s)) {
1998 aprint_debug(" detaching %s, ", device_xname(curdev));
1999 if (config_detach(curdev, flags) == 0) {
2000 progress = true;
2001 aprint_debug("success.");
2002 } else
2003 aprint_debug("failed.");
2004 }
2005 return progress;
2006 }
2007
2008 static bool
2009 device_is_ancestor_of(device_t ancestor, device_t descendant)
2010 {
2011 device_t dv;
2012
2013 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2014 if (device_parent(dv) == ancestor)
2015 return true;
2016 }
2017 return false;
2018 }
2019
2020 int
2021 config_deactivate(device_t dev)
2022 {
2023 deviter_t di;
2024 const struct cfattach *ca;
2025 device_t descendant;
2026 int s, rv = 0, oflags;
2027
2028 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2029 descendant != NULL;
2030 descendant = deviter_next(&di)) {
2031 if (dev != descendant &&
2032 !device_is_ancestor_of(dev, descendant))
2033 continue;
2034
2035 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2036 continue;
2037
2038 ca = descendant->dv_cfattach;
2039 oflags = descendant->dv_flags;
2040
2041 descendant->dv_flags &= ~DVF_ACTIVE;
2042 if (ca->ca_activate == NULL)
2043 continue;
2044 s = splhigh();
2045 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2046 splx(s);
2047 if (rv != 0)
2048 descendant->dv_flags = oflags;
2049 }
2050 deviter_release(&di);
2051 return rv;
2052 }
2053
2054 /*
2055 * Defer the configuration of the specified device until all
2056 * of its parent's devices have been attached.
2057 */
2058 void
2059 config_defer(device_t dev, void (*func)(device_t))
2060 {
2061 struct deferred_config *dc;
2062
2063 if (dev->dv_parent == NULL)
2064 panic("config_defer: can't defer config of a root device");
2065
2066 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2067
2068 config_pending_incr(dev);
2069
2070 mutex_enter(&config_misc_lock);
2071 #ifdef DIAGNOSTIC
2072 struct deferred_config *odc;
2073 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2074 if (odc->dc_dev == dev)
2075 panic("config_defer: deferred twice");
2076 }
2077 #endif
2078 dc->dc_dev = dev;
2079 dc->dc_func = func;
2080 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2081 mutex_exit(&config_misc_lock);
2082 }
2083
2084 /*
2085 * Defer some autoconfiguration for a device until after interrupts
2086 * are enabled.
2087 */
2088 void
2089 config_interrupts(device_t dev, void (*func)(device_t))
2090 {
2091 struct deferred_config *dc;
2092
2093 /*
2094 * If interrupts are enabled, callback now.
2095 */
2096 if (cold == 0) {
2097 (*func)(dev);
2098 return;
2099 }
2100
2101 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2102
2103 config_pending_incr(dev);
2104
2105 mutex_enter(&config_misc_lock);
2106 #ifdef DIAGNOSTIC
2107 struct deferred_config *odc;
2108 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2109 if (odc->dc_dev == dev)
2110 panic("config_interrupts: deferred twice");
2111 }
2112 #endif
2113 dc->dc_dev = dev;
2114 dc->dc_func = func;
2115 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2116 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2117 mutex_exit(&config_misc_lock);
2118 }
2119
2120 /*
2121 * Defer some autoconfiguration for a device until after root file system
2122 * is mounted (to load firmware etc).
2123 */
2124 void
2125 config_mountroot(device_t dev, void (*func)(device_t))
2126 {
2127 struct deferred_config *dc;
2128
2129 /*
2130 * If root file system is mounted, callback now.
2131 */
2132 if (root_is_mounted) {
2133 (*func)(dev);
2134 return;
2135 }
2136
2137 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2138
2139 mutex_enter(&config_misc_lock);
2140 #ifdef DIAGNOSTIC
2141 struct deferred_config *odc;
2142 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2143 if (odc->dc_dev == dev)
2144 panic("%s: deferred twice", __func__);
2145 }
2146 #endif
2147
2148 dc->dc_dev = dev;
2149 dc->dc_func = func;
2150 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2151 mutex_exit(&config_misc_lock);
2152 }
2153
2154 /*
2155 * Process a deferred configuration queue.
2156 */
2157 static void
2158 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2159 {
2160 struct deferred_config *dc;
2161
2162 mutex_enter(&config_misc_lock);
2163 dc = TAILQ_FIRST(queue);
2164 while (dc) {
2165 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2166 TAILQ_REMOVE(queue, dc, dc_queue);
2167 mutex_exit(&config_misc_lock);
2168
2169 (*dc->dc_func)(dc->dc_dev);
2170 config_pending_decr(dc->dc_dev);
2171 kmem_free(dc, sizeof(*dc));
2172
2173 mutex_enter(&config_misc_lock);
2174 /* Restart, queue might have changed */
2175 dc = TAILQ_FIRST(queue);
2176 } else {
2177 dc = TAILQ_NEXT(dc, dc_queue);
2178 }
2179 }
2180 mutex_exit(&config_misc_lock);
2181 }
2182
2183 /*
2184 * Manipulate the config_pending semaphore.
2185 */
2186 void
2187 config_pending_incr(device_t dev)
2188 {
2189
2190 mutex_enter(&config_misc_lock);
2191 KASSERTMSG(dev->dv_pending < INT_MAX,
2192 "%s: excess config_pending_incr", device_xname(dev));
2193 if (dev->dv_pending++ == 0)
2194 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2195 #ifdef DEBUG_AUTOCONF
2196 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2197 #endif
2198 mutex_exit(&config_misc_lock);
2199 }
2200
2201 void
2202 config_pending_decr(device_t dev)
2203 {
2204
2205 mutex_enter(&config_misc_lock);
2206 KASSERTMSG(dev->dv_pending > 0,
2207 "%s: excess config_pending_decr", device_xname(dev));
2208 if (--dev->dv_pending == 0)
2209 TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2210 #ifdef DEBUG_AUTOCONF
2211 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2212 #endif
2213 if (TAILQ_EMPTY(&config_pending))
2214 cv_broadcast(&config_misc_cv);
2215 mutex_exit(&config_misc_lock);
2216 }
2217
2218 /*
2219 * Register a "finalization" routine. Finalization routines are
2220 * called iteratively once all real devices have been found during
2221 * autoconfiguration, for as long as any one finalizer has done
2222 * any work.
2223 */
2224 int
2225 config_finalize_register(device_t dev, int (*fn)(device_t))
2226 {
2227 struct finalize_hook *f;
2228
2229 /*
2230 * If finalization has already been done, invoke the
2231 * callback function now.
2232 */
2233 if (config_finalize_done) {
2234 while ((*fn)(dev) != 0)
2235 /* loop */ ;
2236 return 0;
2237 }
2238
2239 /* Ensure this isn't already on the list. */
2240 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2241 if (f->f_func == fn && f->f_dev == dev)
2242 return EEXIST;
2243 }
2244
2245 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2246 f->f_func = fn;
2247 f->f_dev = dev;
2248 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2249
2250 return 0;
2251 }
2252
2253 void
2254 config_finalize(void)
2255 {
2256 struct finalize_hook *f;
2257 struct pdevinit *pdev;
2258 extern struct pdevinit pdevinit[];
2259 int errcnt, rv;
2260
2261 /*
2262 * Now that device driver threads have been created, wait for
2263 * them to finish any deferred autoconfiguration.
2264 */
2265 mutex_enter(&config_misc_lock);
2266 while (!TAILQ_EMPTY(&config_pending)) {
2267 device_t dev;
2268 TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2269 aprint_debug_dev(dev, "holding up boot\n");
2270 cv_wait(&config_misc_cv, &config_misc_lock);
2271 }
2272 mutex_exit(&config_misc_lock);
2273
2274 KERNEL_LOCK(1, NULL);
2275
2276 /* Attach pseudo-devices. */
2277 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2278 (*pdev->pdev_attach)(pdev->pdev_count);
2279
2280 /* Run the hooks until none of them does any work. */
2281 do {
2282 rv = 0;
2283 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2284 rv |= (*f->f_func)(f->f_dev);
2285 } while (rv != 0);
2286
2287 config_finalize_done = 1;
2288
2289 /* Now free all the hooks. */
2290 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2291 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2292 kmem_free(f, sizeof(*f));
2293 }
2294
2295 KERNEL_UNLOCK_ONE(NULL);
2296
2297 errcnt = aprint_get_error_count();
2298 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2299 (boothowto & AB_VERBOSE) == 0) {
2300 mutex_enter(&config_misc_lock);
2301 if (config_do_twiddle) {
2302 config_do_twiddle = 0;
2303 printf_nolog(" done.\n");
2304 }
2305 mutex_exit(&config_misc_lock);
2306 }
2307 if (errcnt != 0) {
2308 printf("WARNING: %d error%s while detecting hardware; "
2309 "check system log.\n", errcnt,
2310 errcnt == 1 ? "" : "s");
2311 }
2312 }
2313
2314 void
2315 config_twiddle_init(void)
2316 {
2317
2318 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2319 config_do_twiddle = 1;
2320 }
2321 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2322 }
2323
2324 void
2325 config_twiddle_fn(void *cookie)
2326 {
2327
2328 mutex_enter(&config_misc_lock);
2329 if (config_do_twiddle) {
2330 twiddle();
2331 callout_schedule(&config_twiddle_ch, mstohz(100));
2332 }
2333 mutex_exit(&config_misc_lock);
2334 }
2335
2336 static void
2337 config_alldevs_enter(struct alldevs_foray *af)
2338 {
2339 TAILQ_INIT(&af->af_garbage);
2340 mutex_enter(&alldevs_lock);
2341 config_collect_garbage(&af->af_garbage);
2342 }
2343
2344 static void
2345 config_alldevs_exit(struct alldevs_foray *af)
2346 {
2347 mutex_exit(&alldevs_lock);
2348 config_dump_garbage(&af->af_garbage);
2349 }
2350
2351 /*
2352 * device_lookup:
2353 *
2354 * Look up a device instance for a given driver.
2355 */
2356 device_t
2357 device_lookup(cfdriver_t cd, int unit)
2358 {
2359 device_t dv;
2360
2361 mutex_enter(&alldevs_lock);
2362 if (unit < 0 || unit >= cd->cd_ndevs)
2363 dv = NULL;
2364 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2365 dv = NULL;
2366 mutex_exit(&alldevs_lock);
2367
2368 return dv;
2369 }
2370
2371 /*
2372 * device_lookup_private:
2373 *
2374 * Look up a softc instance for a given driver.
2375 */
2376 void *
2377 device_lookup_private(cfdriver_t cd, int unit)
2378 {
2379
2380 return device_private(device_lookup(cd, unit));
2381 }
2382
2383 /*
2384 * device_find_by_xname:
2385 *
2386 * Returns the device of the given name or NULL if it doesn't exist.
2387 */
2388 device_t
2389 device_find_by_xname(const char *name)
2390 {
2391 device_t dv;
2392 deviter_t di;
2393
2394 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2395 if (strcmp(device_xname(dv), name) == 0)
2396 break;
2397 }
2398 deviter_release(&di);
2399
2400 return dv;
2401 }
2402
2403 /*
2404 * device_find_by_driver_unit:
2405 *
2406 * Returns the device of the given driver name and unit or
2407 * NULL if it doesn't exist.
2408 */
2409 device_t
2410 device_find_by_driver_unit(const char *name, int unit)
2411 {
2412 struct cfdriver *cd;
2413
2414 if ((cd = config_cfdriver_lookup(name)) == NULL)
2415 return NULL;
2416 return device_lookup(cd, unit);
2417 }
2418
2419 static bool
2420 match_strcmp(const char * const s1, const char * const s2)
2421 {
2422 return strcmp(s1, s2) == 0;
2423 }
2424
2425 static bool
2426 match_pmatch(const char * const s1, const char * const s2)
2427 {
2428 return pmatch(s1, s2, NULL) == 2;
2429 }
2430
2431 static bool
2432 strarray_match_internal(const char ** const strings,
2433 unsigned int const nstrings, const char * const str,
2434 unsigned int * const indexp,
2435 bool (*match_fn)(const char *, const char *))
2436 {
2437 unsigned int i;
2438
2439 if (strings == NULL || nstrings == 0) {
2440 return false;
2441 }
2442
2443 for (i = 0; i < nstrings; i++) {
2444 if ((*match_fn)(strings[i], str)) {
2445 *indexp = i;
2446 return true;
2447 }
2448 }
2449
2450 return false;
2451 }
2452
2453 static int
2454 strarray_match(const char ** const strings, unsigned int const nstrings,
2455 const char * const str)
2456 {
2457 unsigned int idx;
2458
2459 if (strarray_match_internal(strings, nstrings, str, &idx,
2460 match_strcmp)) {
2461 return (int)(nstrings - idx);
2462 }
2463 return 0;
2464 }
2465
2466 static int
2467 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2468 const char * const pattern)
2469 {
2470 unsigned int idx;
2471
2472 if (strarray_match_internal(strings, nstrings, pattern, &idx,
2473 match_pmatch)) {
2474 return (int)(nstrings - idx);
2475 }
2476 return 0;
2477 }
2478
2479 static int
2480 device_compatible_match_strarray_internal(
2481 const char **device_compats, int ndevice_compats,
2482 const struct device_compatible_entry *driver_compats,
2483 const struct device_compatible_entry **matching_entryp,
2484 int (*match_fn)(const char **, unsigned int, const char *))
2485 {
2486 const struct device_compatible_entry *dce = NULL;
2487 int rv;
2488
2489 if (ndevice_compats == 0 || device_compats == NULL ||
2490 driver_compats == NULL)
2491 return 0;
2492
2493 for (dce = driver_compats; dce->compat != NULL; dce++) {
2494 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2495 if (rv != 0) {
2496 if (matching_entryp != NULL) {
2497 *matching_entryp = dce;
2498 }
2499 return rv;
2500 }
2501 }
2502 return 0;
2503 }
2504
2505 /*
2506 * device_compatible_match:
2507 *
2508 * Match a driver's "compatible" data against a device's
2509 * "compatible" strings. Returns resulted weighted by
2510 * which device "compatible" string was matched.
2511 */
2512 int
2513 device_compatible_match(const char **device_compats, int ndevice_compats,
2514 const struct device_compatible_entry *driver_compats)
2515 {
2516 return device_compatible_match_strarray_internal(device_compats,
2517 ndevice_compats, driver_compats, NULL, strarray_match);
2518 }
2519
2520 /*
2521 * device_compatible_pmatch:
2522 *
2523 * Like device_compatible_match(), but uses pmatch(9) to compare
2524 * the device "compatible" strings against patterns in the
2525 * driver's "compatible" data.
2526 */
2527 int
2528 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2529 const struct device_compatible_entry *driver_compats)
2530 {
2531 return device_compatible_match_strarray_internal(device_compats,
2532 ndevice_compats, driver_compats, NULL, strarray_pmatch);
2533 }
2534
2535 static int
2536 device_compatible_match_strlist_internal(
2537 const char * const device_compats, size_t const device_compatsize,
2538 const struct device_compatible_entry *driver_compats,
2539 const struct device_compatible_entry **matching_entryp,
2540 int (*match_fn)(const char *, size_t, const char *))
2541 {
2542 const struct device_compatible_entry *dce = NULL;
2543 int rv;
2544
2545 if (device_compats == NULL || device_compatsize == 0 ||
2546 driver_compats == NULL)
2547 return 0;
2548
2549 for (dce = driver_compats; dce->compat != NULL; dce++) {
2550 rv = (*match_fn)(device_compats, device_compatsize,
2551 dce->compat);
2552 if (rv != 0) {
2553 if (matching_entryp != NULL) {
2554 *matching_entryp = dce;
2555 }
2556 return rv;
2557 }
2558 }
2559 return 0;
2560 }
2561
2562 /*
2563 * device_compatible_match_strlist:
2564 *
2565 * Like device_compatible_match(), but take the device
2566 * "compatible" strings as an OpenFirmware-style string
2567 * list.
2568 */
2569 int
2570 device_compatible_match_strlist(
2571 const char * const device_compats, size_t const device_compatsize,
2572 const struct device_compatible_entry *driver_compats)
2573 {
2574 return device_compatible_match_strlist_internal(device_compats,
2575 device_compatsize, driver_compats, NULL, strlist_match);
2576 }
2577
2578 /*
2579 * device_compatible_pmatch_strlist:
2580 *
2581 * Like device_compatible_pmatch(), but take the device
2582 * "compatible" strings as an OpenFirmware-style string
2583 * list.
2584 */
2585 int
2586 device_compatible_pmatch_strlist(
2587 const char * const device_compats, size_t const device_compatsize,
2588 const struct device_compatible_entry *driver_compats)
2589 {
2590 return device_compatible_match_strlist_internal(device_compats,
2591 device_compatsize, driver_compats, NULL, strlist_pmatch);
2592 }
2593
2594 static int
2595 device_compatible_match_id_internal(
2596 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2597 const struct device_compatible_entry *driver_compats,
2598 const struct device_compatible_entry **matching_entryp)
2599 {
2600 const struct device_compatible_entry *dce = NULL;
2601
2602 if (mask == 0)
2603 return 0;
2604
2605 for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2606 if ((id & mask) == dce->id) {
2607 if (matching_entryp != NULL) {
2608 *matching_entryp = dce;
2609 }
2610 return 1;
2611 }
2612 }
2613 return 0;
2614 }
2615
2616 /*
2617 * device_compatible_match_id:
2618 *
2619 * Like device_compatible_match(), but takes a single
2620 * unsigned integer device ID.
2621 */
2622 int
2623 device_compatible_match_id(
2624 uintptr_t const id, uintptr_t const sentinel_id,
2625 const struct device_compatible_entry *driver_compats)
2626 {
2627 return device_compatible_match_id_internal(id, (uintptr_t)-1,
2628 sentinel_id, driver_compats, NULL);
2629 }
2630
2631 /*
2632 * device_compatible_lookup:
2633 *
2634 * Look up and return the device_compatible_entry, using the
2635 * same matching criteria used by device_compatible_match().
2636 */
2637 const struct device_compatible_entry *
2638 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2639 const struct device_compatible_entry *driver_compats)
2640 {
2641 const struct device_compatible_entry *dce;
2642
2643 if (device_compatible_match_strarray_internal(device_compats,
2644 ndevice_compats, driver_compats, &dce, strarray_match)) {
2645 return dce;
2646 }
2647 return NULL;
2648 }
2649
2650 /*
2651 * device_compatible_plookup:
2652 *
2653 * Look up and return the device_compatible_entry, using the
2654 * same matching criteria used by device_compatible_pmatch().
2655 */
2656 const struct device_compatible_entry *
2657 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2658 const struct device_compatible_entry *driver_compats)
2659 {
2660 const struct device_compatible_entry *dce;
2661
2662 if (device_compatible_match_strarray_internal(device_compats,
2663 ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2664 return dce;
2665 }
2666 return NULL;
2667 }
2668
2669 /*
2670 * device_compatible_lookup_strlist:
2671 *
2672 * Like device_compatible_lookup(), but take the device
2673 * "compatible" strings as an OpenFirmware-style string
2674 * list.
2675 */
2676 const struct device_compatible_entry *
2677 device_compatible_lookup_strlist(
2678 const char * const device_compats, size_t const device_compatsize,
2679 const struct device_compatible_entry *driver_compats)
2680 {
2681 const struct device_compatible_entry *dce;
2682
2683 if (device_compatible_match_strlist_internal(device_compats,
2684 device_compatsize, driver_compats, &dce, strlist_match)) {
2685 return dce;
2686 }
2687 return NULL;
2688 }
2689
2690 /*
2691 * device_compatible_plookup_strlist:
2692 *
2693 * Like device_compatible_plookup(), but take the device
2694 * "compatible" strings as an OpenFirmware-style string
2695 * list.
2696 */
2697 const struct device_compatible_entry *
2698 device_compatible_plookup_strlist(
2699 const char * const device_compats, size_t const device_compatsize,
2700 const struct device_compatible_entry *driver_compats)
2701 {
2702 const struct device_compatible_entry *dce;
2703
2704 if (device_compatible_match_strlist_internal(device_compats,
2705 device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2706 return dce;
2707 }
2708 return NULL;
2709 }
2710
2711 /*
2712 * device_compatible_lookup_id:
2713 *
2714 * Like device_compatible_lookup(), but takes a single
2715 * unsigned integer device ID.
2716 */
2717 const struct device_compatible_entry *
2718 device_compatible_lookup_id(
2719 uintptr_t const id, uintptr_t const sentinel_id,
2720 const struct device_compatible_entry *driver_compats)
2721 {
2722 const struct device_compatible_entry *dce;
2723
2724 if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2725 sentinel_id, driver_compats, &dce)) {
2726 return dce;
2727 }
2728 return NULL;
2729 }
2730
2731 /*
2732 * Power management related functions.
2733 */
2734
2735 bool
2736 device_pmf_is_registered(device_t dev)
2737 {
2738 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2739 }
2740
2741 bool
2742 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2743 {
2744 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2745 return true;
2746 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2747 return false;
2748 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2749 dev->dv_driver_suspend != NULL &&
2750 !(*dev->dv_driver_suspend)(dev, qual))
2751 return false;
2752
2753 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2754 return true;
2755 }
2756
2757 bool
2758 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2759 {
2760 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2761 return true;
2762 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2763 return false;
2764 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2765 dev->dv_driver_resume != NULL &&
2766 !(*dev->dv_driver_resume)(dev, qual))
2767 return false;
2768
2769 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2770 return true;
2771 }
2772
2773 bool
2774 device_pmf_driver_shutdown(device_t dev, int how)
2775 {
2776
2777 if (*dev->dv_driver_shutdown != NULL &&
2778 !(*dev->dv_driver_shutdown)(dev, how))
2779 return false;
2780 return true;
2781 }
2782
2783 bool
2784 device_pmf_driver_register(device_t dev,
2785 bool (*suspend)(device_t, const pmf_qual_t *),
2786 bool (*resume)(device_t, const pmf_qual_t *),
2787 bool (*shutdown)(device_t, int))
2788 {
2789 dev->dv_driver_suspend = suspend;
2790 dev->dv_driver_resume = resume;
2791 dev->dv_driver_shutdown = shutdown;
2792 dev->dv_flags |= DVF_POWER_HANDLERS;
2793 return true;
2794 }
2795
2796 static const char *
2797 curlwp_name(void)
2798 {
2799 if (curlwp->l_name != NULL)
2800 return curlwp->l_name;
2801 else
2802 return curlwp->l_proc->p_comm;
2803 }
2804
2805 void
2806 device_pmf_driver_deregister(device_t dev)
2807 {
2808 device_lock_t dvl = device_getlock(dev);
2809
2810 dev->dv_driver_suspend = NULL;
2811 dev->dv_driver_resume = NULL;
2812
2813 mutex_enter(&dvl->dvl_mtx);
2814 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2815 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2816 /* Wake a thread that waits for the lock. That
2817 * thread will fail to acquire the lock, and then
2818 * it will wake the next thread that waits for the
2819 * lock, or else it will wake us.
2820 */
2821 cv_signal(&dvl->dvl_cv);
2822 pmflock_debug(dev, __func__, __LINE__);
2823 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2824 pmflock_debug(dev, __func__, __LINE__);
2825 }
2826 mutex_exit(&dvl->dvl_mtx);
2827 }
2828
2829 bool
2830 device_pmf_driver_child_register(device_t dev)
2831 {
2832 device_t parent = device_parent(dev);
2833
2834 if (parent == NULL || parent->dv_driver_child_register == NULL)
2835 return true;
2836 return (*parent->dv_driver_child_register)(dev);
2837 }
2838
2839 void
2840 device_pmf_driver_set_child_register(device_t dev,
2841 bool (*child_register)(device_t))
2842 {
2843 dev->dv_driver_child_register = child_register;
2844 }
2845
2846 static void
2847 pmflock_debug(device_t dev, const char *func, int line)
2848 {
2849 device_lock_t dvl = device_getlock(dev);
2850
2851 aprint_debug_dev(dev,
2852 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2853 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2854 }
2855
2856 static bool
2857 device_pmf_lock1(device_t dev)
2858 {
2859 device_lock_t dvl = device_getlock(dev);
2860
2861 while (device_pmf_is_registered(dev) &&
2862 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2863 dvl->dvl_nwait++;
2864 pmflock_debug(dev, __func__, __LINE__);
2865 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2866 pmflock_debug(dev, __func__, __LINE__);
2867 dvl->dvl_nwait--;
2868 }
2869 if (!device_pmf_is_registered(dev)) {
2870 pmflock_debug(dev, __func__, __LINE__);
2871 /* We could not acquire the lock, but some other thread may
2872 * wait for it, also. Wake that thread.
2873 */
2874 cv_signal(&dvl->dvl_cv);
2875 return false;
2876 }
2877 dvl->dvl_nlock++;
2878 dvl->dvl_holder = curlwp;
2879 pmflock_debug(dev, __func__, __LINE__);
2880 return true;
2881 }
2882
2883 bool
2884 device_pmf_lock(device_t dev)
2885 {
2886 bool rc;
2887 device_lock_t dvl = device_getlock(dev);
2888
2889 mutex_enter(&dvl->dvl_mtx);
2890 rc = device_pmf_lock1(dev);
2891 mutex_exit(&dvl->dvl_mtx);
2892
2893 return rc;
2894 }
2895
2896 void
2897 device_pmf_unlock(device_t dev)
2898 {
2899 device_lock_t dvl = device_getlock(dev);
2900
2901 KASSERT(dvl->dvl_nlock > 0);
2902 mutex_enter(&dvl->dvl_mtx);
2903 if (--dvl->dvl_nlock == 0)
2904 dvl->dvl_holder = NULL;
2905 cv_signal(&dvl->dvl_cv);
2906 pmflock_debug(dev, __func__, __LINE__);
2907 mutex_exit(&dvl->dvl_mtx);
2908 }
2909
2910 device_lock_t
2911 device_getlock(device_t dev)
2912 {
2913 return &dev->dv_lock;
2914 }
2915
2916 void *
2917 device_pmf_bus_private(device_t dev)
2918 {
2919 return dev->dv_bus_private;
2920 }
2921
2922 bool
2923 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2924 {
2925 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2926 return true;
2927 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2928 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2929 return false;
2930 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2931 dev->dv_bus_suspend != NULL &&
2932 !(*dev->dv_bus_suspend)(dev, qual))
2933 return false;
2934
2935 dev->dv_flags |= DVF_BUS_SUSPENDED;
2936 return true;
2937 }
2938
2939 bool
2940 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2941 {
2942 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2943 return true;
2944 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2945 dev->dv_bus_resume != NULL &&
2946 !(*dev->dv_bus_resume)(dev, qual))
2947 return false;
2948
2949 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2950 return true;
2951 }
2952
2953 bool
2954 device_pmf_bus_shutdown(device_t dev, int how)
2955 {
2956
2957 if (*dev->dv_bus_shutdown != NULL &&
2958 !(*dev->dv_bus_shutdown)(dev, how))
2959 return false;
2960 return true;
2961 }
2962
2963 void
2964 device_pmf_bus_register(device_t dev, void *priv,
2965 bool (*suspend)(device_t, const pmf_qual_t *),
2966 bool (*resume)(device_t, const pmf_qual_t *),
2967 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2968 {
2969 dev->dv_bus_private = priv;
2970 dev->dv_bus_resume = resume;
2971 dev->dv_bus_suspend = suspend;
2972 dev->dv_bus_shutdown = shutdown;
2973 dev->dv_bus_deregister = deregister;
2974 }
2975
2976 void
2977 device_pmf_bus_deregister(device_t dev)
2978 {
2979 if (dev->dv_bus_deregister == NULL)
2980 return;
2981 (*dev->dv_bus_deregister)(dev);
2982 dev->dv_bus_private = NULL;
2983 dev->dv_bus_suspend = NULL;
2984 dev->dv_bus_resume = NULL;
2985 dev->dv_bus_deregister = NULL;
2986 }
2987
2988 void *
2989 device_pmf_class_private(device_t dev)
2990 {
2991 return dev->dv_class_private;
2992 }
2993
2994 bool
2995 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2996 {
2997 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2998 return true;
2999 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3000 dev->dv_class_suspend != NULL &&
3001 !(*dev->dv_class_suspend)(dev, qual))
3002 return false;
3003
3004 dev->dv_flags |= DVF_CLASS_SUSPENDED;
3005 return true;
3006 }
3007
3008 bool
3009 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3010 {
3011 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3012 return true;
3013 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3014 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3015 return false;
3016 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3017 dev->dv_class_resume != NULL &&
3018 !(*dev->dv_class_resume)(dev, qual))
3019 return false;
3020
3021 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3022 return true;
3023 }
3024
3025 void
3026 device_pmf_class_register(device_t dev, void *priv,
3027 bool (*suspend)(device_t, const pmf_qual_t *),
3028 bool (*resume)(device_t, const pmf_qual_t *),
3029 void (*deregister)(device_t))
3030 {
3031 dev->dv_class_private = priv;
3032 dev->dv_class_suspend = suspend;
3033 dev->dv_class_resume = resume;
3034 dev->dv_class_deregister = deregister;
3035 }
3036
3037 void
3038 device_pmf_class_deregister(device_t dev)
3039 {
3040 if (dev->dv_class_deregister == NULL)
3041 return;
3042 (*dev->dv_class_deregister)(dev);
3043 dev->dv_class_private = NULL;
3044 dev->dv_class_suspend = NULL;
3045 dev->dv_class_resume = NULL;
3046 dev->dv_class_deregister = NULL;
3047 }
3048
3049 bool
3050 device_active(device_t dev, devactive_t type)
3051 {
3052 size_t i;
3053
3054 if (dev->dv_activity_count == 0)
3055 return false;
3056
3057 for (i = 0; i < dev->dv_activity_count; ++i) {
3058 if (dev->dv_activity_handlers[i] == NULL)
3059 break;
3060 (*dev->dv_activity_handlers[i])(dev, type);
3061 }
3062
3063 return true;
3064 }
3065
3066 bool
3067 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3068 {
3069 void (**new_handlers)(device_t, devactive_t);
3070 void (**old_handlers)(device_t, devactive_t);
3071 size_t i, old_size, new_size;
3072 int s;
3073
3074 old_handlers = dev->dv_activity_handlers;
3075 old_size = dev->dv_activity_count;
3076
3077 KASSERT(old_size == 0 || old_handlers != NULL);
3078
3079 for (i = 0; i < old_size; ++i) {
3080 KASSERT(old_handlers[i] != handler);
3081 if (old_handlers[i] == NULL) {
3082 old_handlers[i] = handler;
3083 return true;
3084 }
3085 }
3086
3087 new_size = old_size + 4;
3088 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3089
3090 for (i = 0; i < old_size; ++i)
3091 new_handlers[i] = old_handlers[i];
3092 new_handlers[old_size] = handler;
3093 for (i = old_size+1; i < new_size; ++i)
3094 new_handlers[i] = NULL;
3095
3096 s = splhigh();
3097 dev->dv_activity_count = new_size;
3098 dev->dv_activity_handlers = new_handlers;
3099 splx(s);
3100
3101 if (old_size > 0)
3102 kmem_free(old_handlers, sizeof(void *) * old_size);
3103
3104 return true;
3105 }
3106
3107 void
3108 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3109 {
3110 void (**old_handlers)(device_t, devactive_t);
3111 size_t i, old_size;
3112 int s;
3113
3114 old_handlers = dev->dv_activity_handlers;
3115 old_size = dev->dv_activity_count;
3116
3117 for (i = 0; i < old_size; ++i) {
3118 if (old_handlers[i] == handler)
3119 break;
3120 if (old_handlers[i] == NULL)
3121 return; /* XXX panic? */
3122 }
3123
3124 if (i == old_size)
3125 return; /* XXX panic? */
3126
3127 for (; i < old_size - 1; ++i) {
3128 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3129 continue;
3130
3131 if (i == 0) {
3132 s = splhigh();
3133 dev->dv_activity_count = 0;
3134 dev->dv_activity_handlers = NULL;
3135 splx(s);
3136 kmem_free(old_handlers, sizeof(void *) * old_size);
3137 }
3138 return;
3139 }
3140 old_handlers[i] = NULL;
3141 }
3142
3143 /* Return true iff the device_t `dev' exists at generation `gen'. */
3144 static bool
3145 device_exists_at(device_t dv, devgen_t gen)
3146 {
3147 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3148 dv->dv_add_gen <= gen;
3149 }
3150
3151 static bool
3152 deviter_visits(const deviter_t *di, device_t dv)
3153 {
3154 return device_exists_at(dv, di->di_gen);
3155 }
3156
3157 /*
3158 * Device Iteration
3159 *
3160 * deviter_t: a device iterator. Holds state for a "walk" visiting
3161 * each device_t's in the device tree.
3162 *
3163 * deviter_init(di, flags): initialize the device iterator `di'
3164 * to "walk" the device tree. deviter_next(di) will return
3165 * the first device_t in the device tree, or NULL if there are
3166 * no devices.
3167 *
3168 * `flags' is one or more of DEVITER_F_RW, indicating that the
3169 * caller intends to modify the device tree by calling
3170 * config_detach(9) on devices in the order that the iterator
3171 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3172 * nearest the "root" of the device tree to be returned, first;
3173 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3174 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3175 * indicating both that deviter_init() should not respect any
3176 * locks on the device tree, and that deviter_next(di) may run
3177 * in more than one LWP before the walk has finished.
3178 *
3179 * Only one DEVITER_F_RW iterator may be in the device tree at
3180 * once.
3181 *
3182 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3183 *
3184 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3185 * DEVITER_F_LEAVES_FIRST are used in combination.
3186 *
3187 * deviter_first(di, flags): initialize the device iterator `di'
3188 * and return the first device_t in the device tree, or NULL
3189 * if there are no devices. The statement
3190 *
3191 * dv = deviter_first(di);
3192 *
3193 * is shorthand for
3194 *
3195 * deviter_init(di);
3196 * dv = deviter_next(di);
3197 *
3198 * deviter_next(di): return the next device_t in the device tree,
3199 * or NULL if there are no more devices. deviter_next(di)
3200 * is undefined if `di' was not initialized with deviter_init() or
3201 * deviter_first().
3202 *
3203 * deviter_release(di): stops iteration (subsequent calls to
3204 * deviter_next() will return NULL), releases any locks and
3205 * resources held by the device iterator.
3206 *
3207 * Device iteration does not return device_t's in any particular
3208 * order. An iterator will never return the same device_t twice.
3209 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3210 * is called repeatedly on the same `di', it will eventually return
3211 * NULL. It is ok to attach/detach devices during device iteration.
3212 */
3213 void
3214 deviter_init(deviter_t *di, deviter_flags_t flags)
3215 {
3216 device_t dv;
3217
3218 memset(di, 0, sizeof(*di));
3219
3220 if ((flags & DEVITER_F_SHUTDOWN) != 0)
3221 flags |= DEVITER_F_RW;
3222
3223 mutex_enter(&alldevs_lock);
3224 if ((flags & DEVITER_F_RW) != 0)
3225 alldevs_nwrite++;
3226 else
3227 alldevs_nread++;
3228 di->di_gen = alldevs_gen++;
3229 di->di_flags = flags;
3230
3231 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3232 case DEVITER_F_LEAVES_FIRST:
3233 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3234 if (!deviter_visits(di, dv))
3235 continue;
3236 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3237 }
3238 break;
3239 case DEVITER_F_ROOT_FIRST:
3240 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3241 if (!deviter_visits(di, dv))
3242 continue;
3243 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3244 }
3245 break;
3246 default:
3247 break;
3248 }
3249
3250 deviter_reinit(di);
3251 mutex_exit(&alldevs_lock);
3252 }
3253
3254 static void
3255 deviter_reinit(deviter_t *di)
3256 {
3257
3258 KASSERT(mutex_owned(&alldevs_lock));
3259 if ((di->di_flags & DEVITER_F_RW) != 0)
3260 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3261 else
3262 di->di_prev = TAILQ_FIRST(&alldevs);
3263 }
3264
3265 device_t
3266 deviter_first(deviter_t *di, deviter_flags_t flags)
3267 {
3268
3269 deviter_init(di, flags);
3270 return deviter_next(di);
3271 }
3272
3273 static device_t
3274 deviter_next2(deviter_t *di)
3275 {
3276 device_t dv;
3277
3278 KASSERT(mutex_owned(&alldevs_lock));
3279
3280 dv = di->di_prev;
3281
3282 if (dv == NULL)
3283 return NULL;
3284
3285 if ((di->di_flags & DEVITER_F_RW) != 0)
3286 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3287 else
3288 di->di_prev = TAILQ_NEXT(dv, dv_list);
3289
3290 return dv;
3291 }
3292
3293 static device_t
3294 deviter_next1(deviter_t *di)
3295 {
3296 device_t dv;
3297
3298 KASSERT(mutex_owned(&alldevs_lock));
3299
3300 do {
3301 dv = deviter_next2(di);
3302 } while (dv != NULL && !deviter_visits(di, dv));
3303
3304 return dv;
3305 }
3306
3307 device_t
3308 deviter_next(deviter_t *di)
3309 {
3310 device_t dv = NULL;
3311
3312 mutex_enter(&alldevs_lock);
3313 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3314 case 0:
3315 dv = deviter_next1(di);
3316 break;
3317 case DEVITER_F_LEAVES_FIRST:
3318 while (di->di_curdepth >= 0) {
3319 if ((dv = deviter_next1(di)) == NULL) {
3320 di->di_curdepth--;
3321 deviter_reinit(di);
3322 } else if (dv->dv_depth == di->di_curdepth)
3323 break;
3324 }
3325 break;
3326 case DEVITER_F_ROOT_FIRST:
3327 while (di->di_curdepth <= di->di_maxdepth) {
3328 if ((dv = deviter_next1(di)) == NULL) {
3329 di->di_curdepth++;
3330 deviter_reinit(di);
3331 } else if (dv->dv_depth == di->di_curdepth)
3332 break;
3333 }
3334 break;
3335 default:
3336 break;
3337 }
3338 mutex_exit(&alldevs_lock);
3339
3340 return dv;
3341 }
3342
3343 void
3344 deviter_release(deviter_t *di)
3345 {
3346 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3347
3348 mutex_enter(&alldevs_lock);
3349 if (rw)
3350 --alldevs_nwrite;
3351 else
3352 --alldevs_nread;
3353 /* XXX wake a garbage-collection thread */
3354 mutex_exit(&alldevs_lock);
3355 }
3356
3357 const char *
3358 cfdata_ifattr(const struct cfdata *cf)
3359 {
3360 return cf->cf_pspec->cfp_iattr;
3361 }
3362
3363 bool
3364 ifattr_match(const char *snull, const char *t)
3365 {
3366 return (snull == NULL) || strcmp(snull, t) == 0;
3367 }
3368
3369 void
3370 null_childdetached(device_t self, device_t child)
3371 {
3372 /* do nothing */
3373 }
3374
3375 static void
3376 sysctl_detach_setup(struct sysctllog **clog)
3377 {
3378
3379 sysctl_createv(clog, 0, NULL, NULL,
3380 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3381 CTLTYPE_BOOL, "detachall",
3382 SYSCTL_DESCR("Detach all devices at shutdown"),
3383 NULL, 0, &detachall, 0,
3384 CTL_KERN, CTL_CREATE, CTL_EOL);
3385 }
3386