Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.3
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.3 2021/03/21 21:09:16 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.3 2021/03/21 21:09:16 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 static struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 static struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 static int interrupt_config_threads = 8;
    201 static struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 static int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    222 static kmutex_t alldevs_lock __cacheline_aligned;
    223 static devgen_t alldevs_gen = 1;
    224 static int alldevs_nread = 0;
    225 static int alldevs_nwrite = 0;
    226 static bool alldevs_garbage = false;
    227 
    228 static struct devicelist config_pending =
    229     TAILQ_HEAD_INITIALIZER(config_pending);
    230 static kmutex_t config_misc_lock;
    231 static kcondvar_t config_misc_cv;
    232 
    233 static bool detachall = false;
    234 
    235 #define	STREQ(s1, s2)			\
    236 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    237 
    238 static bool config_initialized = false;	/* config_init() has been called. */
    239 
    240 static int config_do_twiddle;
    241 static callout_t config_twiddle_ch;
    242 
    243 static void sysctl_detach_setup(struct sysctllog **);
    244 
    245 int no_devmon_insert(const char *, prop_dictionary_t);
    246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    247 
    248 typedef int (*cfdriver_fn)(struct cfdriver *);
    249 static int
    250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    251 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    252 	const char *style, bool dopanic)
    253 {
    254 	void (*pr)(const char *, ...) __printflike(1, 2) =
    255 	    dopanic ? panic : printf;
    256 	int i, error = 0, e2 __diagused;
    257 
    258 	for (i = 0; cfdriverv[i] != NULL; i++) {
    259 		if ((error = drv_do(cfdriverv[i])) != 0) {
    260 			pr("configure: `%s' driver %s failed: %d",
    261 			    cfdriverv[i]->cd_name, style, error);
    262 			goto bad;
    263 		}
    264 	}
    265 
    266 	KASSERT(error == 0);
    267 	return 0;
    268 
    269  bad:
    270 	printf("\n");
    271 	for (i--; i >= 0; i--) {
    272 		e2 = drv_undo(cfdriverv[i]);
    273 		KASSERT(e2 == 0);
    274 	}
    275 
    276 	return error;
    277 }
    278 
    279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    280 static int
    281 frob_cfattachvec(const struct cfattachinit *cfattachv,
    282 	cfattach_fn att_do, cfattach_fn att_undo,
    283 	const char *style, bool dopanic)
    284 {
    285 	const struct cfattachinit *cfai = NULL;
    286 	void (*pr)(const char *, ...) __printflike(1, 2) =
    287 	    dopanic ? panic : printf;
    288 	int j = 0, error = 0, e2 __diagused;
    289 
    290 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    291 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    292 			if ((error = att_do(cfai->cfai_name,
    293 			    cfai->cfai_list[j])) != 0) {
    294 				pr("configure: attachment `%s' "
    295 				    "of `%s' driver %s failed: %d",
    296 				    cfai->cfai_list[j]->ca_name,
    297 				    cfai->cfai_name, style, error);
    298 				goto bad;
    299 			}
    300 		}
    301 	}
    302 
    303 	KASSERT(error == 0);
    304 	return 0;
    305 
    306  bad:
    307 	/*
    308 	 * Rollback in reverse order.  dunno if super-important, but
    309 	 * do that anyway.  Although the code looks a little like
    310 	 * someone did a little integration (in the math sense).
    311 	 */
    312 	printf("\n");
    313 	if (cfai) {
    314 		bool last;
    315 
    316 		for (last = false; last == false; ) {
    317 			if (cfai == &cfattachv[0])
    318 				last = true;
    319 			for (j--; j >= 0; j--) {
    320 				e2 = att_undo(cfai->cfai_name,
    321 				    cfai->cfai_list[j]);
    322 				KASSERT(e2 == 0);
    323 			}
    324 			if (!last) {
    325 				cfai--;
    326 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    327 					;
    328 			}
    329 		}
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Initialize the autoconfiguration data structures.  Normally this
    337  * is done by configure(), but some platforms need to do this very
    338  * early (to e.g. initialize the console).
    339  */
    340 void
    341 config_init(void)
    342 {
    343 
    344 	KASSERT(config_initialized == false);
    345 
    346 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    347 
    348 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&config_misc_cv, "cfgmisc");
    350 
    351 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    352 
    353 	frob_cfdrivervec(cfdriver_list_initial,
    354 	    config_cfdriver_attach, NULL, "bootstrap", true);
    355 	frob_cfattachvec(cfattachinit,
    356 	    config_cfattach_attach, NULL, "bootstrap", true);
    357 
    358 	initcftable.ct_cfdata = cfdata;
    359 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    360 
    361 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    362 	    RND_FLAG_COLLECT_TIME);
    363 
    364 	config_initialized = true;
    365 }
    366 
    367 /*
    368  * Init or fini drivers and attachments.  Either all or none
    369  * are processed (via rollback).  It would be nice if this were
    370  * atomic to outside consumers, but with the current state of
    371  * locking ...
    372  */
    373 int
    374 config_init_component(struct cfdriver * const *cfdriverv,
    375 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    376 {
    377 	int error;
    378 
    379 	if ((error = frob_cfdrivervec(cfdriverv,
    380 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    381 		return error;
    382 	if ((error = frob_cfattachvec(cfattachv,
    383 	    config_cfattach_attach, config_cfattach_detach,
    384 	    "init", false)) != 0) {
    385 		frob_cfdrivervec(cfdriverv,
    386 	            config_cfdriver_detach, NULL, "init rollback", true);
    387 		return error;
    388 	}
    389 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    390 		frob_cfattachvec(cfattachv,
    391 		    config_cfattach_detach, NULL, "init rollback", true);
    392 		frob_cfdrivervec(cfdriverv,
    393 	            config_cfdriver_detach, NULL, "init rollback", true);
    394 		return error;
    395 	}
    396 
    397 	return 0;
    398 }
    399 
    400 int
    401 config_fini_component(struct cfdriver * const *cfdriverv,
    402 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    403 {
    404 	int error;
    405 
    406 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    407 		return error;
    408 	if ((error = frob_cfattachvec(cfattachv,
    409 	    config_cfattach_detach, config_cfattach_attach,
    410 	    "fini", false)) != 0) {
    411 		if (config_cfdata_attach(cfdatav, 0) != 0)
    412 			panic("config_cfdata fini rollback failed");
    413 		return error;
    414 	}
    415 	if ((error = frob_cfdrivervec(cfdriverv,
    416 	    config_cfdriver_detach, config_cfdriver_attach,
    417 	    "fini", false)) != 0) {
    418 		frob_cfattachvec(cfattachv,
    419 	            config_cfattach_attach, NULL, "fini rollback", true);
    420 		if (config_cfdata_attach(cfdatav, 0) != 0)
    421 			panic("config_cfdata fini rollback failed");
    422 		return error;
    423 	}
    424 
    425 	return 0;
    426 }
    427 
    428 void
    429 config_init_mi(void)
    430 {
    431 
    432 	if (!config_initialized)
    433 		config_init();
    434 
    435 	sysctl_detach_setup(NULL);
    436 }
    437 
    438 void
    439 config_deferred(device_t dev)
    440 {
    441 	config_process_deferred(&deferred_config_queue, dev);
    442 	config_process_deferred(&interrupt_config_queue, dev);
    443 	config_process_deferred(&mountroot_config_queue, dev);
    444 }
    445 
    446 static void
    447 config_interrupts_thread(void *cookie)
    448 {
    449 	struct deferred_config *dc;
    450 	device_t dev;
    451 
    452 	mutex_enter(&config_misc_lock);
    453 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    454 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    455 		mutex_exit(&config_misc_lock);
    456 
    457 		dev = dc->dc_dev;
    458 		(*dc->dc_func)(dev);
    459 		if (!device_pmf_is_registered(dev))
    460 			aprint_debug_dev(dev,
    461 			    "WARNING: power management not supported\n");
    462 		config_pending_decr(dev);
    463 		kmem_free(dc, sizeof(*dc));
    464 
    465 		mutex_enter(&config_misc_lock);
    466 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    467 	}
    468 	mutex_exit(&config_misc_lock);
    469 
    470 	kthread_exit(0);
    471 }
    472 
    473 void
    474 config_create_interruptthreads(void)
    475 {
    476 	int i;
    477 
    478 	for (i = 0; i < interrupt_config_threads; i++) {
    479 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    480 		    config_interrupts_thread, NULL, NULL, "configintr");
    481 	}
    482 }
    483 
    484 static void
    485 config_mountroot_thread(void *cookie)
    486 {
    487 	struct deferred_config *dc;
    488 
    489 	mutex_enter(&config_misc_lock);
    490 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    491 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    492 		mutex_exit(&config_misc_lock);
    493 
    494 		(*dc->dc_func)(dc->dc_dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_mountrootthreads(void)
    506 {
    507 	int i;
    508 
    509 	if (!root_is_mounted)
    510 		root_is_mounted = true;
    511 
    512 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    513 				       mountroot_config_threads;
    514 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    515 					     KM_NOSLEEP);
    516 	KASSERT(mountroot_config_lwpids);
    517 	for (i = 0; i < mountroot_config_threads; i++) {
    518 		mountroot_config_lwpids[i] = 0;
    519 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    520 				     NULL, config_mountroot_thread, NULL,
    521 				     &mountroot_config_lwpids[i],
    522 				     "configroot");
    523 	}
    524 }
    525 
    526 void
    527 config_finalize_mountroot(void)
    528 {
    529 	int i, error;
    530 
    531 	for (i = 0; i < mountroot_config_threads; i++) {
    532 		if (mountroot_config_lwpids[i] == 0)
    533 			continue;
    534 
    535 		error = kthread_join(mountroot_config_lwpids[i]);
    536 		if (error)
    537 			printf("%s: thread %x joined with error %d\n",
    538 			       __func__, i, error);
    539 	}
    540 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    541 }
    542 
    543 /*
    544  * Announce device attach/detach to userland listeners.
    545  */
    546 
    547 int
    548 no_devmon_insert(const char *name, prop_dictionary_t p)
    549 {
    550 
    551 	return ENODEV;
    552 }
    553 
    554 static void
    555 devmon_report_device(device_t dev, bool isattach)
    556 {
    557 	prop_dictionary_t ev, dict = device_properties(dev);
    558 	const char *parent;
    559 	const char *what;
    560 	const char *where;
    561 	device_t pdev = device_parent(dev);
    562 
    563 	/* If currently no drvctl device, just return */
    564 	if (devmon_insert_vec == no_devmon_insert)
    565 		return;
    566 
    567 	ev = prop_dictionary_create();
    568 	if (ev == NULL)
    569 		return;
    570 
    571 	what = (isattach ? "device-attach" : "device-detach");
    572 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    573 	if (prop_dictionary_get_string(dict, "location", &where)) {
    574 		prop_dictionary_set_string(ev, "location", where);
    575 		aprint_debug("ev: %s %s at %s in [%s]\n",
    576 		    what, device_xname(dev), parent, where);
    577 	}
    578 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    579 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    580 		prop_object_release(ev);
    581 		return;
    582 	}
    583 
    584 	if ((*devmon_insert_vec)(what, ev) != 0)
    585 		prop_object_release(ev);
    586 }
    587 
    588 /*
    589  * Add a cfdriver to the system.
    590  */
    591 int
    592 config_cfdriver_attach(struct cfdriver *cd)
    593 {
    594 	struct cfdriver *lcd;
    595 
    596 	/* Make sure this driver isn't already in the system. */
    597 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    598 		if (STREQ(lcd->cd_name, cd->cd_name))
    599 			return EEXIST;
    600 	}
    601 
    602 	LIST_INIT(&cd->cd_attach);
    603 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * Remove a cfdriver from the system.
    610  */
    611 int
    612 config_cfdriver_detach(struct cfdriver *cd)
    613 {
    614 	struct alldevs_foray af;
    615 	int i, rc = 0;
    616 
    617 	config_alldevs_enter(&af);
    618 	/* Make sure there are no active instances. */
    619 	for (i = 0; i < cd->cd_ndevs; i++) {
    620 		if (cd->cd_devs[i] != NULL) {
    621 			rc = EBUSY;
    622 			break;
    623 		}
    624 	}
    625 	config_alldevs_exit(&af);
    626 
    627 	if (rc != 0)
    628 		return rc;
    629 
    630 	/* ...and no attachments loaded. */
    631 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    632 		return EBUSY;
    633 
    634 	LIST_REMOVE(cd, cd_list);
    635 
    636 	KASSERT(cd->cd_devs == NULL);
    637 
    638 	return 0;
    639 }
    640 
    641 /*
    642  * Look up a cfdriver by name.
    643  */
    644 struct cfdriver *
    645 config_cfdriver_lookup(const char *name)
    646 {
    647 	struct cfdriver *cd;
    648 
    649 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    650 		if (STREQ(cd->cd_name, name))
    651 			return cd;
    652 	}
    653 
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * Add a cfattach to the specified driver.
    659  */
    660 int
    661 config_cfattach_attach(const char *driver, struct cfattach *ca)
    662 {
    663 	struct cfattach *lca;
    664 	struct cfdriver *cd;
    665 
    666 	cd = config_cfdriver_lookup(driver);
    667 	if (cd == NULL)
    668 		return ESRCH;
    669 
    670 	/* Make sure this attachment isn't already on this driver. */
    671 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    672 		if (STREQ(lca->ca_name, ca->ca_name))
    673 			return EEXIST;
    674 	}
    675 
    676 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    677 
    678 	return 0;
    679 }
    680 
    681 /*
    682  * Remove a cfattach from the specified driver.
    683  */
    684 int
    685 config_cfattach_detach(const char *driver, struct cfattach *ca)
    686 {
    687 	struct alldevs_foray af;
    688 	struct cfdriver *cd;
    689 	device_t dev;
    690 	int i, rc = 0;
    691 
    692 	cd = config_cfdriver_lookup(driver);
    693 	if (cd == NULL)
    694 		return ESRCH;
    695 
    696 	config_alldevs_enter(&af);
    697 	/* Make sure there are no active instances. */
    698 	for (i = 0; i < cd->cd_ndevs; i++) {
    699 		if ((dev = cd->cd_devs[i]) == NULL)
    700 			continue;
    701 		if (dev->dv_cfattach == ca) {
    702 			rc = EBUSY;
    703 			break;
    704 		}
    705 	}
    706 	config_alldevs_exit(&af);
    707 
    708 	if (rc != 0)
    709 		return rc;
    710 
    711 	LIST_REMOVE(ca, ca_list);
    712 
    713 	return 0;
    714 }
    715 
    716 /*
    717  * Look up a cfattach by name.
    718  */
    719 static struct cfattach *
    720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    721 {
    722 	struct cfattach *ca;
    723 
    724 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    725 		if (STREQ(ca->ca_name, atname))
    726 			return ca;
    727 	}
    728 
    729 	return NULL;
    730 }
    731 
    732 /*
    733  * Look up a cfattach by driver/attachment name.
    734  */
    735 struct cfattach *
    736 config_cfattach_lookup(const char *name, const char *atname)
    737 {
    738 	struct cfdriver *cd;
    739 
    740 	cd = config_cfdriver_lookup(name);
    741 	if (cd == NULL)
    742 		return NULL;
    743 
    744 	return config_cfattach_lookup_cd(cd, atname);
    745 }
    746 
    747 /*
    748  * Apply the matching function and choose the best.  This is used
    749  * a few times and we want to keep the code small.
    750  */
    751 static void
    752 mapply(struct matchinfo *m, cfdata_t cf)
    753 {
    754 	int pri;
    755 
    756 	if (m->fn != NULL) {
    757 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    758 	} else {
    759 		pri = config_match(m->parent, cf, m->aux);
    760 	}
    761 	if (pri > m->pri) {
    762 		m->match = cf;
    763 		m->pri = pri;
    764 	}
    765 }
    766 
    767 int
    768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    769 {
    770 	const struct cfiattrdata *ci;
    771 	const struct cflocdesc *cl;
    772 	int nlocs, i;
    773 
    774 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    775 	KASSERT(ci);
    776 	nlocs = ci->ci_loclen;
    777 	KASSERT(!nlocs || locs);
    778 	for (i = 0; i < nlocs; i++) {
    779 		cl = &ci->ci_locdesc[i];
    780 		if (cl->cld_defaultstr != NULL &&
    781 		    cf->cf_loc[i] == cl->cld_default)
    782 			continue;
    783 		if (cf->cf_loc[i] == locs[i])
    784 			continue;
    785 		return 0;
    786 	}
    787 
    788 	return config_match(parent, cf, aux);
    789 }
    790 
    791 /*
    792  * Helper function: check whether the driver supports the interface attribute
    793  * and return its descriptor structure.
    794  */
    795 static const struct cfiattrdata *
    796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    797 {
    798 	const struct cfiattrdata * const *cpp;
    799 
    800 	if (cd->cd_attrs == NULL)
    801 		return 0;
    802 
    803 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    804 		if (STREQ((*cpp)->ci_name, ia)) {
    805 			/* Match. */
    806 			return *cpp;
    807 		}
    808 	}
    809 	return 0;
    810 }
    811 
    812 #if defined(DIAGNOSTIC)
    813 static int
    814 cfdriver_iattr_count(const struct cfdriver *cd)
    815 {
    816 	const struct cfiattrdata * const *cpp;
    817 	int i;
    818 
    819 	if (cd->cd_attrs == NULL)
    820 		return 0;
    821 
    822 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    823 		i++;
    824 	}
    825 	return i;
    826 }
    827 #endif /* DIAGNOSTIC */
    828 
    829 /*
    830  * Lookup an interface attribute description by name.
    831  * If the driver is given, consider only its supported attributes.
    832  */
    833 const struct cfiattrdata *
    834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    835 {
    836 	const struct cfdriver *d;
    837 	const struct cfiattrdata *ia;
    838 
    839 	if (cd)
    840 		return cfdriver_get_iattr(cd, name);
    841 
    842 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    843 		ia = cfdriver_get_iattr(d, name);
    844 		if (ia)
    845 			return ia;
    846 	}
    847 	return 0;
    848 }
    849 
    850 /*
    851  * Determine if `parent' is a potential parent for a device spec based
    852  * on `cfp'.
    853  */
    854 static int
    855 cfparent_match(const device_t parent, const struct cfparent *cfp)
    856 {
    857 	struct cfdriver *pcd;
    858 
    859 	/* We don't match root nodes here. */
    860 	if (cfp == NULL)
    861 		return 0;
    862 
    863 	pcd = parent->dv_cfdriver;
    864 	KASSERT(pcd != NULL);
    865 
    866 	/*
    867 	 * First, ensure this parent has the correct interface
    868 	 * attribute.
    869 	 */
    870 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    871 		return 0;
    872 
    873 	/*
    874 	 * If no specific parent device instance was specified (i.e.
    875 	 * we're attaching to the attribute only), we're done!
    876 	 */
    877 	if (cfp->cfp_parent == NULL)
    878 		return 1;
    879 
    880 	/*
    881 	 * Check the parent device's name.
    882 	 */
    883 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    884 		return 0;	/* not the same parent */
    885 
    886 	/*
    887 	 * Make sure the unit number matches.
    888 	 */
    889 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    890 	    cfp->cfp_unit == parent->dv_unit)
    891 		return 1;
    892 
    893 	/* Unit numbers don't match. */
    894 	return 0;
    895 }
    896 
    897 /*
    898  * Helper for config_cfdata_attach(): check all devices whether it could be
    899  * parent any attachment in the config data table passed, and rescan.
    900  */
    901 static void
    902 rescan_with_cfdata(const struct cfdata *cf)
    903 {
    904 	device_t d;
    905 	const struct cfdata *cf1;
    906 	deviter_t di;
    907 
    908 
    909 	/*
    910 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    911 	 * the outer loop.
    912 	 */
    913 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    914 
    915 		if (!(d->dv_cfattach->ca_rescan))
    916 			continue;
    917 
    918 		for (cf1 = cf; cf1->cf_name; cf1++) {
    919 
    920 			if (!cfparent_match(d, cf1->cf_pspec))
    921 				continue;
    922 
    923 			(*d->dv_cfattach->ca_rescan)(d,
    924 				cfdata_ifattr(cf1), cf1->cf_loc);
    925 
    926 			config_deferred(d);
    927 		}
    928 	}
    929 	deviter_release(&di);
    930 }
    931 
    932 /*
    933  * Attach a supplemental config data table and rescan potential
    934  * parent devices if required.
    935  */
    936 int
    937 config_cfdata_attach(cfdata_t cf, int scannow)
    938 {
    939 	struct cftable *ct;
    940 
    941 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    942 	ct->ct_cfdata = cf;
    943 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    944 
    945 	if (scannow)
    946 		rescan_with_cfdata(cf);
    947 
    948 	return 0;
    949 }
    950 
    951 /*
    952  * Helper for config_cfdata_detach: check whether a device is
    953  * found through any attachment in the config data table.
    954  */
    955 static int
    956 dev_in_cfdata(device_t d, cfdata_t cf)
    957 {
    958 	const struct cfdata *cf1;
    959 
    960 	for (cf1 = cf; cf1->cf_name; cf1++)
    961 		if (d->dv_cfdata == cf1)
    962 			return 1;
    963 
    964 	return 0;
    965 }
    966 
    967 /*
    968  * Detach a supplemental config data table. Detach all devices found
    969  * through that table (and thus keeping references to it) before.
    970  */
    971 int
    972 config_cfdata_detach(cfdata_t cf)
    973 {
    974 	device_t d;
    975 	int error = 0;
    976 	struct cftable *ct;
    977 	deviter_t di;
    978 
    979 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    980 	     d = deviter_next(&di)) {
    981 		if (!dev_in_cfdata(d, cf))
    982 			continue;
    983 		if ((error = config_detach(d, 0)) != 0)
    984 			break;
    985 	}
    986 	deviter_release(&di);
    987 	if (error) {
    988 		aprint_error_dev(d, "unable to detach instance\n");
    989 		return error;
    990 	}
    991 
    992 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    993 		if (ct->ct_cfdata == cf) {
    994 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    995 			kmem_free(ct, sizeof(*ct));
    996 			return 0;
    997 		}
    998 	}
    999 
   1000 	/* not found -- shouldn't happen */
   1001 	return EINVAL;
   1002 }
   1003 
   1004 /*
   1005  * Invoke the "match" routine for a cfdata entry on behalf of
   1006  * an external caller, usually a "submatch" routine.
   1007  */
   1008 int
   1009 config_match(device_t parent, cfdata_t cf, void *aux)
   1010 {
   1011 	struct cfattach *ca;
   1012 
   1013 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1014 	if (ca == NULL) {
   1015 		/* No attachment for this entry, oh well. */
   1016 		return 0;
   1017 	}
   1018 
   1019 	return (*ca->ca_match)(parent, cf, aux);
   1020 }
   1021 
   1022 static void
   1023 config_get_cfargs(cfarg_t tag,
   1024 		  cfsubmatch_t *fnp,		/* output */
   1025 		  const char **ifattrp,		/* output */
   1026 		  const int **locsp,		/* output */
   1027 		  va_list ap)
   1028 {
   1029 	cfsubmatch_t fn = NULL;
   1030 	const char *ifattr = NULL;
   1031 	const int *locs = NULL;
   1032 
   1033 	while (tag != CFARG_EOL) {
   1034 		switch (tag) {
   1035 		case CFARG_SUBMATCH:
   1036 			fn = va_arg(ap, cfsubmatch_t);
   1037 			break;
   1038 
   1039 		case CFARG_IATTR:
   1040 			ifattr = va_arg(ap, const char *);
   1041 			break;
   1042 
   1043 		case CFARG_LOCATORS:
   1044 			locs = va_arg(ap, const int *);
   1045 			break;
   1046 
   1047 		default:
   1048 			/* XXX panic? */
   1049 			/* XXX dump stack backtrace? */
   1050 			aprint_error("%s: unknown cfarg tag: %d\n",
   1051 			    __func__, tag);
   1052 			goto out;
   1053 		}
   1054 		tag = va_arg(ap, cfarg_t);
   1055 	}
   1056 
   1057  out:
   1058 	if (fnp != NULL)
   1059 		*fnp = fn;
   1060 	if (ifattrp != NULL)
   1061 		*ifattrp = ifattr;
   1062 	if (locsp != NULL)
   1063 		*locsp = locs;
   1064 }
   1065 
   1066 /*
   1067  * Iterate over all potential children of some device, calling the given
   1068  * function (default being the child's match function) for each one.
   1069  * Nonzero returns are matches; the highest value returned is considered
   1070  * the best match.  Return the `found child' if we got a match, or NULL
   1071  * otherwise.  The `aux' pointer is simply passed on through.
   1072  *
   1073  * Note that this function is designed so that it can be used to apply
   1074  * an arbitrary function to all potential children (its return value
   1075  * can be ignored).
   1076  */
   1077 static cfdata_t
   1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1079 {
   1080 	cfsubmatch_t fn;
   1081 	const char *ifattr;
   1082 	const int *locs;
   1083 	struct cftable *ct;
   1084 	cfdata_t cf;
   1085 	struct matchinfo m;
   1086 
   1087 	config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
   1088 
   1089 	KASSERT(config_initialized);
   1090 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1091 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1092 
   1093 	m.fn = fn;
   1094 	m.parent = parent;
   1095 	m.locs = locs;
   1096 	m.aux = aux;
   1097 	m.match = NULL;
   1098 	m.pri = 0;
   1099 
   1100 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1101 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1102 
   1103 			/* We don't match root nodes here. */
   1104 			if (!cf->cf_pspec)
   1105 				continue;
   1106 
   1107 			/*
   1108 			 * Skip cf if no longer eligible, otherwise scan
   1109 			 * through parents for one matching `parent', and
   1110 			 * try match function.
   1111 			 */
   1112 			if (cf->cf_fstate == FSTATE_FOUND)
   1113 				continue;
   1114 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1115 			    cf->cf_fstate == FSTATE_DSTAR)
   1116 				continue;
   1117 
   1118 			/*
   1119 			 * If an interface attribute was specified,
   1120 			 * consider only children which attach to
   1121 			 * that attribute.
   1122 			 */
   1123 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1124 				continue;
   1125 
   1126 			if (cfparent_match(parent, cf->cf_pspec))
   1127 				mapply(&m, cf);
   1128 		}
   1129 	}
   1130 	return m.match;
   1131 }
   1132 
   1133 cfdata_t
   1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1135 {
   1136 	cfdata_t cf;
   1137 	va_list ap;
   1138 
   1139 	va_start(ap, tag);
   1140 	cf = config_vsearch(parent, aux, tag, ap);
   1141 	va_end(ap);
   1142 
   1143 	return cf;
   1144 }
   1145 
   1146 /*
   1147  * Find the given root device.
   1148  * This is much like config_search, but there is no parent.
   1149  * Don't bother with multiple cfdata tables; the root node
   1150  * must always be in the initial table.
   1151  */
   1152 cfdata_t
   1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1154 {
   1155 	cfdata_t cf;
   1156 	const short *p;
   1157 	struct matchinfo m;
   1158 
   1159 	m.fn = fn;
   1160 	m.parent = ROOT;
   1161 	m.aux = aux;
   1162 	m.match = NULL;
   1163 	m.pri = 0;
   1164 	m.locs = 0;
   1165 	/*
   1166 	 * Look at root entries for matching name.  We do not bother
   1167 	 * with found-state here since only one root should ever be
   1168 	 * searched (and it must be done first).
   1169 	 */
   1170 	for (p = cfroots; *p >= 0; p++) {
   1171 		cf = &cfdata[*p];
   1172 		if (strcmp(cf->cf_name, rootname) == 0)
   1173 			mapply(&m, cf);
   1174 	}
   1175 	return m.match;
   1176 }
   1177 
   1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1179 
   1180 /*
   1181  * The given `aux' argument describes a device that has been found
   1182  * on the given parent, but not necessarily configured.  Locate the
   1183  * configuration data for that device (using the submatch function
   1184  * provided, or using candidates' cd_match configuration driver
   1185  * functions) and attach it, and return its device_t.  If the device was
   1186  * not configured, call the given `print' function and return NULL.
   1187  */
   1188 static device_t
   1189 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1190     va_list ap)
   1191 {
   1192 	cfsubmatch_t submatch;
   1193 	const char *ifattr;
   1194 	const int *locs;
   1195 	cfdata_t cf;
   1196 
   1197 	config_get_cfargs(tag, &submatch, &ifattr, &locs, ap);
   1198 
   1199 	if ((cf = config_search(parent, aux,
   1200 				CFARG_SUBMATCH, submatch,
   1201 				CFARG_IATTR, ifattr,
   1202 				CFARG_LOCATORS, locs,
   1203 				CFARG_EOL)))
   1204 		return config_attach_loc(parent, cf, locs, aux, print);
   1205 	if (print) {
   1206 		if (config_do_twiddle && cold)
   1207 			twiddle();
   1208 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1209 	}
   1210 
   1211 	/*
   1212 	 * This has the effect of mixing in a single timestamp to the
   1213 	 * entropy pool.  Experiments indicate the estimator will almost
   1214 	 * always attribute one bit of entropy to this sample; analysis
   1215 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1216 	 * bits of entropy/sample so this seems appropriately conservative.
   1217 	 */
   1218 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1219 	return NULL;
   1220 }
   1221 
   1222 #if 0
   1223 config_found_sm_loc(device_t parent,
   1224 		const char *ifattr, const int *locs, void *aux,
   1225 		cfprint_t print, cfsubmatch_t submatch)
   1226 
   1227 device_t
   1228 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1229     cfprint_t print)
   1230 {
   1231 
   1232 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1233 }
   1234 #endif
   1235 
   1236 device_t
   1237 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1238 {
   1239 	device_t dev;
   1240 	va_list ap;
   1241 
   1242 	va_start(ap, tag);
   1243 	dev = config_vfound(parent, aux, print, tag, ap);
   1244 	va_end(ap);
   1245 
   1246 	return dev;
   1247 }
   1248 
   1249 /*
   1250  * As above, but for root devices.
   1251  */
   1252 device_t
   1253 config_rootfound(const char *rootname, void *aux)
   1254 {
   1255 	cfdata_t cf;
   1256 
   1257 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1258 		return config_attach(ROOT, cf, aux, NULL);
   1259 	aprint_error("root device %s not configured\n", rootname);
   1260 	return NULL;
   1261 }
   1262 
   1263 /* just like sprintf(buf, "%d") except that it works from the end */
   1264 static char *
   1265 number(char *ep, int n)
   1266 {
   1267 
   1268 	*--ep = 0;
   1269 	while (n >= 10) {
   1270 		*--ep = (n % 10) + '0';
   1271 		n /= 10;
   1272 	}
   1273 	*--ep = n + '0';
   1274 	return ep;
   1275 }
   1276 
   1277 /*
   1278  * Expand the size of the cd_devs array if necessary.
   1279  *
   1280  * The caller must hold alldevs_lock. config_makeroom() may release and
   1281  * re-acquire alldevs_lock, so callers should re-check conditions such
   1282  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1283  * returns.
   1284  */
   1285 static void
   1286 config_makeroom(int n, struct cfdriver *cd)
   1287 {
   1288 	int ondevs, nndevs;
   1289 	device_t *osp, *nsp;
   1290 
   1291 	KASSERT(mutex_owned(&alldevs_lock));
   1292 	alldevs_nwrite++;
   1293 
   1294 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1295 		;
   1296 
   1297 	while (n >= cd->cd_ndevs) {
   1298 		/*
   1299 		 * Need to expand the array.
   1300 		 */
   1301 		ondevs = cd->cd_ndevs;
   1302 		osp = cd->cd_devs;
   1303 
   1304 		/*
   1305 		 * Release alldevs_lock around allocation, which may
   1306 		 * sleep.
   1307 		 */
   1308 		mutex_exit(&alldevs_lock);
   1309 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1310 		mutex_enter(&alldevs_lock);
   1311 
   1312 		/*
   1313 		 * If another thread moved the array while we did
   1314 		 * not hold alldevs_lock, try again.
   1315 		 */
   1316 		if (cd->cd_devs != osp) {
   1317 			mutex_exit(&alldevs_lock);
   1318 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1319 			mutex_enter(&alldevs_lock);
   1320 			continue;
   1321 		}
   1322 
   1323 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1324 		if (ondevs != 0)
   1325 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1326 
   1327 		cd->cd_ndevs = nndevs;
   1328 		cd->cd_devs = nsp;
   1329 		if (ondevs != 0) {
   1330 			mutex_exit(&alldevs_lock);
   1331 			kmem_free(osp, sizeof(device_t) * ondevs);
   1332 			mutex_enter(&alldevs_lock);
   1333 		}
   1334 	}
   1335 	KASSERT(mutex_owned(&alldevs_lock));
   1336 	alldevs_nwrite--;
   1337 }
   1338 
   1339 /*
   1340  * Put dev into the devices list.
   1341  */
   1342 static void
   1343 config_devlink(device_t dev)
   1344 {
   1345 
   1346 	mutex_enter(&alldevs_lock);
   1347 
   1348 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1349 
   1350 	dev->dv_add_gen = alldevs_gen;
   1351 	/* It is safe to add a device to the tail of the list while
   1352 	 * readers and writers are in the list.
   1353 	 */
   1354 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1355 	mutex_exit(&alldevs_lock);
   1356 }
   1357 
   1358 static void
   1359 config_devfree(device_t dev)
   1360 {
   1361 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1362 
   1363 	if (dev->dv_cfattach->ca_devsize > 0)
   1364 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1365 	kmem_free(dev, sizeof(*dev));
   1366 }
   1367 
   1368 /*
   1369  * Caller must hold alldevs_lock.
   1370  */
   1371 static void
   1372 config_devunlink(device_t dev, struct devicelist *garbage)
   1373 {
   1374 	struct device_garbage *dg = &dev->dv_garbage;
   1375 	cfdriver_t cd = device_cfdriver(dev);
   1376 	int i;
   1377 
   1378 	KASSERT(mutex_owned(&alldevs_lock));
   1379 
   1380  	/* Unlink from device list.  Link to garbage list. */
   1381 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1382 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1383 
   1384 	/* Remove from cfdriver's array. */
   1385 	cd->cd_devs[dev->dv_unit] = NULL;
   1386 
   1387 	/*
   1388 	 * If the device now has no units in use, unlink its softc array.
   1389 	 */
   1390 	for (i = 0; i < cd->cd_ndevs; i++) {
   1391 		if (cd->cd_devs[i] != NULL)
   1392 			break;
   1393 	}
   1394 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1395 	if (i == cd->cd_ndevs) {
   1396 		dg->dg_ndevs = cd->cd_ndevs;
   1397 		dg->dg_devs = cd->cd_devs;
   1398 		cd->cd_devs = NULL;
   1399 		cd->cd_ndevs = 0;
   1400 	}
   1401 }
   1402 
   1403 static void
   1404 config_devdelete(device_t dev)
   1405 {
   1406 	struct device_garbage *dg = &dev->dv_garbage;
   1407 	device_lock_t dvl = device_getlock(dev);
   1408 
   1409 	if (dg->dg_devs != NULL)
   1410 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1411 
   1412 	cv_destroy(&dvl->dvl_cv);
   1413 	mutex_destroy(&dvl->dvl_mtx);
   1414 
   1415 	KASSERT(dev->dv_properties != NULL);
   1416 	prop_object_release(dev->dv_properties);
   1417 
   1418 	if (dev->dv_activity_handlers)
   1419 		panic("%s with registered handlers", __func__);
   1420 
   1421 	if (dev->dv_locators) {
   1422 		size_t amount = *--dev->dv_locators;
   1423 		kmem_free(dev->dv_locators, amount);
   1424 	}
   1425 
   1426 	config_devfree(dev);
   1427 }
   1428 
   1429 static int
   1430 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1431 {
   1432 	int unit;
   1433 
   1434 	if (cf->cf_fstate == FSTATE_STAR) {
   1435 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1436 			if (cd->cd_devs[unit] == NULL)
   1437 				break;
   1438 		/*
   1439 		 * unit is now the unit of the first NULL device pointer,
   1440 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1441 		 */
   1442 	} else {
   1443 		unit = cf->cf_unit;
   1444 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1445 			unit = -1;
   1446 	}
   1447 	return unit;
   1448 }
   1449 
   1450 static int
   1451 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1452 {
   1453 	struct alldevs_foray af;
   1454 	int unit;
   1455 
   1456 	config_alldevs_enter(&af);
   1457 	for (;;) {
   1458 		unit = config_unit_nextfree(cd, cf);
   1459 		if (unit == -1)
   1460 			break;
   1461 		if (unit < cd->cd_ndevs) {
   1462 			cd->cd_devs[unit] = dev;
   1463 			dev->dv_unit = unit;
   1464 			break;
   1465 		}
   1466 		config_makeroom(unit, cd);
   1467 	}
   1468 	config_alldevs_exit(&af);
   1469 
   1470 	return unit;
   1471 }
   1472 
   1473 static device_t
   1474 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1475 {
   1476 	cfdriver_t cd;
   1477 	cfattach_t ca;
   1478 	size_t lname, lunit;
   1479 	const char *xunit;
   1480 	int myunit;
   1481 	char num[10];
   1482 	device_t dev;
   1483 	void *dev_private;
   1484 	const struct cfiattrdata *ia;
   1485 	device_lock_t dvl;
   1486 
   1487 	cd = config_cfdriver_lookup(cf->cf_name);
   1488 	if (cd == NULL)
   1489 		return NULL;
   1490 
   1491 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1492 	if (ca == NULL)
   1493 		return NULL;
   1494 
   1495 	/* get memory for all device vars */
   1496 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1497 	if (ca->ca_devsize > 0) {
   1498 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1499 	} else {
   1500 		dev_private = NULL;
   1501 	}
   1502 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1503 
   1504 	dev->dv_class = cd->cd_class;
   1505 	dev->dv_cfdata = cf;
   1506 	dev->dv_cfdriver = cd;
   1507 	dev->dv_cfattach = ca;
   1508 	dev->dv_activity_count = 0;
   1509 	dev->dv_activity_handlers = NULL;
   1510 	dev->dv_private = dev_private;
   1511 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1512 
   1513 	myunit = config_unit_alloc(dev, cd, cf);
   1514 	if (myunit == -1) {
   1515 		config_devfree(dev);
   1516 		return NULL;
   1517 	}
   1518 
   1519 	/* compute length of name and decimal expansion of unit number */
   1520 	lname = strlen(cd->cd_name);
   1521 	xunit = number(&num[sizeof(num)], myunit);
   1522 	lunit = &num[sizeof(num)] - xunit;
   1523 	if (lname + lunit > sizeof(dev->dv_xname))
   1524 		panic("config_devalloc: device name too long");
   1525 
   1526 	dvl = device_getlock(dev);
   1527 
   1528 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1529 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1530 
   1531 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1532 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1533 	dev->dv_parent = parent;
   1534 	if (parent != NULL)
   1535 		dev->dv_depth = parent->dv_depth + 1;
   1536 	else
   1537 		dev->dv_depth = 0;
   1538 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1539 	if (locs) {
   1540 		KASSERT(parent); /* no locators at root */
   1541 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1542 		dev->dv_locators =
   1543 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1544 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1545 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1546 	}
   1547 	dev->dv_properties = prop_dictionary_create();
   1548 	KASSERT(dev->dv_properties != NULL);
   1549 
   1550 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1551 	    "device-driver", dev->dv_cfdriver->cd_name);
   1552 	prop_dictionary_set_uint16(dev->dv_properties,
   1553 	    "device-unit", dev->dv_unit);
   1554 	if (parent != NULL) {
   1555 		prop_dictionary_set_string(dev->dv_properties,
   1556 		    "device-parent", device_xname(parent));
   1557 	}
   1558 
   1559 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1560 		config_add_attrib_dict(dev);
   1561 
   1562 	return dev;
   1563 }
   1564 
   1565 /*
   1566  * Create an array of device attach attributes and add it
   1567  * to the device's dv_properties dictionary.
   1568  *
   1569  * <key>interface-attributes</key>
   1570  * <array>
   1571  *    <dict>
   1572  *       <key>attribute-name</key>
   1573  *       <string>foo</string>
   1574  *       <key>locators</key>
   1575  *       <array>
   1576  *          <dict>
   1577  *             <key>loc-name</key>
   1578  *             <string>foo-loc1</string>
   1579  *          </dict>
   1580  *          <dict>
   1581  *             <key>loc-name</key>
   1582  *             <string>foo-loc2</string>
   1583  *             <key>default</key>
   1584  *             <string>foo-loc2-default</string>
   1585  *          </dict>
   1586  *          ...
   1587  *       </array>
   1588  *    </dict>
   1589  *    ...
   1590  * </array>
   1591  */
   1592 
   1593 static void
   1594 config_add_attrib_dict(device_t dev)
   1595 {
   1596 	int i, j;
   1597 	const struct cfiattrdata *ci;
   1598 	prop_dictionary_t attr_dict, loc_dict;
   1599 	prop_array_t attr_array, loc_array;
   1600 
   1601 	if ((attr_array = prop_array_create()) == NULL)
   1602 		return;
   1603 
   1604 	for (i = 0; ; i++) {
   1605 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1606 			break;
   1607 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1608 			break;
   1609 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1610 		    ci->ci_name);
   1611 
   1612 		/* Create an array of the locator names and defaults */
   1613 
   1614 		if (ci->ci_loclen != 0 &&
   1615 		    (loc_array = prop_array_create()) != NULL) {
   1616 			for (j = 0; j < ci->ci_loclen; j++) {
   1617 				loc_dict = prop_dictionary_create();
   1618 				if (loc_dict == NULL)
   1619 					continue;
   1620 				prop_dictionary_set_string_nocopy(loc_dict,
   1621 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1622 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1623 					prop_dictionary_set_string_nocopy(
   1624 					    loc_dict, "default",
   1625 					    ci->ci_locdesc[j].cld_defaultstr);
   1626 				prop_array_set(loc_array, j, loc_dict);
   1627 				prop_object_release(loc_dict);
   1628 			}
   1629 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1630 			    loc_array);
   1631 		}
   1632 		prop_array_add(attr_array, attr_dict);
   1633 		prop_object_release(attr_dict);
   1634 	}
   1635 	if (i == 0)
   1636 		prop_object_release(attr_array);
   1637 	else
   1638 		prop_dictionary_set_and_rel(dev->dv_properties,
   1639 		    "interface-attributes", attr_array);
   1640 
   1641 	return;
   1642 }
   1643 
   1644 /*
   1645  * Attach a found device.
   1646  */
   1647 device_t
   1648 config_attach_loc(device_t parent, cfdata_t cf,
   1649 	const int *locs, void *aux, cfprint_t print)
   1650 {
   1651 	device_t dev;
   1652 	struct cftable *ct;
   1653 	const char *drvname;
   1654 
   1655 	dev = config_devalloc(parent, cf, locs);
   1656 	if (!dev)
   1657 		panic("config_attach: allocation of device softc failed");
   1658 
   1659 	/* XXX redundant - see below? */
   1660 	if (cf->cf_fstate != FSTATE_STAR) {
   1661 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1662 		cf->cf_fstate = FSTATE_FOUND;
   1663 	}
   1664 
   1665 	config_devlink(dev);
   1666 
   1667 	if (config_do_twiddle && cold)
   1668 		twiddle();
   1669 	else
   1670 		aprint_naive("Found ");
   1671 	/*
   1672 	 * We want the next two printfs for normal, verbose, and quiet,
   1673 	 * but not silent (in which case, we're twiddling, instead).
   1674 	 */
   1675 	if (parent == ROOT) {
   1676 		aprint_naive("%s (root)", device_xname(dev));
   1677 		aprint_normal("%s (root)", device_xname(dev));
   1678 	} else {
   1679 		aprint_naive("%s at %s", device_xname(dev),
   1680 		    device_xname(parent));
   1681 		aprint_normal("%s at %s", device_xname(dev),
   1682 		    device_xname(parent));
   1683 		if (print)
   1684 			(void) (*print)(aux, NULL);
   1685 	}
   1686 
   1687 	/*
   1688 	 * Before attaching, clobber any unfound devices that are
   1689 	 * otherwise identical.
   1690 	 * XXX code above is redundant?
   1691 	 */
   1692 	drvname = dev->dv_cfdriver->cd_name;
   1693 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1694 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1695 			if (STREQ(cf->cf_name, drvname) &&
   1696 			    cf->cf_unit == dev->dv_unit) {
   1697 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1698 					cf->cf_fstate = FSTATE_FOUND;
   1699 			}
   1700 		}
   1701 	}
   1702 	device_register(dev, aux);
   1703 
   1704 	/* Let userland know */
   1705 	devmon_report_device(dev, true);
   1706 
   1707 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1708 
   1709 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1710 	    && !device_pmf_is_registered(dev))
   1711 		aprint_debug_dev(dev,
   1712 		    "WARNING: power management not supported\n");
   1713 
   1714 	config_process_deferred(&deferred_config_queue, dev);
   1715 
   1716 	device_register_post_config(dev, aux);
   1717 	return dev;
   1718 }
   1719 
   1720 device_t
   1721 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1722 {
   1723 
   1724 	return config_attach_loc(parent, cf, NULL, aux, print);
   1725 }
   1726 
   1727 /*
   1728  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1729  * way are silently inserted into the device tree, and their children
   1730  * attached.
   1731  *
   1732  * Note that because pseudo-devices are attached silently, any information
   1733  * the attach routine wishes to print should be prefixed with the device
   1734  * name by the attach routine.
   1735  */
   1736 device_t
   1737 config_attach_pseudo(cfdata_t cf)
   1738 {
   1739 	device_t dev;
   1740 
   1741 	dev = config_devalloc(ROOT, cf, NULL);
   1742 	if (!dev)
   1743 		return NULL;
   1744 
   1745 	/* XXX mark busy in cfdata */
   1746 
   1747 	if (cf->cf_fstate != FSTATE_STAR) {
   1748 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1749 		cf->cf_fstate = FSTATE_FOUND;
   1750 	}
   1751 
   1752 	config_devlink(dev);
   1753 
   1754 #if 0	/* XXXJRT not yet */
   1755 	device_register(dev, NULL);	/* like a root node */
   1756 #endif
   1757 
   1758 	/* Let userland know */
   1759 	devmon_report_device(dev, true);
   1760 
   1761 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1762 
   1763 	config_process_deferred(&deferred_config_queue, dev);
   1764 	return dev;
   1765 }
   1766 
   1767 /*
   1768  * Caller must hold alldevs_lock.
   1769  */
   1770 static void
   1771 config_collect_garbage(struct devicelist *garbage)
   1772 {
   1773 	device_t dv;
   1774 
   1775 	KASSERT(!cpu_intr_p());
   1776 	KASSERT(!cpu_softintr_p());
   1777 	KASSERT(mutex_owned(&alldevs_lock));
   1778 
   1779 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1780 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1781 			if (dv->dv_del_gen != 0)
   1782 				break;
   1783 		}
   1784 		if (dv == NULL) {
   1785 			alldevs_garbage = false;
   1786 			break;
   1787 		}
   1788 		config_devunlink(dv, garbage);
   1789 	}
   1790 	KASSERT(mutex_owned(&alldevs_lock));
   1791 }
   1792 
   1793 static void
   1794 config_dump_garbage(struct devicelist *garbage)
   1795 {
   1796 	device_t dv;
   1797 
   1798 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1799 		TAILQ_REMOVE(garbage, dv, dv_list);
   1800 		config_devdelete(dv);
   1801 	}
   1802 }
   1803 
   1804 /*
   1805  * Detach a device.  Optionally forced (e.g. because of hardware
   1806  * removal) and quiet.  Returns zero if successful, non-zero
   1807  * (an error code) otherwise.
   1808  *
   1809  * Note that this code wants to be run from a process context, so
   1810  * that the detach can sleep to allow processes which have a device
   1811  * open to run and unwind their stacks.
   1812  */
   1813 int
   1814 config_detach(device_t dev, int flags)
   1815 {
   1816 	struct alldevs_foray af;
   1817 	struct cftable *ct;
   1818 	cfdata_t cf;
   1819 	const struct cfattach *ca;
   1820 	struct cfdriver *cd;
   1821 	device_t d __diagused;
   1822 	int rv = 0;
   1823 
   1824 	cf = dev->dv_cfdata;
   1825 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1826 		cf->cf_fstate == FSTATE_STAR),
   1827 	    "config_detach: %s: bad device fstate: %d",
   1828 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1829 
   1830 	cd = dev->dv_cfdriver;
   1831 	KASSERT(cd != NULL);
   1832 
   1833 	ca = dev->dv_cfattach;
   1834 	KASSERT(ca != NULL);
   1835 
   1836 	mutex_enter(&alldevs_lock);
   1837 	if (dev->dv_del_gen != 0) {
   1838 		mutex_exit(&alldevs_lock);
   1839 #ifdef DIAGNOSTIC
   1840 		printf("%s: %s is already detached\n", __func__,
   1841 		    device_xname(dev));
   1842 #endif /* DIAGNOSTIC */
   1843 		return ENOENT;
   1844 	}
   1845 	alldevs_nwrite++;
   1846 	mutex_exit(&alldevs_lock);
   1847 
   1848 	if (!detachall &&
   1849 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1850 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1851 		rv = EOPNOTSUPP;
   1852 	} else if (ca->ca_detach != NULL) {
   1853 		rv = (*ca->ca_detach)(dev, flags);
   1854 	} else
   1855 		rv = EOPNOTSUPP;
   1856 
   1857 	/*
   1858 	 * If it was not possible to detach the device, then we either
   1859 	 * panic() (for the forced but failed case), or return an error.
   1860 	 *
   1861 	 * If it was possible to detach the device, ensure that the
   1862 	 * device is deactivated.
   1863 	 */
   1864 	if (rv == 0)
   1865 		dev->dv_flags &= ~DVF_ACTIVE;
   1866 	else if ((flags & DETACH_FORCE) == 0)
   1867 		goto out;
   1868 	else {
   1869 		panic("config_detach: forced detach of %s failed (%d)",
   1870 		    device_xname(dev), rv);
   1871 	}
   1872 
   1873 	/*
   1874 	 * The device has now been successfully detached.
   1875 	 */
   1876 
   1877 	/* Let userland know */
   1878 	devmon_report_device(dev, false);
   1879 
   1880 #ifdef DIAGNOSTIC
   1881 	/*
   1882 	 * Sanity: If you're successfully detached, you should have no
   1883 	 * children.  (Note that because children must be attached
   1884 	 * after parents, we only need to search the latter part of
   1885 	 * the list.)
   1886 	 */
   1887 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1888 	    d = TAILQ_NEXT(d, dv_list)) {
   1889 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1890 			printf("config_detach: detached device %s"
   1891 			    " has children %s\n", device_xname(dev),
   1892 			    device_xname(d));
   1893 			panic("config_detach");
   1894 		}
   1895 	}
   1896 #endif
   1897 
   1898 	/* notify the parent that the child is gone */
   1899 	if (dev->dv_parent) {
   1900 		device_t p = dev->dv_parent;
   1901 		if (p->dv_cfattach->ca_childdetached)
   1902 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1903 	}
   1904 
   1905 	/*
   1906 	 * Mark cfdata to show that the unit can be reused, if possible.
   1907 	 */
   1908 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1909 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1910 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1911 				if (cf->cf_fstate == FSTATE_FOUND &&
   1912 				    cf->cf_unit == dev->dv_unit)
   1913 					cf->cf_fstate = FSTATE_NOTFOUND;
   1914 			}
   1915 		}
   1916 	}
   1917 
   1918 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1919 		aprint_normal_dev(dev, "detached\n");
   1920 
   1921 out:
   1922 	config_alldevs_enter(&af);
   1923 	KASSERT(alldevs_nwrite != 0);
   1924 	--alldevs_nwrite;
   1925 	if (rv == 0 && dev->dv_del_gen == 0) {
   1926 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1927 			config_devunlink(dev, &af.af_garbage);
   1928 		else {
   1929 			dev->dv_del_gen = alldevs_gen;
   1930 			alldevs_garbage = true;
   1931 		}
   1932 	}
   1933 	config_alldevs_exit(&af);
   1934 
   1935 	return rv;
   1936 }
   1937 
   1938 int
   1939 config_detach_children(device_t parent, int flags)
   1940 {
   1941 	device_t dv;
   1942 	deviter_t di;
   1943 	int error = 0;
   1944 
   1945 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1946 	     dv = deviter_next(&di)) {
   1947 		if (device_parent(dv) != parent)
   1948 			continue;
   1949 		if ((error = config_detach(dv, flags)) != 0)
   1950 			break;
   1951 	}
   1952 	deviter_release(&di);
   1953 	return error;
   1954 }
   1955 
   1956 device_t
   1957 shutdown_first(struct shutdown_state *s)
   1958 {
   1959 	if (!s->initialized) {
   1960 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1961 		s->initialized = true;
   1962 	}
   1963 	return shutdown_next(s);
   1964 }
   1965 
   1966 device_t
   1967 shutdown_next(struct shutdown_state *s)
   1968 {
   1969 	device_t dv;
   1970 
   1971 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1972 		;
   1973 
   1974 	if (dv == NULL)
   1975 		s->initialized = false;
   1976 
   1977 	return dv;
   1978 }
   1979 
   1980 bool
   1981 config_detach_all(int how)
   1982 {
   1983 	static struct shutdown_state s;
   1984 	device_t curdev;
   1985 	bool progress = false;
   1986 	int flags;
   1987 
   1988 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1989 		return false;
   1990 
   1991 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1992 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1993 	else
   1994 		flags = DETACH_SHUTDOWN;
   1995 
   1996 	for (curdev = shutdown_first(&s); curdev != NULL;
   1997 	     curdev = shutdown_next(&s)) {
   1998 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1999 		if (config_detach(curdev, flags) == 0) {
   2000 			progress = true;
   2001 			aprint_debug("success.");
   2002 		} else
   2003 			aprint_debug("failed.");
   2004 	}
   2005 	return progress;
   2006 }
   2007 
   2008 static bool
   2009 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2010 {
   2011 	device_t dv;
   2012 
   2013 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2014 		if (device_parent(dv) == ancestor)
   2015 			return true;
   2016 	}
   2017 	return false;
   2018 }
   2019 
   2020 int
   2021 config_deactivate(device_t dev)
   2022 {
   2023 	deviter_t di;
   2024 	const struct cfattach *ca;
   2025 	device_t descendant;
   2026 	int s, rv = 0, oflags;
   2027 
   2028 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2029 	     descendant != NULL;
   2030 	     descendant = deviter_next(&di)) {
   2031 		if (dev != descendant &&
   2032 		    !device_is_ancestor_of(dev, descendant))
   2033 			continue;
   2034 
   2035 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2036 			continue;
   2037 
   2038 		ca = descendant->dv_cfattach;
   2039 		oflags = descendant->dv_flags;
   2040 
   2041 		descendant->dv_flags &= ~DVF_ACTIVE;
   2042 		if (ca->ca_activate == NULL)
   2043 			continue;
   2044 		s = splhigh();
   2045 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2046 		splx(s);
   2047 		if (rv != 0)
   2048 			descendant->dv_flags = oflags;
   2049 	}
   2050 	deviter_release(&di);
   2051 	return rv;
   2052 }
   2053 
   2054 /*
   2055  * Defer the configuration of the specified device until all
   2056  * of its parent's devices have been attached.
   2057  */
   2058 void
   2059 config_defer(device_t dev, void (*func)(device_t))
   2060 {
   2061 	struct deferred_config *dc;
   2062 
   2063 	if (dev->dv_parent == NULL)
   2064 		panic("config_defer: can't defer config of a root device");
   2065 
   2066 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2067 
   2068 	config_pending_incr(dev);
   2069 
   2070 	mutex_enter(&config_misc_lock);
   2071 #ifdef DIAGNOSTIC
   2072 	struct deferred_config *odc;
   2073 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2074 		if (odc->dc_dev == dev)
   2075 			panic("config_defer: deferred twice");
   2076 	}
   2077 #endif
   2078 	dc->dc_dev = dev;
   2079 	dc->dc_func = func;
   2080 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2081 	mutex_exit(&config_misc_lock);
   2082 }
   2083 
   2084 /*
   2085  * Defer some autoconfiguration for a device until after interrupts
   2086  * are enabled.
   2087  */
   2088 void
   2089 config_interrupts(device_t dev, void (*func)(device_t))
   2090 {
   2091 	struct deferred_config *dc;
   2092 
   2093 	/*
   2094 	 * If interrupts are enabled, callback now.
   2095 	 */
   2096 	if (cold == 0) {
   2097 		(*func)(dev);
   2098 		return;
   2099 	}
   2100 
   2101 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2102 
   2103 	config_pending_incr(dev);
   2104 
   2105 	mutex_enter(&config_misc_lock);
   2106 #ifdef DIAGNOSTIC
   2107 	struct deferred_config *odc;
   2108 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2109 		if (odc->dc_dev == dev)
   2110 			panic("config_interrupts: deferred twice");
   2111 	}
   2112 #endif
   2113 	dc->dc_dev = dev;
   2114 	dc->dc_func = func;
   2115 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2116 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2117 	mutex_exit(&config_misc_lock);
   2118 }
   2119 
   2120 /*
   2121  * Defer some autoconfiguration for a device until after root file system
   2122  * is mounted (to load firmware etc).
   2123  */
   2124 void
   2125 config_mountroot(device_t dev, void (*func)(device_t))
   2126 {
   2127 	struct deferred_config *dc;
   2128 
   2129 	/*
   2130 	 * If root file system is mounted, callback now.
   2131 	 */
   2132 	if (root_is_mounted) {
   2133 		(*func)(dev);
   2134 		return;
   2135 	}
   2136 
   2137 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2138 
   2139 	mutex_enter(&config_misc_lock);
   2140 #ifdef DIAGNOSTIC
   2141 	struct deferred_config *odc;
   2142 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2143 		if (odc->dc_dev == dev)
   2144 			panic("%s: deferred twice", __func__);
   2145 	}
   2146 #endif
   2147 
   2148 	dc->dc_dev = dev;
   2149 	dc->dc_func = func;
   2150 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2151 	mutex_exit(&config_misc_lock);
   2152 }
   2153 
   2154 /*
   2155  * Process a deferred configuration queue.
   2156  */
   2157 static void
   2158 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2159 {
   2160 	struct deferred_config *dc;
   2161 
   2162 	mutex_enter(&config_misc_lock);
   2163 	dc = TAILQ_FIRST(queue);
   2164 	while (dc) {
   2165 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2166 			TAILQ_REMOVE(queue, dc, dc_queue);
   2167 			mutex_exit(&config_misc_lock);
   2168 
   2169 			(*dc->dc_func)(dc->dc_dev);
   2170 			config_pending_decr(dc->dc_dev);
   2171 			kmem_free(dc, sizeof(*dc));
   2172 
   2173 			mutex_enter(&config_misc_lock);
   2174 			/* Restart, queue might have changed */
   2175 			dc = TAILQ_FIRST(queue);
   2176 		} else {
   2177 			dc = TAILQ_NEXT(dc, dc_queue);
   2178 		}
   2179 	}
   2180 	mutex_exit(&config_misc_lock);
   2181 }
   2182 
   2183 /*
   2184  * Manipulate the config_pending semaphore.
   2185  */
   2186 void
   2187 config_pending_incr(device_t dev)
   2188 {
   2189 
   2190 	mutex_enter(&config_misc_lock);
   2191 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2192 	    "%s: excess config_pending_incr", device_xname(dev));
   2193 	if (dev->dv_pending++ == 0)
   2194 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2195 #ifdef DEBUG_AUTOCONF
   2196 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2197 #endif
   2198 	mutex_exit(&config_misc_lock);
   2199 }
   2200 
   2201 void
   2202 config_pending_decr(device_t dev)
   2203 {
   2204 
   2205 	mutex_enter(&config_misc_lock);
   2206 	KASSERTMSG(dev->dv_pending > 0,
   2207 	    "%s: excess config_pending_decr", device_xname(dev));
   2208 	if (--dev->dv_pending == 0)
   2209 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2210 #ifdef DEBUG_AUTOCONF
   2211 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2212 #endif
   2213 	if (TAILQ_EMPTY(&config_pending))
   2214 		cv_broadcast(&config_misc_cv);
   2215 	mutex_exit(&config_misc_lock);
   2216 }
   2217 
   2218 /*
   2219  * Register a "finalization" routine.  Finalization routines are
   2220  * called iteratively once all real devices have been found during
   2221  * autoconfiguration, for as long as any one finalizer has done
   2222  * any work.
   2223  */
   2224 int
   2225 config_finalize_register(device_t dev, int (*fn)(device_t))
   2226 {
   2227 	struct finalize_hook *f;
   2228 
   2229 	/*
   2230 	 * If finalization has already been done, invoke the
   2231 	 * callback function now.
   2232 	 */
   2233 	if (config_finalize_done) {
   2234 		while ((*fn)(dev) != 0)
   2235 			/* loop */ ;
   2236 		return 0;
   2237 	}
   2238 
   2239 	/* Ensure this isn't already on the list. */
   2240 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2241 		if (f->f_func == fn && f->f_dev == dev)
   2242 			return EEXIST;
   2243 	}
   2244 
   2245 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2246 	f->f_func = fn;
   2247 	f->f_dev = dev;
   2248 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2249 
   2250 	return 0;
   2251 }
   2252 
   2253 void
   2254 config_finalize(void)
   2255 {
   2256 	struct finalize_hook *f;
   2257 	struct pdevinit *pdev;
   2258 	extern struct pdevinit pdevinit[];
   2259 	int errcnt, rv;
   2260 
   2261 	/*
   2262 	 * Now that device driver threads have been created, wait for
   2263 	 * them to finish any deferred autoconfiguration.
   2264 	 */
   2265 	mutex_enter(&config_misc_lock);
   2266 	while (!TAILQ_EMPTY(&config_pending)) {
   2267 		device_t dev;
   2268 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2269 			aprint_debug_dev(dev, "holding up boot\n");
   2270 		cv_wait(&config_misc_cv, &config_misc_lock);
   2271 	}
   2272 	mutex_exit(&config_misc_lock);
   2273 
   2274 	KERNEL_LOCK(1, NULL);
   2275 
   2276 	/* Attach pseudo-devices. */
   2277 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2278 		(*pdev->pdev_attach)(pdev->pdev_count);
   2279 
   2280 	/* Run the hooks until none of them does any work. */
   2281 	do {
   2282 		rv = 0;
   2283 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2284 			rv |= (*f->f_func)(f->f_dev);
   2285 	} while (rv != 0);
   2286 
   2287 	config_finalize_done = 1;
   2288 
   2289 	/* Now free all the hooks. */
   2290 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2291 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2292 		kmem_free(f, sizeof(*f));
   2293 	}
   2294 
   2295 	KERNEL_UNLOCK_ONE(NULL);
   2296 
   2297 	errcnt = aprint_get_error_count();
   2298 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2299 	    (boothowto & AB_VERBOSE) == 0) {
   2300 		mutex_enter(&config_misc_lock);
   2301 		if (config_do_twiddle) {
   2302 			config_do_twiddle = 0;
   2303 			printf_nolog(" done.\n");
   2304 		}
   2305 		mutex_exit(&config_misc_lock);
   2306 	}
   2307 	if (errcnt != 0) {
   2308 		printf("WARNING: %d error%s while detecting hardware; "
   2309 		    "check system log.\n", errcnt,
   2310 		    errcnt == 1 ? "" : "s");
   2311 	}
   2312 }
   2313 
   2314 void
   2315 config_twiddle_init(void)
   2316 {
   2317 
   2318 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2319 		config_do_twiddle = 1;
   2320 	}
   2321 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2322 }
   2323 
   2324 void
   2325 config_twiddle_fn(void *cookie)
   2326 {
   2327 
   2328 	mutex_enter(&config_misc_lock);
   2329 	if (config_do_twiddle) {
   2330 		twiddle();
   2331 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2332 	}
   2333 	mutex_exit(&config_misc_lock);
   2334 }
   2335 
   2336 static void
   2337 config_alldevs_enter(struct alldevs_foray *af)
   2338 {
   2339 	TAILQ_INIT(&af->af_garbage);
   2340 	mutex_enter(&alldevs_lock);
   2341 	config_collect_garbage(&af->af_garbage);
   2342 }
   2343 
   2344 static void
   2345 config_alldevs_exit(struct alldevs_foray *af)
   2346 {
   2347 	mutex_exit(&alldevs_lock);
   2348 	config_dump_garbage(&af->af_garbage);
   2349 }
   2350 
   2351 /*
   2352  * device_lookup:
   2353  *
   2354  *	Look up a device instance for a given driver.
   2355  */
   2356 device_t
   2357 device_lookup(cfdriver_t cd, int unit)
   2358 {
   2359 	device_t dv;
   2360 
   2361 	mutex_enter(&alldevs_lock);
   2362 	if (unit < 0 || unit >= cd->cd_ndevs)
   2363 		dv = NULL;
   2364 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2365 		dv = NULL;
   2366 	mutex_exit(&alldevs_lock);
   2367 
   2368 	return dv;
   2369 }
   2370 
   2371 /*
   2372  * device_lookup_private:
   2373  *
   2374  *	Look up a softc instance for a given driver.
   2375  */
   2376 void *
   2377 device_lookup_private(cfdriver_t cd, int unit)
   2378 {
   2379 
   2380 	return device_private(device_lookup(cd, unit));
   2381 }
   2382 
   2383 /*
   2384  * device_find_by_xname:
   2385  *
   2386  *	Returns the device of the given name or NULL if it doesn't exist.
   2387  */
   2388 device_t
   2389 device_find_by_xname(const char *name)
   2390 {
   2391 	device_t dv;
   2392 	deviter_t di;
   2393 
   2394 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2395 		if (strcmp(device_xname(dv), name) == 0)
   2396 			break;
   2397 	}
   2398 	deviter_release(&di);
   2399 
   2400 	return dv;
   2401 }
   2402 
   2403 /*
   2404  * device_find_by_driver_unit:
   2405  *
   2406  *	Returns the device of the given driver name and unit or
   2407  *	NULL if it doesn't exist.
   2408  */
   2409 device_t
   2410 device_find_by_driver_unit(const char *name, int unit)
   2411 {
   2412 	struct cfdriver *cd;
   2413 
   2414 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2415 		return NULL;
   2416 	return device_lookup(cd, unit);
   2417 }
   2418 
   2419 static bool
   2420 match_strcmp(const char * const s1, const char * const s2)
   2421 {
   2422 	return strcmp(s1, s2) == 0;
   2423 }
   2424 
   2425 static bool
   2426 match_pmatch(const char * const s1, const char * const s2)
   2427 {
   2428 	return pmatch(s1, s2, NULL) == 2;
   2429 }
   2430 
   2431 static bool
   2432 strarray_match_internal(const char ** const strings,
   2433     unsigned int const nstrings, const char * const str,
   2434     unsigned int * const indexp,
   2435     bool (*match_fn)(const char *, const char *))
   2436 {
   2437 	unsigned int i;
   2438 
   2439 	if (strings == NULL || nstrings == 0) {
   2440 		return false;
   2441 	}
   2442 
   2443 	for (i = 0; i < nstrings; i++) {
   2444 		if ((*match_fn)(strings[i], str)) {
   2445 			*indexp = i;
   2446 			return true;
   2447 		}
   2448 	}
   2449 
   2450 	return false;
   2451 }
   2452 
   2453 static int
   2454 strarray_match(const char ** const strings, unsigned int const nstrings,
   2455     const char * const str)
   2456 {
   2457 	unsigned int idx;
   2458 
   2459 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2460 				    match_strcmp)) {
   2461 		return (int)(nstrings - idx);
   2462 	}
   2463 	return 0;
   2464 }
   2465 
   2466 static int
   2467 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2468     const char * const pattern)
   2469 {
   2470 	unsigned int idx;
   2471 
   2472 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2473 				    match_pmatch)) {
   2474 		return (int)(nstrings - idx);
   2475 	}
   2476 	return 0;
   2477 }
   2478 
   2479 static int
   2480 device_compatible_match_strarray_internal(
   2481     const char **device_compats, int ndevice_compats,
   2482     const struct device_compatible_entry *driver_compats,
   2483     const struct device_compatible_entry **matching_entryp,
   2484     int (*match_fn)(const char **, unsigned int, const char *))
   2485 {
   2486 	const struct device_compatible_entry *dce = NULL;
   2487 	int rv;
   2488 
   2489 	if (ndevice_compats == 0 || device_compats == NULL ||
   2490 	    driver_compats == NULL)
   2491 		return 0;
   2492 
   2493 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2494 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2495 		if (rv != 0) {
   2496 			if (matching_entryp != NULL) {
   2497 				*matching_entryp = dce;
   2498 			}
   2499 			return rv;
   2500 		}
   2501 	}
   2502 	return 0;
   2503 }
   2504 
   2505 /*
   2506  * device_compatible_match:
   2507  *
   2508  *	Match a driver's "compatible" data against a device's
   2509  *	"compatible" strings.  Returns resulted weighted by
   2510  *	which device "compatible" string was matched.
   2511  */
   2512 int
   2513 device_compatible_match(const char **device_compats, int ndevice_compats,
   2514     const struct device_compatible_entry *driver_compats)
   2515 {
   2516 	return device_compatible_match_strarray_internal(device_compats,
   2517 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2518 }
   2519 
   2520 /*
   2521  * device_compatible_pmatch:
   2522  *
   2523  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2524  *	the device "compatible" strings against patterns in the
   2525  *	driver's "compatible" data.
   2526  */
   2527 int
   2528 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2529     const struct device_compatible_entry *driver_compats)
   2530 {
   2531 	return device_compatible_match_strarray_internal(device_compats,
   2532 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2533 }
   2534 
   2535 static int
   2536 device_compatible_match_strlist_internal(
   2537     const char * const device_compats, size_t const device_compatsize,
   2538     const struct device_compatible_entry *driver_compats,
   2539     const struct device_compatible_entry **matching_entryp,
   2540     int (*match_fn)(const char *, size_t, const char *))
   2541 {
   2542 	const struct device_compatible_entry *dce = NULL;
   2543 	int rv;
   2544 
   2545 	if (device_compats == NULL || device_compatsize == 0 ||
   2546 	    driver_compats == NULL)
   2547 		return 0;
   2548 
   2549 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2550 		rv = (*match_fn)(device_compats, device_compatsize,
   2551 		    dce->compat);
   2552 		if (rv != 0) {
   2553 			if (matching_entryp != NULL) {
   2554 				*matching_entryp = dce;
   2555 			}
   2556 			return rv;
   2557 		}
   2558 	}
   2559 	return 0;
   2560 }
   2561 
   2562 /*
   2563  * device_compatible_match_strlist:
   2564  *
   2565  *	Like device_compatible_match(), but take the device
   2566  *	"compatible" strings as an OpenFirmware-style string
   2567  *	list.
   2568  */
   2569 int
   2570 device_compatible_match_strlist(
   2571     const char * const device_compats, size_t const device_compatsize,
   2572     const struct device_compatible_entry *driver_compats)
   2573 {
   2574 	return device_compatible_match_strlist_internal(device_compats,
   2575 	    device_compatsize, driver_compats, NULL, strlist_match);
   2576 }
   2577 
   2578 /*
   2579  * device_compatible_pmatch_strlist:
   2580  *
   2581  *	Like device_compatible_pmatch(), but take the device
   2582  *	"compatible" strings as an OpenFirmware-style string
   2583  *	list.
   2584  */
   2585 int
   2586 device_compatible_pmatch_strlist(
   2587     const char * const device_compats, size_t const device_compatsize,
   2588     const struct device_compatible_entry *driver_compats)
   2589 {
   2590 	return device_compatible_match_strlist_internal(device_compats,
   2591 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2592 }
   2593 
   2594 static int
   2595 device_compatible_match_id_internal(
   2596     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2597     const struct device_compatible_entry *driver_compats,
   2598     const struct device_compatible_entry **matching_entryp)
   2599 {
   2600 	const struct device_compatible_entry *dce = NULL;
   2601 
   2602 	if (mask == 0)
   2603 		return 0;
   2604 
   2605 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2606 		if ((id & mask) == dce->id) {
   2607 			if (matching_entryp != NULL) {
   2608 				*matching_entryp = dce;
   2609 			}
   2610 			return 1;
   2611 		}
   2612 	}
   2613 	return 0;
   2614 }
   2615 
   2616 /*
   2617  * device_compatible_match_id:
   2618  *
   2619  *	Like device_compatible_match(), but takes a single
   2620  *	unsigned integer device ID.
   2621  */
   2622 int
   2623 device_compatible_match_id(
   2624     uintptr_t const id, uintptr_t const sentinel_id,
   2625     const struct device_compatible_entry *driver_compats)
   2626 {
   2627 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2628 	    sentinel_id, driver_compats, NULL);
   2629 }
   2630 
   2631 /*
   2632  * device_compatible_lookup:
   2633  *
   2634  *	Look up and return the device_compatible_entry, using the
   2635  *	same matching criteria used by device_compatible_match().
   2636  */
   2637 const struct device_compatible_entry *
   2638 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2639 			 const struct device_compatible_entry *driver_compats)
   2640 {
   2641 	const struct device_compatible_entry *dce;
   2642 
   2643 	if (device_compatible_match_strarray_internal(device_compats,
   2644 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2645 		return dce;
   2646 	}
   2647 	return NULL;
   2648 }
   2649 
   2650 /*
   2651  * device_compatible_plookup:
   2652  *
   2653  *	Look up and return the device_compatible_entry, using the
   2654  *	same matching criteria used by device_compatible_pmatch().
   2655  */
   2656 const struct device_compatible_entry *
   2657 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2658 			  const struct device_compatible_entry *driver_compats)
   2659 {
   2660 	const struct device_compatible_entry *dce;
   2661 
   2662 	if (device_compatible_match_strarray_internal(device_compats,
   2663 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2664 		return dce;
   2665 	}
   2666 	return NULL;
   2667 }
   2668 
   2669 /*
   2670  * device_compatible_lookup_strlist:
   2671  *
   2672  *	Like device_compatible_lookup(), but take the device
   2673  *	"compatible" strings as an OpenFirmware-style string
   2674  *	list.
   2675  */
   2676 const struct device_compatible_entry *
   2677 device_compatible_lookup_strlist(
   2678     const char * const device_compats, size_t const device_compatsize,
   2679     const struct device_compatible_entry *driver_compats)
   2680 {
   2681 	const struct device_compatible_entry *dce;
   2682 
   2683 	if (device_compatible_match_strlist_internal(device_compats,
   2684 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2685 		return dce;
   2686 	}
   2687 	return NULL;
   2688 }
   2689 
   2690 /*
   2691  * device_compatible_plookup_strlist:
   2692  *
   2693  *	Like device_compatible_plookup(), but take the device
   2694  *	"compatible" strings as an OpenFirmware-style string
   2695  *	list.
   2696  */
   2697 const struct device_compatible_entry *
   2698 device_compatible_plookup_strlist(
   2699     const char * const device_compats, size_t const device_compatsize,
   2700     const struct device_compatible_entry *driver_compats)
   2701 {
   2702 	const struct device_compatible_entry *dce;
   2703 
   2704 	if (device_compatible_match_strlist_internal(device_compats,
   2705 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2706 		return dce;
   2707 	}
   2708 	return NULL;
   2709 }
   2710 
   2711 /*
   2712  * device_compatible_lookup_id:
   2713  *
   2714  *	Like device_compatible_lookup(), but takes a single
   2715  *	unsigned integer device ID.
   2716  */
   2717 const struct device_compatible_entry *
   2718 device_compatible_lookup_id(
   2719     uintptr_t const id, uintptr_t const sentinel_id,
   2720     const struct device_compatible_entry *driver_compats)
   2721 {
   2722 	const struct device_compatible_entry *dce;
   2723 
   2724 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2725 	    sentinel_id, driver_compats, &dce)) {
   2726 		return dce;
   2727 	}
   2728 	return NULL;
   2729 }
   2730 
   2731 /*
   2732  * Power management related functions.
   2733  */
   2734 
   2735 bool
   2736 device_pmf_is_registered(device_t dev)
   2737 {
   2738 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2739 }
   2740 
   2741 bool
   2742 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2743 {
   2744 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2745 		return true;
   2746 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2747 		return false;
   2748 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2749 	    dev->dv_driver_suspend != NULL &&
   2750 	    !(*dev->dv_driver_suspend)(dev, qual))
   2751 		return false;
   2752 
   2753 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2754 	return true;
   2755 }
   2756 
   2757 bool
   2758 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2759 {
   2760 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2761 		return true;
   2762 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2763 		return false;
   2764 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2765 	    dev->dv_driver_resume != NULL &&
   2766 	    !(*dev->dv_driver_resume)(dev, qual))
   2767 		return false;
   2768 
   2769 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2770 	return true;
   2771 }
   2772 
   2773 bool
   2774 device_pmf_driver_shutdown(device_t dev, int how)
   2775 {
   2776 
   2777 	if (*dev->dv_driver_shutdown != NULL &&
   2778 	    !(*dev->dv_driver_shutdown)(dev, how))
   2779 		return false;
   2780 	return true;
   2781 }
   2782 
   2783 bool
   2784 device_pmf_driver_register(device_t dev,
   2785     bool (*suspend)(device_t, const pmf_qual_t *),
   2786     bool (*resume)(device_t, const pmf_qual_t *),
   2787     bool (*shutdown)(device_t, int))
   2788 {
   2789 	dev->dv_driver_suspend = suspend;
   2790 	dev->dv_driver_resume = resume;
   2791 	dev->dv_driver_shutdown = shutdown;
   2792 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2793 	return true;
   2794 }
   2795 
   2796 static const char *
   2797 curlwp_name(void)
   2798 {
   2799 	if (curlwp->l_name != NULL)
   2800 		return curlwp->l_name;
   2801 	else
   2802 		return curlwp->l_proc->p_comm;
   2803 }
   2804 
   2805 void
   2806 device_pmf_driver_deregister(device_t dev)
   2807 {
   2808 	device_lock_t dvl = device_getlock(dev);
   2809 
   2810 	dev->dv_driver_suspend = NULL;
   2811 	dev->dv_driver_resume = NULL;
   2812 
   2813 	mutex_enter(&dvl->dvl_mtx);
   2814 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2815 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2816 		/* Wake a thread that waits for the lock.  That
   2817 		 * thread will fail to acquire the lock, and then
   2818 		 * it will wake the next thread that waits for the
   2819 		 * lock, or else it will wake us.
   2820 		 */
   2821 		cv_signal(&dvl->dvl_cv);
   2822 		pmflock_debug(dev, __func__, __LINE__);
   2823 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2824 		pmflock_debug(dev, __func__, __LINE__);
   2825 	}
   2826 	mutex_exit(&dvl->dvl_mtx);
   2827 }
   2828 
   2829 bool
   2830 device_pmf_driver_child_register(device_t dev)
   2831 {
   2832 	device_t parent = device_parent(dev);
   2833 
   2834 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2835 		return true;
   2836 	return (*parent->dv_driver_child_register)(dev);
   2837 }
   2838 
   2839 void
   2840 device_pmf_driver_set_child_register(device_t dev,
   2841     bool (*child_register)(device_t))
   2842 {
   2843 	dev->dv_driver_child_register = child_register;
   2844 }
   2845 
   2846 static void
   2847 pmflock_debug(device_t dev, const char *func, int line)
   2848 {
   2849 	device_lock_t dvl = device_getlock(dev);
   2850 
   2851 	aprint_debug_dev(dev,
   2852 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2853 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2854 }
   2855 
   2856 static bool
   2857 device_pmf_lock1(device_t dev)
   2858 {
   2859 	device_lock_t dvl = device_getlock(dev);
   2860 
   2861 	while (device_pmf_is_registered(dev) &&
   2862 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2863 		dvl->dvl_nwait++;
   2864 		pmflock_debug(dev, __func__, __LINE__);
   2865 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2866 		pmflock_debug(dev, __func__, __LINE__);
   2867 		dvl->dvl_nwait--;
   2868 	}
   2869 	if (!device_pmf_is_registered(dev)) {
   2870 		pmflock_debug(dev, __func__, __LINE__);
   2871 		/* We could not acquire the lock, but some other thread may
   2872 		 * wait for it, also.  Wake that thread.
   2873 		 */
   2874 		cv_signal(&dvl->dvl_cv);
   2875 		return false;
   2876 	}
   2877 	dvl->dvl_nlock++;
   2878 	dvl->dvl_holder = curlwp;
   2879 	pmflock_debug(dev, __func__, __LINE__);
   2880 	return true;
   2881 }
   2882 
   2883 bool
   2884 device_pmf_lock(device_t dev)
   2885 {
   2886 	bool rc;
   2887 	device_lock_t dvl = device_getlock(dev);
   2888 
   2889 	mutex_enter(&dvl->dvl_mtx);
   2890 	rc = device_pmf_lock1(dev);
   2891 	mutex_exit(&dvl->dvl_mtx);
   2892 
   2893 	return rc;
   2894 }
   2895 
   2896 void
   2897 device_pmf_unlock(device_t dev)
   2898 {
   2899 	device_lock_t dvl = device_getlock(dev);
   2900 
   2901 	KASSERT(dvl->dvl_nlock > 0);
   2902 	mutex_enter(&dvl->dvl_mtx);
   2903 	if (--dvl->dvl_nlock == 0)
   2904 		dvl->dvl_holder = NULL;
   2905 	cv_signal(&dvl->dvl_cv);
   2906 	pmflock_debug(dev, __func__, __LINE__);
   2907 	mutex_exit(&dvl->dvl_mtx);
   2908 }
   2909 
   2910 device_lock_t
   2911 device_getlock(device_t dev)
   2912 {
   2913 	return &dev->dv_lock;
   2914 }
   2915 
   2916 void *
   2917 device_pmf_bus_private(device_t dev)
   2918 {
   2919 	return dev->dv_bus_private;
   2920 }
   2921 
   2922 bool
   2923 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2924 {
   2925 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2926 		return true;
   2927 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2928 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2929 		return false;
   2930 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2931 	    dev->dv_bus_suspend != NULL &&
   2932 	    !(*dev->dv_bus_suspend)(dev, qual))
   2933 		return false;
   2934 
   2935 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2936 	return true;
   2937 }
   2938 
   2939 bool
   2940 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2941 {
   2942 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2943 		return true;
   2944 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2945 	    dev->dv_bus_resume != NULL &&
   2946 	    !(*dev->dv_bus_resume)(dev, qual))
   2947 		return false;
   2948 
   2949 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2950 	return true;
   2951 }
   2952 
   2953 bool
   2954 device_pmf_bus_shutdown(device_t dev, int how)
   2955 {
   2956 
   2957 	if (*dev->dv_bus_shutdown != NULL &&
   2958 	    !(*dev->dv_bus_shutdown)(dev, how))
   2959 		return false;
   2960 	return true;
   2961 }
   2962 
   2963 void
   2964 device_pmf_bus_register(device_t dev, void *priv,
   2965     bool (*suspend)(device_t, const pmf_qual_t *),
   2966     bool (*resume)(device_t, const pmf_qual_t *),
   2967     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2968 {
   2969 	dev->dv_bus_private = priv;
   2970 	dev->dv_bus_resume = resume;
   2971 	dev->dv_bus_suspend = suspend;
   2972 	dev->dv_bus_shutdown = shutdown;
   2973 	dev->dv_bus_deregister = deregister;
   2974 }
   2975 
   2976 void
   2977 device_pmf_bus_deregister(device_t dev)
   2978 {
   2979 	if (dev->dv_bus_deregister == NULL)
   2980 		return;
   2981 	(*dev->dv_bus_deregister)(dev);
   2982 	dev->dv_bus_private = NULL;
   2983 	dev->dv_bus_suspend = NULL;
   2984 	dev->dv_bus_resume = NULL;
   2985 	dev->dv_bus_deregister = NULL;
   2986 }
   2987 
   2988 void *
   2989 device_pmf_class_private(device_t dev)
   2990 {
   2991 	return dev->dv_class_private;
   2992 }
   2993 
   2994 bool
   2995 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2996 {
   2997 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2998 		return true;
   2999 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3000 	    dev->dv_class_suspend != NULL &&
   3001 	    !(*dev->dv_class_suspend)(dev, qual))
   3002 		return false;
   3003 
   3004 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3005 	return true;
   3006 }
   3007 
   3008 bool
   3009 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3010 {
   3011 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3012 		return true;
   3013 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3014 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3015 		return false;
   3016 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3017 	    dev->dv_class_resume != NULL &&
   3018 	    !(*dev->dv_class_resume)(dev, qual))
   3019 		return false;
   3020 
   3021 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3022 	return true;
   3023 }
   3024 
   3025 void
   3026 device_pmf_class_register(device_t dev, void *priv,
   3027     bool (*suspend)(device_t, const pmf_qual_t *),
   3028     bool (*resume)(device_t, const pmf_qual_t *),
   3029     void (*deregister)(device_t))
   3030 {
   3031 	dev->dv_class_private = priv;
   3032 	dev->dv_class_suspend = suspend;
   3033 	dev->dv_class_resume = resume;
   3034 	dev->dv_class_deregister = deregister;
   3035 }
   3036 
   3037 void
   3038 device_pmf_class_deregister(device_t dev)
   3039 {
   3040 	if (dev->dv_class_deregister == NULL)
   3041 		return;
   3042 	(*dev->dv_class_deregister)(dev);
   3043 	dev->dv_class_private = NULL;
   3044 	dev->dv_class_suspend = NULL;
   3045 	dev->dv_class_resume = NULL;
   3046 	dev->dv_class_deregister = NULL;
   3047 }
   3048 
   3049 bool
   3050 device_active(device_t dev, devactive_t type)
   3051 {
   3052 	size_t i;
   3053 
   3054 	if (dev->dv_activity_count == 0)
   3055 		return false;
   3056 
   3057 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3058 		if (dev->dv_activity_handlers[i] == NULL)
   3059 			break;
   3060 		(*dev->dv_activity_handlers[i])(dev, type);
   3061 	}
   3062 
   3063 	return true;
   3064 }
   3065 
   3066 bool
   3067 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3068 {
   3069 	void (**new_handlers)(device_t, devactive_t);
   3070 	void (**old_handlers)(device_t, devactive_t);
   3071 	size_t i, old_size, new_size;
   3072 	int s;
   3073 
   3074 	old_handlers = dev->dv_activity_handlers;
   3075 	old_size = dev->dv_activity_count;
   3076 
   3077 	KASSERT(old_size == 0 || old_handlers != NULL);
   3078 
   3079 	for (i = 0; i < old_size; ++i) {
   3080 		KASSERT(old_handlers[i] != handler);
   3081 		if (old_handlers[i] == NULL) {
   3082 			old_handlers[i] = handler;
   3083 			return true;
   3084 		}
   3085 	}
   3086 
   3087 	new_size = old_size + 4;
   3088 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3089 
   3090 	for (i = 0; i < old_size; ++i)
   3091 		new_handlers[i] = old_handlers[i];
   3092 	new_handlers[old_size] = handler;
   3093 	for (i = old_size+1; i < new_size; ++i)
   3094 		new_handlers[i] = NULL;
   3095 
   3096 	s = splhigh();
   3097 	dev->dv_activity_count = new_size;
   3098 	dev->dv_activity_handlers = new_handlers;
   3099 	splx(s);
   3100 
   3101 	if (old_size > 0)
   3102 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3103 
   3104 	return true;
   3105 }
   3106 
   3107 void
   3108 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3109 {
   3110 	void (**old_handlers)(device_t, devactive_t);
   3111 	size_t i, old_size;
   3112 	int s;
   3113 
   3114 	old_handlers = dev->dv_activity_handlers;
   3115 	old_size = dev->dv_activity_count;
   3116 
   3117 	for (i = 0; i < old_size; ++i) {
   3118 		if (old_handlers[i] == handler)
   3119 			break;
   3120 		if (old_handlers[i] == NULL)
   3121 			return; /* XXX panic? */
   3122 	}
   3123 
   3124 	if (i == old_size)
   3125 		return; /* XXX panic? */
   3126 
   3127 	for (; i < old_size - 1; ++i) {
   3128 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3129 			continue;
   3130 
   3131 		if (i == 0) {
   3132 			s = splhigh();
   3133 			dev->dv_activity_count = 0;
   3134 			dev->dv_activity_handlers = NULL;
   3135 			splx(s);
   3136 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3137 		}
   3138 		return;
   3139 	}
   3140 	old_handlers[i] = NULL;
   3141 }
   3142 
   3143 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3144 static bool
   3145 device_exists_at(device_t dv, devgen_t gen)
   3146 {
   3147 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3148 	    dv->dv_add_gen <= gen;
   3149 }
   3150 
   3151 static bool
   3152 deviter_visits(const deviter_t *di, device_t dv)
   3153 {
   3154 	return device_exists_at(dv, di->di_gen);
   3155 }
   3156 
   3157 /*
   3158  * Device Iteration
   3159  *
   3160  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3161  *     each device_t's in the device tree.
   3162  *
   3163  * deviter_init(di, flags): initialize the device iterator `di'
   3164  *     to "walk" the device tree.  deviter_next(di) will return
   3165  *     the first device_t in the device tree, or NULL if there are
   3166  *     no devices.
   3167  *
   3168  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3169  *     caller intends to modify the device tree by calling
   3170  *     config_detach(9) on devices in the order that the iterator
   3171  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3172  *     nearest the "root" of the device tree to be returned, first;
   3173  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3174  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3175  *     indicating both that deviter_init() should not respect any
   3176  *     locks on the device tree, and that deviter_next(di) may run
   3177  *     in more than one LWP before the walk has finished.
   3178  *
   3179  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3180  *     once.
   3181  *
   3182  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3183  *
   3184  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3185  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3186  *
   3187  * deviter_first(di, flags): initialize the device iterator `di'
   3188  *     and return the first device_t in the device tree, or NULL
   3189  *     if there are no devices.  The statement
   3190  *
   3191  *         dv = deviter_first(di);
   3192  *
   3193  *     is shorthand for
   3194  *
   3195  *         deviter_init(di);
   3196  *         dv = deviter_next(di);
   3197  *
   3198  * deviter_next(di): return the next device_t in the device tree,
   3199  *     or NULL if there are no more devices.  deviter_next(di)
   3200  *     is undefined if `di' was not initialized with deviter_init() or
   3201  *     deviter_first().
   3202  *
   3203  * deviter_release(di): stops iteration (subsequent calls to
   3204  *     deviter_next() will return NULL), releases any locks and
   3205  *     resources held by the device iterator.
   3206  *
   3207  * Device iteration does not return device_t's in any particular
   3208  * order.  An iterator will never return the same device_t twice.
   3209  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3210  * is called repeatedly on the same `di', it will eventually return
   3211  * NULL.  It is ok to attach/detach devices during device iteration.
   3212  */
   3213 void
   3214 deviter_init(deviter_t *di, deviter_flags_t flags)
   3215 {
   3216 	device_t dv;
   3217 
   3218 	memset(di, 0, sizeof(*di));
   3219 
   3220 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3221 		flags |= DEVITER_F_RW;
   3222 
   3223 	mutex_enter(&alldevs_lock);
   3224 	if ((flags & DEVITER_F_RW) != 0)
   3225 		alldevs_nwrite++;
   3226 	else
   3227 		alldevs_nread++;
   3228 	di->di_gen = alldevs_gen++;
   3229 	di->di_flags = flags;
   3230 
   3231 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3232 	case DEVITER_F_LEAVES_FIRST:
   3233 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3234 			if (!deviter_visits(di, dv))
   3235 				continue;
   3236 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3237 		}
   3238 		break;
   3239 	case DEVITER_F_ROOT_FIRST:
   3240 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3241 			if (!deviter_visits(di, dv))
   3242 				continue;
   3243 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3244 		}
   3245 		break;
   3246 	default:
   3247 		break;
   3248 	}
   3249 
   3250 	deviter_reinit(di);
   3251 	mutex_exit(&alldevs_lock);
   3252 }
   3253 
   3254 static void
   3255 deviter_reinit(deviter_t *di)
   3256 {
   3257 
   3258 	KASSERT(mutex_owned(&alldevs_lock));
   3259 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3260 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3261 	else
   3262 		di->di_prev = TAILQ_FIRST(&alldevs);
   3263 }
   3264 
   3265 device_t
   3266 deviter_first(deviter_t *di, deviter_flags_t flags)
   3267 {
   3268 
   3269 	deviter_init(di, flags);
   3270 	return deviter_next(di);
   3271 }
   3272 
   3273 static device_t
   3274 deviter_next2(deviter_t *di)
   3275 {
   3276 	device_t dv;
   3277 
   3278 	KASSERT(mutex_owned(&alldevs_lock));
   3279 
   3280 	dv = di->di_prev;
   3281 
   3282 	if (dv == NULL)
   3283 		return NULL;
   3284 
   3285 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3286 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3287 	else
   3288 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3289 
   3290 	return dv;
   3291 }
   3292 
   3293 static device_t
   3294 deviter_next1(deviter_t *di)
   3295 {
   3296 	device_t dv;
   3297 
   3298 	KASSERT(mutex_owned(&alldevs_lock));
   3299 
   3300 	do {
   3301 		dv = deviter_next2(di);
   3302 	} while (dv != NULL && !deviter_visits(di, dv));
   3303 
   3304 	return dv;
   3305 }
   3306 
   3307 device_t
   3308 deviter_next(deviter_t *di)
   3309 {
   3310 	device_t dv = NULL;
   3311 
   3312 	mutex_enter(&alldevs_lock);
   3313 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3314 	case 0:
   3315 		dv = deviter_next1(di);
   3316 		break;
   3317 	case DEVITER_F_LEAVES_FIRST:
   3318 		while (di->di_curdepth >= 0) {
   3319 			if ((dv = deviter_next1(di)) == NULL) {
   3320 				di->di_curdepth--;
   3321 				deviter_reinit(di);
   3322 			} else if (dv->dv_depth == di->di_curdepth)
   3323 				break;
   3324 		}
   3325 		break;
   3326 	case DEVITER_F_ROOT_FIRST:
   3327 		while (di->di_curdepth <= di->di_maxdepth) {
   3328 			if ((dv = deviter_next1(di)) == NULL) {
   3329 				di->di_curdepth++;
   3330 				deviter_reinit(di);
   3331 			} else if (dv->dv_depth == di->di_curdepth)
   3332 				break;
   3333 		}
   3334 		break;
   3335 	default:
   3336 		break;
   3337 	}
   3338 	mutex_exit(&alldevs_lock);
   3339 
   3340 	return dv;
   3341 }
   3342 
   3343 void
   3344 deviter_release(deviter_t *di)
   3345 {
   3346 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3347 
   3348 	mutex_enter(&alldevs_lock);
   3349 	if (rw)
   3350 		--alldevs_nwrite;
   3351 	else
   3352 		--alldevs_nread;
   3353 	/* XXX wake a garbage-collection thread */
   3354 	mutex_exit(&alldevs_lock);
   3355 }
   3356 
   3357 const char *
   3358 cfdata_ifattr(const struct cfdata *cf)
   3359 {
   3360 	return cf->cf_pspec->cfp_iattr;
   3361 }
   3362 
   3363 bool
   3364 ifattr_match(const char *snull, const char *t)
   3365 {
   3366 	return (snull == NULL) || strcmp(snull, t) == 0;
   3367 }
   3368 
   3369 void
   3370 null_childdetached(device_t self, device_t child)
   3371 {
   3372 	/* do nothing */
   3373 }
   3374 
   3375 static void
   3376 sysctl_detach_setup(struct sysctllog **clog)
   3377 {
   3378 
   3379 	sysctl_createv(clog, 0, NULL, NULL,
   3380 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3381 		CTLTYPE_BOOL, "detachall",
   3382 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3383 		NULL, 0, &detachall, 0,
   3384 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3385 }
   3386