Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.4
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.4 2021/03/22 02:01:02 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.4 2021/03/22 02:01:02 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 static struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 static struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 static int interrupt_config_threads = 8;
    201 static struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 static int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    222 static kmutex_t alldevs_lock __cacheline_aligned;
    223 static devgen_t alldevs_gen = 1;
    224 static int alldevs_nread = 0;
    225 static int alldevs_nwrite = 0;
    226 static bool alldevs_garbage = false;
    227 
    228 static struct devicelist config_pending =
    229     TAILQ_HEAD_INITIALIZER(config_pending);
    230 static kmutex_t config_misc_lock;
    231 static kcondvar_t config_misc_cv;
    232 
    233 static bool detachall = false;
    234 
    235 #define	STREQ(s1, s2)			\
    236 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    237 
    238 static bool config_initialized = false;	/* config_init() has been called. */
    239 
    240 static int config_do_twiddle;
    241 static callout_t config_twiddle_ch;
    242 
    243 static void sysctl_detach_setup(struct sysctllog **);
    244 
    245 int no_devmon_insert(const char *, prop_dictionary_t);
    246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    247 
    248 typedef int (*cfdriver_fn)(struct cfdriver *);
    249 static int
    250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    251 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    252 	const char *style, bool dopanic)
    253 {
    254 	void (*pr)(const char *, ...) __printflike(1, 2) =
    255 	    dopanic ? panic : printf;
    256 	int i, error = 0, e2 __diagused;
    257 
    258 	for (i = 0; cfdriverv[i] != NULL; i++) {
    259 		if ((error = drv_do(cfdriverv[i])) != 0) {
    260 			pr("configure: `%s' driver %s failed: %d",
    261 			    cfdriverv[i]->cd_name, style, error);
    262 			goto bad;
    263 		}
    264 	}
    265 
    266 	KASSERT(error == 0);
    267 	return 0;
    268 
    269  bad:
    270 	printf("\n");
    271 	for (i--; i >= 0; i--) {
    272 		e2 = drv_undo(cfdriverv[i]);
    273 		KASSERT(e2 == 0);
    274 	}
    275 
    276 	return error;
    277 }
    278 
    279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    280 static int
    281 frob_cfattachvec(const struct cfattachinit *cfattachv,
    282 	cfattach_fn att_do, cfattach_fn att_undo,
    283 	const char *style, bool dopanic)
    284 {
    285 	const struct cfattachinit *cfai = NULL;
    286 	void (*pr)(const char *, ...) __printflike(1, 2) =
    287 	    dopanic ? panic : printf;
    288 	int j = 0, error = 0, e2 __diagused;
    289 
    290 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    291 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    292 			if ((error = att_do(cfai->cfai_name,
    293 			    cfai->cfai_list[j])) != 0) {
    294 				pr("configure: attachment `%s' "
    295 				    "of `%s' driver %s failed: %d",
    296 				    cfai->cfai_list[j]->ca_name,
    297 				    cfai->cfai_name, style, error);
    298 				goto bad;
    299 			}
    300 		}
    301 	}
    302 
    303 	KASSERT(error == 0);
    304 	return 0;
    305 
    306  bad:
    307 	/*
    308 	 * Rollback in reverse order.  dunno if super-important, but
    309 	 * do that anyway.  Although the code looks a little like
    310 	 * someone did a little integration (in the math sense).
    311 	 */
    312 	printf("\n");
    313 	if (cfai) {
    314 		bool last;
    315 
    316 		for (last = false; last == false; ) {
    317 			if (cfai == &cfattachv[0])
    318 				last = true;
    319 			for (j--; j >= 0; j--) {
    320 				e2 = att_undo(cfai->cfai_name,
    321 				    cfai->cfai_list[j]);
    322 				KASSERT(e2 == 0);
    323 			}
    324 			if (!last) {
    325 				cfai--;
    326 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    327 					;
    328 			}
    329 		}
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Initialize the autoconfiguration data structures.  Normally this
    337  * is done by configure(), but some platforms need to do this very
    338  * early (to e.g. initialize the console).
    339  */
    340 void
    341 config_init(void)
    342 {
    343 
    344 	KASSERT(config_initialized == false);
    345 
    346 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    347 
    348 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&config_misc_cv, "cfgmisc");
    350 
    351 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    352 
    353 	frob_cfdrivervec(cfdriver_list_initial,
    354 	    config_cfdriver_attach, NULL, "bootstrap", true);
    355 	frob_cfattachvec(cfattachinit,
    356 	    config_cfattach_attach, NULL, "bootstrap", true);
    357 
    358 	initcftable.ct_cfdata = cfdata;
    359 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    360 
    361 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    362 	    RND_FLAG_COLLECT_TIME);
    363 
    364 	config_initialized = true;
    365 }
    366 
    367 /*
    368  * Init or fini drivers and attachments.  Either all or none
    369  * are processed (via rollback).  It would be nice if this were
    370  * atomic to outside consumers, but with the current state of
    371  * locking ...
    372  */
    373 int
    374 config_init_component(struct cfdriver * const *cfdriverv,
    375 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    376 {
    377 	int error;
    378 
    379 	if ((error = frob_cfdrivervec(cfdriverv,
    380 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    381 		return error;
    382 	if ((error = frob_cfattachvec(cfattachv,
    383 	    config_cfattach_attach, config_cfattach_detach,
    384 	    "init", false)) != 0) {
    385 		frob_cfdrivervec(cfdriverv,
    386 	            config_cfdriver_detach, NULL, "init rollback", true);
    387 		return error;
    388 	}
    389 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    390 		frob_cfattachvec(cfattachv,
    391 		    config_cfattach_detach, NULL, "init rollback", true);
    392 		frob_cfdrivervec(cfdriverv,
    393 	            config_cfdriver_detach, NULL, "init rollback", true);
    394 		return error;
    395 	}
    396 
    397 	return 0;
    398 }
    399 
    400 int
    401 config_fini_component(struct cfdriver * const *cfdriverv,
    402 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    403 {
    404 	int error;
    405 
    406 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    407 		return error;
    408 	if ((error = frob_cfattachvec(cfattachv,
    409 	    config_cfattach_detach, config_cfattach_attach,
    410 	    "fini", false)) != 0) {
    411 		if (config_cfdata_attach(cfdatav, 0) != 0)
    412 			panic("config_cfdata fini rollback failed");
    413 		return error;
    414 	}
    415 	if ((error = frob_cfdrivervec(cfdriverv,
    416 	    config_cfdriver_detach, config_cfdriver_attach,
    417 	    "fini", false)) != 0) {
    418 		frob_cfattachvec(cfattachv,
    419 	            config_cfattach_attach, NULL, "fini rollback", true);
    420 		if (config_cfdata_attach(cfdatav, 0) != 0)
    421 			panic("config_cfdata fini rollback failed");
    422 		return error;
    423 	}
    424 
    425 	return 0;
    426 }
    427 
    428 void
    429 config_init_mi(void)
    430 {
    431 
    432 	if (!config_initialized)
    433 		config_init();
    434 
    435 	sysctl_detach_setup(NULL);
    436 }
    437 
    438 void
    439 config_deferred(device_t dev)
    440 {
    441 	config_process_deferred(&deferred_config_queue, dev);
    442 	config_process_deferred(&interrupt_config_queue, dev);
    443 	config_process_deferred(&mountroot_config_queue, dev);
    444 }
    445 
    446 static void
    447 config_interrupts_thread(void *cookie)
    448 {
    449 	struct deferred_config *dc;
    450 	device_t dev;
    451 
    452 	mutex_enter(&config_misc_lock);
    453 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    454 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    455 		mutex_exit(&config_misc_lock);
    456 
    457 		dev = dc->dc_dev;
    458 		(*dc->dc_func)(dev);
    459 		if (!device_pmf_is_registered(dev))
    460 			aprint_debug_dev(dev,
    461 			    "WARNING: power management not supported\n");
    462 		config_pending_decr(dev);
    463 		kmem_free(dc, sizeof(*dc));
    464 
    465 		mutex_enter(&config_misc_lock);
    466 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    467 	}
    468 	mutex_exit(&config_misc_lock);
    469 
    470 	kthread_exit(0);
    471 }
    472 
    473 void
    474 config_create_interruptthreads(void)
    475 {
    476 	int i;
    477 
    478 	for (i = 0; i < interrupt_config_threads; i++) {
    479 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    480 		    config_interrupts_thread, NULL, NULL, "configintr");
    481 	}
    482 }
    483 
    484 static void
    485 config_mountroot_thread(void *cookie)
    486 {
    487 	struct deferred_config *dc;
    488 
    489 	mutex_enter(&config_misc_lock);
    490 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    491 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    492 		mutex_exit(&config_misc_lock);
    493 
    494 		(*dc->dc_func)(dc->dc_dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_mountrootthreads(void)
    506 {
    507 	int i;
    508 
    509 	if (!root_is_mounted)
    510 		root_is_mounted = true;
    511 
    512 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    513 				       mountroot_config_threads;
    514 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    515 					     KM_NOSLEEP);
    516 	KASSERT(mountroot_config_lwpids);
    517 	for (i = 0; i < mountroot_config_threads; i++) {
    518 		mountroot_config_lwpids[i] = 0;
    519 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    520 				     NULL, config_mountroot_thread, NULL,
    521 				     &mountroot_config_lwpids[i],
    522 				     "configroot");
    523 	}
    524 }
    525 
    526 void
    527 config_finalize_mountroot(void)
    528 {
    529 	int i, error;
    530 
    531 	for (i = 0; i < mountroot_config_threads; i++) {
    532 		if (mountroot_config_lwpids[i] == 0)
    533 			continue;
    534 
    535 		error = kthread_join(mountroot_config_lwpids[i]);
    536 		if (error)
    537 			printf("%s: thread %x joined with error %d\n",
    538 			       __func__, i, error);
    539 	}
    540 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    541 }
    542 
    543 /*
    544  * Announce device attach/detach to userland listeners.
    545  */
    546 
    547 int
    548 no_devmon_insert(const char *name, prop_dictionary_t p)
    549 {
    550 
    551 	return ENODEV;
    552 }
    553 
    554 static void
    555 devmon_report_device(device_t dev, bool isattach)
    556 {
    557 	prop_dictionary_t ev, dict = device_properties(dev);
    558 	const char *parent;
    559 	const char *what;
    560 	const char *where;
    561 	device_t pdev = device_parent(dev);
    562 
    563 	/* If currently no drvctl device, just return */
    564 	if (devmon_insert_vec == no_devmon_insert)
    565 		return;
    566 
    567 	ev = prop_dictionary_create();
    568 	if (ev == NULL)
    569 		return;
    570 
    571 	what = (isattach ? "device-attach" : "device-detach");
    572 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    573 	if (prop_dictionary_get_string(dict, "location", &where)) {
    574 		prop_dictionary_set_string(ev, "location", where);
    575 		aprint_debug("ev: %s %s at %s in [%s]\n",
    576 		    what, device_xname(dev), parent, where);
    577 	}
    578 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    579 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    580 		prop_object_release(ev);
    581 		return;
    582 	}
    583 
    584 	if ((*devmon_insert_vec)(what, ev) != 0)
    585 		prop_object_release(ev);
    586 }
    587 
    588 /*
    589  * Add a cfdriver to the system.
    590  */
    591 int
    592 config_cfdriver_attach(struct cfdriver *cd)
    593 {
    594 	struct cfdriver *lcd;
    595 
    596 	/* Make sure this driver isn't already in the system. */
    597 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    598 		if (STREQ(lcd->cd_name, cd->cd_name))
    599 			return EEXIST;
    600 	}
    601 
    602 	LIST_INIT(&cd->cd_attach);
    603 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * Remove a cfdriver from the system.
    610  */
    611 int
    612 config_cfdriver_detach(struct cfdriver *cd)
    613 {
    614 	struct alldevs_foray af;
    615 	int i, rc = 0;
    616 
    617 	config_alldevs_enter(&af);
    618 	/* Make sure there are no active instances. */
    619 	for (i = 0; i < cd->cd_ndevs; i++) {
    620 		if (cd->cd_devs[i] != NULL) {
    621 			rc = EBUSY;
    622 			break;
    623 		}
    624 	}
    625 	config_alldevs_exit(&af);
    626 
    627 	if (rc != 0)
    628 		return rc;
    629 
    630 	/* ...and no attachments loaded. */
    631 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    632 		return EBUSY;
    633 
    634 	LIST_REMOVE(cd, cd_list);
    635 
    636 	KASSERT(cd->cd_devs == NULL);
    637 
    638 	return 0;
    639 }
    640 
    641 /*
    642  * Look up a cfdriver by name.
    643  */
    644 struct cfdriver *
    645 config_cfdriver_lookup(const char *name)
    646 {
    647 	struct cfdriver *cd;
    648 
    649 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    650 		if (STREQ(cd->cd_name, name))
    651 			return cd;
    652 	}
    653 
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * Add a cfattach to the specified driver.
    659  */
    660 int
    661 config_cfattach_attach(const char *driver, struct cfattach *ca)
    662 {
    663 	struct cfattach *lca;
    664 	struct cfdriver *cd;
    665 
    666 	cd = config_cfdriver_lookup(driver);
    667 	if (cd == NULL)
    668 		return ESRCH;
    669 
    670 	/* Make sure this attachment isn't already on this driver. */
    671 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    672 		if (STREQ(lca->ca_name, ca->ca_name))
    673 			return EEXIST;
    674 	}
    675 
    676 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    677 
    678 	return 0;
    679 }
    680 
    681 /*
    682  * Remove a cfattach from the specified driver.
    683  */
    684 int
    685 config_cfattach_detach(const char *driver, struct cfattach *ca)
    686 {
    687 	struct alldevs_foray af;
    688 	struct cfdriver *cd;
    689 	device_t dev;
    690 	int i, rc = 0;
    691 
    692 	cd = config_cfdriver_lookup(driver);
    693 	if (cd == NULL)
    694 		return ESRCH;
    695 
    696 	config_alldevs_enter(&af);
    697 	/* Make sure there are no active instances. */
    698 	for (i = 0; i < cd->cd_ndevs; i++) {
    699 		if ((dev = cd->cd_devs[i]) == NULL)
    700 			continue;
    701 		if (dev->dv_cfattach == ca) {
    702 			rc = EBUSY;
    703 			break;
    704 		}
    705 	}
    706 	config_alldevs_exit(&af);
    707 
    708 	if (rc != 0)
    709 		return rc;
    710 
    711 	LIST_REMOVE(ca, ca_list);
    712 
    713 	return 0;
    714 }
    715 
    716 /*
    717  * Look up a cfattach by name.
    718  */
    719 static struct cfattach *
    720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    721 {
    722 	struct cfattach *ca;
    723 
    724 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    725 		if (STREQ(ca->ca_name, atname))
    726 			return ca;
    727 	}
    728 
    729 	return NULL;
    730 }
    731 
    732 /*
    733  * Look up a cfattach by driver/attachment name.
    734  */
    735 struct cfattach *
    736 config_cfattach_lookup(const char *name, const char *atname)
    737 {
    738 	struct cfdriver *cd;
    739 
    740 	cd = config_cfdriver_lookup(name);
    741 	if (cd == NULL)
    742 		return NULL;
    743 
    744 	return config_cfattach_lookup_cd(cd, atname);
    745 }
    746 
    747 /*
    748  * Apply the matching function and choose the best.  This is used
    749  * a few times and we want to keep the code small.
    750  */
    751 static void
    752 mapply(struct matchinfo *m, cfdata_t cf)
    753 {
    754 	int pri;
    755 
    756 	if (m->fn != NULL) {
    757 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    758 	} else {
    759 		pri = config_match(m->parent, cf, m->aux);
    760 	}
    761 	if (pri > m->pri) {
    762 		m->match = cf;
    763 		m->pri = pri;
    764 	}
    765 }
    766 
    767 int
    768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    769 {
    770 	const struct cfiattrdata *ci;
    771 	const struct cflocdesc *cl;
    772 	int nlocs, i;
    773 
    774 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    775 	KASSERT(ci);
    776 	nlocs = ci->ci_loclen;
    777 	KASSERT(!nlocs || locs);
    778 	for (i = 0; i < nlocs; i++) {
    779 		cl = &ci->ci_locdesc[i];
    780 		if (cl->cld_defaultstr != NULL &&
    781 		    cf->cf_loc[i] == cl->cld_default)
    782 			continue;
    783 		if (cf->cf_loc[i] == locs[i])
    784 			continue;
    785 		return 0;
    786 	}
    787 
    788 	return config_match(parent, cf, aux);
    789 }
    790 
    791 /*
    792  * Helper function: check whether the driver supports the interface attribute
    793  * and return its descriptor structure.
    794  */
    795 static const struct cfiattrdata *
    796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    797 {
    798 	const struct cfiattrdata * const *cpp;
    799 
    800 	if (cd->cd_attrs == NULL)
    801 		return 0;
    802 
    803 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    804 		if (STREQ((*cpp)->ci_name, ia)) {
    805 			/* Match. */
    806 			return *cpp;
    807 		}
    808 	}
    809 	return 0;
    810 }
    811 
    812 #if defined(DIAGNOSTIC)
    813 static int
    814 cfdriver_iattr_count(const struct cfdriver *cd)
    815 {
    816 	const struct cfiattrdata * const *cpp;
    817 	int i;
    818 
    819 	if (cd->cd_attrs == NULL)
    820 		return 0;
    821 
    822 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    823 		i++;
    824 	}
    825 	return i;
    826 }
    827 #endif /* DIAGNOSTIC */
    828 
    829 /*
    830  * Lookup an interface attribute description by name.
    831  * If the driver is given, consider only its supported attributes.
    832  */
    833 const struct cfiattrdata *
    834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    835 {
    836 	const struct cfdriver *d;
    837 	const struct cfiattrdata *ia;
    838 
    839 	if (cd)
    840 		return cfdriver_get_iattr(cd, name);
    841 
    842 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    843 		ia = cfdriver_get_iattr(d, name);
    844 		if (ia)
    845 			return ia;
    846 	}
    847 	return 0;
    848 }
    849 
    850 /*
    851  * Determine if `parent' is a potential parent for a device spec based
    852  * on `cfp'.
    853  */
    854 static int
    855 cfparent_match(const device_t parent, const struct cfparent *cfp)
    856 {
    857 	struct cfdriver *pcd;
    858 
    859 	/* We don't match root nodes here. */
    860 	if (cfp == NULL)
    861 		return 0;
    862 
    863 	pcd = parent->dv_cfdriver;
    864 	KASSERT(pcd != NULL);
    865 
    866 	/*
    867 	 * First, ensure this parent has the correct interface
    868 	 * attribute.
    869 	 */
    870 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    871 		return 0;
    872 
    873 	/*
    874 	 * If no specific parent device instance was specified (i.e.
    875 	 * we're attaching to the attribute only), we're done!
    876 	 */
    877 	if (cfp->cfp_parent == NULL)
    878 		return 1;
    879 
    880 	/*
    881 	 * Check the parent device's name.
    882 	 */
    883 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    884 		return 0;	/* not the same parent */
    885 
    886 	/*
    887 	 * Make sure the unit number matches.
    888 	 */
    889 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    890 	    cfp->cfp_unit == parent->dv_unit)
    891 		return 1;
    892 
    893 	/* Unit numbers don't match. */
    894 	return 0;
    895 }
    896 
    897 /*
    898  * Helper for config_cfdata_attach(): check all devices whether it could be
    899  * parent any attachment in the config data table passed, and rescan.
    900  */
    901 static void
    902 rescan_with_cfdata(const struct cfdata *cf)
    903 {
    904 	device_t d;
    905 	const struct cfdata *cf1;
    906 	deviter_t di;
    907 
    908 
    909 	/*
    910 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    911 	 * the outer loop.
    912 	 */
    913 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    914 
    915 		if (!(d->dv_cfattach->ca_rescan))
    916 			continue;
    917 
    918 		for (cf1 = cf; cf1->cf_name; cf1++) {
    919 
    920 			if (!cfparent_match(d, cf1->cf_pspec))
    921 				continue;
    922 
    923 			(*d->dv_cfattach->ca_rescan)(d,
    924 				cfdata_ifattr(cf1), cf1->cf_loc);
    925 
    926 			config_deferred(d);
    927 		}
    928 	}
    929 	deviter_release(&di);
    930 }
    931 
    932 /*
    933  * Attach a supplemental config data table and rescan potential
    934  * parent devices if required.
    935  */
    936 int
    937 config_cfdata_attach(cfdata_t cf, int scannow)
    938 {
    939 	struct cftable *ct;
    940 
    941 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    942 	ct->ct_cfdata = cf;
    943 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    944 
    945 	if (scannow)
    946 		rescan_with_cfdata(cf);
    947 
    948 	return 0;
    949 }
    950 
    951 /*
    952  * Helper for config_cfdata_detach: check whether a device is
    953  * found through any attachment in the config data table.
    954  */
    955 static int
    956 dev_in_cfdata(device_t d, cfdata_t cf)
    957 {
    958 	const struct cfdata *cf1;
    959 
    960 	for (cf1 = cf; cf1->cf_name; cf1++)
    961 		if (d->dv_cfdata == cf1)
    962 			return 1;
    963 
    964 	return 0;
    965 }
    966 
    967 /*
    968  * Detach a supplemental config data table. Detach all devices found
    969  * through that table (and thus keeping references to it) before.
    970  */
    971 int
    972 config_cfdata_detach(cfdata_t cf)
    973 {
    974 	device_t d;
    975 	int error = 0;
    976 	struct cftable *ct;
    977 	deviter_t di;
    978 
    979 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    980 	     d = deviter_next(&di)) {
    981 		if (!dev_in_cfdata(d, cf))
    982 			continue;
    983 		if ((error = config_detach(d, 0)) != 0)
    984 			break;
    985 	}
    986 	deviter_release(&di);
    987 	if (error) {
    988 		aprint_error_dev(d, "unable to detach instance\n");
    989 		return error;
    990 	}
    991 
    992 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    993 		if (ct->ct_cfdata == cf) {
    994 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    995 			kmem_free(ct, sizeof(*ct));
    996 			return 0;
    997 		}
    998 	}
    999 
   1000 	/* not found -- shouldn't happen */
   1001 	return EINVAL;
   1002 }
   1003 
   1004 /*
   1005  * Invoke the "match" routine for a cfdata entry on behalf of
   1006  * an external caller, usually a "submatch" routine.
   1007  */
   1008 int
   1009 config_match(device_t parent, cfdata_t cf, void *aux)
   1010 {
   1011 	struct cfattach *ca;
   1012 
   1013 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1014 	if (ca == NULL) {
   1015 		/* No attachment for this entry, oh well. */
   1016 		return 0;
   1017 	}
   1018 
   1019 	return (*ca->ca_match)(parent, cf, aux);
   1020 }
   1021 
   1022 static void
   1023 config_get_cfargs(cfarg_t tag,
   1024 		  cfsubmatch_t *fnp,		/* output */
   1025 		  const char **ifattrp,		/* output */
   1026 		  const int **locsp,		/* output */
   1027 		  va_list ap)
   1028 {
   1029 	cfsubmatch_t fn = NULL;
   1030 	const char *ifattr = NULL;
   1031 	const int *locs = NULL;
   1032 
   1033 	while (tag != CFARG_EOL) {
   1034 		switch (tag) {
   1035 		case CFARG_SUBMATCH:
   1036 			fn = va_arg(ap, cfsubmatch_t);
   1037 			break;
   1038 
   1039 		case CFARG_IATTR:
   1040 			ifattr = va_arg(ap, const char *);
   1041 			break;
   1042 
   1043 		case CFARG_LOCATORS:
   1044 			locs = va_arg(ap, const int *);
   1045 			break;
   1046 
   1047 		default:
   1048 			/* XXX panic? */
   1049 			/* XXX dump stack backtrace? */
   1050 			aprint_error("%s: unknown cfarg tag: %d\n",
   1051 			    __func__, tag);
   1052 			goto out;
   1053 		}
   1054 		tag = va_arg(ap, cfarg_t);
   1055 	}
   1056 
   1057  out:
   1058 	if (fnp != NULL)
   1059 		*fnp = fn;
   1060 	if (ifattrp != NULL)
   1061 		*ifattrp = ifattr;
   1062 	if (locsp != NULL)
   1063 		*locsp = locs;
   1064 }
   1065 
   1066 /*
   1067  * Iterate over all potential children of some device, calling the given
   1068  * function (default being the child's match function) for each one.
   1069  * Nonzero returns are matches; the highest value returned is considered
   1070  * the best match.  Return the `found child' if we got a match, or NULL
   1071  * otherwise.  The `aux' pointer is simply passed on through.
   1072  *
   1073  * Note that this function is designed so that it can be used to apply
   1074  * an arbitrary function to all potential children (its return value
   1075  * can be ignored).
   1076  */
   1077 static cfdata_t
   1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1079 {
   1080 	cfsubmatch_t fn;
   1081 	const char *ifattr;
   1082 	const int *locs;
   1083 	struct cftable *ct;
   1084 	cfdata_t cf;
   1085 	struct matchinfo m;
   1086 
   1087 	config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
   1088 
   1089 	KASSERT(config_initialized);
   1090 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1091 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1092 
   1093 	m.fn = fn;
   1094 	m.parent = parent;
   1095 	m.locs = locs;
   1096 	m.aux = aux;
   1097 	m.match = NULL;
   1098 	m.pri = 0;
   1099 
   1100 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1101 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1102 
   1103 			/* We don't match root nodes here. */
   1104 			if (!cf->cf_pspec)
   1105 				continue;
   1106 
   1107 			/*
   1108 			 * Skip cf if no longer eligible, otherwise scan
   1109 			 * through parents for one matching `parent', and
   1110 			 * try match function.
   1111 			 */
   1112 			if (cf->cf_fstate == FSTATE_FOUND)
   1113 				continue;
   1114 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1115 			    cf->cf_fstate == FSTATE_DSTAR)
   1116 				continue;
   1117 
   1118 			/*
   1119 			 * If an interface attribute was specified,
   1120 			 * consider only children which attach to
   1121 			 * that attribute.
   1122 			 */
   1123 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1124 				continue;
   1125 
   1126 			if (cfparent_match(parent, cf->cf_pspec))
   1127 				mapply(&m, cf);
   1128 		}
   1129 	}
   1130 	return m.match;
   1131 }
   1132 
   1133 cfdata_t
   1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1135 {
   1136 	cfdata_t cf;
   1137 	va_list ap;
   1138 
   1139 	va_start(ap, tag);
   1140 	cf = config_vsearch(parent, aux, tag, ap);
   1141 	va_end(ap);
   1142 
   1143 	return cf;
   1144 }
   1145 
   1146 /*
   1147  * Find the given root device.
   1148  * This is much like config_search, but there is no parent.
   1149  * Don't bother with multiple cfdata tables; the root node
   1150  * must always be in the initial table.
   1151  */
   1152 cfdata_t
   1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1154 {
   1155 	cfdata_t cf;
   1156 	const short *p;
   1157 	struct matchinfo m;
   1158 
   1159 	m.fn = fn;
   1160 	m.parent = ROOT;
   1161 	m.aux = aux;
   1162 	m.match = NULL;
   1163 	m.pri = 0;
   1164 	m.locs = 0;
   1165 	/*
   1166 	 * Look at root entries for matching name.  We do not bother
   1167 	 * with found-state here since only one root should ever be
   1168 	 * searched (and it must be done first).
   1169 	 */
   1170 	for (p = cfroots; *p >= 0; p++) {
   1171 		cf = &cfdata[*p];
   1172 		if (strcmp(cf->cf_name, rootname) == 0)
   1173 			mapply(&m, cf);
   1174 	}
   1175 	return m.match;
   1176 }
   1177 
   1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1179 
   1180 /*
   1181  * The given `aux' argument describes a device that has been found
   1182  * on the given parent, but not necessarily configured.  Locate the
   1183  * configuration data for that device (using the submatch function
   1184  * provided, or using candidates' cd_match configuration driver
   1185  * functions) and attach it, and return its device_t.  If the device was
   1186  * not configured, call the given `print' function and return NULL.
   1187  */
   1188 static device_t
   1189 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1190     va_list ap)
   1191 {
   1192 	cfsubmatch_t submatch;
   1193 	const char *ifattr;
   1194 	const int *locs;
   1195 	cfdata_t cf;
   1196 
   1197 	config_get_cfargs(tag, &submatch, &ifattr, &locs, ap);
   1198 
   1199 	if ((cf = config_search(parent, aux,
   1200 				CFARG_SUBMATCH, submatch,
   1201 				CFARG_IATTR, ifattr,
   1202 				CFARG_LOCATORS, locs,
   1203 				CFARG_EOL)))
   1204 		return config_attach_loc(parent, cf, locs, aux, print);
   1205 	if (print) {
   1206 		if (config_do_twiddle && cold)
   1207 			twiddle();
   1208 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1209 	}
   1210 
   1211 	/*
   1212 	 * This has the effect of mixing in a single timestamp to the
   1213 	 * entropy pool.  Experiments indicate the estimator will almost
   1214 	 * always attribute one bit of entropy to this sample; analysis
   1215 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1216 	 * bits of entropy/sample so this seems appropriately conservative.
   1217 	 */
   1218 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1219 	return NULL;
   1220 }
   1221 
   1222 #if 0
   1223 device_t
   1224 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1225     cfprint_t print)
   1226 {
   1227 
   1228 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1229 }
   1230 #endif
   1231 
   1232 device_t
   1233 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1234 {
   1235 	device_t dev;
   1236 	va_list ap;
   1237 
   1238 	va_start(ap, tag);
   1239 	dev = config_vfound(parent, aux, print, tag, ap);
   1240 	va_end(ap);
   1241 
   1242 	return dev;
   1243 }
   1244 
   1245 /*
   1246  * As above, but for root devices.
   1247  */
   1248 device_t
   1249 config_rootfound(const char *rootname, void *aux)
   1250 {
   1251 	cfdata_t cf;
   1252 
   1253 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1254 		return config_attach(ROOT, cf, aux, NULL);
   1255 	aprint_error("root device %s not configured\n", rootname);
   1256 	return NULL;
   1257 }
   1258 
   1259 /* just like sprintf(buf, "%d") except that it works from the end */
   1260 static char *
   1261 number(char *ep, int n)
   1262 {
   1263 
   1264 	*--ep = 0;
   1265 	while (n >= 10) {
   1266 		*--ep = (n % 10) + '0';
   1267 		n /= 10;
   1268 	}
   1269 	*--ep = n + '0';
   1270 	return ep;
   1271 }
   1272 
   1273 /*
   1274  * Expand the size of the cd_devs array if necessary.
   1275  *
   1276  * The caller must hold alldevs_lock. config_makeroom() may release and
   1277  * re-acquire alldevs_lock, so callers should re-check conditions such
   1278  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1279  * returns.
   1280  */
   1281 static void
   1282 config_makeroom(int n, struct cfdriver *cd)
   1283 {
   1284 	int ondevs, nndevs;
   1285 	device_t *osp, *nsp;
   1286 
   1287 	KASSERT(mutex_owned(&alldevs_lock));
   1288 	alldevs_nwrite++;
   1289 
   1290 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1291 		;
   1292 
   1293 	while (n >= cd->cd_ndevs) {
   1294 		/*
   1295 		 * Need to expand the array.
   1296 		 */
   1297 		ondevs = cd->cd_ndevs;
   1298 		osp = cd->cd_devs;
   1299 
   1300 		/*
   1301 		 * Release alldevs_lock around allocation, which may
   1302 		 * sleep.
   1303 		 */
   1304 		mutex_exit(&alldevs_lock);
   1305 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1306 		mutex_enter(&alldevs_lock);
   1307 
   1308 		/*
   1309 		 * If another thread moved the array while we did
   1310 		 * not hold alldevs_lock, try again.
   1311 		 */
   1312 		if (cd->cd_devs != osp) {
   1313 			mutex_exit(&alldevs_lock);
   1314 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1315 			mutex_enter(&alldevs_lock);
   1316 			continue;
   1317 		}
   1318 
   1319 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1320 		if (ondevs != 0)
   1321 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1322 
   1323 		cd->cd_ndevs = nndevs;
   1324 		cd->cd_devs = nsp;
   1325 		if (ondevs != 0) {
   1326 			mutex_exit(&alldevs_lock);
   1327 			kmem_free(osp, sizeof(device_t) * ondevs);
   1328 			mutex_enter(&alldevs_lock);
   1329 		}
   1330 	}
   1331 	KASSERT(mutex_owned(&alldevs_lock));
   1332 	alldevs_nwrite--;
   1333 }
   1334 
   1335 /*
   1336  * Put dev into the devices list.
   1337  */
   1338 static void
   1339 config_devlink(device_t dev)
   1340 {
   1341 
   1342 	mutex_enter(&alldevs_lock);
   1343 
   1344 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1345 
   1346 	dev->dv_add_gen = alldevs_gen;
   1347 	/* It is safe to add a device to the tail of the list while
   1348 	 * readers and writers are in the list.
   1349 	 */
   1350 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1351 	mutex_exit(&alldevs_lock);
   1352 }
   1353 
   1354 static void
   1355 config_devfree(device_t dev)
   1356 {
   1357 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1358 
   1359 	if (dev->dv_cfattach->ca_devsize > 0)
   1360 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1361 	kmem_free(dev, sizeof(*dev));
   1362 }
   1363 
   1364 /*
   1365  * Caller must hold alldevs_lock.
   1366  */
   1367 static void
   1368 config_devunlink(device_t dev, struct devicelist *garbage)
   1369 {
   1370 	struct device_garbage *dg = &dev->dv_garbage;
   1371 	cfdriver_t cd = device_cfdriver(dev);
   1372 	int i;
   1373 
   1374 	KASSERT(mutex_owned(&alldevs_lock));
   1375 
   1376  	/* Unlink from device list.  Link to garbage list. */
   1377 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1378 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1379 
   1380 	/* Remove from cfdriver's array. */
   1381 	cd->cd_devs[dev->dv_unit] = NULL;
   1382 
   1383 	/*
   1384 	 * If the device now has no units in use, unlink its softc array.
   1385 	 */
   1386 	for (i = 0; i < cd->cd_ndevs; i++) {
   1387 		if (cd->cd_devs[i] != NULL)
   1388 			break;
   1389 	}
   1390 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1391 	if (i == cd->cd_ndevs) {
   1392 		dg->dg_ndevs = cd->cd_ndevs;
   1393 		dg->dg_devs = cd->cd_devs;
   1394 		cd->cd_devs = NULL;
   1395 		cd->cd_ndevs = 0;
   1396 	}
   1397 }
   1398 
   1399 static void
   1400 config_devdelete(device_t dev)
   1401 {
   1402 	struct device_garbage *dg = &dev->dv_garbage;
   1403 	device_lock_t dvl = device_getlock(dev);
   1404 
   1405 	if (dg->dg_devs != NULL)
   1406 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1407 
   1408 	cv_destroy(&dvl->dvl_cv);
   1409 	mutex_destroy(&dvl->dvl_mtx);
   1410 
   1411 	KASSERT(dev->dv_properties != NULL);
   1412 	prop_object_release(dev->dv_properties);
   1413 
   1414 	if (dev->dv_activity_handlers)
   1415 		panic("%s with registered handlers", __func__);
   1416 
   1417 	if (dev->dv_locators) {
   1418 		size_t amount = *--dev->dv_locators;
   1419 		kmem_free(dev->dv_locators, amount);
   1420 	}
   1421 
   1422 	config_devfree(dev);
   1423 }
   1424 
   1425 static int
   1426 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1427 {
   1428 	int unit;
   1429 
   1430 	if (cf->cf_fstate == FSTATE_STAR) {
   1431 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1432 			if (cd->cd_devs[unit] == NULL)
   1433 				break;
   1434 		/*
   1435 		 * unit is now the unit of the first NULL device pointer,
   1436 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1437 		 */
   1438 	} else {
   1439 		unit = cf->cf_unit;
   1440 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1441 			unit = -1;
   1442 	}
   1443 	return unit;
   1444 }
   1445 
   1446 static int
   1447 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1448 {
   1449 	struct alldevs_foray af;
   1450 	int unit;
   1451 
   1452 	config_alldevs_enter(&af);
   1453 	for (;;) {
   1454 		unit = config_unit_nextfree(cd, cf);
   1455 		if (unit == -1)
   1456 			break;
   1457 		if (unit < cd->cd_ndevs) {
   1458 			cd->cd_devs[unit] = dev;
   1459 			dev->dv_unit = unit;
   1460 			break;
   1461 		}
   1462 		config_makeroom(unit, cd);
   1463 	}
   1464 	config_alldevs_exit(&af);
   1465 
   1466 	return unit;
   1467 }
   1468 
   1469 static device_t
   1470 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1471 {
   1472 	cfdriver_t cd;
   1473 	cfattach_t ca;
   1474 	size_t lname, lunit;
   1475 	const char *xunit;
   1476 	int myunit;
   1477 	char num[10];
   1478 	device_t dev;
   1479 	void *dev_private;
   1480 	const struct cfiattrdata *ia;
   1481 	device_lock_t dvl;
   1482 
   1483 	cd = config_cfdriver_lookup(cf->cf_name);
   1484 	if (cd == NULL)
   1485 		return NULL;
   1486 
   1487 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1488 	if (ca == NULL)
   1489 		return NULL;
   1490 
   1491 	/* get memory for all device vars */
   1492 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1493 	if (ca->ca_devsize > 0) {
   1494 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1495 	} else {
   1496 		dev_private = NULL;
   1497 	}
   1498 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1499 
   1500 	dev->dv_class = cd->cd_class;
   1501 	dev->dv_cfdata = cf;
   1502 	dev->dv_cfdriver = cd;
   1503 	dev->dv_cfattach = ca;
   1504 	dev->dv_activity_count = 0;
   1505 	dev->dv_activity_handlers = NULL;
   1506 	dev->dv_private = dev_private;
   1507 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1508 
   1509 	myunit = config_unit_alloc(dev, cd, cf);
   1510 	if (myunit == -1) {
   1511 		config_devfree(dev);
   1512 		return NULL;
   1513 	}
   1514 
   1515 	/* compute length of name and decimal expansion of unit number */
   1516 	lname = strlen(cd->cd_name);
   1517 	xunit = number(&num[sizeof(num)], myunit);
   1518 	lunit = &num[sizeof(num)] - xunit;
   1519 	if (lname + lunit > sizeof(dev->dv_xname))
   1520 		panic("config_devalloc: device name too long");
   1521 
   1522 	dvl = device_getlock(dev);
   1523 
   1524 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1525 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1526 
   1527 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1528 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1529 	dev->dv_parent = parent;
   1530 	if (parent != NULL)
   1531 		dev->dv_depth = parent->dv_depth + 1;
   1532 	else
   1533 		dev->dv_depth = 0;
   1534 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1535 	if (locs) {
   1536 		KASSERT(parent); /* no locators at root */
   1537 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1538 		dev->dv_locators =
   1539 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1540 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1541 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1542 	}
   1543 	dev->dv_properties = prop_dictionary_create();
   1544 	KASSERT(dev->dv_properties != NULL);
   1545 
   1546 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1547 	    "device-driver", dev->dv_cfdriver->cd_name);
   1548 	prop_dictionary_set_uint16(dev->dv_properties,
   1549 	    "device-unit", dev->dv_unit);
   1550 	if (parent != NULL) {
   1551 		prop_dictionary_set_string(dev->dv_properties,
   1552 		    "device-parent", device_xname(parent));
   1553 	}
   1554 
   1555 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1556 		config_add_attrib_dict(dev);
   1557 
   1558 	return dev;
   1559 }
   1560 
   1561 /*
   1562  * Create an array of device attach attributes and add it
   1563  * to the device's dv_properties dictionary.
   1564  *
   1565  * <key>interface-attributes</key>
   1566  * <array>
   1567  *    <dict>
   1568  *       <key>attribute-name</key>
   1569  *       <string>foo</string>
   1570  *       <key>locators</key>
   1571  *       <array>
   1572  *          <dict>
   1573  *             <key>loc-name</key>
   1574  *             <string>foo-loc1</string>
   1575  *          </dict>
   1576  *          <dict>
   1577  *             <key>loc-name</key>
   1578  *             <string>foo-loc2</string>
   1579  *             <key>default</key>
   1580  *             <string>foo-loc2-default</string>
   1581  *          </dict>
   1582  *          ...
   1583  *       </array>
   1584  *    </dict>
   1585  *    ...
   1586  * </array>
   1587  */
   1588 
   1589 static void
   1590 config_add_attrib_dict(device_t dev)
   1591 {
   1592 	int i, j;
   1593 	const struct cfiattrdata *ci;
   1594 	prop_dictionary_t attr_dict, loc_dict;
   1595 	prop_array_t attr_array, loc_array;
   1596 
   1597 	if ((attr_array = prop_array_create()) == NULL)
   1598 		return;
   1599 
   1600 	for (i = 0; ; i++) {
   1601 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1602 			break;
   1603 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1604 			break;
   1605 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1606 		    ci->ci_name);
   1607 
   1608 		/* Create an array of the locator names and defaults */
   1609 
   1610 		if (ci->ci_loclen != 0 &&
   1611 		    (loc_array = prop_array_create()) != NULL) {
   1612 			for (j = 0; j < ci->ci_loclen; j++) {
   1613 				loc_dict = prop_dictionary_create();
   1614 				if (loc_dict == NULL)
   1615 					continue;
   1616 				prop_dictionary_set_string_nocopy(loc_dict,
   1617 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1618 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1619 					prop_dictionary_set_string_nocopy(
   1620 					    loc_dict, "default",
   1621 					    ci->ci_locdesc[j].cld_defaultstr);
   1622 				prop_array_set(loc_array, j, loc_dict);
   1623 				prop_object_release(loc_dict);
   1624 			}
   1625 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1626 			    loc_array);
   1627 		}
   1628 		prop_array_add(attr_array, attr_dict);
   1629 		prop_object_release(attr_dict);
   1630 	}
   1631 	if (i == 0)
   1632 		prop_object_release(attr_array);
   1633 	else
   1634 		prop_dictionary_set_and_rel(dev->dv_properties,
   1635 		    "interface-attributes", attr_array);
   1636 
   1637 	return;
   1638 }
   1639 
   1640 /*
   1641  * Attach a found device.
   1642  */
   1643 device_t
   1644 config_attach_loc(device_t parent, cfdata_t cf,
   1645 	const int *locs, void *aux, cfprint_t print)
   1646 {
   1647 	device_t dev;
   1648 	struct cftable *ct;
   1649 	const char *drvname;
   1650 
   1651 	dev = config_devalloc(parent, cf, locs);
   1652 	if (!dev)
   1653 		panic("config_attach: allocation of device softc failed");
   1654 
   1655 	/* XXX redundant - see below? */
   1656 	if (cf->cf_fstate != FSTATE_STAR) {
   1657 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1658 		cf->cf_fstate = FSTATE_FOUND;
   1659 	}
   1660 
   1661 	config_devlink(dev);
   1662 
   1663 	if (config_do_twiddle && cold)
   1664 		twiddle();
   1665 	else
   1666 		aprint_naive("Found ");
   1667 	/*
   1668 	 * We want the next two printfs for normal, verbose, and quiet,
   1669 	 * but not silent (in which case, we're twiddling, instead).
   1670 	 */
   1671 	if (parent == ROOT) {
   1672 		aprint_naive("%s (root)", device_xname(dev));
   1673 		aprint_normal("%s (root)", device_xname(dev));
   1674 	} else {
   1675 		aprint_naive("%s at %s", device_xname(dev),
   1676 		    device_xname(parent));
   1677 		aprint_normal("%s at %s", device_xname(dev),
   1678 		    device_xname(parent));
   1679 		if (print)
   1680 			(void) (*print)(aux, NULL);
   1681 	}
   1682 
   1683 	/*
   1684 	 * Before attaching, clobber any unfound devices that are
   1685 	 * otherwise identical.
   1686 	 * XXX code above is redundant?
   1687 	 */
   1688 	drvname = dev->dv_cfdriver->cd_name;
   1689 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1690 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1691 			if (STREQ(cf->cf_name, drvname) &&
   1692 			    cf->cf_unit == dev->dv_unit) {
   1693 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1694 					cf->cf_fstate = FSTATE_FOUND;
   1695 			}
   1696 		}
   1697 	}
   1698 	device_register(dev, aux);
   1699 
   1700 	/* Let userland know */
   1701 	devmon_report_device(dev, true);
   1702 
   1703 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1704 
   1705 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1706 	    && !device_pmf_is_registered(dev))
   1707 		aprint_debug_dev(dev,
   1708 		    "WARNING: power management not supported\n");
   1709 
   1710 	config_process_deferred(&deferred_config_queue, dev);
   1711 
   1712 	device_register_post_config(dev, aux);
   1713 	return dev;
   1714 }
   1715 
   1716 device_t
   1717 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1718 {
   1719 
   1720 	return config_attach_loc(parent, cf, NULL, aux, print);
   1721 }
   1722 
   1723 /*
   1724  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1725  * way are silently inserted into the device tree, and their children
   1726  * attached.
   1727  *
   1728  * Note that because pseudo-devices are attached silently, any information
   1729  * the attach routine wishes to print should be prefixed with the device
   1730  * name by the attach routine.
   1731  */
   1732 device_t
   1733 config_attach_pseudo(cfdata_t cf)
   1734 {
   1735 	device_t dev;
   1736 
   1737 	dev = config_devalloc(ROOT, cf, NULL);
   1738 	if (!dev)
   1739 		return NULL;
   1740 
   1741 	/* XXX mark busy in cfdata */
   1742 
   1743 	if (cf->cf_fstate != FSTATE_STAR) {
   1744 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1745 		cf->cf_fstate = FSTATE_FOUND;
   1746 	}
   1747 
   1748 	config_devlink(dev);
   1749 
   1750 #if 0	/* XXXJRT not yet */
   1751 	device_register(dev, NULL);	/* like a root node */
   1752 #endif
   1753 
   1754 	/* Let userland know */
   1755 	devmon_report_device(dev, true);
   1756 
   1757 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1758 
   1759 	config_process_deferred(&deferred_config_queue, dev);
   1760 	return dev;
   1761 }
   1762 
   1763 /*
   1764  * Caller must hold alldevs_lock.
   1765  */
   1766 static void
   1767 config_collect_garbage(struct devicelist *garbage)
   1768 {
   1769 	device_t dv;
   1770 
   1771 	KASSERT(!cpu_intr_p());
   1772 	KASSERT(!cpu_softintr_p());
   1773 	KASSERT(mutex_owned(&alldevs_lock));
   1774 
   1775 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1776 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1777 			if (dv->dv_del_gen != 0)
   1778 				break;
   1779 		}
   1780 		if (dv == NULL) {
   1781 			alldevs_garbage = false;
   1782 			break;
   1783 		}
   1784 		config_devunlink(dv, garbage);
   1785 	}
   1786 	KASSERT(mutex_owned(&alldevs_lock));
   1787 }
   1788 
   1789 static void
   1790 config_dump_garbage(struct devicelist *garbage)
   1791 {
   1792 	device_t dv;
   1793 
   1794 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1795 		TAILQ_REMOVE(garbage, dv, dv_list);
   1796 		config_devdelete(dv);
   1797 	}
   1798 }
   1799 
   1800 /*
   1801  * Detach a device.  Optionally forced (e.g. because of hardware
   1802  * removal) and quiet.  Returns zero if successful, non-zero
   1803  * (an error code) otherwise.
   1804  *
   1805  * Note that this code wants to be run from a process context, so
   1806  * that the detach can sleep to allow processes which have a device
   1807  * open to run and unwind their stacks.
   1808  */
   1809 int
   1810 config_detach(device_t dev, int flags)
   1811 {
   1812 	struct alldevs_foray af;
   1813 	struct cftable *ct;
   1814 	cfdata_t cf;
   1815 	const struct cfattach *ca;
   1816 	struct cfdriver *cd;
   1817 	device_t d __diagused;
   1818 	int rv = 0;
   1819 
   1820 	cf = dev->dv_cfdata;
   1821 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1822 		cf->cf_fstate == FSTATE_STAR),
   1823 	    "config_detach: %s: bad device fstate: %d",
   1824 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1825 
   1826 	cd = dev->dv_cfdriver;
   1827 	KASSERT(cd != NULL);
   1828 
   1829 	ca = dev->dv_cfattach;
   1830 	KASSERT(ca != NULL);
   1831 
   1832 	mutex_enter(&alldevs_lock);
   1833 	if (dev->dv_del_gen != 0) {
   1834 		mutex_exit(&alldevs_lock);
   1835 #ifdef DIAGNOSTIC
   1836 		printf("%s: %s is already detached\n", __func__,
   1837 		    device_xname(dev));
   1838 #endif /* DIAGNOSTIC */
   1839 		return ENOENT;
   1840 	}
   1841 	alldevs_nwrite++;
   1842 	mutex_exit(&alldevs_lock);
   1843 
   1844 	if (!detachall &&
   1845 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1846 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1847 		rv = EOPNOTSUPP;
   1848 	} else if (ca->ca_detach != NULL) {
   1849 		rv = (*ca->ca_detach)(dev, flags);
   1850 	} else
   1851 		rv = EOPNOTSUPP;
   1852 
   1853 	/*
   1854 	 * If it was not possible to detach the device, then we either
   1855 	 * panic() (for the forced but failed case), or return an error.
   1856 	 *
   1857 	 * If it was possible to detach the device, ensure that the
   1858 	 * device is deactivated.
   1859 	 */
   1860 	if (rv == 0)
   1861 		dev->dv_flags &= ~DVF_ACTIVE;
   1862 	else if ((flags & DETACH_FORCE) == 0)
   1863 		goto out;
   1864 	else {
   1865 		panic("config_detach: forced detach of %s failed (%d)",
   1866 		    device_xname(dev), rv);
   1867 	}
   1868 
   1869 	/*
   1870 	 * The device has now been successfully detached.
   1871 	 */
   1872 
   1873 	/* Let userland know */
   1874 	devmon_report_device(dev, false);
   1875 
   1876 #ifdef DIAGNOSTIC
   1877 	/*
   1878 	 * Sanity: If you're successfully detached, you should have no
   1879 	 * children.  (Note that because children must be attached
   1880 	 * after parents, we only need to search the latter part of
   1881 	 * the list.)
   1882 	 */
   1883 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1884 	    d = TAILQ_NEXT(d, dv_list)) {
   1885 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1886 			printf("config_detach: detached device %s"
   1887 			    " has children %s\n", device_xname(dev),
   1888 			    device_xname(d));
   1889 			panic("config_detach");
   1890 		}
   1891 	}
   1892 #endif
   1893 
   1894 	/* notify the parent that the child is gone */
   1895 	if (dev->dv_parent) {
   1896 		device_t p = dev->dv_parent;
   1897 		if (p->dv_cfattach->ca_childdetached)
   1898 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1899 	}
   1900 
   1901 	/*
   1902 	 * Mark cfdata to show that the unit can be reused, if possible.
   1903 	 */
   1904 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1905 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1906 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1907 				if (cf->cf_fstate == FSTATE_FOUND &&
   1908 				    cf->cf_unit == dev->dv_unit)
   1909 					cf->cf_fstate = FSTATE_NOTFOUND;
   1910 			}
   1911 		}
   1912 	}
   1913 
   1914 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1915 		aprint_normal_dev(dev, "detached\n");
   1916 
   1917 out:
   1918 	config_alldevs_enter(&af);
   1919 	KASSERT(alldevs_nwrite != 0);
   1920 	--alldevs_nwrite;
   1921 	if (rv == 0 && dev->dv_del_gen == 0) {
   1922 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1923 			config_devunlink(dev, &af.af_garbage);
   1924 		else {
   1925 			dev->dv_del_gen = alldevs_gen;
   1926 			alldevs_garbage = true;
   1927 		}
   1928 	}
   1929 	config_alldevs_exit(&af);
   1930 
   1931 	return rv;
   1932 }
   1933 
   1934 int
   1935 config_detach_children(device_t parent, int flags)
   1936 {
   1937 	device_t dv;
   1938 	deviter_t di;
   1939 	int error = 0;
   1940 
   1941 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1942 	     dv = deviter_next(&di)) {
   1943 		if (device_parent(dv) != parent)
   1944 			continue;
   1945 		if ((error = config_detach(dv, flags)) != 0)
   1946 			break;
   1947 	}
   1948 	deviter_release(&di);
   1949 	return error;
   1950 }
   1951 
   1952 device_t
   1953 shutdown_first(struct shutdown_state *s)
   1954 {
   1955 	if (!s->initialized) {
   1956 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1957 		s->initialized = true;
   1958 	}
   1959 	return shutdown_next(s);
   1960 }
   1961 
   1962 device_t
   1963 shutdown_next(struct shutdown_state *s)
   1964 {
   1965 	device_t dv;
   1966 
   1967 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1968 		;
   1969 
   1970 	if (dv == NULL)
   1971 		s->initialized = false;
   1972 
   1973 	return dv;
   1974 }
   1975 
   1976 bool
   1977 config_detach_all(int how)
   1978 {
   1979 	static struct shutdown_state s;
   1980 	device_t curdev;
   1981 	bool progress = false;
   1982 	int flags;
   1983 
   1984 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1985 		return false;
   1986 
   1987 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1988 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1989 	else
   1990 		flags = DETACH_SHUTDOWN;
   1991 
   1992 	for (curdev = shutdown_first(&s); curdev != NULL;
   1993 	     curdev = shutdown_next(&s)) {
   1994 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1995 		if (config_detach(curdev, flags) == 0) {
   1996 			progress = true;
   1997 			aprint_debug("success.");
   1998 		} else
   1999 			aprint_debug("failed.");
   2000 	}
   2001 	return progress;
   2002 }
   2003 
   2004 static bool
   2005 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2006 {
   2007 	device_t dv;
   2008 
   2009 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2010 		if (device_parent(dv) == ancestor)
   2011 			return true;
   2012 	}
   2013 	return false;
   2014 }
   2015 
   2016 int
   2017 config_deactivate(device_t dev)
   2018 {
   2019 	deviter_t di;
   2020 	const struct cfattach *ca;
   2021 	device_t descendant;
   2022 	int s, rv = 0, oflags;
   2023 
   2024 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2025 	     descendant != NULL;
   2026 	     descendant = deviter_next(&di)) {
   2027 		if (dev != descendant &&
   2028 		    !device_is_ancestor_of(dev, descendant))
   2029 			continue;
   2030 
   2031 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2032 			continue;
   2033 
   2034 		ca = descendant->dv_cfattach;
   2035 		oflags = descendant->dv_flags;
   2036 
   2037 		descendant->dv_flags &= ~DVF_ACTIVE;
   2038 		if (ca->ca_activate == NULL)
   2039 			continue;
   2040 		s = splhigh();
   2041 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2042 		splx(s);
   2043 		if (rv != 0)
   2044 			descendant->dv_flags = oflags;
   2045 	}
   2046 	deviter_release(&di);
   2047 	return rv;
   2048 }
   2049 
   2050 /*
   2051  * Defer the configuration of the specified device until all
   2052  * of its parent's devices have been attached.
   2053  */
   2054 void
   2055 config_defer(device_t dev, void (*func)(device_t))
   2056 {
   2057 	struct deferred_config *dc;
   2058 
   2059 	if (dev->dv_parent == NULL)
   2060 		panic("config_defer: can't defer config of a root device");
   2061 
   2062 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2063 
   2064 	config_pending_incr(dev);
   2065 
   2066 	mutex_enter(&config_misc_lock);
   2067 #ifdef DIAGNOSTIC
   2068 	struct deferred_config *odc;
   2069 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2070 		if (odc->dc_dev == dev)
   2071 			panic("config_defer: deferred twice");
   2072 	}
   2073 #endif
   2074 	dc->dc_dev = dev;
   2075 	dc->dc_func = func;
   2076 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2077 	mutex_exit(&config_misc_lock);
   2078 }
   2079 
   2080 /*
   2081  * Defer some autoconfiguration for a device until after interrupts
   2082  * are enabled.
   2083  */
   2084 void
   2085 config_interrupts(device_t dev, void (*func)(device_t))
   2086 {
   2087 	struct deferred_config *dc;
   2088 
   2089 	/*
   2090 	 * If interrupts are enabled, callback now.
   2091 	 */
   2092 	if (cold == 0) {
   2093 		(*func)(dev);
   2094 		return;
   2095 	}
   2096 
   2097 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2098 
   2099 	config_pending_incr(dev);
   2100 
   2101 	mutex_enter(&config_misc_lock);
   2102 #ifdef DIAGNOSTIC
   2103 	struct deferred_config *odc;
   2104 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2105 		if (odc->dc_dev == dev)
   2106 			panic("config_interrupts: deferred twice");
   2107 	}
   2108 #endif
   2109 	dc->dc_dev = dev;
   2110 	dc->dc_func = func;
   2111 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2112 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2113 	mutex_exit(&config_misc_lock);
   2114 }
   2115 
   2116 /*
   2117  * Defer some autoconfiguration for a device until after root file system
   2118  * is mounted (to load firmware etc).
   2119  */
   2120 void
   2121 config_mountroot(device_t dev, void (*func)(device_t))
   2122 {
   2123 	struct deferred_config *dc;
   2124 
   2125 	/*
   2126 	 * If root file system is mounted, callback now.
   2127 	 */
   2128 	if (root_is_mounted) {
   2129 		(*func)(dev);
   2130 		return;
   2131 	}
   2132 
   2133 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2134 
   2135 	mutex_enter(&config_misc_lock);
   2136 #ifdef DIAGNOSTIC
   2137 	struct deferred_config *odc;
   2138 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2139 		if (odc->dc_dev == dev)
   2140 			panic("%s: deferred twice", __func__);
   2141 	}
   2142 #endif
   2143 
   2144 	dc->dc_dev = dev;
   2145 	dc->dc_func = func;
   2146 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2147 	mutex_exit(&config_misc_lock);
   2148 }
   2149 
   2150 /*
   2151  * Process a deferred configuration queue.
   2152  */
   2153 static void
   2154 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2155 {
   2156 	struct deferred_config *dc;
   2157 
   2158 	mutex_enter(&config_misc_lock);
   2159 	dc = TAILQ_FIRST(queue);
   2160 	while (dc) {
   2161 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2162 			TAILQ_REMOVE(queue, dc, dc_queue);
   2163 			mutex_exit(&config_misc_lock);
   2164 
   2165 			(*dc->dc_func)(dc->dc_dev);
   2166 			config_pending_decr(dc->dc_dev);
   2167 			kmem_free(dc, sizeof(*dc));
   2168 
   2169 			mutex_enter(&config_misc_lock);
   2170 			/* Restart, queue might have changed */
   2171 			dc = TAILQ_FIRST(queue);
   2172 		} else {
   2173 			dc = TAILQ_NEXT(dc, dc_queue);
   2174 		}
   2175 	}
   2176 	mutex_exit(&config_misc_lock);
   2177 }
   2178 
   2179 /*
   2180  * Manipulate the config_pending semaphore.
   2181  */
   2182 void
   2183 config_pending_incr(device_t dev)
   2184 {
   2185 
   2186 	mutex_enter(&config_misc_lock);
   2187 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2188 	    "%s: excess config_pending_incr", device_xname(dev));
   2189 	if (dev->dv_pending++ == 0)
   2190 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2191 #ifdef DEBUG_AUTOCONF
   2192 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2193 #endif
   2194 	mutex_exit(&config_misc_lock);
   2195 }
   2196 
   2197 void
   2198 config_pending_decr(device_t dev)
   2199 {
   2200 
   2201 	mutex_enter(&config_misc_lock);
   2202 	KASSERTMSG(dev->dv_pending > 0,
   2203 	    "%s: excess config_pending_decr", device_xname(dev));
   2204 	if (--dev->dv_pending == 0)
   2205 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2206 #ifdef DEBUG_AUTOCONF
   2207 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2208 #endif
   2209 	if (TAILQ_EMPTY(&config_pending))
   2210 		cv_broadcast(&config_misc_cv);
   2211 	mutex_exit(&config_misc_lock);
   2212 }
   2213 
   2214 /*
   2215  * Register a "finalization" routine.  Finalization routines are
   2216  * called iteratively once all real devices have been found during
   2217  * autoconfiguration, for as long as any one finalizer has done
   2218  * any work.
   2219  */
   2220 int
   2221 config_finalize_register(device_t dev, int (*fn)(device_t))
   2222 {
   2223 	struct finalize_hook *f;
   2224 
   2225 	/*
   2226 	 * If finalization has already been done, invoke the
   2227 	 * callback function now.
   2228 	 */
   2229 	if (config_finalize_done) {
   2230 		while ((*fn)(dev) != 0)
   2231 			/* loop */ ;
   2232 		return 0;
   2233 	}
   2234 
   2235 	/* Ensure this isn't already on the list. */
   2236 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2237 		if (f->f_func == fn && f->f_dev == dev)
   2238 			return EEXIST;
   2239 	}
   2240 
   2241 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2242 	f->f_func = fn;
   2243 	f->f_dev = dev;
   2244 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2245 
   2246 	return 0;
   2247 }
   2248 
   2249 void
   2250 config_finalize(void)
   2251 {
   2252 	struct finalize_hook *f;
   2253 	struct pdevinit *pdev;
   2254 	extern struct pdevinit pdevinit[];
   2255 	int errcnt, rv;
   2256 
   2257 	/*
   2258 	 * Now that device driver threads have been created, wait for
   2259 	 * them to finish any deferred autoconfiguration.
   2260 	 */
   2261 	mutex_enter(&config_misc_lock);
   2262 	while (!TAILQ_EMPTY(&config_pending)) {
   2263 		device_t dev;
   2264 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2265 			aprint_debug_dev(dev, "holding up boot\n");
   2266 		cv_wait(&config_misc_cv, &config_misc_lock);
   2267 	}
   2268 	mutex_exit(&config_misc_lock);
   2269 
   2270 	KERNEL_LOCK(1, NULL);
   2271 
   2272 	/* Attach pseudo-devices. */
   2273 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2274 		(*pdev->pdev_attach)(pdev->pdev_count);
   2275 
   2276 	/* Run the hooks until none of them does any work. */
   2277 	do {
   2278 		rv = 0;
   2279 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2280 			rv |= (*f->f_func)(f->f_dev);
   2281 	} while (rv != 0);
   2282 
   2283 	config_finalize_done = 1;
   2284 
   2285 	/* Now free all the hooks. */
   2286 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2287 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2288 		kmem_free(f, sizeof(*f));
   2289 	}
   2290 
   2291 	KERNEL_UNLOCK_ONE(NULL);
   2292 
   2293 	errcnt = aprint_get_error_count();
   2294 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2295 	    (boothowto & AB_VERBOSE) == 0) {
   2296 		mutex_enter(&config_misc_lock);
   2297 		if (config_do_twiddle) {
   2298 			config_do_twiddle = 0;
   2299 			printf_nolog(" done.\n");
   2300 		}
   2301 		mutex_exit(&config_misc_lock);
   2302 	}
   2303 	if (errcnt != 0) {
   2304 		printf("WARNING: %d error%s while detecting hardware; "
   2305 		    "check system log.\n", errcnt,
   2306 		    errcnt == 1 ? "" : "s");
   2307 	}
   2308 }
   2309 
   2310 void
   2311 config_twiddle_init(void)
   2312 {
   2313 
   2314 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2315 		config_do_twiddle = 1;
   2316 	}
   2317 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2318 }
   2319 
   2320 void
   2321 config_twiddle_fn(void *cookie)
   2322 {
   2323 
   2324 	mutex_enter(&config_misc_lock);
   2325 	if (config_do_twiddle) {
   2326 		twiddle();
   2327 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2328 	}
   2329 	mutex_exit(&config_misc_lock);
   2330 }
   2331 
   2332 static void
   2333 config_alldevs_enter(struct alldevs_foray *af)
   2334 {
   2335 	TAILQ_INIT(&af->af_garbage);
   2336 	mutex_enter(&alldevs_lock);
   2337 	config_collect_garbage(&af->af_garbage);
   2338 }
   2339 
   2340 static void
   2341 config_alldevs_exit(struct alldevs_foray *af)
   2342 {
   2343 	mutex_exit(&alldevs_lock);
   2344 	config_dump_garbage(&af->af_garbage);
   2345 }
   2346 
   2347 /*
   2348  * device_lookup:
   2349  *
   2350  *	Look up a device instance for a given driver.
   2351  */
   2352 device_t
   2353 device_lookup(cfdriver_t cd, int unit)
   2354 {
   2355 	device_t dv;
   2356 
   2357 	mutex_enter(&alldevs_lock);
   2358 	if (unit < 0 || unit >= cd->cd_ndevs)
   2359 		dv = NULL;
   2360 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2361 		dv = NULL;
   2362 	mutex_exit(&alldevs_lock);
   2363 
   2364 	return dv;
   2365 }
   2366 
   2367 /*
   2368  * device_lookup_private:
   2369  *
   2370  *	Look up a softc instance for a given driver.
   2371  */
   2372 void *
   2373 device_lookup_private(cfdriver_t cd, int unit)
   2374 {
   2375 
   2376 	return device_private(device_lookup(cd, unit));
   2377 }
   2378 
   2379 /*
   2380  * device_find_by_xname:
   2381  *
   2382  *	Returns the device of the given name or NULL if it doesn't exist.
   2383  */
   2384 device_t
   2385 device_find_by_xname(const char *name)
   2386 {
   2387 	device_t dv;
   2388 	deviter_t di;
   2389 
   2390 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2391 		if (strcmp(device_xname(dv), name) == 0)
   2392 			break;
   2393 	}
   2394 	deviter_release(&di);
   2395 
   2396 	return dv;
   2397 }
   2398 
   2399 /*
   2400  * device_find_by_driver_unit:
   2401  *
   2402  *	Returns the device of the given driver name and unit or
   2403  *	NULL if it doesn't exist.
   2404  */
   2405 device_t
   2406 device_find_by_driver_unit(const char *name, int unit)
   2407 {
   2408 	struct cfdriver *cd;
   2409 
   2410 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2411 		return NULL;
   2412 	return device_lookup(cd, unit);
   2413 }
   2414 
   2415 static bool
   2416 match_strcmp(const char * const s1, const char * const s2)
   2417 {
   2418 	return strcmp(s1, s2) == 0;
   2419 }
   2420 
   2421 static bool
   2422 match_pmatch(const char * const s1, const char * const s2)
   2423 {
   2424 	return pmatch(s1, s2, NULL) == 2;
   2425 }
   2426 
   2427 static bool
   2428 strarray_match_internal(const char ** const strings,
   2429     unsigned int const nstrings, const char * const str,
   2430     unsigned int * const indexp,
   2431     bool (*match_fn)(const char *, const char *))
   2432 {
   2433 	unsigned int i;
   2434 
   2435 	if (strings == NULL || nstrings == 0) {
   2436 		return false;
   2437 	}
   2438 
   2439 	for (i = 0; i < nstrings; i++) {
   2440 		if ((*match_fn)(strings[i], str)) {
   2441 			*indexp = i;
   2442 			return true;
   2443 		}
   2444 	}
   2445 
   2446 	return false;
   2447 }
   2448 
   2449 static int
   2450 strarray_match(const char ** const strings, unsigned int const nstrings,
   2451     const char * const str)
   2452 {
   2453 	unsigned int idx;
   2454 
   2455 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2456 				    match_strcmp)) {
   2457 		return (int)(nstrings - idx);
   2458 	}
   2459 	return 0;
   2460 }
   2461 
   2462 static int
   2463 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2464     const char * const pattern)
   2465 {
   2466 	unsigned int idx;
   2467 
   2468 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2469 				    match_pmatch)) {
   2470 		return (int)(nstrings - idx);
   2471 	}
   2472 	return 0;
   2473 }
   2474 
   2475 static int
   2476 device_compatible_match_strarray_internal(
   2477     const char **device_compats, int ndevice_compats,
   2478     const struct device_compatible_entry *driver_compats,
   2479     const struct device_compatible_entry **matching_entryp,
   2480     int (*match_fn)(const char **, unsigned int, const char *))
   2481 {
   2482 	const struct device_compatible_entry *dce = NULL;
   2483 	int rv;
   2484 
   2485 	if (ndevice_compats == 0 || device_compats == NULL ||
   2486 	    driver_compats == NULL)
   2487 		return 0;
   2488 
   2489 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2490 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2491 		if (rv != 0) {
   2492 			if (matching_entryp != NULL) {
   2493 				*matching_entryp = dce;
   2494 			}
   2495 			return rv;
   2496 		}
   2497 	}
   2498 	return 0;
   2499 }
   2500 
   2501 /*
   2502  * device_compatible_match:
   2503  *
   2504  *	Match a driver's "compatible" data against a device's
   2505  *	"compatible" strings.  Returns resulted weighted by
   2506  *	which device "compatible" string was matched.
   2507  */
   2508 int
   2509 device_compatible_match(const char **device_compats, int ndevice_compats,
   2510     const struct device_compatible_entry *driver_compats)
   2511 {
   2512 	return device_compatible_match_strarray_internal(device_compats,
   2513 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2514 }
   2515 
   2516 /*
   2517  * device_compatible_pmatch:
   2518  *
   2519  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2520  *	the device "compatible" strings against patterns in the
   2521  *	driver's "compatible" data.
   2522  */
   2523 int
   2524 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2525     const struct device_compatible_entry *driver_compats)
   2526 {
   2527 	return device_compatible_match_strarray_internal(device_compats,
   2528 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2529 }
   2530 
   2531 static int
   2532 device_compatible_match_strlist_internal(
   2533     const char * const device_compats, size_t const device_compatsize,
   2534     const struct device_compatible_entry *driver_compats,
   2535     const struct device_compatible_entry **matching_entryp,
   2536     int (*match_fn)(const char *, size_t, const char *))
   2537 {
   2538 	const struct device_compatible_entry *dce = NULL;
   2539 	int rv;
   2540 
   2541 	if (device_compats == NULL || device_compatsize == 0 ||
   2542 	    driver_compats == NULL)
   2543 		return 0;
   2544 
   2545 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2546 		rv = (*match_fn)(device_compats, device_compatsize,
   2547 		    dce->compat);
   2548 		if (rv != 0) {
   2549 			if (matching_entryp != NULL) {
   2550 				*matching_entryp = dce;
   2551 			}
   2552 			return rv;
   2553 		}
   2554 	}
   2555 	return 0;
   2556 }
   2557 
   2558 /*
   2559  * device_compatible_match_strlist:
   2560  *
   2561  *	Like device_compatible_match(), but take the device
   2562  *	"compatible" strings as an OpenFirmware-style string
   2563  *	list.
   2564  */
   2565 int
   2566 device_compatible_match_strlist(
   2567     const char * const device_compats, size_t const device_compatsize,
   2568     const struct device_compatible_entry *driver_compats)
   2569 {
   2570 	return device_compatible_match_strlist_internal(device_compats,
   2571 	    device_compatsize, driver_compats, NULL, strlist_match);
   2572 }
   2573 
   2574 /*
   2575  * device_compatible_pmatch_strlist:
   2576  *
   2577  *	Like device_compatible_pmatch(), but take the device
   2578  *	"compatible" strings as an OpenFirmware-style string
   2579  *	list.
   2580  */
   2581 int
   2582 device_compatible_pmatch_strlist(
   2583     const char * const device_compats, size_t const device_compatsize,
   2584     const struct device_compatible_entry *driver_compats)
   2585 {
   2586 	return device_compatible_match_strlist_internal(device_compats,
   2587 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2588 }
   2589 
   2590 static int
   2591 device_compatible_match_id_internal(
   2592     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2593     const struct device_compatible_entry *driver_compats,
   2594     const struct device_compatible_entry **matching_entryp)
   2595 {
   2596 	const struct device_compatible_entry *dce = NULL;
   2597 
   2598 	if (mask == 0)
   2599 		return 0;
   2600 
   2601 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2602 		if ((id & mask) == dce->id) {
   2603 			if (matching_entryp != NULL) {
   2604 				*matching_entryp = dce;
   2605 			}
   2606 			return 1;
   2607 		}
   2608 	}
   2609 	return 0;
   2610 }
   2611 
   2612 /*
   2613  * device_compatible_match_id:
   2614  *
   2615  *	Like device_compatible_match(), but takes a single
   2616  *	unsigned integer device ID.
   2617  */
   2618 int
   2619 device_compatible_match_id(
   2620     uintptr_t const id, uintptr_t const sentinel_id,
   2621     const struct device_compatible_entry *driver_compats)
   2622 {
   2623 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2624 	    sentinel_id, driver_compats, NULL);
   2625 }
   2626 
   2627 /*
   2628  * device_compatible_lookup:
   2629  *
   2630  *	Look up and return the device_compatible_entry, using the
   2631  *	same matching criteria used by device_compatible_match().
   2632  */
   2633 const struct device_compatible_entry *
   2634 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2635 			 const struct device_compatible_entry *driver_compats)
   2636 {
   2637 	const struct device_compatible_entry *dce;
   2638 
   2639 	if (device_compatible_match_strarray_internal(device_compats,
   2640 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2641 		return dce;
   2642 	}
   2643 	return NULL;
   2644 }
   2645 
   2646 /*
   2647  * device_compatible_plookup:
   2648  *
   2649  *	Look up and return the device_compatible_entry, using the
   2650  *	same matching criteria used by device_compatible_pmatch().
   2651  */
   2652 const struct device_compatible_entry *
   2653 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2654 			  const struct device_compatible_entry *driver_compats)
   2655 {
   2656 	const struct device_compatible_entry *dce;
   2657 
   2658 	if (device_compatible_match_strarray_internal(device_compats,
   2659 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2660 		return dce;
   2661 	}
   2662 	return NULL;
   2663 }
   2664 
   2665 /*
   2666  * device_compatible_lookup_strlist:
   2667  *
   2668  *	Like device_compatible_lookup(), but take the device
   2669  *	"compatible" strings as an OpenFirmware-style string
   2670  *	list.
   2671  */
   2672 const struct device_compatible_entry *
   2673 device_compatible_lookup_strlist(
   2674     const char * const device_compats, size_t const device_compatsize,
   2675     const struct device_compatible_entry *driver_compats)
   2676 {
   2677 	const struct device_compatible_entry *dce;
   2678 
   2679 	if (device_compatible_match_strlist_internal(device_compats,
   2680 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2681 		return dce;
   2682 	}
   2683 	return NULL;
   2684 }
   2685 
   2686 /*
   2687  * device_compatible_plookup_strlist:
   2688  *
   2689  *	Like device_compatible_plookup(), but take the device
   2690  *	"compatible" strings as an OpenFirmware-style string
   2691  *	list.
   2692  */
   2693 const struct device_compatible_entry *
   2694 device_compatible_plookup_strlist(
   2695     const char * const device_compats, size_t const device_compatsize,
   2696     const struct device_compatible_entry *driver_compats)
   2697 {
   2698 	const struct device_compatible_entry *dce;
   2699 
   2700 	if (device_compatible_match_strlist_internal(device_compats,
   2701 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2702 		return dce;
   2703 	}
   2704 	return NULL;
   2705 }
   2706 
   2707 /*
   2708  * device_compatible_lookup_id:
   2709  *
   2710  *	Like device_compatible_lookup(), but takes a single
   2711  *	unsigned integer device ID.
   2712  */
   2713 const struct device_compatible_entry *
   2714 device_compatible_lookup_id(
   2715     uintptr_t const id, uintptr_t const sentinel_id,
   2716     const struct device_compatible_entry *driver_compats)
   2717 {
   2718 	const struct device_compatible_entry *dce;
   2719 
   2720 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2721 	    sentinel_id, driver_compats, &dce)) {
   2722 		return dce;
   2723 	}
   2724 	return NULL;
   2725 }
   2726 
   2727 /*
   2728  * Power management related functions.
   2729  */
   2730 
   2731 bool
   2732 device_pmf_is_registered(device_t dev)
   2733 {
   2734 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2735 }
   2736 
   2737 bool
   2738 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2739 {
   2740 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2741 		return true;
   2742 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2743 		return false;
   2744 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2745 	    dev->dv_driver_suspend != NULL &&
   2746 	    !(*dev->dv_driver_suspend)(dev, qual))
   2747 		return false;
   2748 
   2749 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2750 	return true;
   2751 }
   2752 
   2753 bool
   2754 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2755 {
   2756 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2757 		return true;
   2758 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2759 		return false;
   2760 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2761 	    dev->dv_driver_resume != NULL &&
   2762 	    !(*dev->dv_driver_resume)(dev, qual))
   2763 		return false;
   2764 
   2765 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2766 	return true;
   2767 }
   2768 
   2769 bool
   2770 device_pmf_driver_shutdown(device_t dev, int how)
   2771 {
   2772 
   2773 	if (*dev->dv_driver_shutdown != NULL &&
   2774 	    !(*dev->dv_driver_shutdown)(dev, how))
   2775 		return false;
   2776 	return true;
   2777 }
   2778 
   2779 bool
   2780 device_pmf_driver_register(device_t dev,
   2781     bool (*suspend)(device_t, const pmf_qual_t *),
   2782     bool (*resume)(device_t, const pmf_qual_t *),
   2783     bool (*shutdown)(device_t, int))
   2784 {
   2785 	dev->dv_driver_suspend = suspend;
   2786 	dev->dv_driver_resume = resume;
   2787 	dev->dv_driver_shutdown = shutdown;
   2788 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2789 	return true;
   2790 }
   2791 
   2792 static const char *
   2793 curlwp_name(void)
   2794 {
   2795 	if (curlwp->l_name != NULL)
   2796 		return curlwp->l_name;
   2797 	else
   2798 		return curlwp->l_proc->p_comm;
   2799 }
   2800 
   2801 void
   2802 device_pmf_driver_deregister(device_t dev)
   2803 {
   2804 	device_lock_t dvl = device_getlock(dev);
   2805 
   2806 	dev->dv_driver_suspend = NULL;
   2807 	dev->dv_driver_resume = NULL;
   2808 
   2809 	mutex_enter(&dvl->dvl_mtx);
   2810 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2811 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2812 		/* Wake a thread that waits for the lock.  That
   2813 		 * thread will fail to acquire the lock, and then
   2814 		 * it will wake the next thread that waits for the
   2815 		 * lock, or else it will wake us.
   2816 		 */
   2817 		cv_signal(&dvl->dvl_cv);
   2818 		pmflock_debug(dev, __func__, __LINE__);
   2819 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2820 		pmflock_debug(dev, __func__, __LINE__);
   2821 	}
   2822 	mutex_exit(&dvl->dvl_mtx);
   2823 }
   2824 
   2825 bool
   2826 device_pmf_driver_child_register(device_t dev)
   2827 {
   2828 	device_t parent = device_parent(dev);
   2829 
   2830 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2831 		return true;
   2832 	return (*parent->dv_driver_child_register)(dev);
   2833 }
   2834 
   2835 void
   2836 device_pmf_driver_set_child_register(device_t dev,
   2837     bool (*child_register)(device_t))
   2838 {
   2839 	dev->dv_driver_child_register = child_register;
   2840 }
   2841 
   2842 static void
   2843 pmflock_debug(device_t dev, const char *func, int line)
   2844 {
   2845 	device_lock_t dvl = device_getlock(dev);
   2846 
   2847 	aprint_debug_dev(dev,
   2848 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2849 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2850 }
   2851 
   2852 static bool
   2853 device_pmf_lock1(device_t dev)
   2854 {
   2855 	device_lock_t dvl = device_getlock(dev);
   2856 
   2857 	while (device_pmf_is_registered(dev) &&
   2858 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2859 		dvl->dvl_nwait++;
   2860 		pmflock_debug(dev, __func__, __LINE__);
   2861 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2862 		pmflock_debug(dev, __func__, __LINE__);
   2863 		dvl->dvl_nwait--;
   2864 	}
   2865 	if (!device_pmf_is_registered(dev)) {
   2866 		pmflock_debug(dev, __func__, __LINE__);
   2867 		/* We could not acquire the lock, but some other thread may
   2868 		 * wait for it, also.  Wake that thread.
   2869 		 */
   2870 		cv_signal(&dvl->dvl_cv);
   2871 		return false;
   2872 	}
   2873 	dvl->dvl_nlock++;
   2874 	dvl->dvl_holder = curlwp;
   2875 	pmflock_debug(dev, __func__, __LINE__);
   2876 	return true;
   2877 }
   2878 
   2879 bool
   2880 device_pmf_lock(device_t dev)
   2881 {
   2882 	bool rc;
   2883 	device_lock_t dvl = device_getlock(dev);
   2884 
   2885 	mutex_enter(&dvl->dvl_mtx);
   2886 	rc = device_pmf_lock1(dev);
   2887 	mutex_exit(&dvl->dvl_mtx);
   2888 
   2889 	return rc;
   2890 }
   2891 
   2892 void
   2893 device_pmf_unlock(device_t dev)
   2894 {
   2895 	device_lock_t dvl = device_getlock(dev);
   2896 
   2897 	KASSERT(dvl->dvl_nlock > 0);
   2898 	mutex_enter(&dvl->dvl_mtx);
   2899 	if (--dvl->dvl_nlock == 0)
   2900 		dvl->dvl_holder = NULL;
   2901 	cv_signal(&dvl->dvl_cv);
   2902 	pmflock_debug(dev, __func__, __LINE__);
   2903 	mutex_exit(&dvl->dvl_mtx);
   2904 }
   2905 
   2906 device_lock_t
   2907 device_getlock(device_t dev)
   2908 {
   2909 	return &dev->dv_lock;
   2910 }
   2911 
   2912 void *
   2913 device_pmf_bus_private(device_t dev)
   2914 {
   2915 	return dev->dv_bus_private;
   2916 }
   2917 
   2918 bool
   2919 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2920 {
   2921 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2922 		return true;
   2923 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2924 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2925 		return false;
   2926 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2927 	    dev->dv_bus_suspend != NULL &&
   2928 	    !(*dev->dv_bus_suspend)(dev, qual))
   2929 		return false;
   2930 
   2931 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2932 	return true;
   2933 }
   2934 
   2935 bool
   2936 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2937 {
   2938 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2939 		return true;
   2940 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2941 	    dev->dv_bus_resume != NULL &&
   2942 	    !(*dev->dv_bus_resume)(dev, qual))
   2943 		return false;
   2944 
   2945 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2946 	return true;
   2947 }
   2948 
   2949 bool
   2950 device_pmf_bus_shutdown(device_t dev, int how)
   2951 {
   2952 
   2953 	if (*dev->dv_bus_shutdown != NULL &&
   2954 	    !(*dev->dv_bus_shutdown)(dev, how))
   2955 		return false;
   2956 	return true;
   2957 }
   2958 
   2959 void
   2960 device_pmf_bus_register(device_t dev, void *priv,
   2961     bool (*suspend)(device_t, const pmf_qual_t *),
   2962     bool (*resume)(device_t, const pmf_qual_t *),
   2963     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2964 {
   2965 	dev->dv_bus_private = priv;
   2966 	dev->dv_bus_resume = resume;
   2967 	dev->dv_bus_suspend = suspend;
   2968 	dev->dv_bus_shutdown = shutdown;
   2969 	dev->dv_bus_deregister = deregister;
   2970 }
   2971 
   2972 void
   2973 device_pmf_bus_deregister(device_t dev)
   2974 {
   2975 	if (dev->dv_bus_deregister == NULL)
   2976 		return;
   2977 	(*dev->dv_bus_deregister)(dev);
   2978 	dev->dv_bus_private = NULL;
   2979 	dev->dv_bus_suspend = NULL;
   2980 	dev->dv_bus_resume = NULL;
   2981 	dev->dv_bus_deregister = NULL;
   2982 }
   2983 
   2984 void *
   2985 device_pmf_class_private(device_t dev)
   2986 {
   2987 	return dev->dv_class_private;
   2988 }
   2989 
   2990 bool
   2991 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2992 {
   2993 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2994 		return true;
   2995 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2996 	    dev->dv_class_suspend != NULL &&
   2997 	    !(*dev->dv_class_suspend)(dev, qual))
   2998 		return false;
   2999 
   3000 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3001 	return true;
   3002 }
   3003 
   3004 bool
   3005 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3006 {
   3007 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3008 		return true;
   3009 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3010 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3011 		return false;
   3012 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3013 	    dev->dv_class_resume != NULL &&
   3014 	    !(*dev->dv_class_resume)(dev, qual))
   3015 		return false;
   3016 
   3017 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3018 	return true;
   3019 }
   3020 
   3021 void
   3022 device_pmf_class_register(device_t dev, void *priv,
   3023     bool (*suspend)(device_t, const pmf_qual_t *),
   3024     bool (*resume)(device_t, const pmf_qual_t *),
   3025     void (*deregister)(device_t))
   3026 {
   3027 	dev->dv_class_private = priv;
   3028 	dev->dv_class_suspend = suspend;
   3029 	dev->dv_class_resume = resume;
   3030 	dev->dv_class_deregister = deregister;
   3031 }
   3032 
   3033 void
   3034 device_pmf_class_deregister(device_t dev)
   3035 {
   3036 	if (dev->dv_class_deregister == NULL)
   3037 		return;
   3038 	(*dev->dv_class_deregister)(dev);
   3039 	dev->dv_class_private = NULL;
   3040 	dev->dv_class_suspend = NULL;
   3041 	dev->dv_class_resume = NULL;
   3042 	dev->dv_class_deregister = NULL;
   3043 }
   3044 
   3045 bool
   3046 device_active(device_t dev, devactive_t type)
   3047 {
   3048 	size_t i;
   3049 
   3050 	if (dev->dv_activity_count == 0)
   3051 		return false;
   3052 
   3053 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3054 		if (dev->dv_activity_handlers[i] == NULL)
   3055 			break;
   3056 		(*dev->dv_activity_handlers[i])(dev, type);
   3057 	}
   3058 
   3059 	return true;
   3060 }
   3061 
   3062 bool
   3063 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3064 {
   3065 	void (**new_handlers)(device_t, devactive_t);
   3066 	void (**old_handlers)(device_t, devactive_t);
   3067 	size_t i, old_size, new_size;
   3068 	int s;
   3069 
   3070 	old_handlers = dev->dv_activity_handlers;
   3071 	old_size = dev->dv_activity_count;
   3072 
   3073 	KASSERT(old_size == 0 || old_handlers != NULL);
   3074 
   3075 	for (i = 0; i < old_size; ++i) {
   3076 		KASSERT(old_handlers[i] != handler);
   3077 		if (old_handlers[i] == NULL) {
   3078 			old_handlers[i] = handler;
   3079 			return true;
   3080 		}
   3081 	}
   3082 
   3083 	new_size = old_size + 4;
   3084 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3085 
   3086 	for (i = 0; i < old_size; ++i)
   3087 		new_handlers[i] = old_handlers[i];
   3088 	new_handlers[old_size] = handler;
   3089 	for (i = old_size+1; i < new_size; ++i)
   3090 		new_handlers[i] = NULL;
   3091 
   3092 	s = splhigh();
   3093 	dev->dv_activity_count = new_size;
   3094 	dev->dv_activity_handlers = new_handlers;
   3095 	splx(s);
   3096 
   3097 	if (old_size > 0)
   3098 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3099 
   3100 	return true;
   3101 }
   3102 
   3103 void
   3104 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3105 {
   3106 	void (**old_handlers)(device_t, devactive_t);
   3107 	size_t i, old_size;
   3108 	int s;
   3109 
   3110 	old_handlers = dev->dv_activity_handlers;
   3111 	old_size = dev->dv_activity_count;
   3112 
   3113 	for (i = 0; i < old_size; ++i) {
   3114 		if (old_handlers[i] == handler)
   3115 			break;
   3116 		if (old_handlers[i] == NULL)
   3117 			return; /* XXX panic? */
   3118 	}
   3119 
   3120 	if (i == old_size)
   3121 		return; /* XXX panic? */
   3122 
   3123 	for (; i < old_size - 1; ++i) {
   3124 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3125 			continue;
   3126 
   3127 		if (i == 0) {
   3128 			s = splhigh();
   3129 			dev->dv_activity_count = 0;
   3130 			dev->dv_activity_handlers = NULL;
   3131 			splx(s);
   3132 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3133 		}
   3134 		return;
   3135 	}
   3136 	old_handlers[i] = NULL;
   3137 }
   3138 
   3139 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3140 static bool
   3141 device_exists_at(device_t dv, devgen_t gen)
   3142 {
   3143 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3144 	    dv->dv_add_gen <= gen;
   3145 }
   3146 
   3147 static bool
   3148 deviter_visits(const deviter_t *di, device_t dv)
   3149 {
   3150 	return device_exists_at(dv, di->di_gen);
   3151 }
   3152 
   3153 /*
   3154  * Device Iteration
   3155  *
   3156  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3157  *     each device_t's in the device tree.
   3158  *
   3159  * deviter_init(di, flags): initialize the device iterator `di'
   3160  *     to "walk" the device tree.  deviter_next(di) will return
   3161  *     the first device_t in the device tree, or NULL if there are
   3162  *     no devices.
   3163  *
   3164  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3165  *     caller intends to modify the device tree by calling
   3166  *     config_detach(9) on devices in the order that the iterator
   3167  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3168  *     nearest the "root" of the device tree to be returned, first;
   3169  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3170  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3171  *     indicating both that deviter_init() should not respect any
   3172  *     locks on the device tree, and that deviter_next(di) may run
   3173  *     in more than one LWP before the walk has finished.
   3174  *
   3175  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3176  *     once.
   3177  *
   3178  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3179  *
   3180  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3181  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3182  *
   3183  * deviter_first(di, flags): initialize the device iterator `di'
   3184  *     and return the first device_t in the device tree, or NULL
   3185  *     if there are no devices.  The statement
   3186  *
   3187  *         dv = deviter_first(di);
   3188  *
   3189  *     is shorthand for
   3190  *
   3191  *         deviter_init(di);
   3192  *         dv = deviter_next(di);
   3193  *
   3194  * deviter_next(di): return the next device_t in the device tree,
   3195  *     or NULL if there are no more devices.  deviter_next(di)
   3196  *     is undefined if `di' was not initialized with deviter_init() or
   3197  *     deviter_first().
   3198  *
   3199  * deviter_release(di): stops iteration (subsequent calls to
   3200  *     deviter_next() will return NULL), releases any locks and
   3201  *     resources held by the device iterator.
   3202  *
   3203  * Device iteration does not return device_t's in any particular
   3204  * order.  An iterator will never return the same device_t twice.
   3205  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3206  * is called repeatedly on the same `di', it will eventually return
   3207  * NULL.  It is ok to attach/detach devices during device iteration.
   3208  */
   3209 void
   3210 deviter_init(deviter_t *di, deviter_flags_t flags)
   3211 {
   3212 	device_t dv;
   3213 
   3214 	memset(di, 0, sizeof(*di));
   3215 
   3216 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3217 		flags |= DEVITER_F_RW;
   3218 
   3219 	mutex_enter(&alldevs_lock);
   3220 	if ((flags & DEVITER_F_RW) != 0)
   3221 		alldevs_nwrite++;
   3222 	else
   3223 		alldevs_nread++;
   3224 	di->di_gen = alldevs_gen++;
   3225 	di->di_flags = flags;
   3226 
   3227 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3228 	case DEVITER_F_LEAVES_FIRST:
   3229 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3230 			if (!deviter_visits(di, dv))
   3231 				continue;
   3232 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3233 		}
   3234 		break;
   3235 	case DEVITER_F_ROOT_FIRST:
   3236 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3237 			if (!deviter_visits(di, dv))
   3238 				continue;
   3239 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3240 		}
   3241 		break;
   3242 	default:
   3243 		break;
   3244 	}
   3245 
   3246 	deviter_reinit(di);
   3247 	mutex_exit(&alldevs_lock);
   3248 }
   3249 
   3250 static void
   3251 deviter_reinit(deviter_t *di)
   3252 {
   3253 
   3254 	KASSERT(mutex_owned(&alldevs_lock));
   3255 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3256 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3257 	else
   3258 		di->di_prev = TAILQ_FIRST(&alldevs);
   3259 }
   3260 
   3261 device_t
   3262 deviter_first(deviter_t *di, deviter_flags_t flags)
   3263 {
   3264 
   3265 	deviter_init(di, flags);
   3266 	return deviter_next(di);
   3267 }
   3268 
   3269 static device_t
   3270 deviter_next2(deviter_t *di)
   3271 {
   3272 	device_t dv;
   3273 
   3274 	KASSERT(mutex_owned(&alldevs_lock));
   3275 
   3276 	dv = di->di_prev;
   3277 
   3278 	if (dv == NULL)
   3279 		return NULL;
   3280 
   3281 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3282 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3283 	else
   3284 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3285 
   3286 	return dv;
   3287 }
   3288 
   3289 static device_t
   3290 deviter_next1(deviter_t *di)
   3291 {
   3292 	device_t dv;
   3293 
   3294 	KASSERT(mutex_owned(&alldevs_lock));
   3295 
   3296 	do {
   3297 		dv = deviter_next2(di);
   3298 	} while (dv != NULL && !deviter_visits(di, dv));
   3299 
   3300 	return dv;
   3301 }
   3302 
   3303 device_t
   3304 deviter_next(deviter_t *di)
   3305 {
   3306 	device_t dv = NULL;
   3307 
   3308 	mutex_enter(&alldevs_lock);
   3309 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3310 	case 0:
   3311 		dv = deviter_next1(di);
   3312 		break;
   3313 	case DEVITER_F_LEAVES_FIRST:
   3314 		while (di->di_curdepth >= 0) {
   3315 			if ((dv = deviter_next1(di)) == NULL) {
   3316 				di->di_curdepth--;
   3317 				deviter_reinit(di);
   3318 			} else if (dv->dv_depth == di->di_curdepth)
   3319 				break;
   3320 		}
   3321 		break;
   3322 	case DEVITER_F_ROOT_FIRST:
   3323 		while (di->di_curdepth <= di->di_maxdepth) {
   3324 			if ((dv = deviter_next1(di)) == NULL) {
   3325 				di->di_curdepth++;
   3326 				deviter_reinit(di);
   3327 			} else if (dv->dv_depth == di->di_curdepth)
   3328 				break;
   3329 		}
   3330 		break;
   3331 	default:
   3332 		break;
   3333 	}
   3334 	mutex_exit(&alldevs_lock);
   3335 
   3336 	return dv;
   3337 }
   3338 
   3339 void
   3340 deviter_release(deviter_t *di)
   3341 {
   3342 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3343 
   3344 	mutex_enter(&alldevs_lock);
   3345 	if (rw)
   3346 		--alldevs_nwrite;
   3347 	else
   3348 		--alldevs_nread;
   3349 	/* XXX wake a garbage-collection thread */
   3350 	mutex_exit(&alldevs_lock);
   3351 }
   3352 
   3353 const char *
   3354 cfdata_ifattr(const struct cfdata *cf)
   3355 {
   3356 	return cf->cf_pspec->cfp_iattr;
   3357 }
   3358 
   3359 bool
   3360 ifattr_match(const char *snull, const char *t)
   3361 {
   3362 	return (snull == NULL) || strcmp(snull, t) == 0;
   3363 }
   3364 
   3365 void
   3366 null_childdetached(device_t self, device_t child)
   3367 {
   3368 	/* do nothing */
   3369 }
   3370 
   3371 static void
   3372 sysctl_detach_setup(struct sysctllog **clog)
   3373 {
   3374 
   3375 	sysctl_createv(clog, 0, NULL, NULL,
   3376 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3377 		CTLTYPE_BOOL, "detachall",
   3378 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3379 		NULL, 0, &detachall, 0,
   3380 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3381 }
   3382