subr_autoconf.c revision 1.277.2.4 1 /* $NetBSD: subr_autoconf.c,v 1.277.2.4 2021/03/22 02:01:02 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.4 2021/03/22 02:01:02 thorpej Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 static krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 static struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 static struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 static int interrupt_config_threads = 8;
201 static struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 static int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
222 static kmutex_t alldevs_lock __cacheline_aligned;
223 static devgen_t alldevs_gen = 1;
224 static int alldevs_nread = 0;
225 static int alldevs_nwrite = 0;
226 static bool alldevs_garbage = false;
227
228 static struct devicelist config_pending =
229 TAILQ_HEAD_INITIALIZER(config_pending);
230 static kmutex_t config_misc_lock;
231 static kcondvar_t config_misc_cv;
232
233 static bool detachall = false;
234
235 #define STREQ(s1, s2) \
236 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
237
238 static bool config_initialized = false; /* config_init() has been called. */
239
240 static int config_do_twiddle;
241 static callout_t config_twiddle_ch;
242
243 static void sysctl_detach_setup(struct sysctllog **);
244
245 int no_devmon_insert(const char *, prop_dictionary_t);
246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
247
248 typedef int (*cfdriver_fn)(struct cfdriver *);
249 static int
250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
251 cfdriver_fn drv_do, cfdriver_fn drv_undo,
252 const char *style, bool dopanic)
253 {
254 void (*pr)(const char *, ...) __printflike(1, 2) =
255 dopanic ? panic : printf;
256 int i, error = 0, e2 __diagused;
257
258 for (i = 0; cfdriverv[i] != NULL; i++) {
259 if ((error = drv_do(cfdriverv[i])) != 0) {
260 pr("configure: `%s' driver %s failed: %d",
261 cfdriverv[i]->cd_name, style, error);
262 goto bad;
263 }
264 }
265
266 KASSERT(error == 0);
267 return 0;
268
269 bad:
270 printf("\n");
271 for (i--; i >= 0; i--) {
272 e2 = drv_undo(cfdriverv[i]);
273 KASSERT(e2 == 0);
274 }
275
276 return error;
277 }
278
279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
280 static int
281 frob_cfattachvec(const struct cfattachinit *cfattachv,
282 cfattach_fn att_do, cfattach_fn att_undo,
283 const char *style, bool dopanic)
284 {
285 const struct cfattachinit *cfai = NULL;
286 void (*pr)(const char *, ...) __printflike(1, 2) =
287 dopanic ? panic : printf;
288 int j = 0, error = 0, e2 __diagused;
289
290 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
291 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
292 if ((error = att_do(cfai->cfai_name,
293 cfai->cfai_list[j])) != 0) {
294 pr("configure: attachment `%s' "
295 "of `%s' driver %s failed: %d",
296 cfai->cfai_list[j]->ca_name,
297 cfai->cfai_name, style, error);
298 goto bad;
299 }
300 }
301 }
302
303 KASSERT(error == 0);
304 return 0;
305
306 bad:
307 /*
308 * Rollback in reverse order. dunno if super-important, but
309 * do that anyway. Although the code looks a little like
310 * someone did a little integration (in the math sense).
311 */
312 printf("\n");
313 if (cfai) {
314 bool last;
315
316 for (last = false; last == false; ) {
317 if (cfai == &cfattachv[0])
318 last = true;
319 for (j--; j >= 0; j--) {
320 e2 = att_undo(cfai->cfai_name,
321 cfai->cfai_list[j]);
322 KASSERT(e2 == 0);
323 }
324 if (!last) {
325 cfai--;
326 for (j = 0; cfai->cfai_list[j] != NULL; j++)
327 ;
328 }
329 }
330 }
331
332 return error;
333 }
334
335 /*
336 * Initialize the autoconfiguration data structures. Normally this
337 * is done by configure(), but some platforms need to do this very
338 * early (to e.g. initialize the console).
339 */
340 void
341 config_init(void)
342 {
343
344 KASSERT(config_initialized == false);
345
346 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
347
348 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
349 cv_init(&config_misc_cv, "cfgmisc");
350
351 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
352
353 frob_cfdrivervec(cfdriver_list_initial,
354 config_cfdriver_attach, NULL, "bootstrap", true);
355 frob_cfattachvec(cfattachinit,
356 config_cfattach_attach, NULL, "bootstrap", true);
357
358 initcftable.ct_cfdata = cfdata;
359 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
360
361 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
362 RND_FLAG_COLLECT_TIME);
363
364 config_initialized = true;
365 }
366
367 /*
368 * Init or fini drivers and attachments. Either all or none
369 * are processed (via rollback). It would be nice if this were
370 * atomic to outside consumers, but with the current state of
371 * locking ...
372 */
373 int
374 config_init_component(struct cfdriver * const *cfdriverv,
375 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
376 {
377 int error;
378
379 if ((error = frob_cfdrivervec(cfdriverv,
380 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
381 return error;
382 if ((error = frob_cfattachvec(cfattachv,
383 config_cfattach_attach, config_cfattach_detach,
384 "init", false)) != 0) {
385 frob_cfdrivervec(cfdriverv,
386 config_cfdriver_detach, NULL, "init rollback", true);
387 return error;
388 }
389 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
390 frob_cfattachvec(cfattachv,
391 config_cfattach_detach, NULL, "init rollback", true);
392 frob_cfdrivervec(cfdriverv,
393 config_cfdriver_detach, NULL, "init rollback", true);
394 return error;
395 }
396
397 return 0;
398 }
399
400 int
401 config_fini_component(struct cfdriver * const *cfdriverv,
402 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
403 {
404 int error;
405
406 if ((error = config_cfdata_detach(cfdatav)) != 0)
407 return error;
408 if ((error = frob_cfattachvec(cfattachv,
409 config_cfattach_detach, config_cfattach_attach,
410 "fini", false)) != 0) {
411 if (config_cfdata_attach(cfdatav, 0) != 0)
412 panic("config_cfdata fini rollback failed");
413 return error;
414 }
415 if ((error = frob_cfdrivervec(cfdriverv,
416 config_cfdriver_detach, config_cfdriver_attach,
417 "fini", false)) != 0) {
418 frob_cfattachvec(cfattachv,
419 config_cfattach_attach, NULL, "fini rollback", true);
420 if (config_cfdata_attach(cfdatav, 0) != 0)
421 panic("config_cfdata fini rollback failed");
422 return error;
423 }
424
425 return 0;
426 }
427
428 void
429 config_init_mi(void)
430 {
431
432 if (!config_initialized)
433 config_init();
434
435 sysctl_detach_setup(NULL);
436 }
437
438 void
439 config_deferred(device_t dev)
440 {
441 config_process_deferred(&deferred_config_queue, dev);
442 config_process_deferred(&interrupt_config_queue, dev);
443 config_process_deferred(&mountroot_config_queue, dev);
444 }
445
446 static void
447 config_interrupts_thread(void *cookie)
448 {
449 struct deferred_config *dc;
450 device_t dev;
451
452 mutex_enter(&config_misc_lock);
453 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
454 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
455 mutex_exit(&config_misc_lock);
456
457 dev = dc->dc_dev;
458 (*dc->dc_func)(dev);
459 if (!device_pmf_is_registered(dev))
460 aprint_debug_dev(dev,
461 "WARNING: power management not supported\n");
462 config_pending_decr(dev);
463 kmem_free(dc, sizeof(*dc));
464
465 mutex_enter(&config_misc_lock);
466 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
467 }
468 mutex_exit(&config_misc_lock);
469
470 kthread_exit(0);
471 }
472
473 void
474 config_create_interruptthreads(void)
475 {
476 int i;
477
478 for (i = 0; i < interrupt_config_threads; i++) {
479 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
480 config_interrupts_thread, NULL, NULL, "configintr");
481 }
482 }
483
484 static void
485 config_mountroot_thread(void *cookie)
486 {
487 struct deferred_config *dc;
488
489 mutex_enter(&config_misc_lock);
490 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
491 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
492 mutex_exit(&config_misc_lock);
493
494 (*dc->dc_func)(dc->dc_dev);
495 kmem_free(dc, sizeof(*dc));
496
497 mutex_enter(&config_misc_lock);
498 }
499 mutex_exit(&config_misc_lock);
500
501 kthread_exit(0);
502 }
503
504 void
505 config_create_mountrootthreads(void)
506 {
507 int i;
508
509 if (!root_is_mounted)
510 root_is_mounted = true;
511
512 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
513 mountroot_config_threads;
514 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
515 KM_NOSLEEP);
516 KASSERT(mountroot_config_lwpids);
517 for (i = 0; i < mountroot_config_threads; i++) {
518 mountroot_config_lwpids[i] = 0;
519 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
520 NULL, config_mountroot_thread, NULL,
521 &mountroot_config_lwpids[i],
522 "configroot");
523 }
524 }
525
526 void
527 config_finalize_mountroot(void)
528 {
529 int i, error;
530
531 for (i = 0; i < mountroot_config_threads; i++) {
532 if (mountroot_config_lwpids[i] == 0)
533 continue;
534
535 error = kthread_join(mountroot_config_lwpids[i]);
536 if (error)
537 printf("%s: thread %x joined with error %d\n",
538 __func__, i, error);
539 }
540 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
541 }
542
543 /*
544 * Announce device attach/detach to userland listeners.
545 */
546
547 int
548 no_devmon_insert(const char *name, prop_dictionary_t p)
549 {
550
551 return ENODEV;
552 }
553
554 static void
555 devmon_report_device(device_t dev, bool isattach)
556 {
557 prop_dictionary_t ev, dict = device_properties(dev);
558 const char *parent;
559 const char *what;
560 const char *where;
561 device_t pdev = device_parent(dev);
562
563 /* If currently no drvctl device, just return */
564 if (devmon_insert_vec == no_devmon_insert)
565 return;
566
567 ev = prop_dictionary_create();
568 if (ev == NULL)
569 return;
570
571 what = (isattach ? "device-attach" : "device-detach");
572 parent = (pdev == NULL ? "root" : device_xname(pdev));
573 if (prop_dictionary_get_string(dict, "location", &where)) {
574 prop_dictionary_set_string(ev, "location", where);
575 aprint_debug("ev: %s %s at %s in [%s]\n",
576 what, device_xname(dev), parent, where);
577 }
578 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
579 !prop_dictionary_set_string(ev, "parent", parent)) {
580 prop_object_release(ev);
581 return;
582 }
583
584 if ((*devmon_insert_vec)(what, ev) != 0)
585 prop_object_release(ev);
586 }
587
588 /*
589 * Add a cfdriver to the system.
590 */
591 int
592 config_cfdriver_attach(struct cfdriver *cd)
593 {
594 struct cfdriver *lcd;
595
596 /* Make sure this driver isn't already in the system. */
597 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
598 if (STREQ(lcd->cd_name, cd->cd_name))
599 return EEXIST;
600 }
601
602 LIST_INIT(&cd->cd_attach);
603 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
604
605 return 0;
606 }
607
608 /*
609 * Remove a cfdriver from the system.
610 */
611 int
612 config_cfdriver_detach(struct cfdriver *cd)
613 {
614 struct alldevs_foray af;
615 int i, rc = 0;
616
617 config_alldevs_enter(&af);
618 /* Make sure there are no active instances. */
619 for (i = 0; i < cd->cd_ndevs; i++) {
620 if (cd->cd_devs[i] != NULL) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 /* ...and no attachments loaded. */
631 if (LIST_EMPTY(&cd->cd_attach) == 0)
632 return EBUSY;
633
634 LIST_REMOVE(cd, cd_list);
635
636 KASSERT(cd->cd_devs == NULL);
637
638 return 0;
639 }
640
641 /*
642 * Look up a cfdriver by name.
643 */
644 struct cfdriver *
645 config_cfdriver_lookup(const char *name)
646 {
647 struct cfdriver *cd;
648
649 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
650 if (STREQ(cd->cd_name, name))
651 return cd;
652 }
653
654 return NULL;
655 }
656
657 /*
658 * Add a cfattach to the specified driver.
659 */
660 int
661 config_cfattach_attach(const char *driver, struct cfattach *ca)
662 {
663 struct cfattach *lca;
664 struct cfdriver *cd;
665
666 cd = config_cfdriver_lookup(driver);
667 if (cd == NULL)
668 return ESRCH;
669
670 /* Make sure this attachment isn't already on this driver. */
671 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
672 if (STREQ(lca->ca_name, ca->ca_name))
673 return EEXIST;
674 }
675
676 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
677
678 return 0;
679 }
680
681 /*
682 * Remove a cfattach from the specified driver.
683 */
684 int
685 config_cfattach_detach(const char *driver, struct cfattach *ca)
686 {
687 struct alldevs_foray af;
688 struct cfdriver *cd;
689 device_t dev;
690 int i, rc = 0;
691
692 cd = config_cfdriver_lookup(driver);
693 if (cd == NULL)
694 return ESRCH;
695
696 config_alldevs_enter(&af);
697 /* Make sure there are no active instances. */
698 for (i = 0; i < cd->cd_ndevs; i++) {
699 if ((dev = cd->cd_devs[i]) == NULL)
700 continue;
701 if (dev->dv_cfattach == ca) {
702 rc = EBUSY;
703 break;
704 }
705 }
706 config_alldevs_exit(&af);
707
708 if (rc != 0)
709 return rc;
710
711 LIST_REMOVE(ca, ca_list);
712
713 return 0;
714 }
715
716 /*
717 * Look up a cfattach by name.
718 */
719 static struct cfattach *
720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
721 {
722 struct cfattach *ca;
723
724 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
725 if (STREQ(ca->ca_name, atname))
726 return ca;
727 }
728
729 return NULL;
730 }
731
732 /*
733 * Look up a cfattach by driver/attachment name.
734 */
735 struct cfattach *
736 config_cfattach_lookup(const char *name, const char *atname)
737 {
738 struct cfdriver *cd;
739
740 cd = config_cfdriver_lookup(name);
741 if (cd == NULL)
742 return NULL;
743
744 return config_cfattach_lookup_cd(cd, atname);
745 }
746
747 /*
748 * Apply the matching function and choose the best. This is used
749 * a few times and we want to keep the code small.
750 */
751 static void
752 mapply(struct matchinfo *m, cfdata_t cf)
753 {
754 int pri;
755
756 if (m->fn != NULL) {
757 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
758 } else {
759 pri = config_match(m->parent, cf, m->aux);
760 }
761 if (pri > m->pri) {
762 m->match = cf;
763 m->pri = pri;
764 }
765 }
766
767 int
768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
769 {
770 const struct cfiattrdata *ci;
771 const struct cflocdesc *cl;
772 int nlocs, i;
773
774 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
775 KASSERT(ci);
776 nlocs = ci->ci_loclen;
777 KASSERT(!nlocs || locs);
778 for (i = 0; i < nlocs; i++) {
779 cl = &ci->ci_locdesc[i];
780 if (cl->cld_defaultstr != NULL &&
781 cf->cf_loc[i] == cl->cld_default)
782 continue;
783 if (cf->cf_loc[i] == locs[i])
784 continue;
785 return 0;
786 }
787
788 return config_match(parent, cf, aux);
789 }
790
791 /*
792 * Helper function: check whether the driver supports the interface attribute
793 * and return its descriptor structure.
794 */
795 static const struct cfiattrdata *
796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
797 {
798 const struct cfiattrdata * const *cpp;
799
800 if (cd->cd_attrs == NULL)
801 return 0;
802
803 for (cpp = cd->cd_attrs; *cpp; cpp++) {
804 if (STREQ((*cpp)->ci_name, ia)) {
805 /* Match. */
806 return *cpp;
807 }
808 }
809 return 0;
810 }
811
812 #if defined(DIAGNOSTIC)
813 static int
814 cfdriver_iattr_count(const struct cfdriver *cd)
815 {
816 const struct cfiattrdata * const *cpp;
817 int i;
818
819 if (cd->cd_attrs == NULL)
820 return 0;
821
822 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
823 i++;
824 }
825 return i;
826 }
827 #endif /* DIAGNOSTIC */
828
829 /*
830 * Lookup an interface attribute description by name.
831 * If the driver is given, consider only its supported attributes.
832 */
833 const struct cfiattrdata *
834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
835 {
836 const struct cfdriver *d;
837 const struct cfiattrdata *ia;
838
839 if (cd)
840 return cfdriver_get_iattr(cd, name);
841
842 LIST_FOREACH(d, &allcfdrivers, cd_list) {
843 ia = cfdriver_get_iattr(d, name);
844 if (ia)
845 return ia;
846 }
847 return 0;
848 }
849
850 /*
851 * Determine if `parent' is a potential parent for a device spec based
852 * on `cfp'.
853 */
854 static int
855 cfparent_match(const device_t parent, const struct cfparent *cfp)
856 {
857 struct cfdriver *pcd;
858
859 /* We don't match root nodes here. */
860 if (cfp == NULL)
861 return 0;
862
863 pcd = parent->dv_cfdriver;
864 KASSERT(pcd != NULL);
865
866 /*
867 * First, ensure this parent has the correct interface
868 * attribute.
869 */
870 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
871 return 0;
872
873 /*
874 * If no specific parent device instance was specified (i.e.
875 * we're attaching to the attribute only), we're done!
876 */
877 if (cfp->cfp_parent == NULL)
878 return 1;
879
880 /*
881 * Check the parent device's name.
882 */
883 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
884 return 0; /* not the same parent */
885
886 /*
887 * Make sure the unit number matches.
888 */
889 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
890 cfp->cfp_unit == parent->dv_unit)
891 return 1;
892
893 /* Unit numbers don't match. */
894 return 0;
895 }
896
897 /*
898 * Helper for config_cfdata_attach(): check all devices whether it could be
899 * parent any attachment in the config data table passed, and rescan.
900 */
901 static void
902 rescan_with_cfdata(const struct cfdata *cf)
903 {
904 device_t d;
905 const struct cfdata *cf1;
906 deviter_t di;
907
908
909 /*
910 * "alldevs" is likely longer than a modules's cfdata, so make it
911 * the outer loop.
912 */
913 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
914
915 if (!(d->dv_cfattach->ca_rescan))
916 continue;
917
918 for (cf1 = cf; cf1->cf_name; cf1++) {
919
920 if (!cfparent_match(d, cf1->cf_pspec))
921 continue;
922
923 (*d->dv_cfattach->ca_rescan)(d,
924 cfdata_ifattr(cf1), cf1->cf_loc);
925
926 config_deferred(d);
927 }
928 }
929 deviter_release(&di);
930 }
931
932 /*
933 * Attach a supplemental config data table and rescan potential
934 * parent devices if required.
935 */
936 int
937 config_cfdata_attach(cfdata_t cf, int scannow)
938 {
939 struct cftable *ct;
940
941 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
942 ct->ct_cfdata = cf;
943 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
944
945 if (scannow)
946 rescan_with_cfdata(cf);
947
948 return 0;
949 }
950
951 /*
952 * Helper for config_cfdata_detach: check whether a device is
953 * found through any attachment in the config data table.
954 */
955 static int
956 dev_in_cfdata(device_t d, cfdata_t cf)
957 {
958 const struct cfdata *cf1;
959
960 for (cf1 = cf; cf1->cf_name; cf1++)
961 if (d->dv_cfdata == cf1)
962 return 1;
963
964 return 0;
965 }
966
967 /*
968 * Detach a supplemental config data table. Detach all devices found
969 * through that table (and thus keeping references to it) before.
970 */
971 int
972 config_cfdata_detach(cfdata_t cf)
973 {
974 device_t d;
975 int error = 0;
976 struct cftable *ct;
977 deviter_t di;
978
979 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
980 d = deviter_next(&di)) {
981 if (!dev_in_cfdata(d, cf))
982 continue;
983 if ((error = config_detach(d, 0)) != 0)
984 break;
985 }
986 deviter_release(&di);
987 if (error) {
988 aprint_error_dev(d, "unable to detach instance\n");
989 return error;
990 }
991
992 TAILQ_FOREACH(ct, &allcftables, ct_list) {
993 if (ct->ct_cfdata == cf) {
994 TAILQ_REMOVE(&allcftables, ct, ct_list);
995 kmem_free(ct, sizeof(*ct));
996 return 0;
997 }
998 }
999
1000 /* not found -- shouldn't happen */
1001 return EINVAL;
1002 }
1003
1004 /*
1005 * Invoke the "match" routine for a cfdata entry on behalf of
1006 * an external caller, usually a "submatch" routine.
1007 */
1008 int
1009 config_match(device_t parent, cfdata_t cf, void *aux)
1010 {
1011 struct cfattach *ca;
1012
1013 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1014 if (ca == NULL) {
1015 /* No attachment for this entry, oh well. */
1016 return 0;
1017 }
1018
1019 return (*ca->ca_match)(parent, cf, aux);
1020 }
1021
1022 static void
1023 config_get_cfargs(cfarg_t tag,
1024 cfsubmatch_t *fnp, /* output */
1025 const char **ifattrp, /* output */
1026 const int **locsp, /* output */
1027 va_list ap)
1028 {
1029 cfsubmatch_t fn = NULL;
1030 const char *ifattr = NULL;
1031 const int *locs = NULL;
1032
1033 while (tag != CFARG_EOL) {
1034 switch (tag) {
1035 case CFARG_SUBMATCH:
1036 fn = va_arg(ap, cfsubmatch_t);
1037 break;
1038
1039 case CFARG_IATTR:
1040 ifattr = va_arg(ap, const char *);
1041 break;
1042
1043 case CFARG_LOCATORS:
1044 locs = va_arg(ap, const int *);
1045 break;
1046
1047 default:
1048 /* XXX panic? */
1049 /* XXX dump stack backtrace? */
1050 aprint_error("%s: unknown cfarg tag: %d\n",
1051 __func__, tag);
1052 goto out;
1053 }
1054 tag = va_arg(ap, cfarg_t);
1055 }
1056
1057 out:
1058 if (fnp != NULL)
1059 *fnp = fn;
1060 if (ifattrp != NULL)
1061 *ifattrp = ifattr;
1062 if (locsp != NULL)
1063 *locsp = locs;
1064 }
1065
1066 /*
1067 * Iterate over all potential children of some device, calling the given
1068 * function (default being the child's match function) for each one.
1069 * Nonzero returns are matches; the highest value returned is considered
1070 * the best match. Return the `found child' if we got a match, or NULL
1071 * otherwise. The `aux' pointer is simply passed on through.
1072 *
1073 * Note that this function is designed so that it can be used to apply
1074 * an arbitrary function to all potential children (its return value
1075 * can be ignored).
1076 */
1077 static cfdata_t
1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1079 {
1080 cfsubmatch_t fn;
1081 const char *ifattr;
1082 const int *locs;
1083 struct cftable *ct;
1084 cfdata_t cf;
1085 struct matchinfo m;
1086
1087 config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
1088
1089 KASSERT(config_initialized);
1090 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1091 KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1092
1093 m.fn = fn;
1094 m.parent = parent;
1095 m.locs = locs;
1096 m.aux = aux;
1097 m.match = NULL;
1098 m.pri = 0;
1099
1100 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1101 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1102
1103 /* We don't match root nodes here. */
1104 if (!cf->cf_pspec)
1105 continue;
1106
1107 /*
1108 * Skip cf if no longer eligible, otherwise scan
1109 * through parents for one matching `parent', and
1110 * try match function.
1111 */
1112 if (cf->cf_fstate == FSTATE_FOUND)
1113 continue;
1114 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1115 cf->cf_fstate == FSTATE_DSTAR)
1116 continue;
1117
1118 /*
1119 * If an interface attribute was specified,
1120 * consider only children which attach to
1121 * that attribute.
1122 */
1123 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1124 continue;
1125
1126 if (cfparent_match(parent, cf->cf_pspec))
1127 mapply(&m, cf);
1128 }
1129 }
1130 return m.match;
1131 }
1132
1133 cfdata_t
1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1135 {
1136 cfdata_t cf;
1137 va_list ap;
1138
1139 va_start(ap, tag);
1140 cf = config_vsearch(parent, aux, tag, ap);
1141 va_end(ap);
1142
1143 return cf;
1144 }
1145
1146 /*
1147 * Find the given root device.
1148 * This is much like config_search, but there is no parent.
1149 * Don't bother with multiple cfdata tables; the root node
1150 * must always be in the initial table.
1151 */
1152 cfdata_t
1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1154 {
1155 cfdata_t cf;
1156 const short *p;
1157 struct matchinfo m;
1158
1159 m.fn = fn;
1160 m.parent = ROOT;
1161 m.aux = aux;
1162 m.match = NULL;
1163 m.pri = 0;
1164 m.locs = 0;
1165 /*
1166 * Look at root entries for matching name. We do not bother
1167 * with found-state here since only one root should ever be
1168 * searched (and it must be done first).
1169 */
1170 for (p = cfroots; *p >= 0; p++) {
1171 cf = &cfdata[*p];
1172 if (strcmp(cf->cf_name, rootname) == 0)
1173 mapply(&m, cf);
1174 }
1175 return m.match;
1176 }
1177
1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1179
1180 /*
1181 * The given `aux' argument describes a device that has been found
1182 * on the given parent, but not necessarily configured. Locate the
1183 * configuration data for that device (using the submatch function
1184 * provided, or using candidates' cd_match configuration driver
1185 * functions) and attach it, and return its device_t. If the device was
1186 * not configured, call the given `print' function and return NULL.
1187 */
1188 static device_t
1189 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
1190 va_list ap)
1191 {
1192 cfsubmatch_t submatch;
1193 const char *ifattr;
1194 const int *locs;
1195 cfdata_t cf;
1196
1197 config_get_cfargs(tag, &submatch, &ifattr, &locs, ap);
1198
1199 if ((cf = config_search(parent, aux,
1200 CFARG_SUBMATCH, submatch,
1201 CFARG_IATTR, ifattr,
1202 CFARG_LOCATORS, locs,
1203 CFARG_EOL)))
1204 return config_attach_loc(parent, cf, locs, aux, print);
1205 if (print) {
1206 if (config_do_twiddle && cold)
1207 twiddle();
1208 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1209 }
1210
1211 /*
1212 * This has the effect of mixing in a single timestamp to the
1213 * entropy pool. Experiments indicate the estimator will almost
1214 * always attribute one bit of entropy to this sample; analysis
1215 * of device attach/detach timestamps on FreeBSD indicates 4
1216 * bits of entropy/sample so this seems appropriately conservative.
1217 */
1218 rnd_add_uint32(&rnd_autoconf_source, 0);
1219 return NULL;
1220 }
1221
1222 #if 0
1223 device_t
1224 config_found_ia(device_t parent, const char *ifattr, void *aux,
1225 cfprint_t print)
1226 {
1227
1228 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1229 }
1230 #endif
1231
1232 device_t
1233 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
1234 {
1235 device_t dev;
1236 va_list ap;
1237
1238 va_start(ap, tag);
1239 dev = config_vfound(parent, aux, print, tag, ap);
1240 va_end(ap);
1241
1242 return dev;
1243 }
1244
1245 /*
1246 * As above, but for root devices.
1247 */
1248 device_t
1249 config_rootfound(const char *rootname, void *aux)
1250 {
1251 cfdata_t cf;
1252
1253 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1254 return config_attach(ROOT, cf, aux, NULL);
1255 aprint_error("root device %s not configured\n", rootname);
1256 return NULL;
1257 }
1258
1259 /* just like sprintf(buf, "%d") except that it works from the end */
1260 static char *
1261 number(char *ep, int n)
1262 {
1263
1264 *--ep = 0;
1265 while (n >= 10) {
1266 *--ep = (n % 10) + '0';
1267 n /= 10;
1268 }
1269 *--ep = n + '0';
1270 return ep;
1271 }
1272
1273 /*
1274 * Expand the size of the cd_devs array if necessary.
1275 *
1276 * The caller must hold alldevs_lock. config_makeroom() may release and
1277 * re-acquire alldevs_lock, so callers should re-check conditions such
1278 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1279 * returns.
1280 */
1281 static void
1282 config_makeroom(int n, struct cfdriver *cd)
1283 {
1284 int ondevs, nndevs;
1285 device_t *osp, *nsp;
1286
1287 KASSERT(mutex_owned(&alldevs_lock));
1288 alldevs_nwrite++;
1289
1290 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1291 ;
1292
1293 while (n >= cd->cd_ndevs) {
1294 /*
1295 * Need to expand the array.
1296 */
1297 ondevs = cd->cd_ndevs;
1298 osp = cd->cd_devs;
1299
1300 /*
1301 * Release alldevs_lock around allocation, which may
1302 * sleep.
1303 */
1304 mutex_exit(&alldevs_lock);
1305 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1306 mutex_enter(&alldevs_lock);
1307
1308 /*
1309 * If another thread moved the array while we did
1310 * not hold alldevs_lock, try again.
1311 */
1312 if (cd->cd_devs != osp) {
1313 mutex_exit(&alldevs_lock);
1314 kmem_free(nsp, sizeof(device_t) * nndevs);
1315 mutex_enter(&alldevs_lock);
1316 continue;
1317 }
1318
1319 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1320 if (ondevs != 0)
1321 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1322
1323 cd->cd_ndevs = nndevs;
1324 cd->cd_devs = nsp;
1325 if (ondevs != 0) {
1326 mutex_exit(&alldevs_lock);
1327 kmem_free(osp, sizeof(device_t) * ondevs);
1328 mutex_enter(&alldevs_lock);
1329 }
1330 }
1331 KASSERT(mutex_owned(&alldevs_lock));
1332 alldevs_nwrite--;
1333 }
1334
1335 /*
1336 * Put dev into the devices list.
1337 */
1338 static void
1339 config_devlink(device_t dev)
1340 {
1341
1342 mutex_enter(&alldevs_lock);
1343
1344 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1345
1346 dev->dv_add_gen = alldevs_gen;
1347 /* It is safe to add a device to the tail of the list while
1348 * readers and writers are in the list.
1349 */
1350 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1351 mutex_exit(&alldevs_lock);
1352 }
1353
1354 static void
1355 config_devfree(device_t dev)
1356 {
1357 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1358
1359 if (dev->dv_cfattach->ca_devsize > 0)
1360 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1361 kmem_free(dev, sizeof(*dev));
1362 }
1363
1364 /*
1365 * Caller must hold alldevs_lock.
1366 */
1367 static void
1368 config_devunlink(device_t dev, struct devicelist *garbage)
1369 {
1370 struct device_garbage *dg = &dev->dv_garbage;
1371 cfdriver_t cd = device_cfdriver(dev);
1372 int i;
1373
1374 KASSERT(mutex_owned(&alldevs_lock));
1375
1376 /* Unlink from device list. Link to garbage list. */
1377 TAILQ_REMOVE(&alldevs, dev, dv_list);
1378 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1379
1380 /* Remove from cfdriver's array. */
1381 cd->cd_devs[dev->dv_unit] = NULL;
1382
1383 /*
1384 * If the device now has no units in use, unlink its softc array.
1385 */
1386 for (i = 0; i < cd->cd_ndevs; i++) {
1387 if (cd->cd_devs[i] != NULL)
1388 break;
1389 }
1390 /* Nothing found. Unlink, now. Deallocate, later. */
1391 if (i == cd->cd_ndevs) {
1392 dg->dg_ndevs = cd->cd_ndevs;
1393 dg->dg_devs = cd->cd_devs;
1394 cd->cd_devs = NULL;
1395 cd->cd_ndevs = 0;
1396 }
1397 }
1398
1399 static void
1400 config_devdelete(device_t dev)
1401 {
1402 struct device_garbage *dg = &dev->dv_garbage;
1403 device_lock_t dvl = device_getlock(dev);
1404
1405 if (dg->dg_devs != NULL)
1406 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1407
1408 cv_destroy(&dvl->dvl_cv);
1409 mutex_destroy(&dvl->dvl_mtx);
1410
1411 KASSERT(dev->dv_properties != NULL);
1412 prop_object_release(dev->dv_properties);
1413
1414 if (dev->dv_activity_handlers)
1415 panic("%s with registered handlers", __func__);
1416
1417 if (dev->dv_locators) {
1418 size_t amount = *--dev->dv_locators;
1419 kmem_free(dev->dv_locators, amount);
1420 }
1421
1422 config_devfree(dev);
1423 }
1424
1425 static int
1426 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1427 {
1428 int unit;
1429
1430 if (cf->cf_fstate == FSTATE_STAR) {
1431 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1432 if (cd->cd_devs[unit] == NULL)
1433 break;
1434 /*
1435 * unit is now the unit of the first NULL device pointer,
1436 * or max(cd->cd_ndevs,cf->cf_unit).
1437 */
1438 } else {
1439 unit = cf->cf_unit;
1440 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1441 unit = -1;
1442 }
1443 return unit;
1444 }
1445
1446 static int
1447 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1448 {
1449 struct alldevs_foray af;
1450 int unit;
1451
1452 config_alldevs_enter(&af);
1453 for (;;) {
1454 unit = config_unit_nextfree(cd, cf);
1455 if (unit == -1)
1456 break;
1457 if (unit < cd->cd_ndevs) {
1458 cd->cd_devs[unit] = dev;
1459 dev->dv_unit = unit;
1460 break;
1461 }
1462 config_makeroom(unit, cd);
1463 }
1464 config_alldevs_exit(&af);
1465
1466 return unit;
1467 }
1468
1469 static device_t
1470 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1471 {
1472 cfdriver_t cd;
1473 cfattach_t ca;
1474 size_t lname, lunit;
1475 const char *xunit;
1476 int myunit;
1477 char num[10];
1478 device_t dev;
1479 void *dev_private;
1480 const struct cfiattrdata *ia;
1481 device_lock_t dvl;
1482
1483 cd = config_cfdriver_lookup(cf->cf_name);
1484 if (cd == NULL)
1485 return NULL;
1486
1487 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1488 if (ca == NULL)
1489 return NULL;
1490
1491 /* get memory for all device vars */
1492 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1493 if (ca->ca_devsize > 0) {
1494 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1495 } else {
1496 dev_private = NULL;
1497 }
1498 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1499
1500 dev->dv_class = cd->cd_class;
1501 dev->dv_cfdata = cf;
1502 dev->dv_cfdriver = cd;
1503 dev->dv_cfattach = ca;
1504 dev->dv_activity_count = 0;
1505 dev->dv_activity_handlers = NULL;
1506 dev->dv_private = dev_private;
1507 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1508
1509 myunit = config_unit_alloc(dev, cd, cf);
1510 if (myunit == -1) {
1511 config_devfree(dev);
1512 return NULL;
1513 }
1514
1515 /* compute length of name and decimal expansion of unit number */
1516 lname = strlen(cd->cd_name);
1517 xunit = number(&num[sizeof(num)], myunit);
1518 lunit = &num[sizeof(num)] - xunit;
1519 if (lname + lunit > sizeof(dev->dv_xname))
1520 panic("config_devalloc: device name too long");
1521
1522 dvl = device_getlock(dev);
1523
1524 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1525 cv_init(&dvl->dvl_cv, "pmfsusp");
1526
1527 memcpy(dev->dv_xname, cd->cd_name, lname);
1528 memcpy(dev->dv_xname + lname, xunit, lunit);
1529 dev->dv_parent = parent;
1530 if (parent != NULL)
1531 dev->dv_depth = parent->dv_depth + 1;
1532 else
1533 dev->dv_depth = 0;
1534 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1535 if (locs) {
1536 KASSERT(parent); /* no locators at root */
1537 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1538 dev->dv_locators =
1539 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1540 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1541 memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1542 }
1543 dev->dv_properties = prop_dictionary_create();
1544 KASSERT(dev->dv_properties != NULL);
1545
1546 prop_dictionary_set_string_nocopy(dev->dv_properties,
1547 "device-driver", dev->dv_cfdriver->cd_name);
1548 prop_dictionary_set_uint16(dev->dv_properties,
1549 "device-unit", dev->dv_unit);
1550 if (parent != NULL) {
1551 prop_dictionary_set_string(dev->dv_properties,
1552 "device-parent", device_xname(parent));
1553 }
1554
1555 if (dev->dv_cfdriver->cd_attrs != NULL)
1556 config_add_attrib_dict(dev);
1557
1558 return dev;
1559 }
1560
1561 /*
1562 * Create an array of device attach attributes and add it
1563 * to the device's dv_properties dictionary.
1564 *
1565 * <key>interface-attributes</key>
1566 * <array>
1567 * <dict>
1568 * <key>attribute-name</key>
1569 * <string>foo</string>
1570 * <key>locators</key>
1571 * <array>
1572 * <dict>
1573 * <key>loc-name</key>
1574 * <string>foo-loc1</string>
1575 * </dict>
1576 * <dict>
1577 * <key>loc-name</key>
1578 * <string>foo-loc2</string>
1579 * <key>default</key>
1580 * <string>foo-loc2-default</string>
1581 * </dict>
1582 * ...
1583 * </array>
1584 * </dict>
1585 * ...
1586 * </array>
1587 */
1588
1589 static void
1590 config_add_attrib_dict(device_t dev)
1591 {
1592 int i, j;
1593 const struct cfiattrdata *ci;
1594 prop_dictionary_t attr_dict, loc_dict;
1595 prop_array_t attr_array, loc_array;
1596
1597 if ((attr_array = prop_array_create()) == NULL)
1598 return;
1599
1600 for (i = 0; ; i++) {
1601 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1602 break;
1603 if ((attr_dict = prop_dictionary_create()) == NULL)
1604 break;
1605 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1606 ci->ci_name);
1607
1608 /* Create an array of the locator names and defaults */
1609
1610 if (ci->ci_loclen != 0 &&
1611 (loc_array = prop_array_create()) != NULL) {
1612 for (j = 0; j < ci->ci_loclen; j++) {
1613 loc_dict = prop_dictionary_create();
1614 if (loc_dict == NULL)
1615 continue;
1616 prop_dictionary_set_string_nocopy(loc_dict,
1617 "loc-name", ci->ci_locdesc[j].cld_name);
1618 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1619 prop_dictionary_set_string_nocopy(
1620 loc_dict, "default",
1621 ci->ci_locdesc[j].cld_defaultstr);
1622 prop_array_set(loc_array, j, loc_dict);
1623 prop_object_release(loc_dict);
1624 }
1625 prop_dictionary_set_and_rel(attr_dict, "locators",
1626 loc_array);
1627 }
1628 prop_array_add(attr_array, attr_dict);
1629 prop_object_release(attr_dict);
1630 }
1631 if (i == 0)
1632 prop_object_release(attr_array);
1633 else
1634 prop_dictionary_set_and_rel(dev->dv_properties,
1635 "interface-attributes", attr_array);
1636
1637 return;
1638 }
1639
1640 /*
1641 * Attach a found device.
1642 */
1643 device_t
1644 config_attach_loc(device_t parent, cfdata_t cf,
1645 const int *locs, void *aux, cfprint_t print)
1646 {
1647 device_t dev;
1648 struct cftable *ct;
1649 const char *drvname;
1650
1651 dev = config_devalloc(parent, cf, locs);
1652 if (!dev)
1653 panic("config_attach: allocation of device softc failed");
1654
1655 /* XXX redundant - see below? */
1656 if (cf->cf_fstate != FSTATE_STAR) {
1657 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1658 cf->cf_fstate = FSTATE_FOUND;
1659 }
1660
1661 config_devlink(dev);
1662
1663 if (config_do_twiddle && cold)
1664 twiddle();
1665 else
1666 aprint_naive("Found ");
1667 /*
1668 * We want the next two printfs for normal, verbose, and quiet,
1669 * but not silent (in which case, we're twiddling, instead).
1670 */
1671 if (parent == ROOT) {
1672 aprint_naive("%s (root)", device_xname(dev));
1673 aprint_normal("%s (root)", device_xname(dev));
1674 } else {
1675 aprint_naive("%s at %s", device_xname(dev),
1676 device_xname(parent));
1677 aprint_normal("%s at %s", device_xname(dev),
1678 device_xname(parent));
1679 if (print)
1680 (void) (*print)(aux, NULL);
1681 }
1682
1683 /*
1684 * Before attaching, clobber any unfound devices that are
1685 * otherwise identical.
1686 * XXX code above is redundant?
1687 */
1688 drvname = dev->dv_cfdriver->cd_name;
1689 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1690 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1691 if (STREQ(cf->cf_name, drvname) &&
1692 cf->cf_unit == dev->dv_unit) {
1693 if (cf->cf_fstate == FSTATE_NOTFOUND)
1694 cf->cf_fstate = FSTATE_FOUND;
1695 }
1696 }
1697 }
1698 device_register(dev, aux);
1699
1700 /* Let userland know */
1701 devmon_report_device(dev, true);
1702
1703 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1704
1705 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1706 && !device_pmf_is_registered(dev))
1707 aprint_debug_dev(dev,
1708 "WARNING: power management not supported\n");
1709
1710 config_process_deferred(&deferred_config_queue, dev);
1711
1712 device_register_post_config(dev, aux);
1713 return dev;
1714 }
1715
1716 device_t
1717 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1718 {
1719
1720 return config_attach_loc(parent, cf, NULL, aux, print);
1721 }
1722
1723 /*
1724 * As above, but for pseudo-devices. Pseudo-devices attached in this
1725 * way are silently inserted into the device tree, and their children
1726 * attached.
1727 *
1728 * Note that because pseudo-devices are attached silently, any information
1729 * the attach routine wishes to print should be prefixed with the device
1730 * name by the attach routine.
1731 */
1732 device_t
1733 config_attach_pseudo(cfdata_t cf)
1734 {
1735 device_t dev;
1736
1737 dev = config_devalloc(ROOT, cf, NULL);
1738 if (!dev)
1739 return NULL;
1740
1741 /* XXX mark busy in cfdata */
1742
1743 if (cf->cf_fstate != FSTATE_STAR) {
1744 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1745 cf->cf_fstate = FSTATE_FOUND;
1746 }
1747
1748 config_devlink(dev);
1749
1750 #if 0 /* XXXJRT not yet */
1751 device_register(dev, NULL); /* like a root node */
1752 #endif
1753
1754 /* Let userland know */
1755 devmon_report_device(dev, true);
1756
1757 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1758
1759 config_process_deferred(&deferred_config_queue, dev);
1760 return dev;
1761 }
1762
1763 /*
1764 * Caller must hold alldevs_lock.
1765 */
1766 static void
1767 config_collect_garbage(struct devicelist *garbage)
1768 {
1769 device_t dv;
1770
1771 KASSERT(!cpu_intr_p());
1772 KASSERT(!cpu_softintr_p());
1773 KASSERT(mutex_owned(&alldevs_lock));
1774
1775 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1776 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1777 if (dv->dv_del_gen != 0)
1778 break;
1779 }
1780 if (dv == NULL) {
1781 alldevs_garbage = false;
1782 break;
1783 }
1784 config_devunlink(dv, garbage);
1785 }
1786 KASSERT(mutex_owned(&alldevs_lock));
1787 }
1788
1789 static void
1790 config_dump_garbage(struct devicelist *garbage)
1791 {
1792 device_t dv;
1793
1794 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1795 TAILQ_REMOVE(garbage, dv, dv_list);
1796 config_devdelete(dv);
1797 }
1798 }
1799
1800 /*
1801 * Detach a device. Optionally forced (e.g. because of hardware
1802 * removal) and quiet. Returns zero if successful, non-zero
1803 * (an error code) otherwise.
1804 *
1805 * Note that this code wants to be run from a process context, so
1806 * that the detach can sleep to allow processes which have a device
1807 * open to run and unwind their stacks.
1808 */
1809 int
1810 config_detach(device_t dev, int flags)
1811 {
1812 struct alldevs_foray af;
1813 struct cftable *ct;
1814 cfdata_t cf;
1815 const struct cfattach *ca;
1816 struct cfdriver *cd;
1817 device_t d __diagused;
1818 int rv = 0;
1819
1820 cf = dev->dv_cfdata;
1821 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1822 cf->cf_fstate == FSTATE_STAR),
1823 "config_detach: %s: bad device fstate: %d",
1824 device_xname(dev), cf ? cf->cf_fstate : -1);
1825
1826 cd = dev->dv_cfdriver;
1827 KASSERT(cd != NULL);
1828
1829 ca = dev->dv_cfattach;
1830 KASSERT(ca != NULL);
1831
1832 mutex_enter(&alldevs_lock);
1833 if (dev->dv_del_gen != 0) {
1834 mutex_exit(&alldevs_lock);
1835 #ifdef DIAGNOSTIC
1836 printf("%s: %s is already detached\n", __func__,
1837 device_xname(dev));
1838 #endif /* DIAGNOSTIC */
1839 return ENOENT;
1840 }
1841 alldevs_nwrite++;
1842 mutex_exit(&alldevs_lock);
1843
1844 if (!detachall &&
1845 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1846 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1847 rv = EOPNOTSUPP;
1848 } else if (ca->ca_detach != NULL) {
1849 rv = (*ca->ca_detach)(dev, flags);
1850 } else
1851 rv = EOPNOTSUPP;
1852
1853 /*
1854 * If it was not possible to detach the device, then we either
1855 * panic() (for the forced but failed case), or return an error.
1856 *
1857 * If it was possible to detach the device, ensure that the
1858 * device is deactivated.
1859 */
1860 if (rv == 0)
1861 dev->dv_flags &= ~DVF_ACTIVE;
1862 else if ((flags & DETACH_FORCE) == 0)
1863 goto out;
1864 else {
1865 panic("config_detach: forced detach of %s failed (%d)",
1866 device_xname(dev), rv);
1867 }
1868
1869 /*
1870 * The device has now been successfully detached.
1871 */
1872
1873 /* Let userland know */
1874 devmon_report_device(dev, false);
1875
1876 #ifdef DIAGNOSTIC
1877 /*
1878 * Sanity: If you're successfully detached, you should have no
1879 * children. (Note that because children must be attached
1880 * after parents, we only need to search the latter part of
1881 * the list.)
1882 */
1883 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1884 d = TAILQ_NEXT(d, dv_list)) {
1885 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1886 printf("config_detach: detached device %s"
1887 " has children %s\n", device_xname(dev),
1888 device_xname(d));
1889 panic("config_detach");
1890 }
1891 }
1892 #endif
1893
1894 /* notify the parent that the child is gone */
1895 if (dev->dv_parent) {
1896 device_t p = dev->dv_parent;
1897 if (p->dv_cfattach->ca_childdetached)
1898 (*p->dv_cfattach->ca_childdetached)(p, dev);
1899 }
1900
1901 /*
1902 * Mark cfdata to show that the unit can be reused, if possible.
1903 */
1904 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1905 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1906 if (STREQ(cf->cf_name, cd->cd_name)) {
1907 if (cf->cf_fstate == FSTATE_FOUND &&
1908 cf->cf_unit == dev->dv_unit)
1909 cf->cf_fstate = FSTATE_NOTFOUND;
1910 }
1911 }
1912 }
1913
1914 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1915 aprint_normal_dev(dev, "detached\n");
1916
1917 out:
1918 config_alldevs_enter(&af);
1919 KASSERT(alldevs_nwrite != 0);
1920 --alldevs_nwrite;
1921 if (rv == 0 && dev->dv_del_gen == 0) {
1922 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1923 config_devunlink(dev, &af.af_garbage);
1924 else {
1925 dev->dv_del_gen = alldevs_gen;
1926 alldevs_garbage = true;
1927 }
1928 }
1929 config_alldevs_exit(&af);
1930
1931 return rv;
1932 }
1933
1934 int
1935 config_detach_children(device_t parent, int flags)
1936 {
1937 device_t dv;
1938 deviter_t di;
1939 int error = 0;
1940
1941 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1942 dv = deviter_next(&di)) {
1943 if (device_parent(dv) != parent)
1944 continue;
1945 if ((error = config_detach(dv, flags)) != 0)
1946 break;
1947 }
1948 deviter_release(&di);
1949 return error;
1950 }
1951
1952 device_t
1953 shutdown_first(struct shutdown_state *s)
1954 {
1955 if (!s->initialized) {
1956 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1957 s->initialized = true;
1958 }
1959 return shutdown_next(s);
1960 }
1961
1962 device_t
1963 shutdown_next(struct shutdown_state *s)
1964 {
1965 device_t dv;
1966
1967 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1968 ;
1969
1970 if (dv == NULL)
1971 s->initialized = false;
1972
1973 return dv;
1974 }
1975
1976 bool
1977 config_detach_all(int how)
1978 {
1979 static struct shutdown_state s;
1980 device_t curdev;
1981 bool progress = false;
1982 int flags;
1983
1984 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1985 return false;
1986
1987 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1988 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1989 else
1990 flags = DETACH_SHUTDOWN;
1991
1992 for (curdev = shutdown_first(&s); curdev != NULL;
1993 curdev = shutdown_next(&s)) {
1994 aprint_debug(" detaching %s, ", device_xname(curdev));
1995 if (config_detach(curdev, flags) == 0) {
1996 progress = true;
1997 aprint_debug("success.");
1998 } else
1999 aprint_debug("failed.");
2000 }
2001 return progress;
2002 }
2003
2004 static bool
2005 device_is_ancestor_of(device_t ancestor, device_t descendant)
2006 {
2007 device_t dv;
2008
2009 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2010 if (device_parent(dv) == ancestor)
2011 return true;
2012 }
2013 return false;
2014 }
2015
2016 int
2017 config_deactivate(device_t dev)
2018 {
2019 deviter_t di;
2020 const struct cfattach *ca;
2021 device_t descendant;
2022 int s, rv = 0, oflags;
2023
2024 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2025 descendant != NULL;
2026 descendant = deviter_next(&di)) {
2027 if (dev != descendant &&
2028 !device_is_ancestor_of(dev, descendant))
2029 continue;
2030
2031 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2032 continue;
2033
2034 ca = descendant->dv_cfattach;
2035 oflags = descendant->dv_flags;
2036
2037 descendant->dv_flags &= ~DVF_ACTIVE;
2038 if (ca->ca_activate == NULL)
2039 continue;
2040 s = splhigh();
2041 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2042 splx(s);
2043 if (rv != 0)
2044 descendant->dv_flags = oflags;
2045 }
2046 deviter_release(&di);
2047 return rv;
2048 }
2049
2050 /*
2051 * Defer the configuration of the specified device until all
2052 * of its parent's devices have been attached.
2053 */
2054 void
2055 config_defer(device_t dev, void (*func)(device_t))
2056 {
2057 struct deferred_config *dc;
2058
2059 if (dev->dv_parent == NULL)
2060 panic("config_defer: can't defer config of a root device");
2061
2062 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2063
2064 config_pending_incr(dev);
2065
2066 mutex_enter(&config_misc_lock);
2067 #ifdef DIAGNOSTIC
2068 struct deferred_config *odc;
2069 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2070 if (odc->dc_dev == dev)
2071 panic("config_defer: deferred twice");
2072 }
2073 #endif
2074 dc->dc_dev = dev;
2075 dc->dc_func = func;
2076 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2077 mutex_exit(&config_misc_lock);
2078 }
2079
2080 /*
2081 * Defer some autoconfiguration for a device until after interrupts
2082 * are enabled.
2083 */
2084 void
2085 config_interrupts(device_t dev, void (*func)(device_t))
2086 {
2087 struct deferred_config *dc;
2088
2089 /*
2090 * If interrupts are enabled, callback now.
2091 */
2092 if (cold == 0) {
2093 (*func)(dev);
2094 return;
2095 }
2096
2097 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2098
2099 config_pending_incr(dev);
2100
2101 mutex_enter(&config_misc_lock);
2102 #ifdef DIAGNOSTIC
2103 struct deferred_config *odc;
2104 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2105 if (odc->dc_dev == dev)
2106 panic("config_interrupts: deferred twice");
2107 }
2108 #endif
2109 dc->dc_dev = dev;
2110 dc->dc_func = func;
2111 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2112 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2113 mutex_exit(&config_misc_lock);
2114 }
2115
2116 /*
2117 * Defer some autoconfiguration for a device until after root file system
2118 * is mounted (to load firmware etc).
2119 */
2120 void
2121 config_mountroot(device_t dev, void (*func)(device_t))
2122 {
2123 struct deferred_config *dc;
2124
2125 /*
2126 * If root file system is mounted, callback now.
2127 */
2128 if (root_is_mounted) {
2129 (*func)(dev);
2130 return;
2131 }
2132
2133 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2134
2135 mutex_enter(&config_misc_lock);
2136 #ifdef DIAGNOSTIC
2137 struct deferred_config *odc;
2138 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2139 if (odc->dc_dev == dev)
2140 panic("%s: deferred twice", __func__);
2141 }
2142 #endif
2143
2144 dc->dc_dev = dev;
2145 dc->dc_func = func;
2146 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2147 mutex_exit(&config_misc_lock);
2148 }
2149
2150 /*
2151 * Process a deferred configuration queue.
2152 */
2153 static void
2154 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2155 {
2156 struct deferred_config *dc;
2157
2158 mutex_enter(&config_misc_lock);
2159 dc = TAILQ_FIRST(queue);
2160 while (dc) {
2161 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2162 TAILQ_REMOVE(queue, dc, dc_queue);
2163 mutex_exit(&config_misc_lock);
2164
2165 (*dc->dc_func)(dc->dc_dev);
2166 config_pending_decr(dc->dc_dev);
2167 kmem_free(dc, sizeof(*dc));
2168
2169 mutex_enter(&config_misc_lock);
2170 /* Restart, queue might have changed */
2171 dc = TAILQ_FIRST(queue);
2172 } else {
2173 dc = TAILQ_NEXT(dc, dc_queue);
2174 }
2175 }
2176 mutex_exit(&config_misc_lock);
2177 }
2178
2179 /*
2180 * Manipulate the config_pending semaphore.
2181 */
2182 void
2183 config_pending_incr(device_t dev)
2184 {
2185
2186 mutex_enter(&config_misc_lock);
2187 KASSERTMSG(dev->dv_pending < INT_MAX,
2188 "%s: excess config_pending_incr", device_xname(dev));
2189 if (dev->dv_pending++ == 0)
2190 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2191 #ifdef DEBUG_AUTOCONF
2192 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2193 #endif
2194 mutex_exit(&config_misc_lock);
2195 }
2196
2197 void
2198 config_pending_decr(device_t dev)
2199 {
2200
2201 mutex_enter(&config_misc_lock);
2202 KASSERTMSG(dev->dv_pending > 0,
2203 "%s: excess config_pending_decr", device_xname(dev));
2204 if (--dev->dv_pending == 0)
2205 TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2206 #ifdef DEBUG_AUTOCONF
2207 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2208 #endif
2209 if (TAILQ_EMPTY(&config_pending))
2210 cv_broadcast(&config_misc_cv);
2211 mutex_exit(&config_misc_lock);
2212 }
2213
2214 /*
2215 * Register a "finalization" routine. Finalization routines are
2216 * called iteratively once all real devices have been found during
2217 * autoconfiguration, for as long as any one finalizer has done
2218 * any work.
2219 */
2220 int
2221 config_finalize_register(device_t dev, int (*fn)(device_t))
2222 {
2223 struct finalize_hook *f;
2224
2225 /*
2226 * If finalization has already been done, invoke the
2227 * callback function now.
2228 */
2229 if (config_finalize_done) {
2230 while ((*fn)(dev) != 0)
2231 /* loop */ ;
2232 return 0;
2233 }
2234
2235 /* Ensure this isn't already on the list. */
2236 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2237 if (f->f_func == fn && f->f_dev == dev)
2238 return EEXIST;
2239 }
2240
2241 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2242 f->f_func = fn;
2243 f->f_dev = dev;
2244 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2245
2246 return 0;
2247 }
2248
2249 void
2250 config_finalize(void)
2251 {
2252 struct finalize_hook *f;
2253 struct pdevinit *pdev;
2254 extern struct pdevinit pdevinit[];
2255 int errcnt, rv;
2256
2257 /*
2258 * Now that device driver threads have been created, wait for
2259 * them to finish any deferred autoconfiguration.
2260 */
2261 mutex_enter(&config_misc_lock);
2262 while (!TAILQ_EMPTY(&config_pending)) {
2263 device_t dev;
2264 TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2265 aprint_debug_dev(dev, "holding up boot\n");
2266 cv_wait(&config_misc_cv, &config_misc_lock);
2267 }
2268 mutex_exit(&config_misc_lock);
2269
2270 KERNEL_LOCK(1, NULL);
2271
2272 /* Attach pseudo-devices. */
2273 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2274 (*pdev->pdev_attach)(pdev->pdev_count);
2275
2276 /* Run the hooks until none of them does any work. */
2277 do {
2278 rv = 0;
2279 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2280 rv |= (*f->f_func)(f->f_dev);
2281 } while (rv != 0);
2282
2283 config_finalize_done = 1;
2284
2285 /* Now free all the hooks. */
2286 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2287 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2288 kmem_free(f, sizeof(*f));
2289 }
2290
2291 KERNEL_UNLOCK_ONE(NULL);
2292
2293 errcnt = aprint_get_error_count();
2294 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2295 (boothowto & AB_VERBOSE) == 0) {
2296 mutex_enter(&config_misc_lock);
2297 if (config_do_twiddle) {
2298 config_do_twiddle = 0;
2299 printf_nolog(" done.\n");
2300 }
2301 mutex_exit(&config_misc_lock);
2302 }
2303 if (errcnt != 0) {
2304 printf("WARNING: %d error%s while detecting hardware; "
2305 "check system log.\n", errcnt,
2306 errcnt == 1 ? "" : "s");
2307 }
2308 }
2309
2310 void
2311 config_twiddle_init(void)
2312 {
2313
2314 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2315 config_do_twiddle = 1;
2316 }
2317 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2318 }
2319
2320 void
2321 config_twiddle_fn(void *cookie)
2322 {
2323
2324 mutex_enter(&config_misc_lock);
2325 if (config_do_twiddle) {
2326 twiddle();
2327 callout_schedule(&config_twiddle_ch, mstohz(100));
2328 }
2329 mutex_exit(&config_misc_lock);
2330 }
2331
2332 static void
2333 config_alldevs_enter(struct alldevs_foray *af)
2334 {
2335 TAILQ_INIT(&af->af_garbage);
2336 mutex_enter(&alldevs_lock);
2337 config_collect_garbage(&af->af_garbage);
2338 }
2339
2340 static void
2341 config_alldevs_exit(struct alldevs_foray *af)
2342 {
2343 mutex_exit(&alldevs_lock);
2344 config_dump_garbage(&af->af_garbage);
2345 }
2346
2347 /*
2348 * device_lookup:
2349 *
2350 * Look up a device instance for a given driver.
2351 */
2352 device_t
2353 device_lookup(cfdriver_t cd, int unit)
2354 {
2355 device_t dv;
2356
2357 mutex_enter(&alldevs_lock);
2358 if (unit < 0 || unit >= cd->cd_ndevs)
2359 dv = NULL;
2360 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2361 dv = NULL;
2362 mutex_exit(&alldevs_lock);
2363
2364 return dv;
2365 }
2366
2367 /*
2368 * device_lookup_private:
2369 *
2370 * Look up a softc instance for a given driver.
2371 */
2372 void *
2373 device_lookup_private(cfdriver_t cd, int unit)
2374 {
2375
2376 return device_private(device_lookup(cd, unit));
2377 }
2378
2379 /*
2380 * device_find_by_xname:
2381 *
2382 * Returns the device of the given name or NULL if it doesn't exist.
2383 */
2384 device_t
2385 device_find_by_xname(const char *name)
2386 {
2387 device_t dv;
2388 deviter_t di;
2389
2390 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2391 if (strcmp(device_xname(dv), name) == 0)
2392 break;
2393 }
2394 deviter_release(&di);
2395
2396 return dv;
2397 }
2398
2399 /*
2400 * device_find_by_driver_unit:
2401 *
2402 * Returns the device of the given driver name and unit or
2403 * NULL if it doesn't exist.
2404 */
2405 device_t
2406 device_find_by_driver_unit(const char *name, int unit)
2407 {
2408 struct cfdriver *cd;
2409
2410 if ((cd = config_cfdriver_lookup(name)) == NULL)
2411 return NULL;
2412 return device_lookup(cd, unit);
2413 }
2414
2415 static bool
2416 match_strcmp(const char * const s1, const char * const s2)
2417 {
2418 return strcmp(s1, s2) == 0;
2419 }
2420
2421 static bool
2422 match_pmatch(const char * const s1, const char * const s2)
2423 {
2424 return pmatch(s1, s2, NULL) == 2;
2425 }
2426
2427 static bool
2428 strarray_match_internal(const char ** const strings,
2429 unsigned int const nstrings, const char * const str,
2430 unsigned int * const indexp,
2431 bool (*match_fn)(const char *, const char *))
2432 {
2433 unsigned int i;
2434
2435 if (strings == NULL || nstrings == 0) {
2436 return false;
2437 }
2438
2439 for (i = 0; i < nstrings; i++) {
2440 if ((*match_fn)(strings[i], str)) {
2441 *indexp = i;
2442 return true;
2443 }
2444 }
2445
2446 return false;
2447 }
2448
2449 static int
2450 strarray_match(const char ** const strings, unsigned int const nstrings,
2451 const char * const str)
2452 {
2453 unsigned int idx;
2454
2455 if (strarray_match_internal(strings, nstrings, str, &idx,
2456 match_strcmp)) {
2457 return (int)(nstrings - idx);
2458 }
2459 return 0;
2460 }
2461
2462 static int
2463 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2464 const char * const pattern)
2465 {
2466 unsigned int idx;
2467
2468 if (strarray_match_internal(strings, nstrings, pattern, &idx,
2469 match_pmatch)) {
2470 return (int)(nstrings - idx);
2471 }
2472 return 0;
2473 }
2474
2475 static int
2476 device_compatible_match_strarray_internal(
2477 const char **device_compats, int ndevice_compats,
2478 const struct device_compatible_entry *driver_compats,
2479 const struct device_compatible_entry **matching_entryp,
2480 int (*match_fn)(const char **, unsigned int, const char *))
2481 {
2482 const struct device_compatible_entry *dce = NULL;
2483 int rv;
2484
2485 if (ndevice_compats == 0 || device_compats == NULL ||
2486 driver_compats == NULL)
2487 return 0;
2488
2489 for (dce = driver_compats; dce->compat != NULL; dce++) {
2490 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2491 if (rv != 0) {
2492 if (matching_entryp != NULL) {
2493 *matching_entryp = dce;
2494 }
2495 return rv;
2496 }
2497 }
2498 return 0;
2499 }
2500
2501 /*
2502 * device_compatible_match:
2503 *
2504 * Match a driver's "compatible" data against a device's
2505 * "compatible" strings. Returns resulted weighted by
2506 * which device "compatible" string was matched.
2507 */
2508 int
2509 device_compatible_match(const char **device_compats, int ndevice_compats,
2510 const struct device_compatible_entry *driver_compats)
2511 {
2512 return device_compatible_match_strarray_internal(device_compats,
2513 ndevice_compats, driver_compats, NULL, strarray_match);
2514 }
2515
2516 /*
2517 * device_compatible_pmatch:
2518 *
2519 * Like device_compatible_match(), but uses pmatch(9) to compare
2520 * the device "compatible" strings against patterns in the
2521 * driver's "compatible" data.
2522 */
2523 int
2524 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2525 const struct device_compatible_entry *driver_compats)
2526 {
2527 return device_compatible_match_strarray_internal(device_compats,
2528 ndevice_compats, driver_compats, NULL, strarray_pmatch);
2529 }
2530
2531 static int
2532 device_compatible_match_strlist_internal(
2533 const char * const device_compats, size_t const device_compatsize,
2534 const struct device_compatible_entry *driver_compats,
2535 const struct device_compatible_entry **matching_entryp,
2536 int (*match_fn)(const char *, size_t, const char *))
2537 {
2538 const struct device_compatible_entry *dce = NULL;
2539 int rv;
2540
2541 if (device_compats == NULL || device_compatsize == 0 ||
2542 driver_compats == NULL)
2543 return 0;
2544
2545 for (dce = driver_compats; dce->compat != NULL; dce++) {
2546 rv = (*match_fn)(device_compats, device_compatsize,
2547 dce->compat);
2548 if (rv != 0) {
2549 if (matching_entryp != NULL) {
2550 *matching_entryp = dce;
2551 }
2552 return rv;
2553 }
2554 }
2555 return 0;
2556 }
2557
2558 /*
2559 * device_compatible_match_strlist:
2560 *
2561 * Like device_compatible_match(), but take the device
2562 * "compatible" strings as an OpenFirmware-style string
2563 * list.
2564 */
2565 int
2566 device_compatible_match_strlist(
2567 const char * const device_compats, size_t const device_compatsize,
2568 const struct device_compatible_entry *driver_compats)
2569 {
2570 return device_compatible_match_strlist_internal(device_compats,
2571 device_compatsize, driver_compats, NULL, strlist_match);
2572 }
2573
2574 /*
2575 * device_compatible_pmatch_strlist:
2576 *
2577 * Like device_compatible_pmatch(), but take the device
2578 * "compatible" strings as an OpenFirmware-style string
2579 * list.
2580 */
2581 int
2582 device_compatible_pmatch_strlist(
2583 const char * const device_compats, size_t const device_compatsize,
2584 const struct device_compatible_entry *driver_compats)
2585 {
2586 return device_compatible_match_strlist_internal(device_compats,
2587 device_compatsize, driver_compats, NULL, strlist_pmatch);
2588 }
2589
2590 static int
2591 device_compatible_match_id_internal(
2592 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2593 const struct device_compatible_entry *driver_compats,
2594 const struct device_compatible_entry **matching_entryp)
2595 {
2596 const struct device_compatible_entry *dce = NULL;
2597
2598 if (mask == 0)
2599 return 0;
2600
2601 for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2602 if ((id & mask) == dce->id) {
2603 if (matching_entryp != NULL) {
2604 *matching_entryp = dce;
2605 }
2606 return 1;
2607 }
2608 }
2609 return 0;
2610 }
2611
2612 /*
2613 * device_compatible_match_id:
2614 *
2615 * Like device_compatible_match(), but takes a single
2616 * unsigned integer device ID.
2617 */
2618 int
2619 device_compatible_match_id(
2620 uintptr_t const id, uintptr_t const sentinel_id,
2621 const struct device_compatible_entry *driver_compats)
2622 {
2623 return device_compatible_match_id_internal(id, (uintptr_t)-1,
2624 sentinel_id, driver_compats, NULL);
2625 }
2626
2627 /*
2628 * device_compatible_lookup:
2629 *
2630 * Look up and return the device_compatible_entry, using the
2631 * same matching criteria used by device_compatible_match().
2632 */
2633 const struct device_compatible_entry *
2634 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2635 const struct device_compatible_entry *driver_compats)
2636 {
2637 const struct device_compatible_entry *dce;
2638
2639 if (device_compatible_match_strarray_internal(device_compats,
2640 ndevice_compats, driver_compats, &dce, strarray_match)) {
2641 return dce;
2642 }
2643 return NULL;
2644 }
2645
2646 /*
2647 * device_compatible_plookup:
2648 *
2649 * Look up and return the device_compatible_entry, using the
2650 * same matching criteria used by device_compatible_pmatch().
2651 */
2652 const struct device_compatible_entry *
2653 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2654 const struct device_compatible_entry *driver_compats)
2655 {
2656 const struct device_compatible_entry *dce;
2657
2658 if (device_compatible_match_strarray_internal(device_compats,
2659 ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2660 return dce;
2661 }
2662 return NULL;
2663 }
2664
2665 /*
2666 * device_compatible_lookup_strlist:
2667 *
2668 * Like device_compatible_lookup(), but take the device
2669 * "compatible" strings as an OpenFirmware-style string
2670 * list.
2671 */
2672 const struct device_compatible_entry *
2673 device_compatible_lookup_strlist(
2674 const char * const device_compats, size_t const device_compatsize,
2675 const struct device_compatible_entry *driver_compats)
2676 {
2677 const struct device_compatible_entry *dce;
2678
2679 if (device_compatible_match_strlist_internal(device_compats,
2680 device_compatsize, driver_compats, &dce, strlist_match)) {
2681 return dce;
2682 }
2683 return NULL;
2684 }
2685
2686 /*
2687 * device_compatible_plookup_strlist:
2688 *
2689 * Like device_compatible_plookup(), but take the device
2690 * "compatible" strings as an OpenFirmware-style string
2691 * list.
2692 */
2693 const struct device_compatible_entry *
2694 device_compatible_plookup_strlist(
2695 const char * const device_compats, size_t const device_compatsize,
2696 const struct device_compatible_entry *driver_compats)
2697 {
2698 const struct device_compatible_entry *dce;
2699
2700 if (device_compatible_match_strlist_internal(device_compats,
2701 device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2702 return dce;
2703 }
2704 return NULL;
2705 }
2706
2707 /*
2708 * device_compatible_lookup_id:
2709 *
2710 * Like device_compatible_lookup(), but takes a single
2711 * unsigned integer device ID.
2712 */
2713 const struct device_compatible_entry *
2714 device_compatible_lookup_id(
2715 uintptr_t const id, uintptr_t const sentinel_id,
2716 const struct device_compatible_entry *driver_compats)
2717 {
2718 const struct device_compatible_entry *dce;
2719
2720 if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2721 sentinel_id, driver_compats, &dce)) {
2722 return dce;
2723 }
2724 return NULL;
2725 }
2726
2727 /*
2728 * Power management related functions.
2729 */
2730
2731 bool
2732 device_pmf_is_registered(device_t dev)
2733 {
2734 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2735 }
2736
2737 bool
2738 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2739 {
2740 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2741 return true;
2742 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2743 return false;
2744 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2745 dev->dv_driver_suspend != NULL &&
2746 !(*dev->dv_driver_suspend)(dev, qual))
2747 return false;
2748
2749 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2750 return true;
2751 }
2752
2753 bool
2754 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2755 {
2756 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2757 return true;
2758 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2759 return false;
2760 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2761 dev->dv_driver_resume != NULL &&
2762 !(*dev->dv_driver_resume)(dev, qual))
2763 return false;
2764
2765 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2766 return true;
2767 }
2768
2769 bool
2770 device_pmf_driver_shutdown(device_t dev, int how)
2771 {
2772
2773 if (*dev->dv_driver_shutdown != NULL &&
2774 !(*dev->dv_driver_shutdown)(dev, how))
2775 return false;
2776 return true;
2777 }
2778
2779 bool
2780 device_pmf_driver_register(device_t dev,
2781 bool (*suspend)(device_t, const pmf_qual_t *),
2782 bool (*resume)(device_t, const pmf_qual_t *),
2783 bool (*shutdown)(device_t, int))
2784 {
2785 dev->dv_driver_suspend = suspend;
2786 dev->dv_driver_resume = resume;
2787 dev->dv_driver_shutdown = shutdown;
2788 dev->dv_flags |= DVF_POWER_HANDLERS;
2789 return true;
2790 }
2791
2792 static const char *
2793 curlwp_name(void)
2794 {
2795 if (curlwp->l_name != NULL)
2796 return curlwp->l_name;
2797 else
2798 return curlwp->l_proc->p_comm;
2799 }
2800
2801 void
2802 device_pmf_driver_deregister(device_t dev)
2803 {
2804 device_lock_t dvl = device_getlock(dev);
2805
2806 dev->dv_driver_suspend = NULL;
2807 dev->dv_driver_resume = NULL;
2808
2809 mutex_enter(&dvl->dvl_mtx);
2810 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2811 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2812 /* Wake a thread that waits for the lock. That
2813 * thread will fail to acquire the lock, and then
2814 * it will wake the next thread that waits for the
2815 * lock, or else it will wake us.
2816 */
2817 cv_signal(&dvl->dvl_cv);
2818 pmflock_debug(dev, __func__, __LINE__);
2819 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2820 pmflock_debug(dev, __func__, __LINE__);
2821 }
2822 mutex_exit(&dvl->dvl_mtx);
2823 }
2824
2825 bool
2826 device_pmf_driver_child_register(device_t dev)
2827 {
2828 device_t parent = device_parent(dev);
2829
2830 if (parent == NULL || parent->dv_driver_child_register == NULL)
2831 return true;
2832 return (*parent->dv_driver_child_register)(dev);
2833 }
2834
2835 void
2836 device_pmf_driver_set_child_register(device_t dev,
2837 bool (*child_register)(device_t))
2838 {
2839 dev->dv_driver_child_register = child_register;
2840 }
2841
2842 static void
2843 pmflock_debug(device_t dev, const char *func, int line)
2844 {
2845 device_lock_t dvl = device_getlock(dev);
2846
2847 aprint_debug_dev(dev,
2848 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2849 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2850 }
2851
2852 static bool
2853 device_pmf_lock1(device_t dev)
2854 {
2855 device_lock_t dvl = device_getlock(dev);
2856
2857 while (device_pmf_is_registered(dev) &&
2858 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2859 dvl->dvl_nwait++;
2860 pmflock_debug(dev, __func__, __LINE__);
2861 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2862 pmflock_debug(dev, __func__, __LINE__);
2863 dvl->dvl_nwait--;
2864 }
2865 if (!device_pmf_is_registered(dev)) {
2866 pmflock_debug(dev, __func__, __LINE__);
2867 /* We could not acquire the lock, but some other thread may
2868 * wait for it, also. Wake that thread.
2869 */
2870 cv_signal(&dvl->dvl_cv);
2871 return false;
2872 }
2873 dvl->dvl_nlock++;
2874 dvl->dvl_holder = curlwp;
2875 pmflock_debug(dev, __func__, __LINE__);
2876 return true;
2877 }
2878
2879 bool
2880 device_pmf_lock(device_t dev)
2881 {
2882 bool rc;
2883 device_lock_t dvl = device_getlock(dev);
2884
2885 mutex_enter(&dvl->dvl_mtx);
2886 rc = device_pmf_lock1(dev);
2887 mutex_exit(&dvl->dvl_mtx);
2888
2889 return rc;
2890 }
2891
2892 void
2893 device_pmf_unlock(device_t dev)
2894 {
2895 device_lock_t dvl = device_getlock(dev);
2896
2897 KASSERT(dvl->dvl_nlock > 0);
2898 mutex_enter(&dvl->dvl_mtx);
2899 if (--dvl->dvl_nlock == 0)
2900 dvl->dvl_holder = NULL;
2901 cv_signal(&dvl->dvl_cv);
2902 pmflock_debug(dev, __func__, __LINE__);
2903 mutex_exit(&dvl->dvl_mtx);
2904 }
2905
2906 device_lock_t
2907 device_getlock(device_t dev)
2908 {
2909 return &dev->dv_lock;
2910 }
2911
2912 void *
2913 device_pmf_bus_private(device_t dev)
2914 {
2915 return dev->dv_bus_private;
2916 }
2917
2918 bool
2919 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2920 {
2921 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2922 return true;
2923 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2924 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2925 return false;
2926 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2927 dev->dv_bus_suspend != NULL &&
2928 !(*dev->dv_bus_suspend)(dev, qual))
2929 return false;
2930
2931 dev->dv_flags |= DVF_BUS_SUSPENDED;
2932 return true;
2933 }
2934
2935 bool
2936 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2937 {
2938 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2939 return true;
2940 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2941 dev->dv_bus_resume != NULL &&
2942 !(*dev->dv_bus_resume)(dev, qual))
2943 return false;
2944
2945 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2946 return true;
2947 }
2948
2949 bool
2950 device_pmf_bus_shutdown(device_t dev, int how)
2951 {
2952
2953 if (*dev->dv_bus_shutdown != NULL &&
2954 !(*dev->dv_bus_shutdown)(dev, how))
2955 return false;
2956 return true;
2957 }
2958
2959 void
2960 device_pmf_bus_register(device_t dev, void *priv,
2961 bool (*suspend)(device_t, const pmf_qual_t *),
2962 bool (*resume)(device_t, const pmf_qual_t *),
2963 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2964 {
2965 dev->dv_bus_private = priv;
2966 dev->dv_bus_resume = resume;
2967 dev->dv_bus_suspend = suspend;
2968 dev->dv_bus_shutdown = shutdown;
2969 dev->dv_bus_deregister = deregister;
2970 }
2971
2972 void
2973 device_pmf_bus_deregister(device_t dev)
2974 {
2975 if (dev->dv_bus_deregister == NULL)
2976 return;
2977 (*dev->dv_bus_deregister)(dev);
2978 dev->dv_bus_private = NULL;
2979 dev->dv_bus_suspend = NULL;
2980 dev->dv_bus_resume = NULL;
2981 dev->dv_bus_deregister = NULL;
2982 }
2983
2984 void *
2985 device_pmf_class_private(device_t dev)
2986 {
2987 return dev->dv_class_private;
2988 }
2989
2990 bool
2991 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2992 {
2993 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2994 return true;
2995 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2996 dev->dv_class_suspend != NULL &&
2997 !(*dev->dv_class_suspend)(dev, qual))
2998 return false;
2999
3000 dev->dv_flags |= DVF_CLASS_SUSPENDED;
3001 return true;
3002 }
3003
3004 bool
3005 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3006 {
3007 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3008 return true;
3009 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3010 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3011 return false;
3012 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3013 dev->dv_class_resume != NULL &&
3014 !(*dev->dv_class_resume)(dev, qual))
3015 return false;
3016
3017 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3018 return true;
3019 }
3020
3021 void
3022 device_pmf_class_register(device_t dev, void *priv,
3023 bool (*suspend)(device_t, const pmf_qual_t *),
3024 bool (*resume)(device_t, const pmf_qual_t *),
3025 void (*deregister)(device_t))
3026 {
3027 dev->dv_class_private = priv;
3028 dev->dv_class_suspend = suspend;
3029 dev->dv_class_resume = resume;
3030 dev->dv_class_deregister = deregister;
3031 }
3032
3033 void
3034 device_pmf_class_deregister(device_t dev)
3035 {
3036 if (dev->dv_class_deregister == NULL)
3037 return;
3038 (*dev->dv_class_deregister)(dev);
3039 dev->dv_class_private = NULL;
3040 dev->dv_class_suspend = NULL;
3041 dev->dv_class_resume = NULL;
3042 dev->dv_class_deregister = NULL;
3043 }
3044
3045 bool
3046 device_active(device_t dev, devactive_t type)
3047 {
3048 size_t i;
3049
3050 if (dev->dv_activity_count == 0)
3051 return false;
3052
3053 for (i = 0; i < dev->dv_activity_count; ++i) {
3054 if (dev->dv_activity_handlers[i] == NULL)
3055 break;
3056 (*dev->dv_activity_handlers[i])(dev, type);
3057 }
3058
3059 return true;
3060 }
3061
3062 bool
3063 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3064 {
3065 void (**new_handlers)(device_t, devactive_t);
3066 void (**old_handlers)(device_t, devactive_t);
3067 size_t i, old_size, new_size;
3068 int s;
3069
3070 old_handlers = dev->dv_activity_handlers;
3071 old_size = dev->dv_activity_count;
3072
3073 KASSERT(old_size == 0 || old_handlers != NULL);
3074
3075 for (i = 0; i < old_size; ++i) {
3076 KASSERT(old_handlers[i] != handler);
3077 if (old_handlers[i] == NULL) {
3078 old_handlers[i] = handler;
3079 return true;
3080 }
3081 }
3082
3083 new_size = old_size + 4;
3084 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3085
3086 for (i = 0; i < old_size; ++i)
3087 new_handlers[i] = old_handlers[i];
3088 new_handlers[old_size] = handler;
3089 for (i = old_size+1; i < new_size; ++i)
3090 new_handlers[i] = NULL;
3091
3092 s = splhigh();
3093 dev->dv_activity_count = new_size;
3094 dev->dv_activity_handlers = new_handlers;
3095 splx(s);
3096
3097 if (old_size > 0)
3098 kmem_free(old_handlers, sizeof(void *) * old_size);
3099
3100 return true;
3101 }
3102
3103 void
3104 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3105 {
3106 void (**old_handlers)(device_t, devactive_t);
3107 size_t i, old_size;
3108 int s;
3109
3110 old_handlers = dev->dv_activity_handlers;
3111 old_size = dev->dv_activity_count;
3112
3113 for (i = 0; i < old_size; ++i) {
3114 if (old_handlers[i] == handler)
3115 break;
3116 if (old_handlers[i] == NULL)
3117 return; /* XXX panic? */
3118 }
3119
3120 if (i == old_size)
3121 return; /* XXX panic? */
3122
3123 for (; i < old_size - 1; ++i) {
3124 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3125 continue;
3126
3127 if (i == 0) {
3128 s = splhigh();
3129 dev->dv_activity_count = 0;
3130 dev->dv_activity_handlers = NULL;
3131 splx(s);
3132 kmem_free(old_handlers, sizeof(void *) * old_size);
3133 }
3134 return;
3135 }
3136 old_handlers[i] = NULL;
3137 }
3138
3139 /* Return true iff the device_t `dev' exists at generation `gen'. */
3140 static bool
3141 device_exists_at(device_t dv, devgen_t gen)
3142 {
3143 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3144 dv->dv_add_gen <= gen;
3145 }
3146
3147 static bool
3148 deviter_visits(const deviter_t *di, device_t dv)
3149 {
3150 return device_exists_at(dv, di->di_gen);
3151 }
3152
3153 /*
3154 * Device Iteration
3155 *
3156 * deviter_t: a device iterator. Holds state for a "walk" visiting
3157 * each device_t's in the device tree.
3158 *
3159 * deviter_init(di, flags): initialize the device iterator `di'
3160 * to "walk" the device tree. deviter_next(di) will return
3161 * the first device_t in the device tree, or NULL if there are
3162 * no devices.
3163 *
3164 * `flags' is one or more of DEVITER_F_RW, indicating that the
3165 * caller intends to modify the device tree by calling
3166 * config_detach(9) on devices in the order that the iterator
3167 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3168 * nearest the "root" of the device tree to be returned, first;
3169 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3170 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3171 * indicating both that deviter_init() should not respect any
3172 * locks on the device tree, and that deviter_next(di) may run
3173 * in more than one LWP before the walk has finished.
3174 *
3175 * Only one DEVITER_F_RW iterator may be in the device tree at
3176 * once.
3177 *
3178 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3179 *
3180 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3181 * DEVITER_F_LEAVES_FIRST are used in combination.
3182 *
3183 * deviter_first(di, flags): initialize the device iterator `di'
3184 * and return the first device_t in the device tree, or NULL
3185 * if there are no devices. The statement
3186 *
3187 * dv = deviter_first(di);
3188 *
3189 * is shorthand for
3190 *
3191 * deviter_init(di);
3192 * dv = deviter_next(di);
3193 *
3194 * deviter_next(di): return the next device_t in the device tree,
3195 * or NULL if there are no more devices. deviter_next(di)
3196 * is undefined if `di' was not initialized with deviter_init() or
3197 * deviter_first().
3198 *
3199 * deviter_release(di): stops iteration (subsequent calls to
3200 * deviter_next() will return NULL), releases any locks and
3201 * resources held by the device iterator.
3202 *
3203 * Device iteration does not return device_t's in any particular
3204 * order. An iterator will never return the same device_t twice.
3205 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3206 * is called repeatedly on the same `di', it will eventually return
3207 * NULL. It is ok to attach/detach devices during device iteration.
3208 */
3209 void
3210 deviter_init(deviter_t *di, deviter_flags_t flags)
3211 {
3212 device_t dv;
3213
3214 memset(di, 0, sizeof(*di));
3215
3216 if ((flags & DEVITER_F_SHUTDOWN) != 0)
3217 flags |= DEVITER_F_RW;
3218
3219 mutex_enter(&alldevs_lock);
3220 if ((flags & DEVITER_F_RW) != 0)
3221 alldevs_nwrite++;
3222 else
3223 alldevs_nread++;
3224 di->di_gen = alldevs_gen++;
3225 di->di_flags = flags;
3226
3227 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3228 case DEVITER_F_LEAVES_FIRST:
3229 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3230 if (!deviter_visits(di, dv))
3231 continue;
3232 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3233 }
3234 break;
3235 case DEVITER_F_ROOT_FIRST:
3236 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3237 if (!deviter_visits(di, dv))
3238 continue;
3239 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3240 }
3241 break;
3242 default:
3243 break;
3244 }
3245
3246 deviter_reinit(di);
3247 mutex_exit(&alldevs_lock);
3248 }
3249
3250 static void
3251 deviter_reinit(deviter_t *di)
3252 {
3253
3254 KASSERT(mutex_owned(&alldevs_lock));
3255 if ((di->di_flags & DEVITER_F_RW) != 0)
3256 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3257 else
3258 di->di_prev = TAILQ_FIRST(&alldevs);
3259 }
3260
3261 device_t
3262 deviter_first(deviter_t *di, deviter_flags_t flags)
3263 {
3264
3265 deviter_init(di, flags);
3266 return deviter_next(di);
3267 }
3268
3269 static device_t
3270 deviter_next2(deviter_t *di)
3271 {
3272 device_t dv;
3273
3274 KASSERT(mutex_owned(&alldevs_lock));
3275
3276 dv = di->di_prev;
3277
3278 if (dv == NULL)
3279 return NULL;
3280
3281 if ((di->di_flags & DEVITER_F_RW) != 0)
3282 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3283 else
3284 di->di_prev = TAILQ_NEXT(dv, dv_list);
3285
3286 return dv;
3287 }
3288
3289 static device_t
3290 deviter_next1(deviter_t *di)
3291 {
3292 device_t dv;
3293
3294 KASSERT(mutex_owned(&alldevs_lock));
3295
3296 do {
3297 dv = deviter_next2(di);
3298 } while (dv != NULL && !deviter_visits(di, dv));
3299
3300 return dv;
3301 }
3302
3303 device_t
3304 deviter_next(deviter_t *di)
3305 {
3306 device_t dv = NULL;
3307
3308 mutex_enter(&alldevs_lock);
3309 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3310 case 0:
3311 dv = deviter_next1(di);
3312 break;
3313 case DEVITER_F_LEAVES_FIRST:
3314 while (di->di_curdepth >= 0) {
3315 if ((dv = deviter_next1(di)) == NULL) {
3316 di->di_curdepth--;
3317 deviter_reinit(di);
3318 } else if (dv->dv_depth == di->di_curdepth)
3319 break;
3320 }
3321 break;
3322 case DEVITER_F_ROOT_FIRST:
3323 while (di->di_curdepth <= di->di_maxdepth) {
3324 if ((dv = deviter_next1(di)) == NULL) {
3325 di->di_curdepth++;
3326 deviter_reinit(di);
3327 } else if (dv->dv_depth == di->di_curdepth)
3328 break;
3329 }
3330 break;
3331 default:
3332 break;
3333 }
3334 mutex_exit(&alldevs_lock);
3335
3336 return dv;
3337 }
3338
3339 void
3340 deviter_release(deviter_t *di)
3341 {
3342 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3343
3344 mutex_enter(&alldevs_lock);
3345 if (rw)
3346 --alldevs_nwrite;
3347 else
3348 --alldevs_nread;
3349 /* XXX wake a garbage-collection thread */
3350 mutex_exit(&alldevs_lock);
3351 }
3352
3353 const char *
3354 cfdata_ifattr(const struct cfdata *cf)
3355 {
3356 return cf->cf_pspec->cfp_iattr;
3357 }
3358
3359 bool
3360 ifattr_match(const char *snull, const char *t)
3361 {
3362 return (snull == NULL) || strcmp(snull, t) == 0;
3363 }
3364
3365 void
3366 null_childdetached(device_t self, device_t child)
3367 {
3368 /* do nothing */
3369 }
3370
3371 static void
3372 sysctl_detach_setup(struct sysctllog **clog)
3373 {
3374
3375 sysctl_createv(clog, 0, NULL, NULL,
3376 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3377 CTLTYPE_BOOL, "detachall",
3378 SYSCTL_DESCR("Detach all devices at shutdown"),
3379 NULL, 0, &detachall, 0,
3380 CTL_KERN, CTL_CREATE, CTL_EOL);
3381 }
3382