subr_autoconf.c revision 1.277.2.6 1 /* $NetBSD: subr_autoconf.c,v 1.277.2.6 2021/04/02 22:17:46 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.6 2021/04/02 22:17:46 thorpej Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 static krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 static struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 static struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 static int interrupt_config_threads = 8;
201 static struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 static int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
222 static kmutex_t alldevs_lock __cacheline_aligned;
223 static devgen_t alldevs_gen = 1;
224 static int alldevs_nread = 0;
225 static int alldevs_nwrite = 0;
226 static bool alldevs_garbage = false;
227
228 static struct devicelist config_pending =
229 TAILQ_HEAD_INITIALIZER(config_pending);
230 static kmutex_t config_misc_lock;
231 static kcondvar_t config_misc_cv;
232
233 static bool detachall = false;
234
235 #define STREQ(s1, s2) \
236 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
237
238 static bool config_initialized = false; /* config_init() has been called. */
239
240 static int config_do_twiddle;
241 static callout_t config_twiddle_ch;
242
243 static void sysctl_detach_setup(struct sysctllog **);
244
245 int no_devmon_insert(const char *, prop_dictionary_t);
246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
247
248 typedef int (*cfdriver_fn)(struct cfdriver *);
249 static int
250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
251 cfdriver_fn drv_do, cfdriver_fn drv_undo,
252 const char *style, bool dopanic)
253 {
254 void (*pr)(const char *, ...) __printflike(1, 2) =
255 dopanic ? panic : printf;
256 int i, error = 0, e2 __diagused;
257
258 for (i = 0; cfdriverv[i] != NULL; i++) {
259 if ((error = drv_do(cfdriverv[i])) != 0) {
260 pr("configure: `%s' driver %s failed: %d",
261 cfdriverv[i]->cd_name, style, error);
262 goto bad;
263 }
264 }
265
266 KASSERT(error == 0);
267 return 0;
268
269 bad:
270 printf("\n");
271 for (i--; i >= 0; i--) {
272 e2 = drv_undo(cfdriverv[i]);
273 KASSERT(e2 == 0);
274 }
275
276 return error;
277 }
278
279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
280 static int
281 frob_cfattachvec(const struct cfattachinit *cfattachv,
282 cfattach_fn att_do, cfattach_fn att_undo,
283 const char *style, bool dopanic)
284 {
285 const struct cfattachinit *cfai = NULL;
286 void (*pr)(const char *, ...) __printflike(1, 2) =
287 dopanic ? panic : printf;
288 int j = 0, error = 0, e2 __diagused;
289
290 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
291 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
292 if ((error = att_do(cfai->cfai_name,
293 cfai->cfai_list[j])) != 0) {
294 pr("configure: attachment `%s' "
295 "of `%s' driver %s failed: %d",
296 cfai->cfai_list[j]->ca_name,
297 cfai->cfai_name, style, error);
298 goto bad;
299 }
300 }
301 }
302
303 KASSERT(error == 0);
304 return 0;
305
306 bad:
307 /*
308 * Rollback in reverse order. dunno if super-important, but
309 * do that anyway. Although the code looks a little like
310 * someone did a little integration (in the math sense).
311 */
312 printf("\n");
313 if (cfai) {
314 bool last;
315
316 for (last = false; last == false; ) {
317 if (cfai == &cfattachv[0])
318 last = true;
319 for (j--; j >= 0; j--) {
320 e2 = att_undo(cfai->cfai_name,
321 cfai->cfai_list[j]);
322 KASSERT(e2 == 0);
323 }
324 if (!last) {
325 cfai--;
326 for (j = 0; cfai->cfai_list[j] != NULL; j++)
327 ;
328 }
329 }
330 }
331
332 return error;
333 }
334
335 /*
336 * Initialize the autoconfiguration data structures. Normally this
337 * is done by configure(), but some platforms need to do this very
338 * early (to e.g. initialize the console).
339 */
340 void
341 config_init(void)
342 {
343
344 KASSERT(config_initialized == false);
345
346 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
347
348 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
349 cv_init(&config_misc_cv, "cfgmisc");
350
351 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
352
353 frob_cfdrivervec(cfdriver_list_initial,
354 config_cfdriver_attach, NULL, "bootstrap", true);
355 frob_cfattachvec(cfattachinit,
356 config_cfattach_attach, NULL, "bootstrap", true);
357
358 initcftable.ct_cfdata = cfdata;
359 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
360
361 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
362 RND_FLAG_COLLECT_TIME);
363
364 config_initialized = true;
365 }
366
367 /*
368 * Init or fini drivers and attachments. Either all or none
369 * are processed (via rollback). It would be nice if this were
370 * atomic to outside consumers, but with the current state of
371 * locking ...
372 */
373 int
374 config_init_component(struct cfdriver * const *cfdriverv,
375 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
376 {
377 int error;
378
379 if ((error = frob_cfdrivervec(cfdriverv,
380 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
381 return error;
382 if ((error = frob_cfattachvec(cfattachv,
383 config_cfattach_attach, config_cfattach_detach,
384 "init", false)) != 0) {
385 frob_cfdrivervec(cfdriverv,
386 config_cfdriver_detach, NULL, "init rollback", true);
387 return error;
388 }
389 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
390 frob_cfattachvec(cfattachv,
391 config_cfattach_detach, NULL, "init rollback", true);
392 frob_cfdrivervec(cfdriverv,
393 config_cfdriver_detach, NULL, "init rollback", true);
394 return error;
395 }
396
397 return 0;
398 }
399
400 int
401 config_fini_component(struct cfdriver * const *cfdriverv,
402 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
403 {
404 int error;
405
406 if ((error = config_cfdata_detach(cfdatav)) != 0)
407 return error;
408 if ((error = frob_cfattachvec(cfattachv,
409 config_cfattach_detach, config_cfattach_attach,
410 "fini", false)) != 0) {
411 if (config_cfdata_attach(cfdatav, 0) != 0)
412 panic("config_cfdata fini rollback failed");
413 return error;
414 }
415 if ((error = frob_cfdrivervec(cfdriverv,
416 config_cfdriver_detach, config_cfdriver_attach,
417 "fini", false)) != 0) {
418 frob_cfattachvec(cfattachv,
419 config_cfattach_attach, NULL, "fini rollback", true);
420 if (config_cfdata_attach(cfdatav, 0) != 0)
421 panic("config_cfdata fini rollback failed");
422 return error;
423 }
424
425 return 0;
426 }
427
428 void
429 config_init_mi(void)
430 {
431
432 if (!config_initialized)
433 config_init();
434
435 sysctl_detach_setup(NULL);
436 }
437
438 void
439 config_deferred(device_t dev)
440 {
441 config_process_deferred(&deferred_config_queue, dev);
442 config_process_deferred(&interrupt_config_queue, dev);
443 config_process_deferred(&mountroot_config_queue, dev);
444 }
445
446 static void
447 config_interrupts_thread(void *cookie)
448 {
449 struct deferred_config *dc;
450 device_t dev;
451
452 mutex_enter(&config_misc_lock);
453 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
454 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
455 mutex_exit(&config_misc_lock);
456
457 dev = dc->dc_dev;
458 (*dc->dc_func)(dev);
459 if (!device_pmf_is_registered(dev))
460 aprint_debug_dev(dev,
461 "WARNING: power management not supported\n");
462 config_pending_decr(dev);
463 kmem_free(dc, sizeof(*dc));
464
465 mutex_enter(&config_misc_lock);
466 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
467 }
468 mutex_exit(&config_misc_lock);
469
470 kthread_exit(0);
471 }
472
473 void
474 config_create_interruptthreads(void)
475 {
476 int i;
477
478 for (i = 0; i < interrupt_config_threads; i++) {
479 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
480 config_interrupts_thread, NULL, NULL, "configintr");
481 }
482 }
483
484 static void
485 config_mountroot_thread(void *cookie)
486 {
487 struct deferred_config *dc;
488
489 mutex_enter(&config_misc_lock);
490 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
491 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
492 mutex_exit(&config_misc_lock);
493
494 (*dc->dc_func)(dc->dc_dev);
495 kmem_free(dc, sizeof(*dc));
496
497 mutex_enter(&config_misc_lock);
498 }
499 mutex_exit(&config_misc_lock);
500
501 kthread_exit(0);
502 }
503
504 void
505 config_create_mountrootthreads(void)
506 {
507 int i;
508
509 if (!root_is_mounted)
510 root_is_mounted = true;
511
512 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
513 mountroot_config_threads;
514 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
515 KM_NOSLEEP);
516 KASSERT(mountroot_config_lwpids);
517 for (i = 0; i < mountroot_config_threads; i++) {
518 mountroot_config_lwpids[i] = 0;
519 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
520 NULL, config_mountroot_thread, NULL,
521 &mountroot_config_lwpids[i],
522 "configroot");
523 }
524 }
525
526 void
527 config_finalize_mountroot(void)
528 {
529 int i, error;
530
531 for (i = 0; i < mountroot_config_threads; i++) {
532 if (mountroot_config_lwpids[i] == 0)
533 continue;
534
535 error = kthread_join(mountroot_config_lwpids[i]);
536 if (error)
537 printf("%s: thread %x joined with error %d\n",
538 __func__, i, error);
539 }
540 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
541 }
542
543 /*
544 * Announce device attach/detach to userland listeners.
545 */
546
547 int
548 no_devmon_insert(const char *name, prop_dictionary_t p)
549 {
550
551 return ENODEV;
552 }
553
554 static void
555 devmon_report_device(device_t dev, bool isattach)
556 {
557 prop_dictionary_t ev, dict = device_properties(dev);
558 const char *parent;
559 const char *what;
560 const char *where;
561 device_t pdev = device_parent(dev);
562
563 /* If currently no drvctl device, just return */
564 if (devmon_insert_vec == no_devmon_insert)
565 return;
566
567 ev = prop_dictionary_create();
568 if (ev == NULL)
569 return;
570
571 what = (isattach ? "device-attach" : "device-detach");
572 parent = (pdev == NULL ? "root" : device_xname(pdev));
573 if (prop_dictionary_get_string(dict, "location", &where)) {
574 prop_dictionary_set_string(ev, "location", where);
575 aprint_debug("ev: %s %s at %s in [%s]\n",
576 what, device_xname(dev), parent, where);
577 }
578 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
579 !prop_dictionary_set_string(ev, "parent", parent)) {
580 prop_object_release(ev);
581 return;
582 }
583
584 if ((*devmon_insert_vec)(what, ev) != 0)
585 prop_object_release(ev);
586 }
587
588 /*
589 * Add a cfdriver to the system.
590 */
591 int
592 config_cfdriver_attach(struct cfdriver *cd)
593 {
594 struct cfdriver *lcd;
595
596 /* Make sure this driver isn't already in the system. */
597 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
598 if (STREQ(lcd->cd_name, cd->cd_name))
599 return EEXIST;
600 }
601
602 LIST_INIT(&cd->cd_attach);
603 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
604
605 return 0;
606 }
607
608 /*
609 * Remove a cfdriver from the system.
610 */
611 int
612 config_cfdriver_detach(struct cfdriver *cd)
613 {
614 struct alldevs_foray af;
615 int i, rc = 0;
616
617 config_alldevs_enter(&af);
618 /* Make sure there are no active instances. */
619 for (i = 0; i < cd->cd_ndevs; i++) {
620 if (cd->cd_devs[i] != NULL) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 /* ...and no attachments loaded. */
631 if (LIST_EMPTY(&cd->cd_attach) == 0)
632 return EBUSY;
633
634 LIST_REMOVE(cd, cd_list);
635
636 KASSERT(cd->cd_devs == NULL);
637
638 return 0;
639 }
640
641 /*
642 * Look up a cfdriver by name.
643 */
644 struct cfdriver *
645 config_cfdriver_lookup(const char *name)
646 {
647 struct cfdriver *cd;
648
649 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
650 if (STREQ(cd->cd_name, name))
651 return cd;
652 }
653
654 return NULL;
655 }
656
657 /*
658 * Add a cfattach to the specified driver.
659 */
660 int
661 config_cfattach_attach(const char *driver, struct cfattach *ca)
662 {
663 struct cfattach *lca;
664 struct cfdriver *cd;
665
666 cd = config_cfdriver_lookup(driver);
667 if (cd == NULL)
668 return ESRCH;
669
670 /* Make sure this attachment isn't already on this driver. */
671 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
672 if (STREQ(lca->ca_name, ca->ca_name))
673 return EEXIST;
674 }
675
676 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
677
678 return 0;
679 }
680
681 /*
682 * Remove a cfattach from the specified driver.
683 */
684 int
685 config_cfattach_detach(const char *driver, struct cfattach *ca)
686 {
687 struct alldevs_foray af;
688 struct cfdriver *cd;
689 device_t dev;
690 int i, rc = 0;
691
692 cd = config_cfdriver_lookup(driver);
693 if (cd == NULL)
694 return ESRCH;
695
696 config_alldevs_enter(&af);
697 /* Make sure there are no active instances. */
698 for (i = 0; i < cd->cd_ndevs; i++) {
699 if ((dev = cd->cd_devs[i]) == NULL)
700 continue;
701 if (dev->dv_cfattach == ca) {
702 rc = EBUSY;
703 break;
704 }
705 }
706 config_alldevs_exit(&af);
707
708 if (rc != 0)
709 return rc;
710
711 LIST_REMOVE(ca, ca_list);
712
713 return 0;
714 }
715
716 /*
717 * Look up a cfattach by name.
718 */
719 static struct cfattach *
720 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
721 {
722 struct cfattach *ca;
723
724 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
725 if (STREQ(ca->ca_name, atname))
726 return ca;
727 }
728
729 return NULL;
730 }
731
732 /*
733 * Look up a cfattach by driver/attachment name.
734 */
735 struct cfattach *
736 config_cfattach_lookup(const char *name, const char *atname)
737 {
738 struct cfdriver *cd;
739
740 cd = config_cfdriver_lookup(name);
741 if (cd == NULL)
742 return NULL;
743
744 return config_cfattach_lookup_cd(cd, atname);
745 }
746
747 /*
748 * Apply the matching function and choose the best. This is used
749 * a few times and we want to keep the code small.
750 */
751 static void
752 mapply(struct matchinfo *m, cfdata_t cf)
753 {
754 int pri;
755
756 if (m->fn != NULL) {
757 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
758 } else {
759 pri = config_match(m->parent, cf, m->aux);
760 }
761 if (pri > m->pri) {
762 m->match = cf;
763 m->pri = pri;
764 }
765 }
766
767 int
768 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
769 {
770 const struct cfiattrdata *ci;
771 const struct cflocdesc *cl;
772 int nlocs, i;
773
774 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
775 KASSERT(ci);
776 nlocs = ci->ci_loclen;
777 KASSERT(!nlocs || locs);
778 for (i = 0; i < nlocs; i++) {
779 cl = &ci->ci_locdesc[i];
780 if (cl->cld_defaultstr != NULL &&
781 cf->cf_loc[i] == cl->cld_default)
782 continue;
783 if (cf->cf_loc[i] == locs[i])
784 continue;
785 return 0;
786 }
787
788 return config_match(parent, cf, aux);
789 }
790
791 /*
792 * Helper function: check whether the driver supports the interface attribute
793 * and return its descriptor structure.
794 */
795 static const struct cfiattrdata *
796 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
797 {
798 const struct cfiattrdata * const *cpp;
799
800 if (cd->cd_attrs == NULL)
801 return 0;
802
803 for (cpp = cd->cd_attrs; *cpp; cpp++) {
804 if (STREQ((*cpp)->ci_name, ia)) {
805 /* Match. */
806 return *cpp;
807 }
808 }
809 return 0;
810 }
811
812 #if defined(DIAGNOSTIC)
813 static int
814 cfdriver_iattr_count(const struct cfdriver *cd)
815 {
816 const struct cfiattrdata * const *cpp;
817 int i;
818
819 if (cd->cd_attrs == NULL)
820 return 0;
821
822 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
823 i++;
824 }
825 return i;
826 }
827 #endif /* DIAGNOSTIC */
828
829 /*
830 * Lookup an interface attribute description by name.
831 * If the driver is given, consider only its supported attributes.
832 */
833 const struct cfiattrdata *
834 cfiattr_lookup(const char *name, const struct cfdriver *cd)
835 {
836 const struct cfdriver *d;
837 const struct cfiattrdata *ia;
838
839 if (cd)
840 return cfdriver_get_iattr(cd, name);
841
842 LIST_FOREACH(d, &allcfdrivers, cd_list) {
843 ia = cfdriver_get_iattr(d, name);
844 if (ia)
845 return ia;
846 }
847 return 0;
848 }
849
850 /*
851 * Determine if `parent' is a potential parent for a device spec based
852 * on `cfp'.
853 */
854 static int
855 cfparent_match(const device_t parent, const struct cfparent *cfp)
856 {
857 struct cfdriver *pcd;
858
859 /* We don't match root nodes here. */
860 if (cfp == NULL)
861 return 0;
862
863 pcd = parent->dv_cfdriver;
864 KASSERT(pcd != NULL);
865
866 /*
867 * First, ensure this parent has the correct interface
868 * attribute.
869 */
870 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
871 return 0;
872
873 /*
874 * If no specific parent device instance was specified (i.e.
875 * we're attaching to the attribute only), we're done!
876 */
877 if (cfp->cfp_parent == NULL)
878 return 1;
879
880 /*
881 * Check the parent device's name.
882 */
883 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
884 return 0; /* not the same parent */
885
886 /*
887 * Make sure the unit number matches.
888 */
889 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
890 cfp->cfp_unit == parent->dv_unit)
891 return 1;
892
893 /* Unit numbers don't match. */
894 return 0;
895 }
896
897 /*
898 * Helper for config_cfdata_attach(): check all devices whether it could be
899 * parent any attachment in the config data table passed, and rescan.
900 */
901 static void
902 rescan_with_cfdata(const struct cfdata *cf)
903 {
904 device_t d;
905 const struct cfdata *cf1;
906 deviter_t di;
907
908
909 /*
910 * "alldevs" is likely longer than a modules's cfdata, so make it
911 * the outer loop.
912 */
913 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
914
915 if (!(d->dv_cfattach->ca_rescan))
916 continue;
917
918 for (cf1 = cf; cf1->cf_name; cf1++) {
919
920 if (!cfparent_match(d, cf1->cf_pspec))
921 continue;
922
923 (*d->dv_cfattach->ca_rescan)(d,
924 cfdata_ifattr(cf1), cf1->cf_loc);
925
926 config_deferred(d);
927 }
928 }
929 deviter_release(&di);
930 }
931
932 /*
933 * Attach a supplemental config data table and rescan potential
934 * parent devices if required.
935 */
936 int
937 config_cfdata_attach(cfdata_t cf, int scannow)
938 {
939 struct cftable *ct;
940
941 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
942 ct->ct_cfdata = cf;
943 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
944
945 if (scannow)
946 rescan_with_cfdata(cf);
947
948 return 0;
949 }
950
951 /*
952 * Helper for config_cfdata_detach: check whether a device is
953 * found through any attachment in the config data table.
954 */
955 static int
956 dev_in_cfdata(device_t d, cfdata_t cf)
957 {
958 const struct cfdata *cf1;
959
960 for (cf1 = cf; cf1->cf_name; cf1++)
961 if (d->dv_cfdata == cf1)
962 return 1;
963
964 return 0;
965 }
966
967 /*
968 * Detach a supplemental config data table. Detach all devices found
969 * through that table (and thus keeping references to it) before.
970 */
971 int
972 config_cfdata_detach(cfdata_t cf)
973 {
974 device_t d;
975 int error = 0;
976 struct cftable *ct;
977 deviter_t di;
978
979 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
980 d = deviter_next(&di)) {
981 if (!dev_in_cfdata(d, cf))
982 continue;
983 if ((error = config_detach(d, 0)) != 0)
984 break;
985 }
986 deviter_release(&di);
987 if (error) {
988 aprint_error_dev(d, "unable to detach instance\n");
989 return error;
990 }
991
992 TAILQ_FOREACH(ct, &allcftables, ct_list) {
993 if (ct->ct_cfdata == cf) {
994 TAILQ_REMOVE(&allcftables, ct, ct_list);
995 kmem_free(ct, sizeof(*ct));
996 return 0;
997 }
998 }
999
1000 /* not found -- shouldn't happen */
1001 return EINVAL;
1002 }
1003
1004 /*
1005 * Invoke the "match" routine for a cfdata entry on behalf of
1006 * an external caller, usually a "submatch" routine.
1007 */
1008 int
1009 config_match(device_t parent, cfdata_t cf, void *aux)
1010 {
1011 struct cfattach *ca;
1012
1013 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1014 if (ca == NULL) {
1015 /* No attachment for this entry, oh well. */
1016 return 0;
1017 }
1018
1019 return (*ca->ca_match)(parent, cf, aux);
1020 }
1021
1022 static void
1023 config_get_cfargs(cfarg_t tag,
1024 cfsubmatch_t *fnp, /* output */
1025 const char **ifattrp, /* output */
1026 const int **locsp, /* output */
1027 va_list ap)
1028 {
1029 cfsubmatch_t fn = NULL;
1030 const char *ifattr = NULL;
1031 const int *locs = NULL;
1032
1033 while (tag != CFARG_EOL) {
1034 switch (tag) {
1035 case CFARG_SUBMATCH:
1036 fn = va_arg(ap, cfsubmatch_t);
1037 break;
1038
1039 case CFARG_IATTR:
1040 ifattr = va_arg(ap, const char *);
1041 break;
1042
1043 case CFARG_LOCATORS:
1044 locs = va_arg(ap, const int *);
1045 break;
1046
1047 default:
1048 /* XXX panic? */
1049 /* XXX dump stack backtrace? */
1050 aprint_error("%s: unknown cfarg tag: %d\n",
1051 __func__, tag);
1052 goto out;
1053 }
1054 tag = va_arg(ap, cfarg_t);
1055 }
1056
1057 out:
1058 if (fnp != NULL)
1059 *fnp = fn;
1060 if (ifattrp != NULL)
1061 *ifattrp = ifattr;
1062 if (locsp != NULL)
1063 *locsp = locs;
1064 }
1065
1066 /*
1067 * Iterate over all potential children of some device, calling the given
1068 * function (default being the child's match function) for each one.
1069 * Nonzero returns are matches; the highest value returned is considered
1070 * the best match. Return the `found child' if we got a match, or NULL
1071 * otherwise. The `aux' pointer is simply passed on through.
1072 *
1073 * Note that this function is designed so that it can be used to apply
1074 * an arbitrary function to all potential children (its return value
1075 * can be ignored).
1076 */
1077 static cfdata_t
1078 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1079 {
1080 cfsubmatch_t fn;
1081 const char *ifattr;
1082 const int *locs;
1083 struct cftable *ct;
1084 cfdata_t cf;
1085 struct matchinfo m;
1086
1087 config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
1088
1089 KASSERT(config_initialized);
1090 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1091 KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1092
1093 m.fn = fn;
1094 m.parent = parent;
1095 m.locs = locs;
1096 m.aux = aux;
1097 m.match = NULL;
1098 m.pri = 0;
1099
1100 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1101 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1102
1103 /* We don't match root nodes here. */
1104 if (!cf->cf_pspec)
1105 continue;
1106
1107 /*
1108 * Skip cf if no longer eligible, otherwise scan
1109 * through parents for one matching `parent', and
1110 * try match function.
1111 */
1112 if (cf->cf_fstate == FSTATE_FOUND)
1113 continue;
1114 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1115 cf->cf_fstate == FSTATE_DSTAR)
1116 continue;
1117
1118 /*
1119 * If an interface attribute was specified,
1120 * consider only children which attach to
1121 * that attribute.
1122 */
1123 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1124 continue;
1125
1126 if (cfparent_match(parent, cf->cf_pspec))
1127 mapply(&m, cf);
1128 }
1129 }
1130 return m.match;
1131 }
1132
1133 cfdata_t
1134 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1135 {
1136 cfdata_t cf;
1137 va_list ap;
1138
1139 va_start(ap, tag);
1140 cf = config_vsearch(parent, aux, tag, ap);
1141 va_end(ap);
1142
1143 return cf;
1144 }
1145
1146 /*
1147 * Find the given root device.
1148 * This is much like config_search, but there is no parent.
1149 * Don't bother with multiple cfdata tables; the root node
1150 * must always be in the initial table.
1151 */
1152 cfdata_t
1153 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1154 {
1155 cfdata_t cf;
1156 const short *p;
1157 struct matchinfo m;
1158
1159 m.fn = fn;
1160 m.parent = ROOT;
1161 m.aux = aux;
1162 m.match = NULL;
1163 m.pri = 0;
1164 m.locs = 0;
1165 /*
1166 * Look at root entries for matching name. We do not bother
1167 * with found-state here since only one root should ever be
1168 * searched (and it must be done first).
1169 */
1170 for (p = cfroots; *p >= 0; p++) {
1171 cf = &cfdata[*p];
1172 if (strcmp(cf->cf_name, rootname) == 0)
1173 mapply(&m, cf);
1174 }
1175 return m.match;
1176 }
1177
1178 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1179
1180 /*
1181 * The given `aux' argument describes a device that has been found
1182 * on the given parent, but not necessarily configured. Locate the
1183 * configuration data for that device (using the submatch function
1184 * provided, or using candidates' cd_match configuration driver
1185 * functions) and attach it, and return its device_t. If the device was
1186 * not configured, call the given `print' function and return NULL.
1187 */
1188 static device_t
1189 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
1190 va_list ap)
1191 {
1192 cfsubmatch_t submatch;
1193 const char *ifattr;
1194 const int *locs;
1195 cfdata_t cf;
1196
1197 config_get_cfargs(tag, &submatch, &ifattr, &locs, ap);
1198
1199 if ((cf = config_search(parent, aux,
1200 CFARG_SUBMATCH, submatch,
1201 CFARG_IATTR, ifattr,
1202 CFARG_LOCATORS, locs,
1203 CFARG_EOL)))
1204 return config_attach_loc(parent, cf, locs, aux, print);
1205 if (print) {
1206 if (config_do_twiddle && cold)
1207 twiddle();
1208 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1209 }
1210
1211 /*
1212 * This has the effect of mixing in a single timestamp to the
1213 * entropy pool. Experiments indicate the estimator will almost
1214 * always attribute one bit of entropy to this sample; analysis
1215 * of device attach/detach timestamps on FreeBSD indicates 4
1216 * bits of entropy/sample so this seems appropriately conservative.
1217 */
1218 rnd_add_uint32(&rnd_autoconf_source, 0);
1219 return NULL;
1220 }
1221
1222 device_t
1223 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
1224 {
1225 device_t dev;
1226 va_list ap;
1227
1228 va_start(ap, tag);
1229 dev = config_vfound(parent, aux, print, tag, ap);
1230 va_end(ap);
1231
1232 return dev;
1233 }
1234
1235 /*
1236 * As above, but for root devices.
1237 */
1238 device_t
1239 config_rootfound(const char *rootname, void *aux)
1240 {
1241 cfdata_t cf;
1242
1243 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1244 return config_attach(ROOT, cf, aux, NULL);
1245 aprint_error("root device %s not configured\n", rootname);
1246 return NULL;
1247 }
1248
1249 /* just like sprintf(buf, "%d") except that it works from the end */
1250 static char *
1251 number(char *ep, int n)
1252 {
1253
1254 *--ep = 0;
1255 while (n >= 10) {
1256 *--ep = (n % 10) + '0';
1257 n /= 10;
1258 }
1259 *--ep = n + '0';
1260 return ep;
1261 }
1262
1263 /*
1264 * Expand the size of the cd_devs array if necessary.
1265 *
1266 * The caller must hold alldevs_lock. config_makeroom() may release and
1267 * re-acquire alldevs_lock, so callers should re-check conditions such
1268 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1269 * returns.
1270 */
1271 static void
1272 config_makeroom(int n, struct cfdriver *cd)
1273 {
1274 int ondevs, nndevs;
1275 device_t *osp, *nsp;
1276
1277 KASSERT(mutex_owned(&alldevs_lock));
1278 alldevs_nwrite++;
1279
1280 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1281 ;
1282
1283 while (n >= cd->cd_ndevs) {
1284 /*
1285 * Need to expand the array.
1286 */
1287 ondevs = cd->cd_ndevs;
1288 osp = cd->cd_devs;
1289
1290 /*
1291 * Release alldevs_lock around allocation, which may
1292 * sleep.
1293 */
1294 mutex_exit(&alldevs_lock);
1295 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1296 mutex_enter(&alldevs_lock);
1297
1298 /*
1299 * If another thread moved the array while we did
1300 * not hold alldevs_lock, try again.
1301 */
1302 if (cd->cd_devs != osp) {
1303 mutex_exit(&alldevs_lock);
1304 kmem_free(nsp, sizeof(device_t) * nndevs);
1305 mutex_enter(&alldevs_lock);
1306 continue;
1307 }
1308
1309 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1310 if (ondevs != 0)
1311 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1312
1313 cd->cd_ndevs = nndevs;
1314 cd->cd_devs = nsp;
1315 if (ondevs != 0) {
1316 mutex_exit(&alldevs_lock);
1317 kmem_free(osp, sizeof(device_t) * ondevs);
1318 mutex_enter(&alldevs_lock);
1319 }
1320 }
1321 KASSERT(mutex_owned(&alldevs_lock));
1322 alldevs_nwrite--;
1323 }
1324
1325 /*
1326 * Put dev into the devices list.
1327 */
1328 static void
1329 config_devlink(device_t dev)
1330 {
1331
1332 mutex_enter(&alldevs_lock);
1333
1334 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1335
1336 dev->dv_add_gen = alldevs_gen;
1337 /* It is safe to add a device to the tail of the list while
1338 * readers and writers are in the list.
1339 */
1340 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1341 mutex_exit(&alldevs_lock);
1342 }
1343
1344 static void
1345 config_devfree(device_t dev)
1346 {
1347 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1348
1349 if (dev->dv_cfattach->ca_devsize > 0)
1350 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1351 kmem_free(dev, sizeof(*dev));
1352 }
1353
1354 /*
1355 * Caller must hold alldevs_lock.
1356 */
1357 static void
1358 config_devunlink(device_t dev, struct devicelist *garbage)
1359 {
1360 struct device_garbage *dg = &dev->dv_garbage;
1361 cfdriver_t cd = device_cfdriver(dev);
1362 int i;
1363
1364 KASSERT(mutex_owned(&alldevs_lock));
1365
1366 /* Unlink from device list. Link to garbage list. */
1367 TAILQ_REMOVE(&alldevs, dev, dv_list);
1368 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1369
1370 /* Remove from cfdriver's array. */
1371 cd->cd_devs[dev->dv_unit] = NULL;
1372
1373 /*
1374 * If the device now has no units in use, unlink its softc array.
1375 */
1376 for (i = 0; i < cd->cd_ndevs; i++) {
1377 if (cd->cd_devs[i] != NULL)
1378 break;
1379 }
1380 /* Nothing found. Unlink, now. Deallocate, later. */
1381 if (i == cd->cd_ndevs) {
1382 dg->dg_ndevs = cd->cd_ndevs;
1383 dg->dg_devs = cd->cd_devs;
1384 cd->cd_devs = NULL;
1385 cd->cd_ndevs = 0;
1386 }
1387 }
1388
1389 static void
1390 config_devdelete(device_t dev)
1391 {
1392 struct device_garbage *dg = &dev->dv_garbage;
1393 device_lock_t dvl = device_getlock(dev);
1394
1395 if (dg->dg_devs != NULL)
1396 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1397
1398 cv_destroy(&dvl->dvl_cv);
1399 mutex_destroy(&dvl->dvl_mtx);
1400
1401 KASSERT(dev->dv_properties != NULL);
1402 prop_object_release(dev->dv_properties);
1403
1404 if (dev->dv_activity_handlers)
1405 panic("%s with registered handlers", __func__);
1406
1407 if (dev->dv_locators) {
1408 size_t amount = *--dev->dv_locators;
1409 kmem_free(dev->dv_locators, amount);
1410 }
1411
1412 config_devfree(dev);
1413 }
1414
1415 static int
1416 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1417 {
1418 int unit;
1419
1420 if (cf->cf_fstate == FSTATE_STAR) {
1421 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1422 if (cd->cd_devs[unit] == NULL)
1423 break;
1424 /*
1425 * unit is now the unit of the first NULL device pointer,
1426 * or max(cd->cd_ndevs,cf->cf_unit).
1427 */
1428 } else {
1429 unit = cf->cf_unit;
1430 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1431 unit = -1;
1432 }
1433 return unit;
1434 }
1435
1436 static int
1437 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1438 {
1439 struct alldevs_foray af;
1440 int unit;
1441
1442 config_alldevs_enter(&af);
1443 for (;;) {
1444 unit = config_unit_nextfree(cd, cf);
1445 if (unit == -1)
1446 break;
1447 if (unit < cd->cd_ndevs) {
1448 cd->cd_devs[unit] = dev;
1449 dev->dv_unit = unit;
1450 break;
1451 }
1452 config_makeroom(unit, cd);
1453 }
1454 config_alldevs_exit(&af);
1455
1456 return unit;
1457 }
1458
1459 static device_t
1460 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1461 {
1462 cfdriver_t cd;
1463 cfattach_t ca;
1464 size_t lname, lunit;
1465 const char *xunit;
1466 int myunit;
1467 char num[10];
1468 device_t dev;
1469 void *dev_private;
1470 const struct cfiattrdata *ia;
1471 device_lock_t dvl;
1472
1473 cd = config_cfdriver_lookup(cf->cf_name);
1474 if (cd == NULL)
1475 return NULL;
1476
1477 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1478 if (ca == NULL)
1479 return NULL;
1480
1481 /* get memory for all device vars */
1482 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1483 if (ca->ca_devsize > 0) {
1484 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1485 } else {
1486 dev_private = NULL;
1487 }
1488 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1489
1490 dev->dv_class = cd->cd_class;
1491 dev->dv_cfdata = cf;
1492 dev->dv_cfdriver = cd;
1493 dev->dv_cfattach = ca;
1494 dev->dv_activity_count = 0;
1495 dev->dv_activity_handlers = NULL;
1496 dev->dv_private = dev_private;
1497 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1498
1499 myunit = config_unit_alloc(dev, cd, cf);
1500 if (myunit == -1) {
1501 config_devfree(dev);
1502 return NULL;
1503 }
1504
1505 /* compute length of name and decimal expansion of unit number */
1506 lname = strlen(cd->cd_name);
1507 xunit = number(&num[sizeof(num)], myunit);
1508 lunit = &num[sizeof(num)] - xunit;
1509 if (lname + lunit > sizeof(dev->dv_xname))
1510 panic("config_devalloc: device name too long");
1511
1512 dvl = device_getlock(dev);
1513
1514 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1515 cv_init(&dvl->dvl_cv, "pmfsusp");
1516
1517 memcpy(dev->dv_xname, cd->cd_name, lname);
1518 memcpy(dev->dv_xname + lname, xunit, lunit);
1519 dev->dv_parent = parent;
1520 if (parent != NULL)
1521 dev->dv_depth = parent->dv_depth + 1;
1522 else
1523 dev->dv_depth = 0;
1524 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1525 if (locs) {
1526 KASSERT(parent); /* no locators at root */
1527 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1528 dev->dv_locators =
1529 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1530 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1531 memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1532 }
1533 dev->dv_properties = prop_dictionary_create();
1534 KASSERT(dev->dv_properties != NULL);
1535
1536 prop_dictionary_set_string_nocopy(dev->dv_properties,
1537 "device-driver", dev->dv_cfdriver->cd_name);
1538 prop_dictionary_set_uint16(dev->dv_properties,
1539 "device-unit", dev->dv_unit);
1540 if (parent != NULL) {
1541 prop_dictionary_set_string(dev->dv_properties,
1542 "device-parent", device_xname(parent));
1543 }
1544
1545 if (dev->dv_cfdriver->cd_attrs != NULL)
1546 config_add_attrib_dict(dev);
1547
1548 return dev;
1549 }
1550
1551 /*
1552 * Create an array of device attach attributes and add it
1553 * to the device's dv_properties dictionary.
1554 *
1555 * <key>interface-attributes</key>
1556 * <array>
1557 * <dict>
1558 * <key>attribute-name</key>
1559 * <string>foo</string>
1560 * <key>locators</key>
1561 * <array>
1562 * <dict>
1563 * <key>loc-name</key>
1564 * <string>foo-loc1</string>
1565 * </dict>
1566 * <dict>
1567 * <key>loc-name</key>
1568 * <string>foo-loc2</string>
1569 * <key>default</key>
1570 * <string>foo-loc2-default</string>
1571 * </dict>
1572 * ...
1573 * </array>
1574 * </dict>
1575 * ...
1576 * </array>
1577 */
1578
1579 static void
1580 config_add_attrib_dict(device_t dev)
1581 {
1582 int i, j;
1583 const struct cfiattrdata *ci;
1584 prop_dictionary_t attr_dict, loc_dict;
1585 prop_array_t attr_array, loc_array;
1586
1587 if ((attr_array = prop_array_create()) == NULL)
1588 return;
1589
1590 for (i = 0; ; i++) {
1591 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1592 break;
1593 if ((attr_dict = prop_dictionary_create()) == NULL)
1594 break;
1595 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1596 ci->ci_name);
1597
1598 /* Create an array of the locator names and defaults */
1599
1600 if (ci->ci_loclen != 0 &&
1601 (loc_array = prop_array_create()) != NULL) {
1602 for (j = 0; j < ci->ci_loclen; j++) {
1603 loc_dict = prop_dictionary_create();
1604 if (loc_dict == NULL)
1605 continue;
1606 prop_dictionary_set_string_nocopy(loc_dict,
1607 "loc-name", ci->ci_locdesc[j].cld_name);
1608 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1609 prop_dictionary_set_string_nocopy(
1610 loc_dict, "default",
1611 ci->ci_locdesc[j].cld_defaultstr);
1612 prop_array_set(loc_array, j, loc_dict);
1613 prop_object_release(loc_dict);
1614 }
1615 prop_dictionary_set_and_rel(attr_dict, "locators",
1616 loc_array);
1617 }
1618 prop_array_add(attr_array, attr_dict);
1619 prop_object_release(attr_dict);
1620 }
1621 if (i == 0)
1622 prop_object_release(attr_array);
1623 else
1624 prop_dictionary_set_and_rel(dev->dv_properties,
1625 "interface-attributes", attr_array);
1626
1627 return;
1628 }
1629
1630 /*
1631 * Attach a found device.
1632 */
1633 device_t
1634 config_attach_loc(device_t parent, cfdata_t cf,
1635 const int *locs, void *aux, cfprint_t print)
1636 {
1637 device_t dev;
1638 struct cftable *ct;
1639 const char *drvname;
1640
1641 dev = config_devalloc(parent, cf, locs);
1642 if (!dev)
1643 panic("config_attach: allocation of device softc failed");
1644
1645 /* XXX redundant - see below? */
1646 if (cf->cf_fstate != FSTATE_STAR) {
1647 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1648 cf->cf_fstate = FSTATE_FOUND;
1649 }
1650
1651 config_devlink(dev);
1652
1653 if (config_do_twiddle && cold)
1654 twiddle();
1655 else
1656 aprint_naive("Found ");
1657 /*
1658 * We want the next two printfs for normal, verbose, and quiet,
1659 * but not silent (in which case, we're twiddling, instead).
1660 */
1661 if (parent == ROOT) {
1662 aprint_naive("%s (root)", device_xname(dev));
1663 aprint_normal("%s (root)", device_xname(dev));
1664 } else {
1665 aprint_naive("%s at %s", device_xname(dev),
1666 device_xname(parent));
1667 aprint_normal("%s at %s", device_xname(dev),
1668 device_xname(parent));
1669 if (print)
1670 (void) (*print)(aux, NULL);
1671 }
1672
1673 /*
1674 * Before attaching, clobber any unfound devices that are
1675 * otherwise identical.
1676 * XXX code above is redundant?
1677 */
1678 drvname = dev->dv_cfdriver->cd_name;
1679 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1680 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1681 if (STREQ(cf->cf_name, drvname) &&
1682 cf->cf_unit == dev->dv_unit) {
1683 if (cf->cf_fstate == FSTATE_NOTFOUND)
1684 cf->cf_fstate = FSTATE_FOUND;
1685 }
1686 }
1687 }
1688 device_register(dev, aux);
1689
1690 /* Let userland know */
1691 devmon_report_device(dev, true);
1692
1693 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1694
1695 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1696 && !device_pmf_is_registered(dev))
1697 aprint_debug_dev(dev,
1698 "WARNING: power management not supported\n");
1699
1700 config_process_deferred(&deferred_config_queue, dev);
1701
1702 device_register_post_config(dev, aux);
1703 return dev;
1704 }
1705
1706 device_t
1707 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1708 {
1709
1710 return config_attach_loc(parent, cf, NULL, aux, print);
1711 }
1712
1713 /*
1714 * As above, but for pseudo-devices. Pseudo-devices attached in this
1715 * way are silently inserted into the device tree, and their children
1716 * attached.
1717 *
1718 * Note that because pseudo-devices are attached silently, any information
1719 * the attach routine wishes to print should be prefixed with the device
1720 * name by the attach routine.
1721 */
1722 device_t
1723 config_attach_pseudo(cfdata_t cf)
1724 {
1725 device_t dev;
1726
1727 dev = config_devalloc(ROOT, cf, NULL);
1728 if (!dev)
1729 return NULL;
1730
1731 /* XXX mark busy in cfdata */
1732
1733 if (cf->cf_fstate != FSTATE_STAR) {
1734 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1735 cf->cf_fstate = FSTATE_FOUND;
1736 }
1737
1738 config_devlink(dev);
1739
1740 #if 0 /* XXXJRT not yet */
1741 device_register(dev, NULL); /* like a root node */
1742 #endif
1743
1744 /* Let userland know */
1745 devmon_report_device(dev, true);
1746
1747 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1748
1749 config_process_deferred(&deferred_config_queue, dev);
1750 return dev;
1751 }
1752
1753 /*
1754 * Caller must hold alldevs_lock.
1755 */
1756 static void
1757 config_collect_garbage(struct devicelist *garbage)
1758 {
1759 device_t dv;
1760
1761 KASSERT(!cpu_intr_p());
1762 KASSERT(!cpu_softintr_p());
1763 KASSERT(mutex_owned(&alldevs_lock));
1764
1765 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1766 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1767 if (dv->dv_del_gen != 0)
1768 break;
1769 }
1770 if (dv == NULL) {
1771 alldevs_garbage = false;
1772 break;
1773 }
1774 config_devunlink(dv, garbage);
1775 }
1776 KASSERT(mutex_owned(&alldevs_lock));
1777 }
1778
1779 static void
1780 config_dump_garbage(struct devicelist *garbage)
1781 {
1782 device_t dv;
1783
1784 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1785 TAILQ_REMOVE(garbage, dv, dv_list);
1786 config_devdelete(dv);
1787 }
1788 }
1789
1790 /*
1791 * Detach a device. Optionally forced (e.g. because of hardware
1792 * removal) and quiet. Returns zero if successful, non-zero
1793 * (an error code) otherwise.
1794 *
1795 * Note that this code wants to be run from a process context, so
1796 * that the detach can sleep to allow processes which have a device
1797 * open to run and unwind their stacks.
1798 */
1799 int
1800 config_detach(device_t dev, int flags)
1801 {
1802 struct alldevs_foray af;
1803 struct cftable *ct;
1804 cfdata_t cf;
1805 const struct cfattach *ca;
1806 struct cfdriver *cd;
1807 device_t d __diagused;
1808 int rv = 0;
1809
1810 cf = dev->dv_cfdata;
1811 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1812 cf->cf_fstate == FSTATE_STAR),
1813 "config_detach: %s: bad device fstate: %d",
1814 device_xname(dev), cf ? cf->cf_fstate : -1);
1815
1816 cd = dev->dv_cfdriver;
1817 KASSERT(cd != NULL);
1818
1819 ca = dev->dv_cfattach;
1820 KASSERT(ca != NULL);
1821
1822 mutex_enter(&alldevs_lock);
1823 if (dev->dv_del_gen != 0) {
1824 mutex_exit(&alldevs_lock);
1825 #ifdef DIAGNOSTIC
1826 printf("%s: %s is already detached\n", __func__,
1827 device_xname(dev));
1828 #endif /* DIAGNOSTIC */
1829 return ENOENT;
1830 }
1831 alldevs_nwrite++;
1832 mutex_exit(&alldevs_lock);
1833
1834 if (!detachall &&
1835 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1836 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1837 rv = EOPNOTSUPP;
1838 } else if (ca->ca_detach != NULL) {
1839 rv = (*ca->ca_detach)(dev, flags);
1840 } else
1841 rv = EOPNOTSUPP;
1842
1843 /*
1844 * If it was not possible to detach the device, then we either
1845 * panic() (for the forced but failed case), or return an error.
1846 *
1847 * If it was possible to detach the device, ensure that the
1848 * device is deactivated.
1849 */
1850 if (rv == 0)
1851 dev->dv_flags &= ~DVF_ACTIVE;
1852 else if ((flags & DETACH_FORCE) == 0)
1853 goto out;
1854 else {
1855 panic("config_detach: forced detach of %s failed (%d)",
1856 device_xname(dev), rv);
1857 }
1858
1859 /*
1860 * The device has now been successfully detached.
1861 */
1862
1863 /* Let userland know */
1864 devmon_report_device(dev, false);
1865
1866 #ifdef DIAGNOSTIC
1867 /*
1868 * Sanity: If you're successfully detached, you should have no
1869 * children. (Note that because children must be attached
1870 * after parents, we only need to search the latter part of
1871 * the list.)
1872 */
1873 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1874 d = TAILQ_NEXT(d, dv_list)) {
1875 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1876 printf("config_detach: detached device %s"
1877 " has children %s\n", device_xname(dev),
1878 device_xname(d));
1879 panic("config_detach");
1880 }
1881 }
1882 #endif
1883
1884 /* notify the parent that the child is gone */
1885 if (dev->dv_parent) {
1886 device_t p = dev->dv_parent;
1887 if (p->dv_cfattach->ca_childdetached)
1888 (*p->dv_cfattach->ca_childdetached)(p, dev);
1889 }
1890
1891 /*
1892 * Mark cfdata to show that the unit can be reused, if possible.
1893 */
1894 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1895 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1896 if (STREQ(cf->cf_name, cd->cd_name)) {
1897 if (cf->cf_fstate == FSTATE_FOUND &&
1898 cf->cf_unit == dev->dv_unit)
1899 cf->cf_fstate = FSTATE_NOTFOUND;
1900 }
1901 }
1902 }
1903
1904 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1905 aprint_normal_dev(dev, "detached\n");
1906
1907 out:
1908 config_alldevs_enter(&af);
1909 KASSERT(alldevs_nwrite != 0);
1910 --alldevs_nwrite;
1911 if (rv == 0 && dev->dv_del_gen == 0) {
1912 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1913 config_devunlink(dev, &af.af_garbage);
1914 else {
1915 dev->dv_del_gen = alldevs_gen;
1916 alldevs_garbage = true;
1917 }
1918 }
1919 config_alldevs_exit(&af);
1920
1921 return rv;
1922 }
1923
1924 int
1925 config_detach_children(device_t parent, int flags)
1926 {
1927 device_t dv;
1928 deviter_t di;
1929 int error = 0;
1930
1931 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1932 dv = deviter_next(&di)) {
1933 if (device_parent(dv) != parent)
1934 continue;
1935 if ((error = config_detach(dv, flags)) != 0)
1936 break;
1937 }
1938 deviter_release(&di);
1939 return error;
1940 }
1941
1942 device_t
1943 shutdown_first(struct shutdown_state *s)
1944 {
1945 if (!s->initialized) {
1946 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1947 s->initialized = true;
1948 }
1949 return shutdown_next(s);
1950 }
1951
1952 device_t
1953 shutdown_next(struct shutdown_state *s)
1954 {
1955 device_t dv;
1956
1957 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1958 ;
1959
1960 if (dv == NULL)
1961 s->initialized = false;
1962
1963 return dv;
1964 }
1965
1966 bool
1967 config_detach_all(int how)
1968 {
1969 static struct shutdown_state s;
1970 device_t curdev;
1971 bool progress = false;
1972 int flags;
1973
1974 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1975 return false;
1976
1977 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1978 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1979 else
1980 flags = DETACH_SHUTDOWN;
1981
1982 for (curdev = shutdown_first(&s); curdev != NULL;
1983 curdev = shutdown_next(&s)) {
1984 aprint_debug(" detaching %s, ", device_xname(curdev));
1985 if (config_detach(curdev, flags) == 0) {
1986 progress = true;
1987 aprint_debug("success.");
1988 } else
1989 aprint_debug("failed.");
1990 }
1991 return progress;
1992 }
1993
1994 static bool
1995 device_is_ancestor_of(device_t ancestor, device_t descendant)
1996 {
1997 device_t dv;
1998
1999 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2000 if (device_parent(dv) == ancestor)
2001 return true;
2002 }
2003 return false;
2004 }
2005
2006 int
2007 config_deactivate(device_t dev)
2008 {
2009 deviter_t di;
2010 const struct cfattach *ca;
2011 device_t descendant;
2012 int s, rv = 0, oflags;
2013
2014 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2015 descendant != NULL;
2016 descendant = deviter_next(&di)) {
2017 if (dev != descendant &&
2018 !device_is_ancestor_of(dev, descendant))
2019 continue;
2020
2021 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2022 continue;
2023
2024 ca = descendant->dv_cfattach;
2025 oflags = descendant->dv_flags;
2026
2027 descendant->dv_flags &= ~DVF_ACTIVE;
2028 if (ca->ca_activate == NULL)
2029 continue;
2030 s = splhigh();
2031 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2032 splx(s);
2033 if (rv != 0)
2034 descendant->dv_flags = oflags;
2035 }
2036 deviter_release(&di);
2037 return rv;
2038 }
2039
2040 /*
2041 * Defer the configuration of the specified device until all
2042 * of its parent's devices have been attached.
2043 */
2044 void
2045 config_defer(device_t dev, void (*func)(device_t))
2046 {
2047 struct deferred_config *dc;
2048
2049 if (dev->dv_parent == NULL)
2050 panic("config_defer: can't defer config of a root device");
2051
2052 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2053
2054 config_pending_incr(dev);
2055
2056 mutex_enter(&config_misc_lock);
2057 #ifdef DIAGNOSTIC
2058 struct deferred_config *odc;
2059 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2060 if (odc->dc_dev == dev)
2061 panic("config_defer: deferred twice");
2062 }
2063 #endif
2064 dc->dc_dev = dev;
2065 dc->dc_func = func;
2066 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2067 mutex_exit(&config_misc_lock);
2068 }
2069
2070 /*
2071 * Defer some autoconfiguration for a device until after interrupts
2072 * are enabled.
2073 */
2074 void
2075 config_interrupts(device_t dev, void (*func)(device_t))
2076 {
2077 struct deferred_config *dc;
2078
2079 /*
2080 * If interrupts are enabled, callback now.
2081 */
2082 if (cold == 0) {
2083 (*func)(dev);
2084 return;
2085 }
2086
2087 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2088
2089 config_pending_incr(dev);
2090
2091 mutex_enter(&config_misc_lock);
2092 #ifdef DIAGNOSTIC
2093 struct deferred_config *odc;
2094 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2095 if (odc->dc_dev == dev)
2096 panic("config_interrupts: deferred twice");
2097 }
2098 #endif
2099 dc->dc_dev = dev;
2100 dc->dc_func = func;
2101 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2102 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2103 mutex_exit(&config_misc_lock);
2104 }
2105
2106 /*
2107 * Defer some autoconfiguration for a device until after root file system
2108 * is mounted (to load firmware etc).
2109 */
2110 void
2111 config_mountroot(device_t dev, void (*func)(device_t))
2112 {
2113 struct deferred_config *dc;
2114
2115 /*
2116 * If root file system is mounted, callback now.
2117 */
2118 if (root_is_mounted) {
2119 (*func)(dev);
2120 return;
2121 }
2122
2123 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2124
2125 mutex_enter(&config_misc_lock);
2126 #ifdef DIAGNOSTIC
2127 struct deferred_config *odc;
2128 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2129 if (odc->dc_dev == dev)
2130 panic("%s: deferred twice", __func__);
2131 }
2132 #endif
2133
2134 dc->dc_dev = dev;
2135 dc->dc_func = func;
2136 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2137 mutex_exit(&config_misc_lock);
2138 }
2139
2140 /*
2141 * Process a deferred configuration queue.
2142 */
2143 static void
2144 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2145 {
2146 struct deferred_config *dc;
2147
2148 mutex_enter(&config_misc_lock);
2149 dc = TAILQ_FIRST(queue);
2150 while (dc) {
2151 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2152 TAILQ_REMOVE(queue, dc, dc_queue);
2153 mutex_exit(&config_misc_lock);
2154
2155 (*dc->dc_func)(dc->dc_dev);
2156 config_pending_decr(dc->dc_dev);
2157 kmem_free(dc, sizeof(*dc));
2158
2159 mutex_enter(&config_misc_lock);
2160 /* Restart, queue might have changed */
2161 dc = TAILQ_FIRST(queue);
2162 } else {
2163 dc = TAILQ_NEXT(dc, dc_queue);
2164 }
2165 }
2166 mutex_exit(&config_misc_lock);
2167 }
2168
2169 /*
2170 * Manipulate the config_pending semaphore.
2171 */
2172 void
2173 config_pending_incr(device_t dev)
2174 {
2175
2176 mutex_enter(&config_misc_lock);
2177 KASSERTMSG(dev->dv_pending < INT_MAX,
2178 "%s: excess config_pending_incr", device_xname(dev));
2179 if (dev->dv_pending++ == 0)
2180 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2181 #ifdef DEBUG_AUTOCONF
2182 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2183 #endif
2184 mutex_exit(&config_misc_lock);
2185 }
2186
2187 void
2188 config_pending_decr(device_t dev)
2189 {
2190
2191 mutex_enter(&config_misc_lock);
2192 KASSERTMSG(dev->dv_pending > 0,
2193 "%s: excess config_pending_decr", device_xname(dev));
2194 if (--dev->dv_pending == 0)
2195 TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2196 #ifdef DEBUG_AUTOCONF
2197 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2198 #endif
2199 if (TAILQ_EMPTY(&config_pending))
2200 cv_broadcast(&config_misc_cv);
2201 mutex_exit(&config_misc_lock);
2202 }
2203
2204 /*
2205 * Register a "finalization" routine. Finalization routines are
2206 * called iteratively once all real devices have been found during
2207 * autoconfiguration, for as long as any one finalizer has done
2208 * any work.
2209 */
2210 int
2211 config_finalize_register(device_t dev, int (*fn)(device_t))
2212 {
2213 struct finalize_hook *f;
2214
2215 /*
2216 * If finalization has already been done, invoke the
2217 * callback function now.
2218 */
2219 if (config_finalize_done) {
2220 while ((*fn)(dev) != 0)
2221 /* loop */ ;
2222 return 0;
2223 }
2224
2225 /* Ensure this isn't already on the list. */
2226 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2227 if (f->f_func == fn && f->f_dev == dev)
2228 return EEXIST;
2229 }
2230
2231 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2232 f->f_func = fn;
2233 f->f_dev = dev;
2234 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2235
2236 return 0;
2237 }
2238
2239 void
2240 config_finalize(void)
2241 {
2242 struct finalize_hook *f;
2243 struct pdevinit *pdev;
2244 extern struct pdevinit pdevinit[];
2245 int errcnt, rv;
2246
2247 /*
2248 * Now that device driver threads have been created, wait for
2249 * them to finish any deferred autoconfiguration.
2250 */
2251 mutex_enter(&config_misc_lock);
2252 while (!TAILQ_EMPTY(&config_pending)) {
2253 device_t dev;
2254 TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2255 aprint_debug_dev(dev, "holding up boot\n");
2256 cv_wait(&config_misc_cv, &config_misc_lock);
2257 }
2258 mutex_exit(&config_misc_lock);
2259
2260 KERNEL_LOCK(1, NULL);
2261
2262 /* Attach pseudo-devices. */
2263 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2264 (*pdev->pdev_attach)(pdev->pdev_count);
2265
2266 /* Run the hooks until none of them does any work. */
2267 do {
2268 rv = 0;
2269 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2270 rv |= (*f->f_func)(f->f_dev);
2271 } while (rv != 0);
2272
2273 config_finalize_done = 1;
2274
2275 /* Now free all the hooks. */
2276 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2277 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2278 kmem_free(f, sizeof(*f));
2279 }
2280
2281 KERNEL_UNLOCK_ONE(NULL);
2282
2283 errcnt = aprint_get_error_count();
2284 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2285 (boothowto & AB_VERBOSE) == 0) {
2286 mutex_enter(&config_misc_lock);
2287 if (config_do_twiddle) {
2288 config_do_twiddle = 0;
2289 printf_nolog(" done.\n");
2290 }
2291 mutex_exit(&config_misc_lock);
2292 }
2293 if (errcnt != 0) {
2294 printf("WARNING: %d error%s while detecting hardware; "
2295 "check system log.\n", errcnt,
2296 errcnt == 1 ? "" : "s");
2297 }
2298 }
2299
2300 void
2301 config_twiddle_init(void)
2302 {
2303
2304 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2305 config_do_twiddle = 1;
2306 }
2307 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2308 }
2309
2310 void
2311 config_twiddle_fn(void *cookie)
2312 {
2313
2314 mutex_enter(&config_misc_lock);
2315 if (config_do_twiddle) {
2316 twiddle();
2317 callout_schedule(&config_twiddle_ch, mstohz(100));
2318 }
2319 mutex_exit(&config_misc_lock);
2320 }
2321
2322 static void
2323 config_alldevs_enter(struct alldevs_foray *af)
2324 {
2325 TAILQ_INIT(&af->af_garbage);
2326 mutex_enter(&alldevs_lock);
2327 config_collect_garbage(&af->af_garbage);
2328 }
2329
2330 static void
2331 config_alldevs_exit(struct alldevs_foray *af)
2332 {
2333 mutex_exit(&alldevs_lock);
2334 config_dump_garbage(&af->af_garbage);
2335 }
2336
2337 /*
2338 * device_lookup:
2339 *
2340 * Look up a device instance for a given driver.
2341 */
2342 device_t
2343 device_lookup(cfdriver_t cd, int unit)
2344 {
2345 device_t dv;
2346
2347 mutex_enter(&alldevs_lock);
2348 if (unit < 0 || unit >= cd->cd_ndevs)
2349 dv = NULL;
2350 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2351 dv = NULL;
2352 mutex_exit(&alldevs_lock);
2353
2354 return dv;
2355 }
2356
2357 /*
2358 * device_lookup_private:
2359 *
2360 * Look up a softc instance for a given driver.
2361 */
2362 void *
2363 device_lookup_private(cfdriver_t cd, int unit)
2364 {
2365
2366 return device_private(device_lookup(cd, unit));
2367 }
2368
2369 /*
2370 * device_find_by_xname:
2371 *
2372 * Returns the device of the given name or NULL if it doesn't exist.
2373 */
2374 device_t
2375 device_find_by_xname(const char *name)
2376 {
2377 device_t dv;
2378 deviter_t di;
2379
2380 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2381 if (strcmp(device_xname(dv), name) == 0)
2382 break;
2383 }
2384 deviter_release(&di);
2385
2386 return dv;
2387 }
2388
2389 /*
2390 * device_find_by_driver_unit:
2391 *
2392 * Returns the device of the given driver name and unit or
2393 * NULL if it doesn't exist.
2394 */
2395 device_t
2396 device_find_by_driver_unit(const char *name, int unit)
2397 {
2398 struct cfdriver *cd;
2399
2400 if ((cd = config_cfdriver_lookup(name)) == NULL)
2401 return NULL;
2402 return device_lookup(cd, unit);
2403 }
2404
2405 static bool
2406 match_strcmp(const char * const s1, const char * const s2)
2407 {
2408 return strcmp(s1, s2) == 0;
2409 }
2410
2411 static bool
2412 match_pmatch(const char * const s1, const char * const s2)
2413 {
2414 return pmatch(s1, s2, NULL) == 2;
2415 }
2416
2417 static bool
2418 strarray_match_internal(const char ** const strings,
2419 unsigned int const nstrings, const char * const str,
2420 unsigned int * const indexp,
2421 bool (*match_fn)(const char *, const char *))
2422 {
2423 unsigned int i;
2424
2425 if (strings == NULL || nstrings == 0) {
2426 return false;
2427 }
2428
2429 for (i = 0; i < nstrings; i++) {
2430 if ((*match_fn)(strings[i], str)) {
2431 *indexp = i;
2432 return true;
2433 }
2434 }
2435
2436 return false;
2437 }
2438
2439 static int
2440 strarray_match(const char ** const strings, unsigned int const nstrings,
2441 const char * const str)
2442 {
2443 unsigned int idx;
2444
2445 if (strarray_match_internal(strings, nstrings, str, &idx,
2446 match_strcmp)) {
2447 return (int)(nstrings - idx);
2448 }
2449 return 0;
2450 }
2451
2452 static int
2453 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2454 const char * const pattern)
2455 {
2456 unsigned int idx;
2457
2458 if (strarray_match_internal(strings, nstrings, pattern, &idx,
2459 match_pmatch)) {
2460 return (int)(nstrings - idx);
2461 }
2462 return 0;
2463 }
2464
2465 static int
2466 device_compatible_match_strarray_internal(
2467 const char **device_compats, int ndevice_compats,
2468 const struct device_compatible_entry *driver_compats,
2469 const struct device_compatible_entry **matching_entryp,
2470 int (*match_fn)(const char **, unsigned int, const char *))
2471 {
2472 const struct device_compatible_entry *dce = NULL;
2473 int rv;
2474
2475 if (ndevice_compats == 0 || device_compats == NULL ||
2476 driver_compats == NULL)
2477 return 0;
2478
2479 for (dce = driver_compats; dce->compat != NULL; dce++) {
2480 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2481 if (rv != 0) {
2482 if (matching_entryp != NULL) {
2483 *matching_entryp = dce;
2484 }
2485 return rv;
2486 }
2487 }
2488 return 0;
2489 }
2490
2491 /*
2492 * device_compatible_match:
2493 *
2494 * Match a driver's "compatible" data against a device's
2495 * "compatible" strings. Returns resulted weighted by
2496 * which device "compatible" string was matched.
2497 */
2498 int
2499 device_compatible_match(const char **device_compats, int ndevice_compats,
2500 const struct device_compatible_entry *driver_compats)
2501 {
2502 return device_compatible_match_strarray_internal(device_compats,
2503 ndevice_compats, driver_compats, NULL, strarray_match);
2504 }
2505
2506 /*
2507 * device_compatible_pmatch:
2508 *
2509 * Like device_compatible_match(), but uses pmatch(9) to compare
2510 * the device "compatible" strings against patterns in the
2511 * driver's "compatible" data.
2512 */
2513 int
2514 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2515 const struct device_compatible_entry *driver_compats)
2516 {
2517 return device_compatible_match_strarray_internal(device_compats,
2518 ndevice_compats, driver_compats, NULL, strarray_pmatch);
2519 }
2520
2521 static int
2522 device_compatible_match_strlist_internal(
2523 const char * const device_compats, size_t const device_compatsize,
2524 const struct device_compatible_entry *driver_compats,
2525 const struct device_compatible_entry **matching_entryp,
2526 int (*match_fn)(const char *, size_t, const char *))
2527 {
2528 const struct device_compatible_entry *dce = NULL;
2529 int rv;
2530
2531 if (device_compats == NULL || device_compatsize == 0 ||
2532 driver_compats == NULL)
2533 return 0;
2534
2535 for (dce = driver_compats; dce->compat != NULL; dce++) {
2536 rv = (*match_fn)(device_compats, device_compatsize,
2537 dce->compat);
2538 if (rv != 0) {
2539 if (matching_entryp != NULL) {
2540 *matching_entryp = dce;
2541 }
2542 return rv;
2543 }
2544 }
2545 return 0;
2546 }
2547
2548 /*
2549 * device_compatible_match_strlist:
2550 *
2551 * Like device_compatible_match(), but take the device
2552 * "compatible" strings as an OpenFirmware-style string
2553 * list.
2554 */
2555 int
2556 device_compatible_match_strlist(
2557 const char * const device_compats, size_t const device_compatsize,
2558 const struct device_compatible_entry *driver_compats)
2559 {
2560 return device_compatible_match_strlist_internal(device_compats,
2561 device_compatsize, driver_compats, NULL, strlist_match);
2562 }
2563
2564 /*
2565 * device_compatible_pmatch_strlist:
2566 *
2567 * Like device_compatible_pmatch(), but take the device
2568 * "compatible" strings as an OpenFirmware-style string
2569 * list.
2570 */
2571 int
2572 device_compatible_pmatch_strlist(
2573 const char * const device_compats, size_t const device_compatsize,
2574 const struct device_compatible_entry *driver_compats)
2575 {
2576 return device_compatible_match_strlist_internal(device_compats,
2577 device_compatsize, driver_compats, NULL, strlist_pmatch);
2578 }
2579
2580 static int
2581 device_compatible_match_id_internal(
2582 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2583 const struct device_compatible_entry *driver_compats,
2584 const struct device_compatible_entry **matching_entryp)
2585 {
2586 const struct device_compatible_entry *dce = NULL;
2587
2588 if (mask == 0)
2589 return 0;
2590
2591 for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2592 if ((id & mask) == dce->id) {
2593 if (matching_entryp != NULL) {
2594 *matching_entryp = dce;
2595 }
2596 return 1;
2597 }
2598 }
2599 return 0;
2600 }
2601
2602 /*
2603 * device_compatible_match_id:
2604 *
2605 * Like device_compatible_match(), but takes a single
2606 * unsigned integer device ID.
2607 */
2608 int
2609 device_compatible_match_id(
2610 uintptr_t const id, uintptr_t const sentinel_id,
2611 const struct device_compatible_entry *driver_compats)
2612 {
2613 return device_compatible_match_id_internal(id, (uintptr_t)-1,
2614 sentinel_id, driver_compats, NULL);
2615 }
2616
2617 /*
2618 * device_compatible_lookup:
2619 *
2620 * Look up and return the device_compatible_entry, using the
2621 * same matching criteria used by device_compatible_match().
2622 */
2623 const struct device_compatible_entry *
2624 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2625 const struct device_compatible_entry *driver_compats)
2626 {
2627 const struct device_compatible_entry *dce;
2628
2629 if (device_compatible_match_strarray_internal(device_compats,
2630 ndevice_compats, driver_compats, &dce, strarray_match)) {
2631 return dce;
2632 }
2633 return NULL;
2634 }
2635
2636 /*
2637 * device_compatible_plookup:
2638 *
2639 * Look up and return the device_compatible_entry, using the
2640 * same matching criteria used by device_compatible_pmatch().
2641 */
2642 const struct device_compatible_entry *
2643 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2644 const struct device_compatible_entry *driver_compats)
2645 {
2646 const struct device_compatible_entry *dce;
2647
2648 if (device_compatible_match_strarray_internal(device_compats,
2649 ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2650 return dce;
2651 }
2652 return NULL;
2653 }
2654
2655 /*
2656 * device_compatible_lookup_strlist:
2657 *
2658 * Like device_compatible_lookup(), but take the device
2659 * "compatible" strings as an OpenFirmware-style string
2660 * list.
2661 */
2662 const struct device_compatible_entry *
2663 device_compatible_lookup_strlist(
2664 const char * const device_compats, size_t const device_compatsize,
2665 const struct device_compatible_entry *driver_compats)
2666 {
2667 const struct device_compatible_entry *dce;
2668
2669 if (device_compatible_match_strlist_internal(device_compats,
2670 device_compatsize, driver_compats, &dce, strlist_match)) {
2671 return dce;
2672 }
2673 return NULL;
2674 }
2675
2676 /*
2677 * device_compatible_plookup_strlist:
2678 *
2679 * Like device_compatible_plookup(), but take the device
2680 * "compatible" strings as an OpenFirmware-style string
2681 * list.
2682 */
2683 const struct device_compatible_entry *
2684 device_compatible_plookup_strlist(
2685 const char * const device_compats, size_t const device_compatsize,
2686 const struct device_compatible_entry *driver_compats)
2687 {
2688 const struct device_compatible_entry *dce;
2689
2690 if (device_compatible_match_strlist_internal(device_compats,
2691 device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2692 return dce;
2693 }
2694 return NULL;
2695 }
2696
2697 /*
2698 * device_compatible_lookup_id:
2699 *
2700 * Like device_compatible_lookup(), but takes a single
2701 * unsigned integer device ID.
2702 */
2703 const struct device_compatible_entry *
2704 device_compatible_lookup_id(
2705 uintptr_t const id, uintptr_t const sentinel_id,
2706 const struct device_compatible_entry *driver_compats)
2707 {
2708 const struct device_compatible_entry *dce;
2709
2710 if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2711 sentinel_id, driver_compats, &dce)) {
2712 return dce;
2713 }
2714 return NULL;
2715 }
2716
2717 /*
2718 * Power management related functions.
2719 */
2720
2721 bool
2722 device_pmf_is_registered(device_t dev)
2723 {
2724 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2725 }
2726
2727 bool
2728 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2729 {
2730 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2731 return true;
2732 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2733 return false;
2734 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2735 dev->dv_driver_suspend != NULL &&
2736 !(*dev->dv_driver_suspend)(dev, qual))
2737 return false;
2738
2739 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2740 return true;
2741 }
2742
2743 bool
2744 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2745 {
2746 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2747 return true;
2748 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2749 return false;
2750 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2751 dev->dv_driver_resume != NULL &&
2752 !(*dev->dv_driver_resume)(dev, qual))
2753 return false;
2754
2755 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2756 return true;
2757 }
2758
2759 bool
2760 device_pmf_driver_shutdown(device_t dev, int how)
2761 {
2762
2763 if (*dev->dv_driver_shutdown != NULL &&
2764 !(*dev->dv_driver_shutdown)(dev, how))
2765 return false;
2766 return true;
2767 }
2768
2769 bool
2770 device_pmf_driver_register(device_t dev,
2771 bool (*suspend)(device_t, const pmf_qual_t *),
2772 bool (*resume)(device_t, const pmf_qual_t *),
2773 bool (*shutdown)(device_t, int))
2774 {
2775 dev->dv_driver_suspend = suspend;
2776 dev->dv_driver_resume = resume;
2777 dev->dv_driver_shutdown = shutdown;
2778 dev->dv_flags |= DVF_POWER_HANDLERS;
2779 return true;
2780 }
2781
2782 static const char *
2783 curlwp_name(void)
2784 {
2785 if (curlwp->l_name != NULL)
2786 return curlwp->l_name;
2787 else
2788 return curlwp->l_proc->p_comm;
2789 }
2790
2791 void
2792 device_pmf_driver_deregister(device_t dev)
2793 {
2794 device_lock_t dvl = device_getlock(dev);
2795
2796 dev->dv_driver_suspend = NULL;
2797 dev->dv_driver_resume = NULL;
2798
2799 mutex_enter(&dvl->dvl_mtx);
2800 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2801 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2802 /* Wake a thread that waits for the lock. That
2803 * thread will fail to acquire the lock, and then
2804 * it will wake the next thread that waits for the
2805 * lock, or else it will wake us.
2806 */
2807 cv_signal(&dvl->dvl_cv);
2808 pmflock_debug(dev, __func__, __LINE__);
2809 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2810 pmflock_debug(dev, __func__, __LINE__);
2811 }
2812 mutex_exit(&dvl->dvl_mtx);
2813 }
2814
2815 bool
2816 device_pmf_driver_child_register(device_t dev)
2817 {
2818 device_t parent = device_parent(dev);
2819
2820 if (parent == NULL || parent->dv_driver_child_register == NULL)
2821 return true;
2822 return (*parent->dv_driver_child_register)(dev);
2823 }
2824
2825 void
2826 device_pmf_driver_set_child_register(device_t dev,
2827 bool (*child_register)(device_t))
2828 {
2829 dev->dv_driver_child_register = child_register;
2830 }
2831
2832 static void
2833 pmflock_debug(device_t dev, const char *func, int line)
2834 {
2835 device_lock_t dvl = device_getlock(dev);
2836
2837 aprint_debug_dev(dev,
2838 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2839 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2840 }
2841
2842 static bool
2843 device_pmf_lock1(device_t dev)
2844 {
2845 device_lock_t dvl = device_getlock(dev);
2846
2847 while (device_pmf_is_registered(dev) &&
2848 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2849 dvl->dvl_nwait++;
2850 pmflock_debug(dev, __func__, __LINE__);
2851 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2852 pmflock_debug(dev, __func__, __LINE__);
2853 dvl->dvl_nwait--;
2854 }
2855 if (!device_pmf_is_registered(dev)) {
2856 pmflock_debug(dev, __func__, __LINE__);
2857 /* We could not acquire the lock, but some other thread may
2858 * wait for it, also. Wake that thread.
2859 */
2860 cv_signal(&dvl->dvl_cv);
2861 return false;
2862 }
2863 dvl->dvl_nlock++;
2864 dvl->dvl_holder = curlwp;
2865 pmflock_debug(dev, __func__, __LINE__);
2866 return true;
2867 }
2868
2869 bool
2870 device_pmf_lock(device_t dev)
2871 {
2872 bool rc;
2873 device_lock_t dvl = device_getlock(dev);
2874
2875 mutex_enter(&dvl->dvl_mtx);
2876 rc = device_pmf_lock1(dev);
2877 mutex_exit(&dvl->dvl_mtx);
2878
2879 return rc;
2880 }
2881
2882 void
2883 device_pmf_unlock(device_t dev)
2884 {
2885 device_lock_t dvl = device_getlock(dev);
2886
2887 KASSERT(dvl->dvl_nlock > 0);
2888 mutex_enter(&dvl->dvl_mtx);
2889 if (--dvl->dvl_nlock == 0)
2890 dvl->dvl_holder = NULL;
2891 cv_signal(&dvl->dvl_cv);
2892 pmflock_debug(dev, __func__, __LINE__);
2893 mutex_exit(&dvl->dvl_mtx);
2894 }
2895
2896 device_lock_t
2897 device_getlock(device_t dev)
2898 {
2899 return &dev->dv_lock;
2900 }
2901
2902 void *
2903 device_pmf_bus_private(device_t dev)
2904 {
2905 return dev->dv_bus_private;
2906 }
2907
2908 bool
2909 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2910 {
2911 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2912 return true;
2913 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2914 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2915 return false;
2916 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2917 dev->dv_bus_suspend != NULL &&
2918 !(*dev->dv_bus_suspend)(dev, qual))
2919 return false;
2920
2921 dev->dv_flags |= DVF_BUS_SUSPENDED;
2922 return true;
2923 }
2924
2925 bool
2926 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2927 {
2928 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2929 return true;
2930 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2931 dev->dv_bus_resume != NULL &&
2932 !(*dev->dv_bus_resume)(dev, qual))
2933 return false;
2934
2935 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2936 return true;
2937 }
2938
2939 bool
2940 device_pmf_bus_shutdown(device_t dev, int how)
2941 {
2942
2943 if (*dev->dv_bus_shutdown != NULL &&
2944 !(*dev->dv_bus_shutdown)(dev, how))
2945 return false;
2946 return true;
2947 }
2948
2949 void
2950 device_pmf_bus_register(device_t dev, void *priv,
2951 bool (*suspend)(device_t, const pmf_qual_t *),
2952 bool (*resume)(device_t, const pmf_qual_t *),
2953 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2954 {
2955 dev->dv_bus_private = priv;
2956 dev->dv_bus_resume = resume;
2957 dev->dv_bus_suspend = suspend;
2958 dev->dv_bus_shutdown = shutdown;
2959 dev->dv_bus_deregister = deregister;
2960 }
2961
2962 void
2963 device_pmf_bus_deregister(device_t dev)
2964 {
2965 if (dev->dv_bus_deregister == NULL)
2966 return;
2967 (*dev->dv_bus_deregister)(dev);
2968 dev->dv_bus_private = NULL;
2969 dev->dv_bus_suspend = NULL;
2970 dev->dv_bus_resume = NULL;
2971 dev->dv_bus_deregister = NULL;
2972 }
2973
2974 void *
2975 device_pmf_class_private(device_t dev)
2976 {
2977 return dev->dv_class_private;
2978 }
2979
2980 bool
2981 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2982 {
2983 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2984 return true;
2985 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2986 dev->dv_class_suspend != NULL &&
2987 !(*dev->dv_class_suspend)(dev, qual))
2988 return false;
2989
2990 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2991 return true;
2992 }
2993
2994 bool
2995 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2996 {
2997 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2998 return true;
2999 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3000 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3001 return false;
3002 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3003 dev->dv_class_resume != NULL &&
3004 !(*dev->dv_class_resume)(dev, qual))
3005 return false;
3006
3007 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3008 return true;
3009 }
3010
3011 void
3012 device_pmf_class_register(device_t dev, void *priv,
3013 bool (*suspend)(device_t, const pmf_qual_t *),
3014 bool (*resume)(device_t, const pmf_qual_t *),
3015 void (*deregister)(device_t))
3016 {
3017 dev->dv_class_private = priv;
3018 dev->dv_class_suspend = suspend;
3019 dev->dv_class_resume = resume;
3020 dev->dv_class_deregister = deregister;
3021 }
3022
3023 void
3024 device_pmf_class_deregister(device_t dev)
3025 {
3026 if (dev->dv_class_deregister == NULL)
3027 return;
3028 (*dev->dv_class_deregister)(dev);
3029 dev->dv_class_private = NULL;
3030 dev->dv_class_suspend = NULL;
3031 dev->dv_class_resume = NULL;
3032 dev->dv_class_deregister = NULL;
3033 }
3034
3035 bool
3036 device_active(device_t dev, devactive_t type)
3037 {
3038 size_t i;
3039
3040 if (dev->dv_activity_count == 0)
3041 return false;
3042
3043 for (i = 0; i < dev->dv_activity_count; ++i) {
3044 if (dev->dv_activity_handlers[i] == NULL)
3045 break;
3046 (*dev->dv_activity_handlers[i])(dev, type);
3047 }
3048
3049 return true;
3050 }
3051
3052 bool
3053 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3054 {
3055 void (**new_handlers)(device_t, devactive_t);
3056 void (**old_handlers)(device_t, devactive_t);
3057 size_t i, old_size, new_size;
3058 int s;
3059
3060 old_handlers = dev->dv_activity_handlers;
3061 old_size = dev->dv_activity_count;
3062
3063 KASSERT(old_size == 0 || old_handlers != NULL);
3064
3065 for (i = 0; i < old_size; ++i) {
3066 KASSERT(old_handlers[i] != handler);
3067 if (old_handlers[i] == NULL) {
3068 old_handlers[i] = handler;
3069 return true;
3070 }
3071 }
3072
3073 new_size = old_size + 4;
3074 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3075
3076 for (i = 0; i < old_size; ++i)
3077 new_handlers[i] = old_handlers[i];
3078 new_handlers[old_size] = handler;
3079 for (i = old_size+1; i < new_size; ++i)
3080 new_handlers[i] = NULL;
3081
3082 s = splhigh();
3083 dev->dv_activity_count = new_size;
3084 dev->dv_activity_handlers = new_handlers;
3085 splx(s);
3086
3087 if (old_size > 0)
3088 kmem_free(old_handlers, sizeof(void *) * old_size);
3089
3090 return true;
3091 }
3092
3093 void
3094 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3095 {
3096 void (**old_handlers)(device_t, devactive_t);
3097 size_t i, old_size;
3098 int s;
3099
3100 old_handlers = dev->dv_activity_handlers;
3101 old_size = dev->dv_activity_count;
3102
3103 for (i = 0; i < old_size; ++i) {
3104 if (old_handlers[i] == handler)
3105 break;
3106 if (old_handlers[i] == NULL)
3107 return; /* XXX panic? */
3108 }
3109
3110 if (i == old_size)
3111 return; /* XXX panic? */
3112
3113 for (; i < old_size - 1; ++i) {
3114 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3115 continue;
3116
3117 if (i == 0) {
3118 s = splhigh();
3119 dev->dv_activity_count = 0;
3120 dev->dv_activity_handlers = NULL;
3121 splx(s);
3122 kmem_free(old_handlers, sizeof(void *) * old_size);
3123 }
3124 return;
3125 }
3126 old_handlers[i] = NULL;
3127 }
3128
3129 /* Return true iff the device_t `dev' exists at generation `gen'. */
3130 static bool
3131 device_exists_at(device_t dv, devgen_t gen)
3132 {
3133 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3134 dv->dv_add_gen <= gen;
3135 }
3136
3137 static bool
3138 deviter_visits(const deviter_t *di, device_t dv)
3139 {
3140 return device_exists_at(dv, di->di_gen);
3141 }
3142
3143 /*
3144 * Device Iteration
3145 *
3146 * deviter_t: a device iterator. Holds state for a "walk" visiting
3147 * each device_t's in the device tree.
3148 *
3149 * deviter_init(di, flags): initialize the device iterator `di'
3150 * to "walk" the device tree. deviter_next(di) will return
3151 * the first device_t in the device tree, or NULL if there are
3152 * no devices.
3153 *
3154 * `flags' is one or more of DEVITER_F_RW, indicating that the
3155 * caller intends to modify the device tree by calling
3156 * config_detach(9) on devices in the order that the iterator
3157 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3158 * nearest the "root" of the device tree to be returned, first;
3159 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3160 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3161 * indicating both that deviter_init() should not respect any
3162 * locks on the device tree, and that deviter_next(di) may run
3163 * in more than one LWP before the walk has finished.
3164 *
3165 * Only one DEVITER_F_RW iterator may be in the device tree at
3166 * once.
3167 *
3168 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3169 *
3170 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3171 * DEVITER_F_LEAVES_FIRST are used in combination.
3172 *
3173 * deviter_first(di, flags): initialize the device iterator `di'
3174 * and return the first device_t in the device tree, or NULL
3175 * if there are no devices. The statement
3176 *
3177 * dv = deviter_first(di);
3178 *
3179 * is shorthand for
3180 *
3181 * deviter_init(di);
3182 * dv = deviter_next(di);
3183 *
3184 * deviter_next(di): return the next device_t in the device tree,
3185 * or NULL if there are no more devices. deviter_next(di)
3186 * is undefined if `di' was not initialized with deviter_init() or
3187 * deviter_first().
3188 *
3189 * deviter_release(di): stops iteration (subsequent calls to
3190 * deviter_next() will return NULL), releases any locks and
3191 * resources held by the device iterator.
3192 *
3193 * Device iteration does not return device_t's in any particular
3194 * order. An iterator will never return the same device_t twice.
3195 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3196 * is called repeatedly on the same `di', it will eventually return
3197 * NULL. It is ok to attach/detach devices during device iteration.
3198 */
3199 void
3200 deviter_init(deviter_t *di, deviter_flags_t flags)
3201 {
3202 device_t dv;
3203
3204 memset(di, 0, sizeof(*di));
3205
3206 if ((flags & DEVITER_F_SHUTDOWN) != 0)
3207 flags |= DEVITER_F_RW;
3208
3209 mutex_enter(&alldevs_lock);
3210 if ((flags & DEVITER_F_RW) != 0)
3211 alldevs_nwrite++;
3212 else
3213 alldevs_nread++;
3214 di->di_gen = alldevs_gen++;
3215 di->di_flags = flags;
3216
3217 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3218 case DEVITER_F_LEAVES_FIRST:
3219 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3220 if (!deviter_visits(di, dv))
3221 continue;
3222 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3223 }
3224 break;
3225 case DEVITER_F_ROOT_FIRST:
3226 TAILQ_FOREACH(dv, &alldevs, dv_list) {
3227 if (!deviter_visits(di, dv))
3228 continue;
3229 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3230 }
3231 break;
3232 default:
3233 break;
3234 }
3235
3236 deviter_reinit(di);
3237 mutex_exit(&alldevs_lock);
3238 }
3239
3240 static void
3241 deviter_reinit(deviter_t *di)
3242 {
3243
3244 KASSERT(mutex_owned(&alldevs_lock));
3245 if ((di->di_flags & DEVITER_F_RW) != 0)
3246 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3247 else
3248 di->di_prev = TAILQ_FIRST(&alldevs);
3249 }
3250
3251 device_t
3252 deviter_first(deviter_t *di, deviter_flags_t flags)
3253 {
3254
3255 deviter_init(di, flags);
3256 return deviter_next(di);
3257 }
3258
3259 static device_t
3260 deviter_next2(deviter_t *di)
3261 {
3262 device_t dv;
3263
3264 KASSERT(mutex_owned(&alldevs_lock));
3265
3266 dv = di->di_prev;
3267
3268 if (dv == NULL)
3269 return NULL;
3270
3271 if ((di->di_flags & DEVITER_F_RW) != 0)
3272 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3273 else
3274 di->di_prev = TAILQ_NEXT(dv, dv_list);
3275
3276 return dv;
3277 }
3278
3279 static device_t
3280 deviter_next1(deviter_t *di)
3281 {
3282 device_t dv;
3283
3284 KASSERT(mutex_owned(&alldevs_lock));
3285
3286 do {
3287 dv = deviter_next2(di);
3288 } while (dv != NULL && !deviter_visits(di, dv));
3289
3290 return dv;
3291 }
3292
3293 device_t
3294 deviter_next(deviter_t *di)
3295 {
3296 device_t dv = NULL;
3297
3298 mutex_enter(&alldevs_lock);
3299 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3300 case 0:
3301 dv = deviter_next1(di);
3302 break;
3303 case DEVITER_F_LEAVES_FIRST:
3304 while (di->di_curdepth >= 0) {
3305 if ((dv = deviter_next1(di)) == NULL) {
3306 di->di_curdepth--;
3307 deviter_reinit(di);
3308 } else if (dv->dv_depth == di->di_curdepth)
3309 break;
3310 }
3311 break;
3312 case DEVITER_F_ROOT_FIRST:
3313 while (di->di_curdepth <= di->di_maxdepth) {
3314 if ((dv = deviter_next1(di)) == NULL) {
3315 di->di_curdepth++;
3316 deviter_reinit(di);
3317 } else if (dv->dv_depth == di->di_curdepth)
3318 break;
3319 }
3320 break;
3321 default:
3322 break;
3323 }
3324 mutex_exit(&alldevs_lock);
3325
3326 return dv;
3327 }
3328
3329 void
3330 deviter_release(deviter_t *di)
3331 {
3332 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3333
3334 mutex_enter(&alldevs_lock);
3335 if (rw)
3336 --alldevs_nwrite;
3337 else
3338 --alldevs_nread;
3339 /* XXX wake a garbage-collection thread */
3340 mutex_exit(&alldevs_lock);
3341 }
3342
3343 const char *
3344 cfdata_ifattr(const struct cfdata *cf)
3345 {
3346 return cf->cf_pspec->cfp_iattr;
3347 }
3348
3349 bool
3350 ifattr_match(const char *snull, const char *t)
3351 {
3352 return (snull == NULL) || strcmp(snull, t) == 0;
3353 }
3354
3355 void
3356 null_childdetached(device_t self, device_t child)
3357 {
3358 /* do nothing */
3359 }
3360
3361 static void
3362 sysctl_detach_setup(struct sysctllog **clog)
3363 {
3364
3365 sysctl_createv(clog, 0, NULL, NULL,
3366 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3367 CTLTYPE_BOOL, "detachall",
3368 SYSCTL_DESCR("Detach all devices at shutdown"),
3369 NULL, 0, &detachall, 0,
3370 CTL_KERN, CTL_CREATE, CTL_EOL);
3371 }
3372