Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.277.2.9
      1 /* $NetBSD: subr_autoconf.c,v 1.277.2.9 2021/04/03 15:37:07 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.277.2.9 2021/04/03 15:37:07 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/stdarg.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 static krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_vattach(device_t, cfdata_t, void *, cfprint_t, cfarg_t,
    172 			       va_list);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 static struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 static struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 static int interrupt_config_threads = 8;
    202 static struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 static int mountroot_config_threads = 2;
    205 static lwp_t **mountroot_config_lwpids;
    206 static size_t mountroot_config_lwpids_size;
    207 bool root_is_mounted = false;
    208 
    209 static void config_process_deferred(struct deferred_config_head *, device_t);
    210 
    211 /* Hooks to finalize configuration once all real devices have been found. */
    212 struct finalize_hook {
    213 	TAILQ_ENTRY(finalize_hook) f_list;
    214 	int (*f_func)(device_t);
    215 	device_t f_dev;
    216 };
    217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    219 static int config_finalize_done;
    220 
    221 /* list of all devices */
    222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    223 static kmutex_t alldevs_lock __cacheline_aligned;
    224 static devgen_t alldevs_gen = 1;
    225 static int alldevs_nread = 0;
    226 static int alldevs_nwrite = 0;
    227 static bool alldevs_garbage = false;
    228 
    229 static struct devicelist config_pending =
    230     TAILQ_HEAD_INITIALIZER(config_pending);
    231 static kmutex_t config_misc_lock;
    232 static kcondvar_t config_misc_cv;
    233 
    234 static bool detachall = false;
    235 
    236 #define	STREQ(s1, s2)			\
    237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    238 
    239 static bool config_initialized = false;	/* config_init() has been called. */
    240 
    241 static int config_do_twiddle;
    242 static callout_t config_twiddle_ch;
    243 
    244 static void sysctl_detach_setup(struct sysctllog **);
    245 
    246 int no_devmon_insert(const char *, prop_dictionary_t);
    247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    248 
    249 typedef int (*cfdriver_fn)(struct cfdriver *);
    250 static int
    251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    253 	const char *style, bool dopanic)
    254 {
    255 	void (*pr)(const char *, ...) __printflike(1, 2) =
    256 	    dopanic ? panic : printf;
    257 	int i, error = 0, e2 __diagused;
    258 
    259 	for (i = 0; cfdriverv[i] != NULL; i++) {
    260 		if ((error = drv_do(cfdriverv[i])) != 0) {
    261 			pr("configure: `%s' driver %s failed: %d",
    262 			    cfdriverv[i]->cd_name, style, error);
    263 			goto bad;
    264 		}
    265 	}
    266 
    267 	KASSERT(error == 0);
    268 	return 0;
    269 
    270  bad:
    271 	printf("\n");
    272 	for (i--; i >= 0; i--) {
    273 		e2 = drv_undo(cfdriverv[i]);
    274 		KASSERT(e2 == 0);
    275 	}
    276 
    277 	return error;
    278 }
    279 
    280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    281 static int
    282 frob_cfattachvec(const struct cfattachinit *cfattachv,
    283 	cfattach_fn att_do, cfattach_fn att_undo,
    284 	const char *style, bool dopanic)
    285 {
    286 	const struct cfattachinit *cfai = NULL;
    287 	void (*pr)(const char *, ...) __printflike(1, 2) =
    288 	    dopanic ? panic : printf;
    289 	int j = 0, error = 0, e2 __diagused;
    290 
    291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    293 			if ((error = att_do(cfai->cfai_name,
    294 			    cfai->cfai_list[j])) != 0) {
    295 				pr("configure: attachment `%s' "
    296 				    "of `%s' driver %s failed: %d",
    297 				    cfai->cfai_list[j]->ca_name,
    298 				    cfai->cfai_name, style, error);
    299 				goto bad;
    300 			}
    301 		}
    302 	}
    303 
    304 	KASSERT(error == 0);
    305 	return 0;
    306 
    307  bad:
    308 	/*
    309 	 * Rollback in reverse order.  dunno if super-important, but
    310 	 * do that anyway.  Although the code looks a little like
    311 	 * someone did a little integration (in the math sense).
    312 	 */
    313 	printf("\n");
    314 	if (cfai) {
    315 		bool last;
    316 
    317 		for (last = false; last == false; ) {
    318 			if (cfai == &cfattachv[0])
    319 				last = true;
    320 			for (j--; j >= 0; j--) {
    321 				e2 = att_undo(cfai->cfai_name,
    322 				    cfai->cfai_list[j]);
    323 				KASSERT(e2 == 0);
    324 			}
    325 			if (!last) {
    326 				cfai--;
    327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    328 					;
    329 			}
    330 		}
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 
    345 	KASSERT(config_initialized == false);
    346 
    347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    348 
    349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	cv_init(&config_misc_cv, "cfgmisc");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    363 	    RND_FLAG_COLLECT_TIME);
    364 
    365 	config_initialized = true;
    366 }
    367 
    368 /*
    369  * Init or fini drivers and attachments.  Either all or none
    370  * are processed (via rollback).  It would be nice if this were
    371  * atomic to outside consumers, but with the current state of
    372  * locking ...
    373  */
    374 int
    375 config_init_component(struct cfdriver * const *cfdriverv,
    376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    377 {
    378 	int error;
    379 
    380 	if ((error = frob_cfdrivervec(cfdriverv,
    381 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    382 		return error;
    383 	if ((error = frob_cfattachvec(cfattachv,
    384 	    config_cfattach_attach, config_cfattach_detach,
    385 	    "init", false)) != 0) {
    386 		frob_cfdrivervec(cfdriverv,
    387 	            config_cfdriver_detach, NULL, "init rollback", true);
    388 		return error;
    389 	}
    390 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    391 		frob_cfattachvec(cfattachv,
    392 		    config_cfattach_detach, NULL, "init rollback", true);
    393 		frob_cfdrivervec(cfdriverv,
    394 	            config_cfdriver_detach, NULL, "init rollback", true);
    395 		return error;
    396 	}
    397 
    398 	return 0;
    399 }
    400 
    401 int
    402 config_fini_component(struct cfdriver * const *cfdriverv,
    403 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    404 {
    405 	int error;
    406 
    407 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    408 		return error;
    409 	if ((error = frob_cfattachvec(cfattachv,
    410 	    config_cfattach_detach, config_cfattach_attach,
    411 	    "fini", false)) != 0) {
    412 		if (config_cfdata_attach(cfdatav, 0) != 0)
    413 			panic("config_cfdata fini rollback failed");
    414 		return error;
    415 	}
    416 	if ((error = frob_cfdrivervec(cfdriverv,
    417 	    config_cfdriver_detach, config_cfdriver_attach,
    418 	    "fini", false)) != 0) {
    419 		frob_cfattachvec(cfattachv,
    420 	            config_cfattach_attach, NULL, "fini rollback", true);
    421 		if (config_cfdata_attach(cfdatav, 0) != 0)
    422 			panic("config_cfdata fini rollback failed");
    423 		return error;
    424 	}
    425 
    426 	return 0;
    427 }
    428 
    429 void
    430 config_init_mi(void)
    431 {
    432 
    433 	if (!config_initialized)
    434 		config_init();
    435 
    436 	sysctl_detach_setup(NULL);
    437 }
    438 
    439 void
    440 config_deferred(device_t dev)
    441 {
    442 	config_process_deferred(&deferred_config_queue, dev);
    443 	config_process_deferred(&interrupt_config_queue, dev);
    444 	config_process_deferred(&mountroot_config_queue, dev);
    445 }
    446 
    447 static void
    448 config_interrupts_thread(void *cookie)
    449 {
    450 	struct deferred_config *dc;
    451 	device_t dev;
    452 
    453 	mutex_enter(&config_misc_lock);
    454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    456 		mutex_exit(&config_misc_lock);
    457 
    458 		dev = dc->dc_dev;
    459 		(*dc->dc_func)(dev);
    460 		if (!device_pmf_is_registered(dev))
    461 			aprint_debug_dev(dev,
    462 			    "WARNING: power management not supported\n");
    463 		config_pending_decr(dev);
    464 		kmem_free(dc, sizeof(*dc));
    465 
    466 		mutex_enter(&config_misc_lock);
    467 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    468 	}
    469 	mutex_exit(&config_misc_lock);
    470 
    471 	kthread_exit(0);
    472 }
    473 
    474 void
    475 config_create_interruptthreads(void)
    476 {
    477 	int i;
    478 
    479 	for (i = 0; i < interrupt_config_threads; i++) {
    480 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    481 		    config_interrupts_thread, NULL, NULL, "configintr");
    482 	}
    483 }
    484 
    485 static void
    486 config_mountroot_thread(void *cookie)
    487 {
    488 	struct deferred_config *dc;
    489 
    490 	mutex_enter(&config_misc_lock);
    491 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    492 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    493 		mutex_exit(&config_misc_lock);
    494 
    495 		(*dc->dc_func)(dc->dc_dev);
    496 		kmem_free(dc, sizeof(*dc));
    497 
    498 		mutex_enter(&config_misc_lock);
    499 	}
    500 	mutex_exit(&config_misc_lock);
    501 
    502 	kthread_exit(0);
    503 }
    504 
    505 void
    506 config_create_mountrootthreads(void)
    507 {
    508 	int i;
    509 
    510 	if (!root_is_mounted)
    511 		root_is_mounted = true;
    512 
    513 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    514 				       mountroot_config_threads;
    515 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    516 					     KM_NOSLEEP);
    517 	KASSERT(mountroot_config_lwpids);
    518 	for (i = 0; i < mountroot_config_threads; i++) {
    519 		mountroot_config_lwpids[i] = 0;
    520 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    521 				     NULL, config_mountroot_thread, NULL,
    522 				     &mountroot_config_lwpids[i],
    523 				     "configroot");
    524 	}
    525 }
    526 
    527 void
    528 config_finalize_mountroot(void)
    529 {
    530 	int i, error;
    531 
    532 	for (i = 0; i < mountroot_config_threads; i++) {
    533 		if (mountroot_config_lwpids[i] == 0)
    534 			continue;
    535 
    536 		error = kthread_join(mountroot_config_lwpids[i]);
    537 		if (error)
    538 			printf("%s: thread %x joined with error %d\n",
    539 			       __func__, i, error);
    540 	}
    541 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    542 }
    543 
    544 /*
    545  * Announce device attach/detach to userland listeners.
    546  */
    547 
    548 int
    549 no_devmon_insert(const char *name, prop_dictionary_t p)
    550 {
    551 
    552 	return ENODEV;
    553 }
    554 
    555 static void
    556 devmon_report_device(device_t dev, bool isattach)
    557 {
    558 	prop_dictionary_t ev, dict = device_properties(dev);
    559 	const char *parent;
    560 	const char *what;
    561 	const char *where;
    562 	device_t pdev = device_parent(dev);
    563 
    564 	/* If currently no drvctl device, just return */
    565 	if (devmon_insert_vec == no_devmon_insert)
    566 		return;
    567 
    568 	ev = prop_dictionary_create();
    569 	if (ev == NULL)
    570 		return;
    571 
    572 	what = (isattach ? "device-attach" : "device-detach");
    573 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    574 	if (prop_dictionary_get_string(dict, "location", &where)) {
    575 		prop_dictionary_set_string(ev, "location", where);
    576 		aprint_debug("ev: %s %s at %s in [%s]\n",
    577 		    what, device_xname(dev), parent, where);
    578 	}
    579 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    580 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    581 		prop_object_release(ev);
    582 		return;
    583 	}
    584 
    585 	if ((*devmon_insert_vec)(what, ev) != 0)
    586 		prop_object_release(ev);
    587 }
    588 
    589 /*
    590  * Add a cfdriver to the system.
    591  */
    592 int
    593 config_cfdriver_attach(struct cfdriver *cd)
    594 {
    595 	struct cfdriver *lcd;
    596 
    597 	/* Make sure this driver isn't already in the system. */
    598 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    599 		if (STREQ(lcd->cd_name, cd->cd_name))
    600 			return EEXIST;
    601 	}
    602 
    603 	LIST_INIT(&cd->cd_attach);
    604 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    605 
    606 	return 0;
    607 }
    608 
    609 /*
    610  * Remove a cfdriver from the system.
    611  */
    612 int
    613 config_cfdriver_detach(struct cfdriver *cd)
    614 {
    615 	struct alldevs_foray af;
    616 	int i, rc = 0;
    617 
    618 	config_alldevs_enter(&af);
    619 	/* Make sure there are no active instances. */
    620 	for (i = 0; i < cd->cd_ndevs; i++) {
    621 		if (cd->cd_devs[i] != NULL) {
    622 			rc = EBUSY;
    623 			break;
    624 		}
    625 	}
    626 	config_alldevs_exit(&af);
    627 
    628 	if (rc != 0)
    629 		return rc;
    630 
    631 	/* ...and no attachments loaded. */
    632 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    633 		return EBUSY;
    634 
    635 	LIST_REMOVE(cd, cd_list);
    636 
    637 	KASSERT(cd->cd_devs == NULL);
    638 
    639 	return 0;
    640 }
    641 
    642 /*
    643  * Look up a cfdriver by name.
    644  */
    645 struct cfdriver *
    646 config_cfdriver_lookup(const char *name)
    647 {
    648 	struct cfdriver *cd;
    649 
    650 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    651 		if (STREQ(cd->cd_name, name))
    652 			return cd;
    653 	}
    654 
    655 	return NULL;
    656 }
    657 
    658 /*
    659  * Add a cfattach to the specified driver.
    660  */
    661 int
    662 config_cfattach_attach(const char *driver, struct cfattach *ca)
    663 {
    664 	struct cfattach *lca;
    665 	struct cfdriver *cd;
    666 
    667 	cd = config_cfdriver_lookup(driver);
    668 	if (cd == NULL)
    669 		return ESRCH;
    670 
    671 	/* Make sure this attachment isn't already on this driver. */
    672 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    673 		if (STREQ(lca->ca_name, ca->ca_name))
    674 			return EEXIST;
    675 	}
    676 
    677 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    678 
    679 	return 0;
    680 }
    681 
    682 /*
    683  * Remove a cfattach from the specified driver.
    684  */
    685 int
    686 config_cfattach_detach(const char *driver, struct cfattach *ca)
    687 {
    688 	struct alldevs_foray af;
    689 	struct cfdriver *cd;
    690 	device_t dev;
    691 	int i, rc = 0;
    692 
    693 	cd = config_cfdriver_lookup(driver);
    694 	if (cd == NULL)
    695 		return ESRCH;
    696 
    697 	config_alldevs_enter(&af);
    698 	/* Make sure there are no active instances. */
    699 	for (i = 0; i < cd->cd_ndevs; i++) {
    700 		if ((dev = cd->cd_devs[i]) == NULL)
    701 			continue;
    702 		if (dev->dv_cfattach == ca) {
    703 			rc = EBUSY;
    704 			break;
    705 		}
    706 	}
    707 	config_alldevs_exit(&af);
    708 
    709 	if (rc != 0)
    710 		return rc;
    711 
    712 	LIST_REMOVE(ca, ca_list);
    713 
    714 	return 0;
    715 }
    716 
    717 /*
    718  * Look up a cfattach by name.
    719  */
    720 static struct cfattach *
    721 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    722 {
    723 	struct cfattach *ca;
    724 
    725 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    726 		if (STREQ(ca->ca_name, atname))
    727 			return ca;
    728 	}
    729 
    730 	return NULL;
    731 }
    732 
    733 /*
    734  * Look up a cfattach by driver/attachment name.
    735  */
    736 struct cfattach *
    737 config_cfattach_lookup(const char *name, const char *atname)
    738 {
    739 	struct cfdriver *cd;
    740 
    741 	cd = config_cfdriver_lookup(name);
    742 	if (cd == NULL)
    743 		return NULL;
    744 
    745 	return config_cfattach_lookup_cd(cd, atname);
    746 }
    747 
    748 /*
    749  * Apply the matching function and choose the best.  This is used
    750  * a few times and we want to keep the code small.
    751  */
    752 static void
    753 mapply(struct matchinfo *m, cfdata_t cf)
    754 {
    755 	int pri;
    756 
    757 	if (m->fn != NULL) {
    758 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    759 	} else {
    760 		pri = config_match(m->parent, cf, m->aux);
    761 	}
    762 	if (pri > m->pri) {
    763 		m->match = cf;
    764 		m->pri = pri;
    765 	}
    766 }
    767 
    768 int
    769 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    770 {
    771 	const struct cfiattrdata *ci;
    772 	const struct cflocdesc *cl;
    773 	int nlocs, i;
    774 
    775 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    776 	KASSERT(ci);
    777 	nlocs = ci->ci_loclen;
    778 	KASSERT(!nlocs || locs);
    779 	for (i = 0; i < nlocs; i++) {
    780 		cl = &ci->ci_locdesc[i];
    781 		if (cl->cld_defaultstr != NULL &&
    782 		    cf->cf_loc[i] == cl->cld_default)
    783 			continue;
    784 		if (cf->cf_loc[i] == locs[i])
    785 			continue;
    786 		return 0;
    787 	}
    788 
    789 	return config_match(parent, cf, aux);
    790 }
    791 
    792 /*
    793  * Helper function: check whether the driver supports the interface attribute
    794  * and return its descriptor structure.
    795  */
    796 static const struct cfiattrdata *
    797 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    798 {
    799 	const struct cfiattrdata * const *cpp;
    800 
    801 	if (cd->cd_attrs == NULL)
    802 		return 0;
    803 
    804 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    805 		if (STREQ((*cpp)->ci_name, ia)) {
    806 			/* Match. */
    807 			return *cpp;
    808 		}
    809 	}
    810 	return 0;
    811 }
    812 
    813 #if defined(DIAGNOSTIC)
    814 static int
    815 cfdriver_iattr_count(const struct cfdriver *cd)
    816 {
    817 	const struct cfiattrdata * const *cpp;
    818 	int i;
    819 
    820 	if (cd->cd_attrs == NULL)
    821 		return 0;
    822 
    823 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    824 		i++;
    825 	}
    826 	return i;
    827 }
    828 #endif /* DIAGNOSTIC */
    829 
    830 /*
    831  * Lookup an interface attribute description by name.
    832  * If the driver is given, consider only its supported attributes.
    833  */
    834 const struct cfiattrdata *
    835 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    836 {
    837 	const struct cfdriver *d;
    838 	const struct cfiattrdata *ia;
    839 
    840 	if (cd)
    841 		return cfdriver_get_iattr(cd, name);
    842 
    843 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    844 		ia = cfdriver_get_iattr(d, name);
    845 		if (ia)
    846 			return ia;
    847 	}
    848 	return 0;
    849 }
    850 
    851 /*
    852  * Determine if `parent' is a potential parent for a device spec based
    853  * on `cfp'.
    854  */
    855 static int
    856 cfparent_match(const device_t parent, const struct cfparent *cfp)
    857 {
    858 	struct cfdriver *pcd;
    859 
    860 	/* We don't match root nodes here. */
    861 	if (cfp == NULL)
    862 		return 0;
    863 
    864 	pcd = parent->dv_cfdriver;
    865 	KASSERT(pcd != NULL);
    866 
    867 	/*
    868 	 * First, ensure this parent has the correct interface
    869 	 * attribute.
    870 	 */
    871 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    872 		return 0;
    873 
    874 	/*
    875 	 * If no specific parent device instance was specified (i.e.
    876 	 * we're attaching to the attribute only), we're done!
    877 	 */
    878 	if (cfp->cfp_parent == NULL)
    879 		return 1;
    880 
    881 	/*
    882 	 * Check the parent device's name.
    883 	 */
    884 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    885 		return 0;	/* not the same parent */
    886 
    887 	/*
    888 	 * Make sure the unit number matches.
    889 	 */
    890 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    891 	    cfp->cfp_unit == parent->dv_unit)
    892 		return 1;
    893 
    894 	/* Unit numbers don't match. */
    895 	return 0;
    896 }
    897 
    898 /*
    899  * Helper for config_cfdata_attach(): check all devices whether it could be
    900  * parent any attachment in the config data table passed, and rescan.
    901  */
    902 static void
    903 rescan_with_cfdata(const struct cfdata *cf)
    904 {
    905 	device_t d;
    906 	const struct cfdata *cf1;
    907 	deviter_t di;
    908 
    909 
    910 	/*
    911 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    912 	 * the outer loop.
    913 	 */
    914 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    915 
    916 		if (!(d->dv_cfattach->ca_rescan))
    917 			continue;
    918 
    919 		for (cf1 = cf; cf1->cf_name; cf1++) {
    920 
    921 			if (!cfparent_match(d, cf1->cf_pspec))
    922 				continue;
    923 
    924 			(*d->dv_cfattach->ca_rescan)(d,
    925 				cfdata_ifattr(cf1), cf1->cf_loc);
    926 
    927 			config_deferred(d);
    928 		}
    929 	}
    930 	deviter_release(&di);
    931 }
    932 
    933 /*
    934  * Attach a supplemental config data table and rescan potential
    935  * parent devices if required.
    936  */
    937 int
    938 config_cfdata_attach(cfdata_t cf, int scannow)
    939 {
    940 	struct cftable *ct;
    941 
    942 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    943 	ct->ct_cfdata = cf;
    944 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    945 
    946 	if (scannow)
    947 		rescan_with_cfdata(cf);
    948 
    949 	return 0;
    950 }
    951 
    952 /*
    953  * Helper for config_cfdata_detach: check whether a device is
    954  * found through any attachment in the config data table.
    955  */
    956 static int
    957 dev_in_cfdata(device_t d, cfdata_t cf)
    958 {
    959 	const struct cfdata *cf1;
    960 
    961 	for (cf1 = cf; cf1->cf_name; cf1++)
    962 		if (d->dv_cfdata == cf1)
    963 			return 1;
    964 
    965 	return 0;
    966 }
    967 
    968 /*
    969  * Detach a supplemental config data table. Detach all devices found
    970  * through that table (and thus keeping references to it) before.
    971  */
    972 int
    973 config_cfdata_detach(cfdata_t cf)
    974 {
    975 	device_t d;
    976 	int error = 0;
    977 	struct cftable *ct;
    978 	deviter_t di;
    979 
    980 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    981 	     d = deviter_next(&di)) {
    982 		if (!dev_in_cfdata(d, cf))
    983 			continue;
    984 		if ((error = config_detach(d, 0)) != 0)
    985 			break;
    986 	}
    987 	deviter_release(&di);
    988 	if (error) {
    989 		aprint_error_dev(d, "unable to detach instance\n");
    990 		return error;
    991 	}
    992 
    993 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    994 		if (ct->ct_cfdata == cf) {
    995 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    996 			kmem_free(ct, sizeof(*ct));
    997 			return 0;
    998 		}
    999 	}
   1000 
   1001 	/* not found -- shouldn't happen */
   1002 	return EINVAL;
   1003 }
   1004 
   1005 /*
   1006  * Invoke the "match" routine for a cfdata entry on behalf of
   1007  * an external caller, usually a "submatch" routine.
   1008  */
   1009 int
   1010 config_match(device_t parent, cfdata_t cf, void *aux)
   1011 {
   1012 	struct cfattach *ca;
   1013 
   1014 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1015 	if (ca == NULL) {
   1016 		/* No attachment for this entry, oh well. */
   1017 		return 0;
   1018 	}
   1019 
   1020 	return (*ca->ca_match)(parent, cf, aux);
   1021 }
   1022 
   1023 static void
   1024 config_get_cfargs(cfarg_t tag,
   1025 		  cfsubmatch_t *fnp,		/* output */
   1026 		  const char **ifattrp,		/* output */
   1027 		  const int **locsp,		/* output */
   1028 		  va_list ap)
   1029 {
   1030 	cfsubmatch_t fn = NULL;
   1031 	const char *ifattr = NULL;
   1032 	const int *locs = NULL;
   1033 
   1034 	while (tag != CFARG_EOL) {
   1035 		switch (tag) {
   1036 		case CFARG_SUBMATCH:
   1037 			fn = va_arg(ap, cfsubmatch_t);
   1038 			break;
   1039 
   1040 		case CFARG_IATTR:
   1041 			ifattr = va_arg(ap, const char *);
   1042 			break;
   1043 
   1044 		case CFARG_LOCATORS:
   1045 			locs = va_arg(ap, const int *);
   1046 			break;
   1047 
   1048 		default:
   1049 			/* XXX panic? */
   1050 			/* XXX dump stack backtrace? */
   1051 			aprint_error("%s: unknown cfarg tag: %d\n",
   1052 			    __func__, tag);
   1053 			goto out;
   1054 		}
   1055 		tag = va_arg(ap, cfarg_t);
   1056 	}
   1057 
   1058  out:
   1059 	if (fnp != NULL)
   1060 		*fnp = fn;
   1061 	if (ifattrp != NULL)
   1062 		*ifattrp = ifattr;
   1063 	if (locsp != NULL)
   1064 		*locsp = locs;
   1065 }
   1066 
   1067 /*
   1068  * Iterate over all potential children of some device, calling the given
   1069  * function (default being the child's match function) for each one.
   1070  * Nonzero returns are matches; the highest value returned is considered
   1071  * the best match.  Return the `found child' if we got a match, or NULL
   1072  * otherwise.  The `aux' pointer is simply passed on through.
   1073  *
   1074  * Note that this function is designed so that it can be used to apply
   1075  * an arbitrary function to all potential children (its return value
   1076  * can be ignored).
   1077  */
   1078 static cfdata_t
   1079 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1080 {
   1081 	cfsubmatch_t fn;
   1082 	const char *ifattr;
   1083 	const int *locs;
   1084 	struct cftable *ct;
   1085 	cfdata_t cf;
   1086 	struct matchinfo m;
   1087 
   1088 	config_get_cfargs(tag, &fn, &ifattr, &locs, ap);
   1089 
   1090 	KASSERT(config_initialized);
   1091 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1092 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1093 
   1094 	m.fn = fn;
   1095 	m.parent = parent;
   1096 	m.locs = locs;
   1097 	m.aux = aux;
   1098 	m.match = NULL;
   1099 	m.pri = 0;
   1100 
   1101 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1102 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1103 
   1104 			/* We don't match root nodes here. */
   1105 			if (!cf->cf_pspec)
   1106 				continue;
   1107 
   1108 			/*
   1109 			 * Skip cf if no longer eligible, otherwise scan
   1110 			 * through parents for one matching `parent', and
   1111 			 * try match function.
   1112 			 */
   1113 			if (cf->cf_fstate == FSTATE_FOUND)
   1114 				continue;
   1115 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1116 			    cf->cf_fstate == FSTATE_DSTAR)
   1117 				continue;
   1118 
   1119 			/*
   1120 			 * If an interface attribute was specified,
   1121 			 * consider only children which attach to
   1122 			 * that attribute.
   1123 			 */
   1124 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1125 				continue;
   1126 
   1127 			if (cfparent_match(parent, cf->cf_pspec))
   1128 				mapply(&m, cf);
   1129 		}
   1130 	}
   1131 	return m.match;
   1132 }
   1133 
   1134 cfdata_t
   1135 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1136 {
   1137 	cfdata_t cf;
   1138 	va_list ap;
   1139 
   1140 	va_start(ap, tag);
   1141 	cf = config_vsearch(parent, aux, tag, ap);
   1142 	va_end(ap);
   1143 
   1144 	return cf;
   1145 }
   1146 
   1147 /*
   1148  * Find the given root device.
   1149  * This is much like config_search, but there is no parent.
   1150  * Don't bother with multiple cfdata tables; the root node
   1151  * must always be in the initial table.
   1152  */
   1153 cfdata_t
   1154 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1155 {
   1156 	cfdata_t cf;
   1157 	const short *p;
   1158 	struct matchinfo m;
   1159 
   1160 	m.fn = fn;
   1161 	m.parent = ROOT;
   1162 	m.aux = aux;
   1163 	m.match = NULL;
   1164 	m.pri = 0;
   1165 	m.locs = 0;
   1166 	/*
   1167 	 * Look at root entries for matching name.  We do not bother
   1168 	 * with found-state here since only one root should ever be
   1169 	 * searched (and it must be done first).
   1170 	 */
   1171 	for (p = cfroots; *p >= 0; p++) {
   1172 		cf = &cfdata[*p];
   1173 		if (strcmp(cf->cf_name, rootname) == 0)
   1174 			mapply(&m, cf);
   1175 	}
   1176 	return m.match;
   1177 }
   1178 
   1179 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1180 
   1181 /*
   1182  * The given `aux' argument describes a device that has been found
   1183  * on the given parent, but not necessarily configured.  Locate the
   1184  * configuration data for that device (using the submatch function
   1185  * provided, or using candidates' cd_match configuration driver
   1186  * functions) and attach it, and return its device_t.  If the device was
   1187  * not configured, call the given `print' function and return NULL.
   1188  */
   1189 static device_t
   1190 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1191     va_list ap)
   1192 {
   1193 	cfdata_t cf;
   1194 	va_list nap;
   1195 
   1196 	va_copy(nap, ap);
   1197 	cf = config_vsearch(parent, aux, tag, nap);
   1198 	va_end(nap);
   1199 
   1200 	if (cf != NULL) {
   1201 		return config_vattach(parent, cf, aux, print, tag, ap);
   1202 	}
   1203 
   1204 	if (print) {
   1205 		if (config_do_twiddle && cold)
   1206 			twiddle();
   1207 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1208 	}
   1209 
   1210 	/*
   1211 	 * This has the effect of mixing in a single timestamp to the
   1212 	 * entropy pool.  Experiments indicate the estimator will almost
   1213 	 * always attribute one bit of entropy to this sample; analysis
   1214 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1215 	 * bits of entropy/sample so this seems appropriately conservative.
   1216 	 */
   1217 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1218 	return NULL;
   1219 }
   1220 
   1221 device_t
   1222 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1223 {
   1224 	device_t dev;
   1225 	va_list ap;
   1226 
   1227 	va_start(ap, tag);
   1228 	dev = config_vfound(parent, aux, print, tag, ap);
   1229 	va_end(ap);
   1230 
   1231 	return dev;
   1232 }
   1233 
   1234 /*
   1235  * As above, but for root devices.
   1236  */
   1237 device_t
   1238 config_rootfound(const char *rootname, void *aux)
   1239 {
   1240 	cfdata_t cf;
   1241 
   1242 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1243 		return config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
   1244 	aprint_error("root device %s not configured\n", rootname);
   1245 	return NULL;
   1246 }
   1247 
   1248 /* just like sprintf(buf, "%d") except that it works from the end */
   1249 static char *
   1250 number(char *ep, int n)
   1251 {
   1252 
   1253 	*--ep = 0;
   1254 	while (n >= 10) {
   1255 		*--ep = (n % 10) + '0';
   1256 		n /= 10;
   1257 	}
   1258 	*--ep = n + '0';
   1259 	return ep;
   1260 }
   1261 
   1262 /*
   1263  * Expand the size of the cd_devs array if necessary.
   1264  *
   1265  * The caller must hold alldevs_lock. config_makeroom() may release and
   1266  * re-acquire alldevs_lock, so callers should re-check conditions such
   1267  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1268  * returns.
   1269  */
   1270 static void
   1271 config_makeroom(int n, struct cfdriver *cd)
   1272 {
   1273 	int ondevs, nndevs;
   1274 	device_t *osp, *nsp;
   1275 
   1276 	KASSERT(mutex_owned(&alldevs_lock));
   1277 	alldevs_nwrite++;
   1278 
   1279 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1280 		;
   1281 
   1282 	while (n >= cd->cd_ndevs) {
   1283 		/*
   1284 		 * Need to expand the array.
   1285 		 */
   1286 		ondevs = cd->cd_ndevs;
   1287 		osp = cd->cd_devs;
   1288 
   1289 		/*
   1290 		 * Release alldevs_lock around allocation, which may
   1291 		 * sleep.
   1292 		 */
   1293 		mutex_exit(&alldevs_lock);
   1294 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1295 		mutex_enter(&alldevs_lock);
   1296 
   1297 		/*
   1298 		 * If another thread moved the array while we did
   1299 		 * not hold alldevs_lock, try again.
   1300 		 */
   1301 		if (cd->cd_devs != osp) {
   1302 			mutex_exit(&alldevs_lock);
   1303 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1304 			mutex_enter(&alldevs_lock);
   1305 			continue;
   1306 		}
   1307 
   1308 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1309 		if (ondevs != 0)
   1310 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1311 
   1312 		cd->cd_ndevs = nndevs;
   1313 		cd->cd_devs = nsp;
   1314 		if (ondevs != 0) {
   1315 			mutex_exit(&alldevs_lock);
   1316 			kmem_free(osp, sizeof(device_t) * ondevs);
   1317 			mutex_enter(&alldevs_lock);
   1318 		}
   1319 	}
   1320 	KASSERT(mutex_owned(&alldevs_lock));
   1321 	alldevs_nwrite--;
   1322 }
   1323 
   1324 /*
   1325  * Put dev into the devices list.
   1326  */
   1327 static void
   1328 config_devlink(device_t dev)
   1329 {
   1330 
   1331 	mutex_enter(&alldevs_lock);
   1332 
   1333 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1334 
   1335 	dev->dv_add_gen = alldevs_gen;
   1336 	/* It is safe to add a device to the tail of the list while
   1337 	 * readers and writers are in the list.
   1338 	 */
   1339 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1340 	mutex_exit(&alldevs_lock);
   1341 }
   1342 
   1343 static void
   1344 config_devfree(device_t dev)
   1345 {
   1346 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1347 
   1348 	if (dev->dv_cfattach->ca_devsize > 0)
   1349 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1350 	kmem_free(dev, sizeof(*dev));
   1351 }
   1352 
   1353 /*
   1354  * Caller must hold alldevs_lock.
   1355  */
   1356 static void
   1357 config_devunlink(device_t dev, struct devicelist *garbage)
   1358 {
   1359 	struct device_garbage *dg = &dev->dv_garbage;
   1360 	cfdriver_t cd = device_cfdriver(dev);
   1361 	int i;
   1362 
   1363 	KASSERT(mutex_owned(&alldevs_lock));
   1364 
   1365  	/* Unlink from device list.  Link to garbage list. */
   1366 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1367 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1368 
   1369 	/* Remove from cfdriver's array. */
   1370 	cd->cd_devs[dev->dv_unit] = NULL;
   1371 
   1372 	/*
   1373 	 * If the device now has no units in use, unlink its softc array.
   1374 	 */
   1375 	for (i = 0; i < cd->cd_ndevs; i++) {
   1376 		if (cd->cd_devs[i] != NULL)
   1377 			break;
   1378 	}
   1379 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1380 	if (i == cd->cd_ndevs) {
   1381 		dg->dg_ndevs = cd->cd_ndevs;
   1382 		dg->dg_devs = cd->cd_devs;
   1383 		cd->cd_devs = NULL;
   1384 		cd->cd_ndevs = 0;
   1385 	}
   1386 }
   1387 
   1388 static void
   1389 config_devdelete(device_t dev)
   1390 {
   1391 	struct device_garbage *dg = &dev->dv_garbage;
   1392 	device_lock_t dvl = device_getlock(dev);
   1393 
   1394 	if (dg->dg_devs != NULL)
   1395 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1396 
   1397 	cv_destroy(&dvl->dvl_cv);
   1398 	mutex_destroy(&dvl->dvl_mtx);
   1399 
   1400 	KASSERT(dev->dv_properties != NULL);
   1401 	prop_object_release(dev->dv_properties);
   1402 
   1403 	if (dev->dv_activity_handlers)
   1404 		panic("%s with registered handlers", __func__);
   1405 
   1406 	if (dev->dv_locators) {
   1407 		size_t amount = *--dev->dv_locators;
   1408 		kmem_free(dev->dv_locators, amount);
   1409 	}
   1410 
   1411 	config_devfree(dev);
   1412 }
   1413 
   1414 static int
   1415 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1416 {
   1417 	int unit;
   1418 
   1419 	if (cf->cf_fstate == FSTATE_STAR) {
   1420 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1421 			if (cd->cd_devs[unit] == NULL)
   1422 				break;
   1423 		/*
   1424 		 * unit is now the unit of the first NULL device pointer,
   1425 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1426 		 */
   1427 	} else {
   1428 		unit = cf->cf_unit;
   1429 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1430 			unit = -1;
   1431 	}
   1432 	return unit;
   1433 }
   1434 
   1435 static int
   1436 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1437 {
   1438 	struct alldevs_foray af;
   1439 	int unit;
   1440 
   1441 	config_alldevs_enter(&af);
   1442 	for (;;) {
   1443 		unit = config_unit_nextfree(cd, cf);
   1444 		if (unit == -1)
   1445 			break;
   1446 		if (unit < cd->cd_ndevs) {
   1447 			cd->cd_devs[unit] = dev;
   1448 			dev->dv_unit = unit;
   1449 			break;
   1450 		}
   1451 		config_makeroom(unit, cd);
   1452 	}
   1453 	config_alldevs_exit(&af);
   1454 
   1455 	return unit;
   1456 }
   1457 
   1458 static device_t
   1459 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
   1460     va_list ap)
   1461 {
   1462 	cfdriver_t cd;
   1463 	cfattach_t ca;
   1464 	size_t lname, lunit;
   1465 	const char *xunit;
   1466 	int myunit;
   1467 	char num[10];
   1468 	device_t dev;
   1469 	void *dev_private;
   1470 	const struct cfiattrdata *ia;
   1471 	device_lock_t dvl;
   1472 	const int *locs;
   1473 
   1474 	config_get_cfargs(tag, NULL, NULL, &locs, ap);
   1475 
   1476 	cd = config_cfdriver_lookup(cf->cf_name);
   1477 	if (cd == NULL)
   1478 		return NULL;
   1479 
   1480 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1481 	if (ca == NULL)
   1482 		return NULL;
   1483 
   1484 	/* get memory for all device vars */
   1485 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1486 	if (ca->ca_devsize > 0) {
   1487 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1488 	} else {
   1489 		dev_private = NULL;
   1490 	}
   1491 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1492 
   1493 	dev->dv_class = cd->cd_class;
   1494 	dev->dv_cfdata = cf;
   1495 	dev->dv_cfdriver = cd;
   1496 	dev->dv_cfattach = ca;
   1497 	dev->dv_activity_count = 0;
   1498 	dev->dv_activity_handlers = NULL;
   1499 	dev->dv_private = dev_private;
   1500 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1501 
   1502 	myunit = config_unit_alloc(dev, cd, cf);
   1503 	if (myunit == -1) {
   1504 		config_devfree(dev);
   1505 		return NULL;
   1506 	}
   1507 
   1508 	/* compute length of name and decimal expansion of unit number */
   1509 	lname = strlen(cd->cd_name);
   1510 	xunit = number(&num[sizeof(num)], myunit);
   1511 	lunit = &num[sizeof(num)] - xunit;
   1512 	if (lname + lunit > sizeof(dev->dv_xname))
   1513 		panic("config_vdevalloc: device name too long");
   1514 
   1515 	dvl = device_getlock(dev);
   1516 
   1517 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1518 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1519 
   1520 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1521 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1522 	dev->dv_parent = parent;
   1523 	if (parent != NULL)
   1524 		dev->dv_depth = parent->dv_depth + 1;
   1525 	else
   1526 		dev->dv_depth = 0;
   1527 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1528 	if (locs) {
   1529 		KASSERT(parent); /* no locators at root */
   1530 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1531 		dev->dv_locators =
   1532 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1533 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1534 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1535 	}
   1536 	dev->dv_properties = prop_dictionary_create();
   1537 	KASSERT(dev->dv_properties != NULL);
   1538 
   1539 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1540 	    "device-driver", dev->dv_cfdriver->cd_name);
   1541 	prop_dictionary_set_uint16(dev->dv_properties,
   1542 	    "device-unit", dev->dv_unit);
   1543 	if (parent != NULL) {
   1544 		prop_dictionary_set_string(dev->dv_properties,
   1545 		    "device-parent", device_xname(parent));
   1546 	}
   1547 
   1548 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1549 		config_add_attrib_dict(dev);
   1550 
   1551 	return dev;
   1552 }
   1553 
   1554 static device_t
   1555 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
   1556 {
   1557 	device_t dev;
   1558 	va_list ap;
   1559 
   1560 	va_start(ap, tag);
   1561 	dev = config_vdevalloc(parent, cf, tag, ap);
   1562 	va_end(ap);
   1563 
   1564 	return dev;
   1565 }
   1566 
   1567 /*
   1568  * Create an array of device attach attributes and add it
   1569  * to the device's dv_properties dictionary.
   1570  *
   1571  * <key>interface-attributes</key>
   1572  * <array>
   1573  *    <dict>
   1574  *       <key>attribute-name</key>
   1575  *       <string>foo</string>
   1576  *       <key>locators</key>
   1577  *       <array>
   1578  *          <dict>
   1579  *             <key>loc-name</key>
   1580  *             <string>foo-loc1</string>
   1581  *          </dict>
   1582  *          <dict>
   1583  *             <key>loc-name</key>
   1584  *             <string>foo-loc2</string>
   1585  *             <key>default</key>
   1586  *             <string>foo-loc2-default</string>
   1587  *          </dict>
   1588  *          ...
   1589  *       </array>
   1590  *    </dict>
   1591  *    ...
   1592  * </array>
   1593  */
   1594 
   1595 static void
   1596 config_add_attrib_dict(device_t dev)
   1597 {
   1598 	int i, j;
   1599 	const struct cfiattrdata *ci;
   1600 	prop_dictionary_t attr_dict, loc_dict;
   1601 	prop_array_t attr_array, loc_array;
   1602 
   1603 	if ((attr_array = prop_array_create()) == NULL)
   1604 		return;
   1605 
   1606 	for (i = 0; ; i++) {
   1607 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1608 			break;
   1609 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1610 			break;
   1611 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1612 		    ci->ci_name);
   1613 
   1614 		/* Create an array of the locator names and defaults */
   1615 
   1616 		if (ci->ci_loclen != 0 &&
   1617 		    (loc_array = prop_array_create()) != NULL) {
   1618 			for (j = 0; j < ci->ci_loclen; j++) {
   1619 				loc_dict = prop_dictionary_create();
   1620 				if (loc_dict == NULL)
   1621 					continue;
   1622 				prop_dictionary_set_string_nocopy(loc_dict,
   1623 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1624 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1625 					prop_dictionary_set_string_nocopy(
   1626 					    loc_dict, "default",
   1627 					    ci->ci_locdesc[j].cld_defaultstr);
   1628 				prop_array_set(loc_array, j, loc_dict);
   1629 				prop_object_release(loc_dict);
   1630 			}
   1631 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1632 			    loc_array);
   1633 		}
   1634 		prop_array_add(attr_array, attr_dict);
   1635 		prop_object_release(attr_dict);
   1636 	}
   1637 	if (i == 0)
   1638 		prop_object_release(attr_array);
   1639 	else
   1640 		prop_dictionary_set_and_rel(dev->dv_properties,
   1641 		    "interface-attributes", attr_array);
   1642 
   1643 	return;
   1644 }
   1645 
   1646 /*
   1647  * Attach a found device.
   1648  */
   1649 static device_t
   1650 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1651     cfarg_t tag, va_list ap)
   1652 {
   1653 	device_t dev;
   1654 	struct cftable *ct;
   1655 	const char *drvname;
   1656 
   1657 	dev = config_vdevalloc(parent, cf, tag, ap);
   1658 	if (!dev)
   1659 		panic("config_attach: allocation of device softc failed");
   1660 
   1661 	/* XXX redundant - see below? */
   1662 	if (cf->cf_fstate != FSTATE_STAR) {
   1663 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1664 		cf->cf_fstate = FSTATE_FOUND;
   1665 	}
   1666 
   1667 	config_devlink(dev);
   1668 
   1669 	if (config_do_twiddle && cold)
   1670 		twiddle();
   1671 	else
   1672 		aprint_naive("Found ");
   1673 	/*
   1674 	 * We want the next two printfs for normal, verbose, and quiet,
   1675 	 * but not silent (in which case, we're twiddling, instead).
   1676 	 */
   1677 	if (parent == ROOT) {
   1678 		aprint_naive("%s (root)", device_xname(dev));
   1679 		aprint_normal("%s (root)", device_xname(dev));
   1680 	} else {
   1681 		aprint_naive("%s at %s", device_xname(dev),
   1682 		    device_xname(parent));
   1683 		aprint_normal("%s at %s", device_xname(dev),
   1684 		    device_xname(parent));
   1685 		if (print)
   1686 			(void) (*print)(aux, NULL);
   1687 	}
   1688 
   1689 	/*
   1690 	 * Before attaching, clobber any unfound devices that are
   1691 	 * otherwise identical.
   1692 	 * XXX code above is redundant?
   1693 	 */
   1694 	drvname = dev->dv_cfdriver->cd_name;
   1695 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1696 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1697 			if (STREQ(cf->cf_name, drvname) &&
   1698 			    cf->cf_unit == dev->dv_unit) {
   1699 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1700 					cf->cf_fstate = FSTATE_FOUND;
   1701 			}
   1702 		}
   1703 	}
   1704 	device_register(dev, aux);
   1705 
   1706 	/* Let userland know */
   1707 	devmon_report_device(dev, true);
   1708 
   1709 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1710 
   1711 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1712 	    && !device_pmf_is_registered(dev))
   1713 		aprint_debug_dev(dev,
   1714 		    "WARNING: power management not supported\n");
   1715 
   1716 	config_process_deferred(&deferred_config_queue, dev);
   1717 
   1718 	device_register_post_config(dev, aux);
   1719 	return dev;
   1720 }
   1721 
   1722 device_t
   1723 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1724     cfarg_t tag, ...)
   1725 {
   1726 	device_t dev;
   1727 	va_list ap;
   1728 
   1729 	va_start(ap, tag);
   1730 	dev = config_vattach(parent, cf, aux, print, tag, ap);
   1731 	va_end(ap);
   1732 
   1733 	return dev;
   1734 }
   1735 
   1736 /*
   1737  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1738  * way are silently inserted into the device tree, and their children
   1739  * attached.
   1740  *
   1741  * Note that because pseudo-devices are attached silently, any information
   1742  * the attach routine wishes to print should be prefixed with the device
   1743  * name by the attach routine.
   1744  */
   1745 device_t
   1746 config_attach_pseudo(cfdata_t cf)
   1747 {
   1748 	device_t dev;
   1749 
   1750 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
   1751 	if (!dev)
   1752 		return NULL;
   1753 
   1754 	/* XXX mark busy in cfdata */
   1755 
   1756 	if (cf->cf_fstate != FSTATE_STAR) {
   1757 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1758 		cf->cf_fstate = FSTATE_FOUND;
   1759 	}
   1760 
   1761 	config_devlink(dev);
   1762 
   1763 #if 0	/* XXXJRT not yet */
   1764 	device_register(dev, NULL);	/* like a root node */
   1765 #endif
   1766 
   1767 	/* Let userland know */
   1768 	devmon_report_device(dev, true);
   1769 
   1770 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1771 
   1772 	config_process_deferred(&deferred_config_queue, dev);
   1773 	return dev;
   1774 }
   1775 
   1776 /*
   1777  * Caller must hold alldevs_lock.
   1778  */
   1779 static void
   1780 config_collect_garbage(struct devicelist *garbage)
   1781 {
   1782 	device_t dv;
   1783 
   1784 	KASSERT(!cpu_intr_p());
   1785 	KASSERT(!cpu_softintr_p());
   1786 	KASSERT(mutex_owned(&alldevs_lock));
   1787 
   1788 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1789 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1790 			if (dv->dv_del_gen != 0)
   1791 				break;
   1792 		}
   1793 		if (dv == NULL) {
   1794 			alldevs_garbage = false;
   1795 			break;
   1796 		}
   1797 		config_devunlink(dv, garbage);
   1798 	}
   1799 	KASSERT(mutex_owned(&alldevs_lock));
   1800 }
   1801 
   1802 static void
   1803 config_dump_garbage(struct devicelist *garbage)
   1804 {
   1805 	device_t dv;
   1806 
   1807 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1808 		TAILQ_REMOVE(garbage, dv, dv_list);
   1809 		config_devdelete(dv);
   1810 	}
   1811 }
   1812 
   1813 /*
   1814  * Detach a device.  Optionally forced (e.g. because of hardware
   1815  * removal) and quiet.  Returns zero if successful, non-zero
   1816  * (an error code) otherwise.
   1817  *
   1818  * Note that this code wants to be run from a process context, so
   1819  * that the detach can sleep to allow processes which have a device
   1820  * open to run and unwind their stacks.
   1821  */
   1822 int
   1823 config_detach(device_t dev, int flags)
   1824 {
   1825 	struct alldevs_foray af;
   1826 	struct cftable *ct;
   1827 	cfdata_t cf;
   1828 	const struct cfattach *ca;
   1829 	struct cfdriver *cd;
   1830 	device_t d __diagused;
   1831 	int rv = 0;
   1832 
   1833 	cf = dev->dv_cfdata;
   1834 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1835 		cf->cf_fstate == FSTATE_STAR),
   1836 	    "config_detach: %s: bad device fstate: %d",
   1837 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1838 
   1839 	cd = dev->dv_cfdriver;
   1840 	KASSERT(cd != NULL);
   1841 
   1842 	ca = dev->dv_cfattach;
   1843 	KASSERT(ca != NULL);
   1844 
   1845 	mutex_enter(&alldevs_lock);
   1846 	if (dev->dv_del_gen != 0) {
   1847 		mutex_exit(&alldevs_lock);
   1848 #ifdef DIAGNOSTIC
   1849 		printf("%s: %s is already detached\n", __func__,
   1850 		    device_xname(dev));
   1851 #endif /* DIAGNOSTIC */
   1852 		return ENOENT;
   1853 	}
   1854 	alldevs_nwrite++;
   1855 	mutex_exit(&alldevs_lock);
   1856 
   1857 	if (!detachall &&
   1858 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1859 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1860 		rv = EOPNOTSUPP;
   1861 	} else if (ca->ca_detach != NULL) {
   1862 		rv = (*ca->ca_detach)(dev, flags);
   1863 	} else
   1864 		rv = EOPNOTSUPP;
   1865 
   1866 	/*
   1867 	 * If it was not possible to detach the device, then we either
   1868 	 * panic() (for the forced but failed case), or return an error.
   1869 	 *
   1870 	 * If it was possible to detach the device, ensure that the
   1871 	 * device is deactivated.
   1872 	 */
   1873 	if (rv == 0)
   1874 		dev->dv_flags &= ~DVF_ACTIVE;
   1875 	else if ((flags & DETACH_FORCE) == 0)
   1876 		goto out;
   1877 	else {
   1878 		panic("config_detach: forced detach of %s failed (%d)",
   1879 		    device_xname(dev), rv);
   1880 	}
   1881 
   1882 	/*
   1883 	 * The device has now been successfully detached.
   1884 	 */
   1885 
   1886 	/* Let userland know */
   1887 	devmon_report_device(dev, false);
   1888 
   1889 #ifdef DIAGNOSTIC
   1890 	/*
   1891 	 * Sanity: If you're successfully detached, you should have no
   1892 	 * children.  (Note that because children must be attached
   1893 	 * after parents, we only need to search the latter part of
   1894 	 * the list.)
   1895 	 */
   1896 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1897 	    d = TAILQ_NEXT(d, dv_list)) {
   1898 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1899 			printf("config_detach: detached device %s"
   1900 			    " has children %s\n", device_xname(dev),
   1901 			    device_xname(d));
   1902 			panic("config_detach");
   1903 		}
   1904 	}
   1905 #endif
   1906 
   1907 	/* notify the parent that the child is gone */
   1908 	if (dev->dv_parent) {
   1909 		device_t p = dev->dv_parent;
   1910 		if (p->dv_cfattach->ca_childdetached)
   1911 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1912 	}
   1913 
   1914 	/*
   1915 	 * Mark cfdata to show that the unit can be reused, if possible.
   1916 	 */
   1917 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1918 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1919 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1920 				if (cf->cf_fstate == FSTATE_FOUND &&
   1921 				    cf->cf_unit == dev->dv_unit)
   1922 					cf->cf_fstate = FSTATE_NOTFOUND;
   1923 			}
   1924 		}
   1925 	}
   1926 
   1927 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1928 		aprint_normal_dev(dev, "detached\n");
   1929 
   1930 out:
   1931 	config_alldevs_enter(&af);
   1932 	KASSERT(alldevs_nwrite != 0);
   1933 	--alldevs_nwrite;
   1934 	if (rv == 0 && dev->dv_del_gen == 0) {
   1935 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1936 			config_devunlink(dev, &af.af_garbage);
   1937 		else {
   1938 			dev->dv_del_gen = alldevs_gen;
   1939 			alldevs_garbage = true;
   1940 		}
   1941 	}
   1942 	config_alldevs_exit(&af);
   1943 
   1944 	return rv;
   1945 }
   1946 
   1947 int
   1948 config_detach_children(device_t parent, int flags)
   1949 {
   1950 	device_t dv;
   1951 	deviter_t di;
   1952 	int error = 0;
   1953 
   1954 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1955 	     dv = deviter_next(&di)) {
   1956 		if (device_parent(dv) != parent)
   1957 			continue;
   1958 		if ((error = config_detach(dv, flags)) != 0)
   1959 			break;
   1960 	}
   1961 	deviter_release(&di);
   1962 	return error;
   1963 }
   1964 
   1965 device_t
   1966 shutdown_first(struct shutdown_state *s)
   1967 {
   1968 	if (!s->initialized) {
   1969 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1970 		s->initialized = true;
   1971 	}
   1972 	return shutdown_next(s);
   1973 }
   1974 
   1975 device_t
   1976 shutdown_next(struct shutdown_state *s)
   1977 {
   1978 	device_t dv;
   1979 
   1980 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1981 		;
   1982 
   1983 	if (dv == NULL)
   1984 		s->initialized = false;
   1985 
   1986 	return dv;
   1987 }
   1988 
   1989 bool
   1990 config_detach_all(int how)
   1991 {
   1992 	static struct shutdown_state s;
   1993 	device_t curdev;
   1994 	bool progress = false;
   1995 	int flags;
   1996 
   1997 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1998 		return false;
   1999 
   2000 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2001 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2002 	else
   2003 		flags = DETACH_SHUTDOWN;
   2004 
   2005 	for (curdev = shutdown_first(&s); curdev != NULL;
   2006 	     curdev = shutdown_next(&s)) {
   2007 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2008 		if (config_detach(curdev, flags) == 0) {
   2009 			progress = true;
   2010 			aprint_debug("success.");
   2011 		} else
   2012 			aprint_debug("failed.");
   2013 	}
   2014 	return progress;
   2015 }
   2016 
   2017 static bool
   2018 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2019 {
   2020 	device_t dv;
   2021 
   2022 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2023 		if (device_parent(dv) == ancestor)
   2024 			return true;
   2025 	}
   2026 	return false;
   2027 }
   2028 
   2029 int
   2030 config_deactivate(device_t dev)
   2031 {
   2032 	deviter_t di;
   2033 	const struct cfattach *ca;
   2034 	device_t descendant;
   2035 	int s, rv = 0, oflags;
   2036 
   2037 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2038 	     descendant != NULL;
   2039 	     descendant = deviter_next(&di)) {
   2040 		if (dev != descendant &&
   2041 		    !device_is_ancestor_of(dev, descendant))
   2042 			continue;
   2043 
   2044 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2045 			continue;
   2046 
   2047 		ca = descendant->dv_cfattach;
   2048 		oflags = descendant->dv_flags;
   2049 
   2050 		descendant->dv_flags &= ~DVF_ACTIVE;
   2051 		if (ca->ca_activate == NULL)
   2052 			continue;
   2053 		s = splhigh();
   2054 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2055 		splx(s);
   2056 		if (rv != 0)
   2057 			descendant->dv_flags = oflags;
   2058 	}
   2059 	deviter_release(&di);
   2060 	return rv;
   2061 }
   2062 
   2063 /*
   2064  * Defer the configuration of the specified device until all
   2065  * of its parent's devices have been attached.
   2066  */
   2067 void
   2068 config_defer(device_t dev, void (*func)(device_t))
   2069 {
   2070 	struct deferred_config *dc;
   2071 
   2072 	if (dev->dv_parent == NULL)
   2073 		panic("config_defer: can't defer config of a root device");
   2074 
   2075 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2076 
   2077 	config_pending_incr(dev);
   2078 
   2079 	mutex_enter(&config_misc_lock);
   2080 #ifdef DIAGNOSTIC
   2081 	struct deferred_config *odc;
   2082 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2083 		if (odc->dc_dev == dev)
   2084 			panic("config_defer: deferred twice");
   2085 	}
   2086 #endif
   2087 	dc->dc_dev = dev;
   2088 	dc->dc_func = func;
   2089 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2090 	mutex_exit(&config_misc_lock);
   2091 }
   2092 
   2093 /*
   2094  * Defer some autoconfiguration for a device until after interrupts
   2095  * are enabled.
   2096  */
   2097 void
   2098 config_interrupts(device_t dev, void (*func)(device_t))
   2099 {
   2100 	struct deferred_config *dc;
   2101 
   2102 	/*
   2103 	 * If interrupts are enabled, callback now.
   2104 	 */
   2105 	if (cold == 0) {
   2106 		(*func)(dev);
   2107 		return;
   2108 	}
   2109 
   2110 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2111 
   2112 	config_pending_incr(dev);
   2113 
   2114 	mutex_enter(&config_misc_lock);
   2115 #ifdef DIAGNOSTIC
   2116 	struct deferred_config *odc;
   2117 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2118 		if (odc->dc_dev == dev)
   2119 			panic("config_interrupts: deferred twice");
   2120 	}
   2121 #endif
   2122 	dc->dc_dev = dev;
   2123 	dc->dc_func = func;
   2124 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2125 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2126 	mutex_exit(&config_misc_lock);
   2127 }
   2128 
   2129 /*
   2130  * Defer some autoconfiguration for a device until after root file system
   2131  * is mounted (to load firmware etc).
   2132  */
   2133 void
   2134 config_mountroot(device_t dev, void (*func)(device_t))
   2135 {
   2136 	struct deferred_config *dc;
   2137 
   2138 	/*
   2139 	 * If root file system is mounted, callback now.
   2140 	 */
   2141 	if (root_is_mounted) {
   2142 		(*func)(dev);
   2143 		return;
   2144 	}
   2145 
   2146 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2147 
   2148 	mutex_enter(&config_misc_lock);
   2149 #ifdef DIAGNOSTIC
   2150 	struct deferred_config *odc;
   2151 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2152 		if (odc->dc_dev == dev)
   2153 			panic("%s: deferred twice", __func__);
   2154 	}
   2155 #endif
   2156 
   2157 	dc->dc_dev = dev;
   2158 	dc->dc_func = func;
   2159 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2160 	mutex_exit(&config_misc_lock);
   2161 }
   2162 
   2163 /*
   2164  * Process a deferred configuration queue.
   2165  */
   2166 static void
   2167 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2168 {
   2169 	struct deferred_config *dc;
   2170 
   2171 	mutex_enter(&config_misc_lock);
   2172 	dc = TAILQ_FIRST(queue);
   2173 	while (dc) {
   2174 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2175 			TAILQ_REMOVE(queue, dc, dc_queue);
   2176 			mutex_exit(&config_misc_lock);
   2177 
   2178 			(*dc->dc_func)(dc->dc_dev);
   2179 			config_pending_decr(dc->dc_dev);
   2180 			kmem_free(dc, sizeof(*dc));
   2181 
   2182 			mutex_enter(&config_misc_lock);
   2183 			/* Restart, queue might have changed */
   2184 			dc = TAILQ_FIRST(queue);
   2185 		} else {
   2186 			dc = TAILQ_NEXT(dc, dc_queue);
   2187 		}
   2188 	}
   2189 	mutex_exit(&config_misc_lock);
   2190 }
   2191 
   2192 /*
   2193  * Manipulate the config_pending semaphore.
   2194  */
   2195 void
   2196 config_pending_incr(device_t dev)
   2197 {
   2198 
   2199 	mutex_enter(&config_misc_lock);
   2200 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2201 	    "%s: excess config_pending_incr", device_xname(dev));
   2202 	if (dev->dv_pending++ == 0)
   2203 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2204 #ifdef DEBUG_AUTOCONF
   2205 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2206 #endif
   2207 	mutex_exit(&config_misc_lock);
   2208 }
   2209 
   2210 void
   2211 config_pending_decr(device_t dev)
   2212 {
   2213 
   2214 	mutex_enter(&config_misc_lock);
   2215 	KASSERTMSG(dev->dv_pending > 0,
   2216 	    "%s: excess config_pending_decr", device_xname(dev));
   2217 	if (--dev->dv_pending == 0)
   2218 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2219 #ifdef DEBUG_AUTOCONF
   2220 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2221 #endif
   2222 	if (TAILQ_EMPTY(&config_pending))
   2223 		cv_broadcast(&config_misc_cv);
   2224 	mutex_exit(&config_misc_lock);
   2225 }
   2226 
   2227 /*
   2228  * Register a "finalization" routine.  Finalization routines are
   2229  * called iteratively once all real devices have been found during
   2230  * autoconfiguration, for as long as any one finalizer has done
   2231  * any work.
   2232  */
   2233 int
   2234 config_finalize_register(device_t dev, int (*fn)(device_t))
   2235 {
   2236 	struct finalize_hook *f;
   2237 
   2238 	/*
   2239 	 * If finalization has already been done, invoke the
   2240 	 * callback function now.
   2241 	 */
   2242 	if (config_finalize_done) {
   2243 		while ((*fn)(dev) != 0)
   2244 			/* loop */ ;
   2245 		return 0;
   2246 	}
   2247 
   2248 	/* Ensure this isn't already on the list. */
   2249 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2250 		if (f->f_func == fn && f->f_dev == dev)
   2251 			return EEXIST;
   2252 	}
   2253 
   2254 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2255 	f->f_func = fn;
   2256 	f->f_dev = dev;
   2257 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2258 
   2259 	return 0;
   2260 }
   2261 
   2262 void
   2263 config_finalize(void)
   2264 {
   2265 	struct finalize_hook *f;
   2266 	struct pdevinit *pdev;
   2267 	extern struct pdevinit pdevinit[];
   2268 	int errcnt, rv;
   2269 
   2270 	/*
   2271 	 * Now that device driver threads have been created, wait for
   2272 	 * them to finish any deferred autoconfiguration.
   2273 	 */
   2274 	mutex_enter(&config_misc_lock);
   2275 	while (!TAILQ_EMPTY(&config_pending)) {
   2276 		device_t dev;
   2277 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2278 			aprint_debug_dev(dev, "holding up boot\n");
   2279 		cv_wait(&config_misc_cv, &config_misc_lock);
   2280 	}
   2281 	mutex_exit(&config_misc_lock);
   2282 
   2283 	KERNEL_LOCK(1, NULL);
   2284 
   2285 	/* Attach pseudo-devices. */
   2286 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2287 		(*pdev->pdev_attach)(pdev->pdev_count);
   2288 
   2289 	/* Run the hooks until none of them does any work. */
   2290 	do {
   2291 		rv = 0;
   2292 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2293 			rv |= (*f->f_func)(f->f_dev);
   2294 	} while (rv != 0);
   2295 
   2296 	config_finalize_done = 1;
   2297 
   2298 	/* Now free all the hooks. */
   2299 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2300 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2301 		kmem_free(f, sizeof(*f));
   2302 	}
   2303 
   2304 	KERNEL_UNLOCK_ONE(NULL);
   2305 
   2306 	errcnt = aprint_get_error_count();
   2307 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2308 	    (boothowto & AB_VERBOSE) == 0) {
   2309 		mutex_enter(&config_misc_lock);
   2310 		if (config_do_twiddle) {
   2311 			config_do_twiddle = 0;
   2312 			printf_nolog(" done.\n");
   2313 		}
   2314 		mutex_exit(&config_misc_lock);
   2315 	}
   2316 	if (errcnt != 0) {
   2317 		printf("WARNING: %d error%s while detecting hardware; "
   2318 		    "check system log.\n", errcnt,
   2319 		    errcnt == 1 ? "" : "s");
   2320 	}
   2321 }
   2322 
   2323 void
   2324 config_twiddle_init(void)
   2325 {
   2326 
   2327 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2328 		config_do_twiddle = 1;
   2329 	}
   2330 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2331 }
   2332 
   2333 void
   2334 config_twiddle_fn(void *cookie)
   2335 {
   2336 
   2337 	mutex_enter(&config_misc_lock);
   2338 	if (config_do_twiddle) {
   2339 		twiddle();
   2340 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2341 	}
   2342 	mutex_exit(&config_misc_lock);
   2343 }
   2344 
   2345 static void
   2346 config_alldevs_enter(struct alldevs_foray *af)
   2347 {
   2348 	TAILQ_INIT(&af->af_garbage);
   2349 	mutex_enter(&alldevs_lock);
   2350 	config_collect_garbage(&af->af_garbage);
   2351 }
   2352 
   2353 static void
   2354 config_alldevs_exit(struct alldevs_foray *af)
   2355 {
   2356 	mutex_exit(&alldevs_lock);
   2357 	config_dump_garbage(&af->af_garbage);
   2358 }
   2359 
   2360 /*
   2361  * device_lookup:
   2362  *
   2363  *	Look up a device instance for a given driver.
   2364  */
   2365 device_t
   2366 device_lookup(cfdriver_t cd, int unit)
   2367 {
   2368 	device_t dv;
   2369 
   2370 	mutex_enter(&alldevs_lock);
   2371 	if (unit < 0 || unit >= cd->cd_ndevs)
   2372 		dv = NULL;
   2373 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2374 		dv = NULL;
   2375 	mutex_exit(&alldevs_lock);
   2376 
   2377 	return dv;
   2378 }
   2379 
   2380 /*
   2381  * device_lookup_private:
   2382  *
   2383  *	Look up a softc instance for a given driver.
   2384  */
   2385 void *
   2386 device_lookup_private(cfdriver_t cd, int unit)
   2387 {
   2388 
   2389 	return device_private(device_lookup(cd, unit));
   2390 }
   2391 
   2392 /*
   2393  * device_find_by_xname:
   2394  *
   2395  *	Returns the device of the given name or NULL if it doesn't exist.
   2396  */
   2397 device_t
   2398 device_find_by_xname(const char *name)
   2399 {
   2400 	device_t dv;
   2401 	deviter_t di;
   2402 
   2403 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2404 		if (strcmp(device_xname(dv), name) == 0)
   2405 			break;
   2406 	}
   2407 	deviter_release(&di);
   2408 
   2409 	return dv;
   2410 }
   2411 
   2412 /*
   2413  * device_find_by_driver_unit:
   2414  *
   2415  *	Returns the device of the given driver name and unit or
   2416  *	NULL if it doesn't exist.
   2417  */
   2418 device_t
   2419 device_find_by_driver_unit(const char *name, int unit)
   2420 {
   2421 	struct cfdriver *cd;
   2422 
   2423 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2424 		return NULL;
   2425 	return device_lookup(cd, unit);
   2426 }
   2427 
   2428 static bool
   2429 match_strcmp(const char * const s1, const char * const s2)
   2430 {
   2431 	return strcmp(s1, s2) == 0;
   2432 }
   2433 
   2434 static bool
   2435 match_pmatch(const char * const s1, const char * const s2)
   2436 {
   2437 	return pmatch(s1, s2, NULL) == 2;
   2438 }
   2439 
   2440 static bool
   2441 strarray_match_internal(const char ** const strings,
   2442     unsigned int const nstrings, const char * const str,
   2443     unsigned int * const indexp,
   2444     bool (*match_fn)(const char *, const char *))
   2445 {
   2446 	unsigned int i;
   2447 
   2448 	if (strings == NULL || nstrings == 0) {
   2449 		return false;
   2450 	}
   2451 
   2452 	for (i = 0; i < nstrings; i++) {
   2453 		if ((*match_fn)(strings[i], str)) {
   2454 			*indexp = i;
   2455 			return true;
   2456 		}
   2457 	}
   2458 
   2459 	return false;
   2460 }
   2461 
   2462 static int
   2463 strarray_match(const char ** const strings, unsigned int const nstrings,
   2464     const char * const str)
   2465 {
   2466 	unsigned int idx;
   2467 
   2468 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2469 				    match_strcmp)) {
   2470 		return (int)(nstrings - idx);
   2471 	}
   2472 	return 0;
   2473 }
   2474 
   2475 static int
   2476 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2477     const char * const pattern)
   2478 {
   2479 	unsigned int idx;
   2480 
   2481 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2482 				    match_pmatch)) {
   2483 		return (int)(nstrings - idx);
   2484 	}
   2485 	return 0;
   2486 }
   2487 
   2488 static int
   2489 device_compatible_match_strarray_internal(
   2490     const char **device_compats, int ndevice_compats,
   2491     const struct device_compatible_entry *driver_compats,
   2492     const struct device_compatible_entry **matching_entryp,
   2493     int (*match_fn)(const char **, unsigned int, const char *))
   2494 {
   2495 	const struct device_compatible_entry *dce = NULL;
   2496 	int rv;
   2497 
   2498 	if (ndevice_compats == 0 || device_compats == NULL ||
   2499 	    driver_compats == NULL)
   2500 		return 0;
   2501 
   2502 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2503 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2504 		if (rv != 0) {
   2505 			if (matching_entryp != NULL) {
   2506 				*matching_entryp = dce;
   2507 			}
   2508 			return rv;
   2509 		}
   2510 	}
   2511 	return 0;
   2512 }
   2513 
   2514 /*
   2515  * device_compatible_match:
   2516  *
   2517  *	Match a driver's "compatible" data against a device's
   2518  *	"compatible" strings.  Returns resulted weighted by
   2519  *	which device "compatible" string was matched.
   2520  */
   2521 int
   2522 device_compatible_match(const char **device_compats, int ndevice_compats,
   2523     const struct device_compatible_entry *driver_compats)
   2524 {
   2525 	return device_compatible_match_strarray_internal(device_compats,
   2526 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2527 }
   2528 
   2529 /*
   2530  * device_compatible_pmatch:
   2531  *
   2532  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2533  *	the device "compatible" strings against patterns in the
   2534  *	driver's "compatible" data.
   2535  */
   2536 int
   2537 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2538     const struct device_compatible_entry *driver_compats)
   2539 {
   2540 	return device_compatible_match_strarray_internal(device_compats,
   2541 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2542 }
   2543 
   2544 static int
   2545 device_compatible_match_strlist_internal(
   2546     const char * const device_compats, size_t const device_compatsize,
   2547     const struct device_compatible_entry *driver_compats,
   2548     const struct device_compatible_entry **matching_entryp,
   2549     int (*match_fn)(const char *, size_t, const char *))
   2550 {
   2551 	const struct device_compatible_entry *dce = NULL;
   2552 	int rv;
   2553 
   2554 	if (device_compats == NULL || device_compatsize == 0 ||
   2555 	    driver_compats == NULL)
   2556 		return 0;
   2557 
   2558 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2559 		rv = (*match_fn)(device_compats, device_compatsize,
   2560 		    dce->compat);
   2561 		if (rv != 0) {
   2562 			if (matching_entryp != NULL) {
   2563 				*matching_entryp = dce;
   2564 			}
   2565 			return rv;
   2566 		}
   2567 	}
   2568 	return 0;
   2569 }
   2570 
   2571 /*
   2572  * device_compatible_match_strlist:
   2573  *
   2574  *	Like device_compatible_match(), but take the device
   2575  *	"compatible" strings as an OpenFirmware-style string
   2576  *	list.
   2577  */
   2578 int
   2579 device_compatible_match_strlist(
   2580     const char * const device_compats, size_t const device_compatsize,
   2581     const struct device_compatible_entry *driver_compats)
   2582 {
   2583 	return device_compatible_match_strlist_internal(device_compats,
   2584 	    device_compatsize, driver_compats, NULL, strlist_match);
   2585 }
   2586 
   2587 /*
   2588  * device_compatible_pmatch_strlist:
   2589  *
   2590  *	Like device_compatible_pmatch(), but take the device
   2591  *	"compatible" strings as an OpenFirmware-style string
   2592  *	list.
   2593  */
   2594 int
   2595 device_compatible_pmatch_strlist(
   2596     const char * const device_compats, size_t const device_compatsize,
   2597     const struct device_compatible_entry *driver_compats)
   2598 {
   2599 	return device_compatible_match_strlist_internal(device_compats,
   2600 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2601 }
   2602 
   2603 static int
   2604 device_compatible_match_id_internal(
   2605     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2606     const struct device_compatible_entry *driver_compats,
   2607     const struct device_compatible_entry **matching_entryp)
   2608 {
   2609 	const struct device_compatible_entry *dce = NULL;
   2610 
   2611 	if (mask == 0)
   2612 		return 0;
   2613 
   2614 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2615 		if ((id & mask) == dce->id) {
   2616 			if (matching_entryp != NULL) {
   2617 				*matching_entryp = dce;
   2618 			}
   2619 			return 1;
   2620 		}
   2621 	}
   2622 	return 0;
   2623 }
   2624 
   2625 /*
   2626  * device_compatible_match_id:
   2627  *
   2628  *	Like device_compatible_match(), but takes a single
   2629  *	unsigned integer device ID.
   2630  */
   2631 int
   2632 device_compatible_match_id(
   2633     uintptr_t const id, uintptr_t const sentinel_id,
   2634     const struct device_compatible_entry *driver_compats)
   2635 {
   2636 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2637 	    sentinel_id, driver_compats, NULL);
   2638 }
   2639 
   2640 /*
   2641  * device_compatible_lookup:
   2642  *
   2643  *	Look up and return the device_compatible_entry, using the
   2644  *	same matching criteria used by device_compatible_match().
   2645  */
   2646 const struct device_compatible_entry *
   2647 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2648 			 const struct device_compatible_entry *driver_compats)
   2649 {
   2650 	const struct device_compatible_entry *dce;
   2651 
   2652 	if (device_compatible_match_strarray_internal(device_compats,
   2653 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2654 		return dce;
   2655 	}
   2656 	return NULL;
   2657 }
   2658 
   2659 /*
   2660  * device_compatible_plookup:
   2661  *
   2662  *	Look up and return the device_compatible_entry, using the
   2663  *	same matching criteria used by device_compatible_pmatch().
   2664  */
   2665 const struct device_compatible_entry *
   2666 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2667 			  const struct device_compatible_entry *driver_compats)
   2668 {
   2669 	const struct device_compatible_entry *dce;
   2670 
   2671 	if (device_compatible_match_strarray_internal(device_compats,
   2672 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2673 		return dce;
   2674 	}
   2675 	return NULL;
   2676 }
   2677 
   2678 /*
   2679  * device_compatible_lookup_strlist:
   2680  *
   2681  *	Like device_compatible_lookup(), but take the device
   2682  *	"compatible" strings as an OpenFirmware-style string
   2683  *	list.
   2684  */
   2685 const struct device_compatible_entry *
   2686 device_compatible_lookup_strlist(
   2687     const char * const device_compats, size_t const device_compatsize,
   2688     const struct device_compatible_entry *driver_compats)
   2689 {
   2690 	const struct device_compatible_entry *dce;
   2691 
   2692 	if (device_compatible_match_strlist_internal(device_compats,
   2693 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2694 		return dce;
   2695 	}
   2696 	return NULL;
   2697 }
   2698 
   2699 /*
   2700  * device_compatible_plookup_strlist:
   2701  *
   2702  *	Like device_compatible_plookup(), but take the device
   2703  *	"compatible" strings as an OpenFirmware-style string
   2704  *	list.
   2705  */
   2706 const struct device_compatible_entry *
   2707 device_compatible_plookup_strlist(
   2708     const char * const device_compats, size_t const device_compatsize,
   2709     const struct device_compatible_entry *driver_compats)
   2710 {
   2711 	const struct device_compatible_entry *dce;
   2712 
   2713 	if (device_compatible_match_strlist_internal(device_compats,
   2714 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2715 		return dce;
   2716 	}
   2717 	return NULL;
   2718 }
   2719 
   2720 /*
   2721  * device_compatible_lookup_id:
   2722  *
   2723  *	Like device_compatible_lookup(), but takes a single
   2724  *	unsigned integer device ID.
   2725  */
   2726 const struct device_compatible_entry *
   2727 device_compatible_lookup_id(
   2728     uintptr_t const id, uintptr_t const sentinel_id,
   2729     const struct device_compatible_entry *driver_compats)
   2730 {
   2731 	const struct device_compatible_entry *dce;
   2732 
   2733 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2734 	    sentinel_id, driver_compats, &dce)) {
   2735 		return dce;
   2736 	}
   2737 	return NULL;
   2738 }
   2739 
   2740 /*
   2741  * Power management related functions.
   2742  */
   2743 
   2744 bool
   2745 device_pmf_is_registered(device_t dev)
   2746 {
   2747 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2748 }
   2749 
   2750 bool
   2751 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2752 {
   2753 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2754 		return true;
   2755 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2756 		return false;
   2757 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2758 	    dev->dv_driver_suspend != NULL &&
   2759 	    !(*dev->dv_driver_suspend)(dev, qual))
   2760 		return false;
   2761 
   2762 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2763 	return true;
   2764 }
   2765 
   2766 bool
   2767 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2768 {
   2769 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2770 		return true;
   2771 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2772 		return false;
   2773 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2774 	    dev->dv_driver_resume != NULL &&
   2775 	    !(*dev->dv_driver_resume)(dev, qual))
   2776 		return false;
   2777 
   2778 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2779 	return true;
   2780 }
   2781 
   2782 bool
   2783 device_pmf_driver_shutdown(device_t dev, int how)
   2784 {
   2785 
   2786 	if (*dev->dv_driver_shutdown != NULL &&
   2787 	    !(*dev->dv_driver_shutdown)(dev, how))
   2788 		return false;
   2789 	return true;
   2790 }
   2791 
   2792 bool
   2793 device_pmf_driver_register(device_t dev,
   2794     bool (*suspend)(device_t, const pmf_qual_t *),
   2795     bool (*resume)(device_t, const pmf_qual_t *),
   2796     bool (*shutdown)(device_t, int))
   2797 {
   2798 	dev->dv_driver_suspend = suspend;
   2799 	dev->dv_driver_resume = resume;
   2800 	dev->dv_driver_shutdown = shutdown;
   2801 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2802 	return true;
   2803 }
   2804 
   2805 static const char *
   2806 curlwp_name(void)
   2807 {
   2808 	if (curlwp->l_name != NULL)
   2809 		return curlwp->l_name;
   2810 	else
   2811 		return curlwp->l_proc->p_comm;
   2812 }
   2813 
   2814 void
   2815 device_pmf_driver_deregister(device_t dev)
   2816 {
   2817 	device_lock_t dvl = device_getlock(dev);
   2818 
   2819 	dev->dv_driver_suspend = NULL;
   2820 	dev->dv_driver_resume = NULL;
   2821 
   2822 	mutex_enter(&dvl->dvl_mtx);
   2823 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2824 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2825 		/* Wake a thread that waits for the lock.  That
   2826 		 * thread will fail to acquire the lock, and then
   2827 		 * it will wake the next thread that waits for the
   2828 		 * lock, or else it will wake us.
   2829 		 */
   2830 		cv_signal(&dvl->dvl_cv);
   2831 		pmflock_debug(dev, __func__, __LINE__);
   2832 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2833 		pmflock_debug(dev, __func__, __LINE__);
   2834 	}
   2835 	mutex_exit(&dvl->dvl_mtx);
   2836 }
   2837 
   2838 bool
   2839 device_pmf_driver_child_register(device_t dev)
   2840 {
   2841 	device_t parent = device_parent(dev);
   2842 
   2843 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2844 		return true;
   2845 	return (*parent->dv_driver_child_register)(dev);
   2846 }
   2847 
   2848 void
   2849 device_pmf_driver_set_child_register(device_t dev,
   2850     bool (*child_register)(device_t))
   2851 {
   2852 	dev->dv_driver_child_register = child_register;
   2853 }
   2854 
   2855 static void
   2856 pmflock_debug(device_t dev, const char *func, int line)
   2857 {
   2858 	device_lock_t dvl = device_getlock(dev);
   2859 
   2860 	aprint_debug_dev(dev,
   2861 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2862 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2863 }
   2864 
   2865 static bool
   2866 device_pmf_lock1(device_t dev)
   2867 {
   2868 	device_lock_t dvl = device_getlock(dev);
   2869 
   2870 	while (device_pmf_is_registered(dev) &&
   2871 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2872 		dvl->dvl_nwait++;
   2873 		pmflock_debug(dev, __func__, __LINE__);
   2874 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2875 		pmflock_debug(dev, __func__, __LINE__);
   2876 		dvl->dvl_nwait--;
   2877 	}
   2878 	if (!device_pmf_is_registered(dev)) {
   2879 		pmflock_debug(dev, __func__, __LINE__);
   2880 		/* We could not acquire the lock, but some other thread may
   2881 		 * wait for it, also.  Wake that thread.
   2882 		 */
   2883 		cv_signal(&dvl->dvl_cv);
   2884 		return false;
   2885 	}
   2886 	dvl->dvl_nlock++;
   2887 	dvl->dvl_holder = curlwp;
   2888 	pmflock_debug(dev, __func__, __LINE__);
   2889 	return true;
   2890 }
   2891 
   2892 bool
   2893 device_pmf_lock(device_t dev)
   2894 {
   2895 	bool rc;
   2896 	device_lock_t dvl = device_getlock(dev);
   2897 
   2898 	mutex_enter(&dvl->dvl_mtx);
   2899 	rc = device_pmf_lock1(dev);
   2900 	mutex_exit(&dvl->dvl_mtx);
   2901 
   2902 	return rc;
   2903 }
   2904 
   2905 void
   2906 device_pmf_unlock(device_t dev)
   2907 {
   2908 	device_lock_t dvl = device_getlock(dev);
   2909 
   2910 	KASSERT(dvl->dvl_nlock > 0);
   2911 	mutex_enter(&dvl->dvl_mtx);
   2912 	if (--dvl->dvl_nlock == 0)
   2913 		dvl->dvl_holder = NULL;
   2914 	cv_signal(&dvl->dvl_cv);
   2915 	pmflock_debug(dev, __func__, __LINE__);
   2916 	mutex_exit(&dvl->dvl_mtx);
   2917 }
   2918 
   2919 device_lock_t
   2920 device_getlock(device_t dev)
   2921 {
   2922 	return &dev->dv_lock;
   2923 }
   2924 
   2925 void *
   2926 device_pmf_bus_private(device_t dev)
   2927 {
   2928 	return dev->dv_bus_private;
   2929 }
   2930 
   2931 bool
   2932 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2933 {
   2934 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2935 		return true;
   2936 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2937 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2938 		return false;
   2939 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2940 	    dev->dv_bus_suspend != NULL &&
   2941 	    !(*dev->dv_bus_suspend)(dev, qual))
   2942 		return false;
   2943 
   2944 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2945 	return true;
   2946 }
   2947 
   2948 bool
   2949 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2950 {
   2951 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2952 		return true;
   2953 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2954 	    dev->dv_bus_resume != NULL &&
   2955 	    !(*dev->dv_bus_resume)(dev, qual))
   2956 		return false;
   2957 
   2958 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2959 	return true;
   2960 }
   2961 
   2962 bool
   2963 device_pmf_bus_shutdown(device_t dev, int how)
   2964 {
   2965 
   2966 	if (*dev->dv_bus_shutdown != NULL &&
   2967 	    !(*dev->dv_bus_shutdown)(dev, how))
   2968 		return false;
   2969 	return true;
   2970 }
   2971 
   2972 void
   2973 device_pmf_bus_register(device_t dev, void *priv,
   2974     bool (*suspend)(device_t, const pmf_qual_t *),
   2975     bool (*resume)(device_t, const pmf_qual_t *),
   2976     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2977 {
   2978 	dev->dv_bus_private = priv;
   2979 	dev->dv_bus_resume = resume;
   2980 	dev->dv_bus_suspend = suspend;
   2981 	dev->dv_bus_shutdown = shutdown;
   2982 	dev->dv_bus_deregister = deregister;
   2983 }
   2984 
   2985 void
   2986 device_pmf_bus_deregister(device_t dev)
   2987 {
   2988 	if (dev->dv_bus_deregister == NULL)
   2989 		return;
   2990 	(*dev->dv_bus_deregister)(dev);
   2991 	dev->dv_bus_private = NULL;
   2992 	dev->dv_bus_suspend = NULL;
   2993 	dev->dv_bus_resume = NULL;
   2994 	dev->dv_bus_deregister = NULL;
   2995 }
   2996 
   2997 void *
   2998 device_pmf_class_private(device_t dev)
   2999 {
   3000 	return dev->dv_class_private;
   3001 }
   3002 
   3003 bool
   3004 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3005 {
   3006 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3007 		return true;
   3008 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3009 	    dev->dv_class_suspend != NULL &&
   3010 	    !(*dev->dv_class_suspend)(dev, qual))
   3011 		return false;
   3012 
   3013 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3014 	return true;
   3015 }
   3016 
   3017 bool
   3018 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3019 {
   3020 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3021 		return true;
   3022 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3023 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3024 		return false;
   3025 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3026 	    dev->dv_class_resume != NULL &&
   3027 	    !(*dev->dv_class_resume)(dev, qual))
   3028 		return false;
   3029 
   3030 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3031 	return true;
   3032 }
   3033 
   3034 void
   3035 device_pmf_class_register(device_t dev, void *priv,
   3036     bool (*suspend)(device_t, const pmf_qual_t *),
   3037     bool (*resume)(device_t, const pmf_qual_t *),
   3038     void (*deregister)(device_t))
   3039 {
   3040 	dev->dv_class_private = priv;
   3041 	dev->dv_class_suspend = suspend;
   3042 	dev->dv_class_resume = resume;
   3043 	dev->dv_class_deregister = deregister;
   3044 }
   3045 
   3046 void
   3047 device_pmf_class_deregister(device_t dev)
   3048 {
   3049 	if (dev->dv_class_deregister == NULL)
   3050 		return;
   3051 	(*dev->dv_class_deregister)(dev);
   3052 	dev->dv_class_private = NULL;
   3053 	dev->dv_class_suspend = NULL;
   3054 	dev->dv_class_resume = NULL;
   3055 	dev->dv_class_deregister = NULL;
   3056 }
   3057 
   3058 bool
   3059 device_active(device_t dev, devactive_t type)
   3060 {
   3061 	size_t i;
   3062 
   3063 	if (dev->dv_activity_count == 0)
   3064 		return false;
   3065 
   3066 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3067 		if (dev->dv_activity_handlers[i] == NULL)
   3068 			break;
   3069 		(*dev->dv_activity_handlers[i])(dev, type);
   3070 	}
   3071 
   3072 	return true;
   3073 }
   3074 
   3075 bool
   3076 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3077 {
   3078 	void (**new_handlers)(device_t, devactive_t);
   3079 	void (**old_handlers)(device_t, devactive_t);
   3080 	size_t i, old_size, new_size;
   3081 	int s;
   3082 
   3083 	old_handlers = dev->dv_activity_handlers;
   3084 	old_size = dev->dv_activity_count;
   3085 
   3086 	KASSERT(old_size == 0 || old_handlers != NULL);
   3087 
   3088 	for (i = 0; i < old_size; ++i) {
   3089 		KASSERT(old_handlers[i] != handler);
   3090 		if (old_handlers[i] == NULL) {
   3091 			old_handlers[i] = handler;
   3092 			return true;
   3093 		}
   3094 	}
   3095 
   3096 	new_size = old_size + 4;
   3097 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3098 
   3099 	for (i = 0; i < old_size; ++i)
   3100 		new_handlers[i] = old_handlers[i];
   3101 	new_handlers[old_size] = handler;
   3102 	for (i = old_size+1; i < new_size; ++i)
   3103 		new_handlers[i] = NULL;
   3104 
   3105 	s = splhigh();
   3106 	dev->dv_activity_count = new_size;
   3107 	dev->dv_activity_handlers = new_handlers;
   3108 	splx(s);
   3109 
   3110 	if (old_size > 0)
   3111 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3112 
   3113 	return true;
   3114 }
   3115 
   3116 void
   3117 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3118 {
   3119 	void (**old_handlers)(device_t, devactive_t);
   3120 	size_t i, old_size;
   3121 	int s;
   3122 
   3123 	old_handlers = dev->dv_activity_handlers;
   3124 	old_size = dev->dv_activity_count;
   3125 
   3126 	for (i = 0; i < old_size; ++i) {
   3127 		if (old_handlers[i] == handler)
   3128 			break;
   3129 		if (old_handlers[i] == NULL)
   3130 			return; /* XXX panic? */
   3131 	}
   3132 
   3133 	if (i == old_size)
   3134 		return; /* XXX panic? */
   3135 
   3136 	for (; i < old_size - 1; ++i) {
   3137 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3138 			continue;
   3139 
   3140 		if (i == 0) {
   3141 			s = splhigh();
   3142 			dev->dv_activity_count = 0;
   3143 			dev->dv_activity_handlers = NULL;
   3144 			splx(s);
   3145 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3146 		}
   3147 		return;
   3148 	}
   3149 	old_handlers[i] = NULL;
   3150 }
   3151 
   3152 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3153 static bool
   3154 device_exists_at(device_t dv, devgen_t gen)
   3155 {
   3156 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3157 	    dv->dv_add_gen <= gen;
   3158 }
   3159 
   3160 static bool
   3161 deviter_visits(const deviter_t *di, device_t dv)
   3162 {
   3163 	return device_exists_at(dv, di->di_gen);
   3164 }
   3165 
   3166 /*
   3167  * Device Iteration
   3168  *
   3169  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3170  *     each device_t's in the device tree.
   3171  *
   3172  * deviter_init(di, flags): initialize the device iterator `di'
   3173  *     to "walk" the device tree.  deviter_next(di) will return
   3174  *     the first device_t in the device tree, or NULL if there are
   3175  *     no devices.
   3176  *
   3177  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3178  *     caller intends to modify the device tree by calling
   3179  *     config_detach(9) on devices in the order that the iterator
   3180  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3181  *     nearest the "root" of the device tree to be returned, first;
   3182  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3183  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3184  *     indicating both that deviter_init() should not respect any
   3185  *     locks on the device tree, and that deviter_next(di) may run
   3186  *     in more than one LWP before the walk has finished.
   3187  *
   3188  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3189  *     once.
   3190  *
   3191  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3192  *
   3193  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3194  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3195  *
   3196  * deviter_first(di, flags): initialize the device iterator `di'
   3197  *     and return the first device_t in the device tree, or NULL
   3198  *     if there are no devices.  The statement
   3199  *
   3200  *         dv = deviter_first(di);
   3201  *
   3202  *     is shorthand for
   3203  *
   3204  *         deviter_init(di);
   3205  *         dv = deviter_next(di);
   3206  *
   3207  * deviter_next(di): return the next device_t in the device tree,
   3208  *     or NULL if there are no more devices.  deviter_next(di)
   3209  *     is undefined if `di' was not initialized with deviter_init() or
   3210  *     deviter_first().
   3211  *
   3212  * deviter_release(di): stops iteration (subsequent calls to
   3213  *     deviter_next() will return NULL), releases any locks and
   3214  *     resources held by the device iterator.
   3215  *
   3216  * Device iteration does not return device_t's in any particular
   3217  * order.  An iterator will never return the same device_t twice.
   3218  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3219  * is called repeatedly on the same `di', it will eventually return
   3220  * NULL.  It is ok to attach/detach devices during device iteration.
   3221  */
   3222 void
   3223 deviter_init(deviter_t *di, deviter_flags_t flags)
   3224 {
   3225 	device_t dv;
   3226 
   3227 	memset(di, 0, sizeof(*di));
   3228 
   3229 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3230 		flags |= DEVITER_F_RW;
   3231 
   3232 	mutex_enter(&alldevs_lock);
   3233 	if ((flags & DEVITER_F_RW) != 0)
   3234 		alldevs_nwrite++;
   3235 	else
   3236 		alldevs_nread++;
   3237 	di->di_gen = alldevs_gen++;
   3238 	di->di_flags = flags;
   3239 
   3240 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3241 	case DEVITER_F_LEAVES_FIRST:
   3242 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3243 			if (!deviter_visits(di, dv))
   3244 				continue;
   3245 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3246 		}
   3247 		break;
   3248 	case DEVITER_F_ROOT_FIRST:
   3249 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3250 			if (!deviter_visits(di, dv))
   3251 				continue;
   3252 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3253 		}
   3254 		break;
   3255 	default:
   3256 		break;
   3257 	}
   3258 
   3259 	deviter_reinit(di);
   3260 	mutex_exit(&alldevs_lock);
   3261 }
   3262 
   3263 static void
   3264 deviter_reinit(deviter_t *di)
   3265 {
   3266 
   3267 	KASSERT(mutex_owned(&alldevs_lock));
   3268 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3269 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3270 	else
   3271 		di->di_prev = TAILQ_FIRST(&alldevs);
   3272 }
   3273 
   3274 device_t
   3275 deviter_first(deviter_t *di, deviter_flags_t flags)
   3276 {
   3277 
   3278 	deviter_init(di, flags);
   3279 	return deviter_next(di);
   3280 }
   3281 
   3282 static device_t
   3283 deviter_next2(deviter_t *di)
   3284 {
   3285 	device_t dv;
   3286 
   3287 	KASSERT(mutex_owned(&alldevs_lock));
   3288 
   3289 	dv = di->di_prev;
   3290 
   3291 	if (dv == NULL)
   3292 		return NULL;
   3293 
   3294 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3295 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3296 	else
   3297 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3298 
   3299 	return dv;
   3300 }
   3301 
   3302 static device_t
   3303 deviter_next1(deviter_t *di)
   3304 {
   3305 	device_t dv;
   3306 
   3307 	KASSERT(mutex_owned(&alldevs_lock));
   3308 
   3309 	do {
   3310 		dv = deviter_next2(di);
   3311 	} while (dv != NULL && !deviter_visits(di, dv));
   3312 
   3313 	return dv;
   3314 }
   3315 
   3316 device_t
   3317 deviter_next(deviter_t *di)
   3318 {
   3319 	device_t dv = NULL;
   3320 
   3321 	mutex_enter(&alldevs_lock);
   3322 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3323 	case 0:
   3324 		dv = deviter_next1(di);
   3325 		break;
   3326 	case DEVITER_F_LEAVES_FIRST:
   3327 		while (di->di_curdepth >= 0) {
   3328 			if ((dv = deviter_next1(di)) == NULL) {
   3329 				di->di_curdepth--;
   3330 				deviter_reinit(di);
   3331 			} else if (dv->dv_depth == di->di_curdepth)
   3332 				break;
   3333 		}
   3334 		break;
   3335 	case DEVITER_F_ROOT_FIRST:
   3336 		while (di->di_curdepth <= di->di_maxdepth) {
   3337 			if ((dv = deviter_next1(di)) == NULL) {
   3338 				di->di_curdepth++;
   3339 				deviter_reinit(di);
   3340 			} else if (dv->dv_depth == di->di_curdepth)
   3341 				break;
   3342 		}
   3343 		break;
   3344 	default:
   3345 		break;
   3346 	}
   3347 	mutex_exit(&alldevs_lock);
   3348 
   3349 	return dv;
   3350 }
   3351 
   3352 void
   3353 deviter_release(deviter_t *di)
   3354 {
   3355 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3356 
   3357 	mutex_enter(&alldevs_lock);
   3358 	if (rw)
   3359 		--alldevs_nwrite;
   3360 	else
   3361 		--alldevs_nread;
   3362 	/* XXX wake a garbage-collection thread */
   3363 	mutex_exit(&alldevs_lock);
   3364 }
   3365 
   3366 const char *
   3367 cfdata_ifattr(const struct cfdata *cf)
   3368 {
   3369 	return cf->cf_pspec->cfp_iattr;
   3370 }
   3371 
   3372 bool
   3373 ifattr_match(const char *snull, const char *t)
   3374 {
   3375 	return (snull == NULL) || strcmp(snull, t) == 0;
   3376 }
   3377 
   3378 void
   3379 null_childdetached(device_t self, device_t child)
   3380 {
   3381 	/* do nothing */
   3382 }
   3383 
   3384 static void
   3385 sysctl_detach_setup(struct sysctllog **clog)
   3386 {
   3387 
   3388 	sysctl_createv(clog, 0, NULL, NULL,
   3389 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3390 		CTLTYPE_BOOL, "detachall",
   3391 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3392 		NULL, 0, &detachall, 0,
   3393 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3394 }
   3395