Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.282
      1 /* $NetBSD: subr_autoconf.c,v 1.282 2021/06/12 12:12:11 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #define	__SUBR_AUTOCONF_PRIVATE	/* see <sys/device.h> */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.282 2021/06/12 12:12:11 riastradh Exp $");
     83 
     84 #ifdef _KERNEL_OPT
     85 #include "opt_ddb.h"
     86 #include "drvctl.h"
     87 #endif
     88 
     89 #include <sys/param.h>
     90 #include <sys/device.h>
     91 #include <sys/disklabel.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/kmem.h>
     95 #include <sys/systm.h>
     96 #include <sys/kernel.h>
     97 #include <sys/errno.h>
     98 #include <sys/proc.h>
     99 #include <sys/reboot.h>
    100 #include <sys/kthread.h>
    101 #include <sys/buf.h>
    102 #include <sys/dirent.h>
    103 #include <sys/mount.h>
    104 #include <sys/namei.h>
    105 #include <sys/unistd.h>
    106 #include <sys/fcntl.h>
    107 #include <sys/lockf.h>
    108 #include <sys/callout.h>
    109 #include <sys/devmon.h>
    110 #include <sys/cpu.h>
    111 #include <sys/sysctl.h>
    112 #include <sys/stdarg.h>
    113 
    114 #include <sys/disk.h>
    115 
    116 #include <sys/rndsource.h>
    117 
    118 #include <machine/limits.h>
    119 
    120 /*
    121  * Autoconfiguration subroutines.
    122  */
    123 
    124 /*
    125  * Device autoconfiguration timings are mixed into the entropy pool.
    126  */
    127 static krndsource_t rnd_autoconf_source;
    128 
    129 /*
    130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    131  * devices and drivers are found via these tables.
    132  */
    133 extern struct cfdata cfdata[];
    134 extern const short cfroots[];
    135 
    136 /*
    137  * List of all cfdriver structures.  We use this to detect duplicates
    138  * when other cfdrivers are loaded.
    139  */
    140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    141 extern struct cfdriver * const cfdriver_list_initial[];
    142 
    143 /*
    144  * Initial list of cfattach's.
    145  */
    146 extern const struct cfattachinit cfattachinit[];
    147 
    148 /*
    149  * List of cfdata tables.  We always have one such list -- the one
    150  * built statically when the kernel was configured.
    151  */
    152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    153 static struct cftable initcftable;
    154 
    155 #define	ROOT ((device_t)NULL)
    156 
    157 struct matchinfo {
    158 	cfsubmatch_t fn;
    159 	device_t parent;
    160 	const int *locs;
    161 	void	*aux;
    162 	struct	cfdata *match;
    163 	int	pri;
    164 };
    165 
    166 struct alldevs_foray {
    167 	int			af_s;
    168 	struct devicelist	af_garbage;
    169 };
    170 
    171 static char *number(char *, int);
    172 static void mapply(struct matchinfo *, cfdata_t);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 static struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 static struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 static int interrupt_config_threads = 8;
    202 static struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 static int mountroot_config_threads = 2;
    205 static lwp_t **mountroot_config_lwpids;
    206 static size_t mountroot_config_lwpids_size;
    207 bool root_is_mounted = false;
    208 
    209 static void config_process_deferred(struct deferred_config_head *, device_t);
    210 
    211 /* Hooks to finalize configuration once all real devices have been found. */
    212 struct finalize_hook {
    213 	TAILQ_ENTRY(finalize_hook) f_list;
    214 	int (*f_func)(device_t);
    215 	device_t f_dev;
    216 };
    217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    219 static int config_finalize_done;
    220 
    221 /* list of all devices */
    222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    223 static kmutex_t alldevs_lock __cacheline_aligned;
    224 static devgen_t alldevs_gen = 1;
    225 static int alldevs_nread = 0;
    226 static int alldevs_nwrite = 0;
    227 static bool alldevs_garbage = false;
    228 
    229 static struct devicelist config_pending =
    230     TAILQ_HEAD_INITIALIZER(config_pending);
    231 static kmutex_t config_misc_lock;
    232 static kcondvar_t config_misc_cv;
    233 
    234 static bool detachall = false;
    235 
    236 #define	STREQ(s1, s2)			\
    237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    238 
    239 static bool config_initialized = false;	/* config_init() has been called. */
    240 
    241 static int config_do_twiddle;
    242 static callout_t config_twiddle_ch;
    243 
    244 static void sysctl_detach_setup(struct sysctllog **);
    245 
    246 int no_devmon_insert(const char *, prop_dictionary_t);
    247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    248 
    249 typedef int (*cfdriver_fn)(struct cfdriver *);
    250 static int
    251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    253 	const char *style, bool dopanic)
    254 {
    255 	void (*pr)(const char *, ...) __printflike(1, 2) =
    256 	    dopanic ? panic : printf;
    257 	int i, error = 0, e2 __diagused;
    258 
    259 	for (i = 0; cfdriverv[i] != NULL; i++) {
    260 		if ((error = drv_do(cfdriverv[i])) != 0) {
    261 			pr("configure: `%s' driver %s failed: %d",
    262 			    cfdriverv[i]->cd_name, style, error);
    263 			goto bad;
    264 		}
    265 	}
    266 
    267 	KASSERT(error == 0);
    268 	return 0;
    269 
    270  bad:
    271 	printf("\n");
    272 	for (i--; i >= 0; i--) {
    273 		e2 = drv_undo(cfdriverv[i]);
    274 		KASSERT(e2 == 0);
    275 	}
    276 
    277 	return error;
    278 }
    279 
    280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    281 static int
    282 frob_cfattachvec(const struct cfattachinit *cfattachv,
    283 	cfattach_fn att_do, cfattach_fn att_undo,
    284 	const char *style, bool dopanic)
    285 {
    286 	const struct cfattachinit *cfai = NULL;
    287 	void (*pr)(const char *, ...) __printflike(1, 2) =
    288 	    dopanic ? panic : printf;
    289 	int j = 0, error = 0, e2 __diagused;
    290 
    291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    293 			if ((error = att_do(cfai->cfai_name,
    294 			    cfai->cfai_list[j])) != 0) {
    295 				pr("configure: attachment `%s' "
    296 				    "of `%s' driver %s failed: %d",
    297 				    cfai->cfai_list[j]->ca_name,
    298 				    cfai->cfai_name, style, error);
    299 				goto bad;
    300 			}
    301 		}
    302 	}
    303 
    304 	KASSERT(error == 0);
    305 	return 0;
    306 
    307  bad:
    308 	/*
    309 	 * Rollback in reverse order.  dunno if super-important, but
    310 	 * do that anyway.  Although the code looks a little like
    311 	 * someone did a little integration (in the math sense).
    312 	 */
    313 	printf("\n");
    314 	if (cfai) {
    315 		bool last;
    316 
    317 		for (last = false; last == false; ) {
    318 			if (cfai == &cfattachv[0])
    319 				last = true;
    320 			for (j--; j >= 0; j--) {
    321 				e2 = att_undo(cfai->cfai_name,
    322 				    cfai->cfai_list[j]);
    323 				KASSERT(e2 == 0);
    324 			}
    325 			if (!last) {
    326 				cfai--;
    327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    328 					;
    329 			}
    330 		}
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 
    345 	KASSERT(config_initialized == false);
    346 
    347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    348 
    349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	cv_init(&config_misc_cv, "cfgmisc");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    363 	    RND_FLAG_COLLECT_TIME);
    364 
    365 	config_initialized = true;
    366 }
    367 
    368 /*
    369  * Init or fini drivers and attachments.  Either all or none
    370  * are processed (via rollback).  It would be nice if this were
    371  * atomic to outside consumers, but with the current state of
    372  * locking ...
    373  */
    374 int
    375 config_init_component(struct cfdriver * const *cfdriverv,
    376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    377 {
    378 	int error;
    379 
    380 	KASSERT(KERNEL_LOCKED_P());
    381 
    382 	if ((error = frob_cfdrivervec(cfdriverv,
    383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    384 		return error;
    385 	if ((error = frob_cfattachvec(cfattachv,
    386 	    config_cfattach_attach, config_cfattach_detach,
    387 	    "init", false)) != 0) {
    388 		frob_cfdrivervec(cfdriverv,
    389 	            config_cfdriver_detach, NULL, "init rollback", true);
    390 		return error;
    391 	}
    392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    393 		frob_cfattachvec(cfattachv,
    394 		    config_cfattach_detach, NULL, "init rollback", true);
    395 		frob_cfdrivervec(cfdriverv,
    396 	            config_cfdriver_detach, NULL, "init rollback", true);
    397 		return error;
    398 	}
    399 
    400 	return 0;
    401 }
    402 
    403 int
    404 config_fini_component(struct cfdriver * const *cfdriverv,
    405 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    406 {
    407 	int error;
    408 
    409 	KASSERT(KERNEL_LOCKED_P());
    410 
    411 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    412 		return error;
    413 	if ((error = frob_cfattachvec(cfattachv,
    414 	    config_cfattach_detach, config_cfattach_attach,
    415 	    "fini", false)) != 0) {
    416 		if (config_cfdata_attach(cfdatav, 0) != 0)
    417 			panic("config_cfdata fini rollback failed");
    418 		return error;
    419 	}
    420 	if ((error = frob_cfdrivervec(cfdriverv,
    421 	    config_cfdriver_detach, config_cfdriver_attach,
    422 	    "fini", false)) != 0) {
    423 		frob_cfattachvec(cfattachv,
    424 	            config_cfattach_attach, NULL, "fini rollback", true);
    425 		if (config_cfdata_attach(cfdatav, 0) != 0)
    426 			panic("config_cfdata fini rollback failed");
    427 		return error;
    428 	}
    429 
    430 	return 0;
    431 }
    432 
    433 void
    434 config_init_mi(void)
    435 {
    436 
    437 	if (!config_initialized)
    438 		config_init();
    439 
    440 	sysctl_detach_setup(NULL);
    441 }
    442 
    443 void
    444 config_deferred(device_t dev)
    445 {
    446 
    447 	KASSERT(KERNEL_LOCKED_P());
    448 
    449 	config_process_deferred(&deferred_config_queue, dev);
    450 	config_process_deferred(&interrupt_config_queue, dev);
    451 	config_process_deferred(&mountroot_config_queue, dev);
    452 }
    453 
    454 static void
    455 config_interrupts_thread(void *cookie)
    456 {
    457 	struct deferred_config *dc;
    458 	device_t dev;
    459 
    460 	mutex_enter(&config_misc_lock);
    461 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    462 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    463 		mutex_exit(&config_misc_lock);
    464 
    465 		dev = dc->dc_dev;
    466 		(*dc->dc_func)(dev);
    467 		if (!device_pmf_is_registered(dev))
    468 			aprint_debug_dev(dev,
    469 			    "WARNING: power management not supported\n");
    470 		config_pending_decr(dev);
    471 		kmem_free(dc, sizeof(*dc));
    472 
    473 		mutex_enter(&config_misc_lock);
    474 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    475 	}
    476 	mutex_exit(&config_misc_lock);
    477 
    478 	kthread_exit(0);
    479 }
    480 
    481 void
    482 config_create_interruptthreads(void)
    483 {
    484 	int i;
    485 
    486 	for (i = 0; i < interrupt_config_threads; i++) {
    487 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    488 		    config_interrupts_thread, NULL, NULL, "configintr");
    489 	}
    490 }
    491 
    492 static void
    493 config_mountroot_thread(void *cookie)
    494 {
    495 	struct deferred_config *dc;
    496 
    497 	mutex_enter(&config_misc_lock);
    498 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    499 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    500 		mutex_exit(&config_misc_lock);
    501 
    502 		(*dc->dc_func)(dc->dc_dev);
    503 		kmem_free(dc, sizeof(*dc));
    504 
    505 		mutex_enter(&config_misc_lock);
    506 	}
    507 	mutex_exit(&config_misc_lock);
    508 
    509 	kthread_exit(0);
    510 }
    511 
    512 void
    513 config_create_mountrootthreads(void)
    514 {
    515 	int i;
    516 
    517 	if (!root_is_mounted)
    518 		root_is_mounted = true;
    519 
    520 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    521 				       mountroot_config_threads;
    522 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    523 					     KM_NOSLEEP);
    524 	KASSERT(mountroot_config_lwpids);
    525 	for (i = 0; i < mountroot_config_threads; i++) {
    526 		mountroot_config_lwpids[i] = 0;
    527 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    528 				     NULL, config_mountroot_thread, NULL,
    529 				     &mountroot_config_lwpids[i],
    530 				     "configroot");
    531 	}
    532 }
    533 
    534 void
    535 config_finalize_mountroot(void)
    536 {
    537 	int i, error;
    538 
    539 	for (i = 0; i < mountroot_config_threads; i++) {
    540 		if (mountroot_config_lwpids[i] == 0)
    541 			continue;
    542 
    543 		error = kthread_join(mountroot_config_lwpids[i]);
    544 		if (error)
    545 			printf("%s: thread %x joined with error %d\n",
    546 			       __func__, i, error);
    547 	}
    548 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    549 }
    550 
    551 /*
    552  * Announce device attach/detach to userland listeners.
    553  */
    554 
    555 int
    556 no_devmon_insert(const char *name, prop_dictionary_t p)
    557 {
    558 
    559 	return ENODEV;
    560 }
    561 
    562 static void
    563 devmon_report_device(device_t dev, bool isattach)
    564 {
    565 	prop_dictionary_t ev, dict = device_properties(dev);
    566 	const char *parent;
    567 	const char *what;
    568 	const char *where;
    569 	device_t pdev = device_parent(dev);
    570 
    571 	/* If currently no drvctl device, just return */
    572 	if (devmon_insert_vec == no_devmon_insert)
    573 		return;
    574 
    575 	ev = prop_dictionary_create();
    576 	if (ev == NULL)
    577 		return;
    578 
    579 	what = (isattach ? "device-attach" : "device-detach");
    580 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    581 	if (prop_dictionary_get_string(dict, "location", &where)) {
    582 		prop_dictionary_set_string(ev, "location", where);
    583 		aprint_debug("ev: %s %s at %s in [%s]\n",
    584 		    what, device_xname(dev), parent, where);
    585 	}
    586 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    587 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    588 		prop_object_release(ev);
    589 		return;
    590 	}
    591 
    592 	if ((*devmon_insert_vec)(what, ev) != 0)
    593 		prop_object_release(ev);
    594 }
    595 
    596 /*
    597  * Add a cfdriver to the system.
    598  */
    599 int
    600 config_cfdriver_attach(struct cfdriver *cd)
    601 {
    602 	struct cfdriver *lcd;
    603 
    604 	/* Make sure this driver isn't already in the system. */
    605 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    606 		if (STREQ(lcd->cd_name, cd->cd_name))
    607 			return EEXIST;
    608 	}
    609 
    610 	LIST_INIT(&cd->cd_attach);
    611 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    612 
    613 	return 0;
    614 }
    615 
    616 /*
    617  * Remove a cfdriver from the system.
    618  */
    619 int
    620 config_cfdriver_detach(struct cfdriver *cd)
    621 {
    622 	struct alldevs_foray af;
    623 	int i, rc = 0;
    624 
    625 	config_alldevs_enter(&af);
    626 	/* Make sure there are no active instances. */
    627 	for (i = 0; i < cd->cd_ndevs; i++) {
    628 		if (cd->cd_devs[i] != NULL) {
    629 			rc = EBUSY;
    630 			break;
    631 		}
    632 	}
    633 	config_alldevs_exit(&af);
    634 
    635 	if (rc != 0)
    636 		return rc;
    637 
    638 	/* ...and no attachments loaded. */
    639 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    640 		return EBUSY;
    641 
    642 	LIST_REMOVE(cd, cd_list);
    643 
    644 	KASSERT(cd->cd_devs == NULL);
    645 
    646 	return 0;
    647 }
    648 
    649 /*
    650  * Look up a cfdriver by name.
    651  */
    652 struct cfdriver *
    653 config_cfdriver_lookup(const char *name)
    654 {
    655 	struct cfdriver *cd;
    656 
    657 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    658 		if (STREQ(cd->cd_name, name))
    659 			return cd;
    660 	}
    661 
    662 	return NULL;
    663 }
    664 
    665 /*
    666  * Add a cfattach to the specified driver.
    667  */
    668 int
    669 config_cfattach_attach(const char *driver, struct cfattach *ca)
    670 {
    671 	struct cfattach *lca;
    672 	struct cfdriver *cd;
    673 
    674 	cd = config_cfdriver_lookup(driver);
    675 	if (cd == NULL)
    676 		return ESRCH;
    677 
    678 	/* Make sure this attachment isn't already on this driver. */
    679 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    680 		if (STREQ(lca->ca_name, ca->ca_name))
    681 			return EEXIST;
    682 	}
    683 
    684 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    685 
    686 	return 0;
    687 }
    688 
    689 /*
    690  * Remove a cfattach from the specified driver.
    691  */
    692 int
    693 config_cfattach_detach(const char *driver, struct cfattach *ca)
    694 {
    695 	struct alldevs_foray af;
    696 	struct cfdriver *cd;
    697 	device_t dev;
    698 	int i, rc = 0;
    699 
    700 	cd = config_cfdriver_lookup(driver);
    701 	if (cd == NULL)
    702 		return ESRCH;
    703 
    704 	config_alldevs_enter(&af);
    705 	/* Make sure there are no active instances. */
    706 	for (i = 0; i < cd->cd_ndevs; i++) {
    707 		if ((dev = cd->cd_devs[i]) == NULL)
    708 			continue;
    709 		if (dev->dv_cfattach == ca) {
    710 			rc = EBUSY;
    711 			break;
    712 		}
    713 	}
    714 	config_alldevs_exit(&af);
    715 
    716 	if (rc != 0)
    717 		return rc;
    718 
    719 	LIST_REMOVE(ca, ca_list);
    720 
    721 	return 0;
    722 }
    723 
    724 /*
    725  * Look up a cfattach by name.
    726  */
    727 static struct cfattach *
    728 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    729 {
    730 	struct cfattach *ca;
    731 
    732 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    733 		if (STREQ(ca->ca_name, atname))
    734 			return ca;
    735 	}
    736 
    737 	return NULL;
    738 }
    739 
    740 /*
    741  * Look up a cfattach by driver/attachment name.
    742  */
    743 struct cfattach *
    744 config_cfattach_lookup(const char *name, const char *atname)
    745 {
    746 	struct cfdriver *cd;
    747 
    748 	cd = config_cfdriver_lookup(name);
    749 	if (cd == NULL)
    750 		return NULL;
    751 
    752 	return config_cfattach_lookup_cd(cd, atname);
    753 }
    754 
    755 /*
    756  * Apply the matching function and choose the best.  This is used
    757  * a few times and we want to keep the code small.
    758  */
    759 static void
    760 mapply(struct matchinfo *m, cfdata_t cf)
    761 {
    762 	int pri;
    763 
    764 	if (m->fn != NULL) {
    765 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    766 	} else {
    767 		pri = config_match(m->parent, cf, m->aux);
    768 	}
    769 	if (pri > m->pri) {
    770 		m->match = cf;
    771 		m->pri = pri;
    772 	}
    773 }
    774 
    775 int
    776 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    777 {
    778 	const struct cfiattrdata *ci;
    779 	const struct cflocdesc *cl;
    780 	int nlocs, i;
    781 
    782 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    783 	KASSERT(ci);
    784 	nlocs = ci->ci_loclen;
    785 	KASSERT(!nlocs || locs);
    786 	for (i = 0; i < nlocs; i++) {
    787 		cl = &ci->ci_locdesc[i];
    788 		if (cl->cld_defaultstr != NULL &&
    789 		    cf->cf_loc[i] == cl->cld_default)
    790 			continue;
    791 		if (cf->cf_loc[i] == locs[i])
    792 			continue;
    793 		return 0;
    794 	}
    795 
    796 	return config_match(parent, cf, aux);
    797 }
    798 
    799 /*
    800  * Helper function: check whether the driver supports the interface attribute
    801  * and return its descriptor structure.
    802  */
    803 static const struct cfiattrdata *
    804 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    805 {
    806 	const struct cfiattrdata * const *cpp;
    807 
    808 	if (cd->cd_attrs == NULL)
    809 		return 0;
    810 
    811 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    812 		if (STREQ((*cpp)->ci_name, ia)) {
    813 			/* Match. */
    814 			return *cpp;
    815 		}
    816 	}
    817 	return 0;
    818 }
    819 
    820 #if defined(DIAGNOSTIC)
    821 static int
    822 cfdriver_iattr_count(const struct cfdriver *cd)
    823 {
    824 	const struct cfiattrdata * const *cpp;
    825 	int i;
    826 
    827 	if (cd->cd_attrs == NULL)
    828 		return 0;
    829 
    830 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    831 		i++;
    832 	}
    833 	return i;
    834 }
    835 #endif /* DIAGNOSTIC */
    836 
    837 /*
    838  * Lookup an interface attribute description by name.
    839  * If the driver is given, consider only its supported attributes.
    840  */
    841 const struct cfiattrdata *
    842 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    843 {
    844 	const struct cfdriver *d;
    845 	const struct cfiattrdata *ia;
    846 
    847 	if (cd)
    848 		return cfdriver_get_iattr(cd, name);
    849 
    850 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    851 		ia = cfdriver_get_iattr(d, name);
    852 		if (ia)
    853 			return ia;
    854 	}
    855 	return 0;
    856 }
    857 
    858 /*
    859  * Determine if `parent' is a potential parent for a device spec based
    860  * on `cfp'.
    861  */
    862 static int
    863 cfparent_match(const device_t parent, const struct cfparent *cfp)
    864 {
    865 	struct cfdriver *pcd;
    866 
    867 	/* We don't match root nodes here. */
    868 	if (cfp == NULL)
    869 		return 0;
    870 
    871 	pcd = parent->dv_cfdriver;
    872 	KASSERT(pcd != NULL);
    873 
    874 	/*
    875 	 * First, ensure this parent has the correct interface
    876 	 * attribute.
    877 	 */
    878 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    879 		return 0;
    880 
    881 	/*
    882 	 * If no specific parent device instance was specified (i.e.
    883 	 * we're attaching to the attribute only), we're done!
    884 	 */
    885 	if (cfp->cfp_parent == NULL)
    886 		return 1;
    887 
    888 	/*
    889 	 * Check the parent device's name.
    890 	 */
    891 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    892 		return 0;	/* not the same parent */
    893 
    894 	/*
    895 	 * Make sure the unit number matches.
    896 	 */
    897 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    898 	    cfp->cfp_unit == parent->dv_unit)
    899 		return 1;
    900 
    901 	/* Unit numbers don't match. */
    902 	return 0;
    903 }
    904 
    905 /*
    906  * Helper for config_cfdata_attach(): check all devices whether it could be
    907  * parent any attachment in the config data table passed, and rescan.
    908  */
    909 static void
    910 rescan_with_cfdata(const struct cfdata *cf)
    911 {
    912 	device_t d;
    913 	const struct cfdata *cf1;
    914 	deviter_t di;
    915 
    916 	KASSERT(KERNEL_LOCKED_P());
    917 
    918 	/*
    919 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    920 	 * the outer loop.
    921 	 */
    922 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    923 
    924 		if (!(d->dv_cfattach->ca_rescan))
    925 			continue;
    926 
    927 		for (cf1 = cf; cf1->cf_name; cf1++) {
    928 
    929 			if (!cfparent_match(d, cf1->cf_pspec))
    930 				continue;
    931 
    932 			(*d->dv_cfattach->ca_rescan)(d,
    933 				cfdata_ifattr(cf1), cf1->cf_loc);
    934 
    935 			config_deferred(d);
    936 		}
    937 	}
    938 	deviter_release(&di);
    939 }
    940 
    941 /*
    942  * Attach a supplemental config data table and rescan potential
    943  * parent devices if required.
    944  */
    945 int
    946 config_cfdata_attach(cfdata_t cf, int scannow)
    947 {
    948 	struct cftable *ct;
    949 
    950 	KASSERT(KERNEL_LOCKED_P());
    951 
    952 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    953 	ct->ct_cfdata = cf;
    954 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    955 
    956 	if (scannow)
    957 		rescan_with_cfdata(cf);
    958 
    959 	return 0;
    960 }
    961 
    962 /*
    963  * Helper for config_cfdata_detach: check whether a device is
    964  * found through any attachment in the config data table.
    965  */
    966 static int
    967 dev_in_cfdata(device_t d, cfdata_t cf)
    968 {
    969 	const struct cfdata *cf1;
    970 
    971 	for (cf1 = cf; cf1->cf_name; cf1++)
    972 		if (d->dv_cfdata == cf1)
    973 			return 1;
    974 
    975 	return 0;
    976 }
    977 
    978 /*
    979  * Detach a supplemental config data table. Detach all devices found
    980  * through that table (and thus keeping references to it) before.
    981  */
    982 int
    983 config_cfdata_detach(cfdata_t cf)
    984 {
    985 	device_t d;
    986 	int error = 0;
    987 	struct cftable *ct;
    988 	deviter_t di;
    989 
    990 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    991 	     d = deviter_next(&di)) {
    992 		if (!dev_in_cfdata(d, cf))
    993 			continue;
    994 		if ((error = config_detach(d, 0)) != 0)
    995 			break;
    996 	}
    997 	deviter_release(&di);
    998 	if (error) {
    999 		aprint_error_dev(d, "unable to detach instance\n");
   1000 		return error;
   1001 	}
   1002 
   1003 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1004 		if (ct->ct_cfdata == cf) {
   1005 			TAILQ_REMOVE(&allcftables, ct, ct_list);
   1006 			kmem_free(ct, sizeof(*ct));
   1007 			return 0;
   1008 		}
   1009 	}
   1010 
   1011 	/* not found -- shouldn't happen */
   1012 	return EINVAL;
   1013 }
   1014 
   1015 /*
   1016  * Invoke the "match" routine for a cfdata entry on behalf of
   1017  * an external caller, usually a direct config "submatch" routine.
   1018  */
   1019 int
   1020 config_match(device_t parent, cfdata_t cf, void *aux)
   1021 {
   1022 	struct cfattach *ca;
   1023 
   1024 	KASSERT(KERNEL_LOCKED_P());
   1025 
   1026 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1027 	if (ca == NULL) {
   1028 		/* No attachment for this entry, oh well. */
   1029 		return 0;
   1030 	}
   1031 
   1032 	return (*ca->ca_match)(parent, cf, aux);
   1033 }
   1034 
   1035 /*
   1036  * Invoke the "probe" routine for a cfdata entry on behalf of
   1037  * an external caller, usually an indirect config "search" routine.
   1038  */
   1039 int
   1040 config_probe(device_t parent, cfdata_t cf, void *aux)
   1041 {
   1042 	/*
   1043 	 * This is currently a synonym for config_match(), but this
   1044 	 * is an implementation detail; "match" and "probe" routines
   1045 	 * have different behaviors.
   1046 	 *
   1047 	 * XXX config_probe() should return a bool, because there is
   1048 	 * XXX no match score for probe -- it's either there or it's
   1049 	 * XXX not, but some ports abuse the return value as a way
   1050 	 * XXX to attach "critical" devices before "non-critical"
   1051 	 * XXX devices.
   1052 	 */
   1053 	return config_match(parent, cf, aux);
   1054 }
   1055 
   1056 static void
   1057 config_get_cfargs(cfarg_t tag,
   1058 		  cfsubmatch_t *fnp,		/* output */
   1059 		  const char **ifattrp,		/* output */
   1060 		  const int **locsp,		/* output */
   1061 		  devhandle_t *handlep,		/* output */
   1062 		  va_list ap)
   1063 {
   1064 	cfsubmatch_t fn = NULL;
   1065 	const char *ifattr = NULL;
   1066 	const int *locs = NULL;
   1067 	devhandle_t handle;
   1068 
   1069 	devhandle_invalidate(&handle);
   1070 
   1071 	while (tag != CFARG_EOL) {
   1072 		switch (tag) {
   1073 		/*
   1074 		 * CFARG_SUBMATCH and CFARG_SEARCH are synonyms, but this
   1075 		 * is merely an implementation detail.  They are distinct
   1076 		 * from the caller's point of view.
   1077 		 */
   1078 		case CFARG_SUBMATCH:
   1079 		case CFARG_SEARCH:
   1080 			/* Only allow one function to be specified. */
   1081 			if (fn != NULL) {
   1082 				panic("%s: caller specified both "
   1083 				    "SUBMATCH and SEARCH", __func__);
   1084 			}
   1085 			fn = va_arg(ap, cfsubmatch_t);
   1086 			break;
   1087 
   1088 		case CFARG_IATTR:
   1089 			ifattr = va_arg(ap, const char *);
   1090 			break;
   1091 
   1092 		case CFARG_LOCATORS:
   1093 			locs = va_arg(ap, const int *);
   1094 			break;
   1095 
   1096 		case CFARG_DEVHANDLE:
   1097 			handle = va_arg(ap, devhandle_t);
   1098 			break;
   1099 
   1100 		default:
   1101 			panic("%s: unknown cfarg tag: %d\n",
   1102 			    __func__, tag);
   1103 		}
   1104 		tag = va_arg(ap, cfarg_t);
   1105 	}
   1106 
   1107 	if (fnp != NULL)
   1108 		*fnp = fn;
   1109 	if (ifattrp != NULL)
   1110 		*ifattrp = ifattr;
   1111 	if (locsp != NULL)
   1112 		*locsp = locs;
   1113 	if (handlep != NULL)
   1114 		*handlep = handle;
   1115 }
   1116 
   1117 /*
   1118  * Iterate over all potential children of some device, calling the given
   1119  * function (default being the child's match function) for each one.
   1120  * Nonzero returns are matches; the highest value returned is considered
   1121  * the best match.  Return the `found child' if we got a match, or NULL
   1122  * otherwise.  The `aux' pointer is simply passed on through.
   1123  *
   1124  * Note that this function is designed so that it can be used to apply
   1125  * an arbitrary function to all potential children (its return value
   1126  * can be ignored).
   1127  */
   1128 cfdata_t
   1129 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1130 {
   1131 	cfsubmatch_t fn;
   1132 	const char *ifattr;
   1133 	const int *locs;
   1134 	struct cftable *ct;
   1135 	cfdata_t cf;
   1136 	struct matchinfo m;
   1137 
   1138 	config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
   1139 
   1140 	KASSERT(config_initialized);
   1141 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1142 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1143 
   1144 	m.fn = fn;
   1145 	m.parent = parent;
   1146 	m.locs = locs;
   1147 	m.aux = aux;
   1148 	m.match = NULL;
   1149 	m.pri = 0;
   1150 
   1151 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1152 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1153 
   1154 			/* We don't match root nodes here. */
   1155 			if (!cf->cf_pspec)
   1156 				continue;
   1157 
   1158 			/*
   1159 			 * Skip cf if no longer eligible, otherwise scan
   1160 			 * through parents for one matching `parent', and
   1161 			 * try match function.
   1162 			 */
   1163 			if (cf->cf_fstate == FSTATE_FOUND)
   1164 				continue;
   1165 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1166 			    cf->cf_fstate == FSTATE_DSTAR)
   1167 				continue;
   1168 
   1169 			/*
   1170 			 * If an interface attribute was specified,
   1171 			 * consider only children which attach to
   1172 			 * that attribute.
   1173 			 */
   1174 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1175 				continue;
   1176 
   1177 			if (cfparent_match(parent, cf->cf_pspec))
   1178 				mapply(&m, cf);
   1179 		}
   1180 	}
   1181 	return m.match;
   1182 }
   1183 
   1184 cfdata_t
   1185 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1186 {
   1187 	cfdata_t cf;
   1188 	va_list ap;
   1189 
   1190 	va_start(ap, tag);
   1191 	cf = config_vsearch(parent, aux, tag, ap);
   1192 	va_end(ap);
   1193 
   1194 	return cf;
   1195 }
   1196 
   1197 /*
   1198  * Find the given root device.
   1199  * This is much like config_search, but there is no parent.
   1200  * Don't bother with multiple cfdata tables; the root node
   1201  * must always be in the initial table.
   1202  */
   1203 cfdata_t
   1204 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1205 {
   1206 	cfdata_t cf;
   1207 	const short *p;
   1208 	struct matchinfo m;
   1209 
   1210 	m.fn = fn;
   1211 	m.parent = ROOT;
   1212 	m.aux = aux;
   1213 	m.match = NULL;
   1214 	m.pri = 0;
   1215 	m.locs = 0;
   1216 	/*
   1217 	 * Look at root entries for matching name.  We do not bother
   1218 	 * with found-state here since only one root should ever be
   1219 	 * searched (and it must be done first).
   1220 	 */
   1221 	for (p = cfroots; *p >= 0; p++) {
   1222 		cf = &cfdata[*p];
   1223 		if (strcmp(cf->cf_name, rootname) == 0)
   1224 			mapply(&m, cf);
   1225 	}
   1226 	return m.match;
   1227 }
   1228 
   1229 static const char * const msgs[] = {
   1230 [QUIET]		=	"",
   1231 [UNCONF]	=	" not configured\n",
   1232 [UNSUPP]	=	" unsupported\n",
   1233 };
   1234 
   1235 /*
   1236  * The given `aux' argument describes a device that has been found
   1237  * on the given parent, but not necessarily configured.  Locate the
   1238  * configuration data for that device (using the submatch function
   1239  * provided, or using candidates' cd_match configuration driver
   1240  * functions) and attach it, and return its device_t.  If the device was
   1241  * not configured, call the given `print' function and return NULL.
   1242  */
   1243 device_t
   1244 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1245     va_list ap)
   1246 {
   1247 	cfdata_t cf;
   1248 	va_list nap;
   1249 
   1250 	va_copy(nap, ap);
   1251 	cf = config_vsearch(parent, aux, tag, nap);
   1252 	va_end(nap);
   1253 
   1254 	if (cf != NULL) {
   1255 		return config_vattach(parent, cf, aux, print, tag, ap);
   1256 	}
   1257 
   1258 	if (print) {
   1259 		if (config_do_twiddle && cold)
   1260 			twiddle();
   1261 
   1262 		const int pret = (*print)(aux, device_xname(parent));
   1263 		KASSERT(pret >= 0);
   1264 		KASSERT(pret < __arraycount(msgs));
   1265 		KASSERT(msgs[pret] != NULL);
   1266 		aprint_normal("%s", msgs[pret]);
   1267 	}
   1268 
   1269 	/*
   1270 	 * This has the effect of mixing in a single timestamp to the
   1271 	 * entropy pool.  Experiments indicate the estimator will almost
   1272 	 * always attribute one bit of entropy to this sample; analysis
   1273 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1274 	 * bits of entropy/sample so this seems appropriately conservative.
   1275 	 */
   1276 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1277 	return NULL;
   1278 }
   1279 
   1280 device_t
   1281 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1282 {
   1283 	device_t dev;
   1284 	va_list ap;
   1285 
   1286 	va_start(ap, tag);
   1287 	dev = config_vfound(parent, aux, print, tag, ap);
   1288 	va_end(ap);
   1289 
   1290 	return dev;
   1291 }
   1292 
   1293 /*
   1294  * As above, but for root devices.
   1295  */
   1296 device_t
   1297 config_rootfound(const char *rootname, void *aux)
   1298 {
   1299 	cfdata_t cf;
   1300 	device_t dev = NULL;
   1301 
   1302 	KERNEL_LOCK(1, NULL);
   1303 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1304 		dev = config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
   1305 	else
   1306 		aprint_error("root device %s not configured\n", rootname);
   1307 	KERNEL_UNLOCK_ONE(NULL);
   1308 	return dev;
   1309 }
   1310 
   1311 /* just like sprintf(buf, "%d") except that it works from the end */
   1312 static char *
   1313 number(char *ep, int n)
   1314 {
   1315 
   1316 	*--ep = 0;
   1317 	while (n >= 10) {
   1318 		*--ep = (n % 10) + '0';
   1319 		n /= 10;
   1320 	}
   1321 	*--ep = n + '0';
   1322 	return ep;
   1323 }
   1324 
   1325 /*
   1326  * Expand the size of the cd_devs array if necessary.
   1327  *
   1328  * The caller must hold alldevs_lock. config_makeroom() may release and
   1329  * re-acquire alldevs_lock, so callers should re-check conditions such
   1330  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1331  * returns.
   1332  */
   1333 static void
   1334 config_makeroom(int n, struct cfdriver *cd)
   1335 {
   1336 	int ondevs, nndevs;
   1337 	device_t *osp, *nsp;
   1338 
   1339 	KASSERT(mutex_owned(&alldevs_lock));
   1340 	alldevs_nwrite++;
   1341 
   1342 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1343 		;
   1344 
   1345 	while (n >= cd->cd_ndevs) {
   1346 		/*
   1347 		 * Need to expand the array.
   1348 		 */
   1349 		ondevs = cd->cd_ndevs;
   1350 		osp = cd->cd_devs;
   1351 
   1352 		/*
   1353 		 * Release alldevs_lock around allocation, which may
   1354 		 * sleep.
   1355 		 */
   1356 		mutex_exit(&alldevs_lock);
   1357 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1358 		mutex_enter(&alldevs_lock);
   1359 
   1360 		/*
   1361 		 * If another thread moved the array while we did
   1362 		 * not hold alldevs_lock, try again.
   1363 		 */
   1364 		if (cd->cd_devs != osp) {
   1365 			mutex_exit(&alldevs_lock);
   1366 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1367 			mutex_enter(&alldevs_lock);
   1368 			continue;
   1369 		}
   1370 
   1371 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1372 		if (ondevs != 0)
   1373 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1374 
   1375 		cd->cd_ndevs = nndevs;
   1376 		cd->cd_devs = nsp;
   1377 		if (ondevs != 0) {
   1378 			mutex_exit(&alldevs_lock);
   1379 			kmem_free(osp, sizeof(device_t) * ondevs);
   1380 			mutex_enter(&alldevs_lock);
   1381 		}
   1382 	}
   1383 	KASSERT(mutex_owned(&alldevs_lock));
   1384 	alldevs_nwrite--;
   1385 }
   1386 
   1387 /*
   1388  * Put dev into the devices list.
   1389  */
   1390 static void
   1391 config_devlink(device_t dev)
   1392 {
   1393 
   1394 	mutex_enter(&alldevs_lock);
   1395 
   1396 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1397 
   1398 	dev->dv_add_gen = alldevs_gen;
   1399 	/* It is safe to add a device to the tail of the list while
   1400 	 * readers and writers are in the list.
   1401 	 */
   1402 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1403 	mutex_exit(&alldevs_lock);
   1404 }
   1405 
   1406 static void
   1407 config_devfree(device_t dev)
   1408 {
   1409 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1410 
   1411 	if (dev->dv_cfattach->ca_devsize > 0)
   1412 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1413 	kmem_free(dev, sizeof(*dev));
   1414 }
   1415 
   1416 /*
   1417  * Caller must hold alldevs_lock.
   1418  */
   1419 static void
   1420 config_devunlink(device_t dev, struct devicelist *garbage)
   1421 {
   1422 	struct device_garbage *dg = &dev->dv_garbage;
   1423 	cfdriver_t cd = device_cfdriver(dev);
   1424 	int i;
   1425 
   1426 	KASSERT(mutex_owned(&alldevs_lock));
   1427 
   1428  	/* Unlink from device list.  Link to garbage list. */
   1429 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1430 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1431 
   1432 	/* Remove from cfdriver's array. */
   1433 	cd->cd_devs[dev->dv_unit] = NULL;
   1434 
   1435 	/*
   1436 	 * If the device now has no units in use, unlink its softc array.
   1437 	 */
   1438 	for (i = 0; i < cd->cd_ndevs; i++) {
   1439 		if (cd->cd_devs[i] != NULL)
   1440 			break;
   1441 	}
   1442 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1443 	if (i == cd->cd_ndevs) {
   1444 		dg->dg_ndevs = cd->cd_ndevs;
   1445 		dg->dg_devs = cd->cd_devs;
   1446 		cd->cd_devs = NULL;
   1447 		cd->cd_ndevs = 0;
   1448 	}
   1449 }
   1450 
   1451 static void
   1452 config_devdelete(device_t dev)
   1453 {
   1454 	struct device_garbage *dg = &dev->dv_garbage;
   1455 	device_lock_t dvl = device_getlock(dev);
   1456 
   1457 	if (dg->dg_devs != NULL)
   1458 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1459 
   1460 	cv_destroy(&dvl->dvl_cv);
   1461 	mutex_destroy(&dvl->dvl_mtx);
   1462 
   1463 	KASSERT(dev->dv_properties != NULL);
   1464 	prop_object_release(dev->dv_properties);
   1465 
   1466 	if (dev->dv_activity_handlers)
   1467 		panic("%s with registered handlers", __func__);
   1468 
   1469 	if (dev->dv_locators) {
   1470 		size_t amount = *--dev->dv_locators;
   1471 		kmem_free(dev->dv_locators, amount);
   1472 	}
   1473 
   1474 	config_devfree(dev);
   1475 }
   1476 
   1477 static int
   1478 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1479 {
   1480 	int unit;
   1481 
   1482 	if (cf->cf_fstate == FSTATE_STAR) {
   1483 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1484 			if (cd->cd_devs[unit] == NULL)
   1485 				break;
   1486 		/*
   1487 		 * unit is now the unit of the first NULL device pointer,
   1488 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1489 		 */
   1490 	} else {
   1491 		unit = cf->cf_unit;
   1492 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1493 			unit = -1;
   1494 	}
   1495 	return unit;
   1496 }
   1497 
   1498 static int
   1499 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1500 {
   1501 	struct alldevs_foray af;
   1502 	int unit;
   1503 
   1504 	config_alldevs_enter(&af);
   1505 	for (;;) {
   1506 		unit = config_unit_nextfree(cd, cf);
   1507 		if (unit == -1)
   1508 			break;
   1509 		if (unit < cd->cd_ndevs) {
   1510 			cd->cd_devs[unit] = dev;
   1511 			dev->dv_unit = unit;
   1512 			break;
   1513 		}
   1514 		config_makeroom(unit, cd);
   1515 	}
   1516 	config_alldevs_exit(&af);
   1517 
   1518 	return unit;
   1519 }
   1520 
   1521 static device_t
   1522 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
   1523     va_list ap)
   1524 {
   1525 	cfdriver_t cd;
   1526 	cfattach_t ca;
   1527 	size_t lname, lunit;
   1528 	const char *xunit;
   1529 	int myunit;
   1530 	char num[10];
   1531 	device_t dev;
   1532 	void *dev_private;
   1533 	const struct cfiattrdata *ia;
   1534 	device_lock_t dvl;
   1535 	const int *locs;
   1536 
   1537 	cd = config_cfdriver_lookup(cf->cf_name);
   1538 	if (cd == NULL)
   1539 		return NULL;
   1540 
   1541 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1542 	if (ca == NULL)
   1543 		return NULL;
   1544 
   1545 	/* get memory for all device vars */
   1546 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1547 	if (ca->ca_devsize > 0) {
   1548 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1549 	} else {
   1550 		dev_private = NULL;
   1551 	}
   1552 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1553 
   1554 	/*
   1555 	 * If a handle was supplied to config_attach(), we'll get it
   1556 	 * assigned automatically here.  If not, then we'll get the
   1557 	 * default invalid handle.
   1558 	 */
   1559 	config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
   1560 
   1561 	dev->dv_class = cd->cd_class;
   1562 	dev->dv_cfdata = cf;
   1563 	dev->dv_cfdriver = cd;
   1564 	dev->dv_cfattach = ca;
   1565 	dev->dv_activity_count = 0;
   1566 	dev->dv_activity_handlers = NULL;
   1567 	dev->dv_private = dev_private;
   1568 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1569 
   1570 	myunit = config_unit_alloc(dev, cd, cf);
   1571 	if (myunit == -1) {
   1572 		config_devfree(dev);
   1573 		return NULL;
   1574 	}
   1575 
   1576 	/* compute length of name and decimal expansion of unit number */
   1577 	lname = strlen(cd->cd_name);
   1578 	xunit = number(&num[sizeof(num)], myunit);
   1579 	lunit = &num[sizeof(num)] - xunit;
   1580 	if (lname + lunit > sizeof(dev->dv_xname))
   1581 		panic("config_vdevalloc: device name too long");
   1582 
   1583 	dvl = device_getlock(dev);
   1584 
   1585 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1586 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1587 
   1588 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1589 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1590 	dev->dv_parent = parent;
   1591 	if (parent != NULL)
   1592 		dev->dv_depth = parent->dv_depth + 1;
   1593 	else
   1594 		dev->dv_depth = 0;
   1595 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1596 	if (locs) {
   1597 		KASSERT(parent); /* no locators at root */
   1598 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1599 		dev->dv_locators =
   1600 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1601 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1602 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1603 	}
   1604 	dev->dv_properties = prop_dictionary_create();
   1605 	KASSERT(dev->dv_properties != NULL);
   1606 
   1607 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1608 	    "device-driver", dev->dv_cfdriver->cd_name);
   1609 	prop_dictionary_set_uint16(dev->dv_properties,
   1610 	    "device-unit", dev->dv_unit);
   1611 	if (parent != NULL) {
   1612 		prop_dictionary_set_string(dev->dv_properties,
   1613 		    "device-parent", device_xname(parent));
   1614 	}
   1615 
   1616 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1617 		config_add_attrib_dict(dev);
   1618 
   1619 	return dev;
   1620 }
   1621 
   1622 static device_t
   1623 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
   1624 {
   1625 	device_t dev;
   1626 	va_list ap;
   1627 
   1628 	va_start(ap, tag);
   1629 	dev = config_vdevalloc(parent, cf, tag, ap);
   1630 	va_end(ap);
   1631 
   1632 	return dev;
   1633 }
   1634 
   1635 /*
   1636  * Create an array of device attach attributes and add it
   1637  * to the device's dv_properties dictionary.
   1638  *
   1639  * <key>interface-attributes</key>
   1640  * <array>
   1641  *    <dict>
   1642  *       <key>attribute-name</key>
   1643  *       <string>foo</string>
   1644  *       <key>locators</key>
   1645  *       <array>
   1646  *          <dict>
   1647  *             <key>loc-name</key>
   1648  *             <string>foo-loc1</string>
   1649  *          </dict>
   1650  *          <dict>
   1651  *             <key>loc-name</key>
   1652  *             <string>foo-loc2</string>
   1653  *             <key>default</key>
   1654  *             <string>foo-loc2-default</string>
   1655  *          </dict>
   1656  *          ...
   1657  *       </array>
   1658  *    </dict>
   1659  *    ...
   1660  * </array>
   1661  */
   1662 
   1663 static void
   1664 config_add_attrib_dict(device_t dev)
   1665 {
   1666 	int i, j;
   1667 	const struct cfiattrdata *ci;
   1668 	prop_dictionary_t attr_dict, loc_dict;
   1669 	prop_array_t attr_array, loc_array;
   1670 
   1671 	if ((attr_array = prop_array_create()) == NULL)
   1672 		return;
   1673 
   1674 	for (i = 0; ; i++) {
   1675 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1676 			break;
   1677 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1678 			break;
   1679 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1680 		    ci->ci_name);
   1681 
   1682 		/* Create an array of the locator names and defaults */
   1683 
   1684 		if (ci->ci_loclen != 0 &&
   1685 		    (loc_array = prop_array_create()) != NULL) {
   1686 			for (j = 0; j < ci->ci_loclen; j++) {
   1687 				loc_dict = prop_dictionary_create();
   1688 				if (loc_dict == NULL)
   1689 					continue;
   1690 				prop_dictionary_set_string_nocopy(loc_dict,
   1691 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1692 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1693 					prop_dictionary_set_string_nocopy(
   1694 					    loc_dict, "default",
   1695 					    ci->ci_locdesc[j].cld_defaultstr);
   1696 				prop_array_set(loc_array, j, loc_dict);
   1697 				prop_object_release(loc_dict);
   1698 			}
   1699 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1700 			    loc_array);
   1701 		}
   1702 		prop_array_add(attr_array, attr_dict);
   1703 		prop_object_release(attr_dict);
   1704 	}
   1705 	if (i == 0)
   1706 		prop_object_release(attr_array);
   1707 	else
   1708 		prop_dictionary_set_and_rel(dev->dv_properties,
   1709 		    "interface-attributes", attr_array);
   1710 
   1711 	return;
   1712 }
   1713 
   1714 /*
   1715  * Attach a found device.
   1716  */
   1717 device_t
   1718 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1719     cfarg_t tag, va_list ap)
   1720 {
   1721 	device_t dev;
   1722 	struct cftable *ct;
   1723 	const char *drvname;
   1724 
   1725 	KASSERT(KERNEL_LOCKED_P());
   1726 
   1727 	dev = config_vdevalloc(parent, cf, tag, ap);
   1728 	if (!dev)
   1729 		panic("config_attach: allocation of device softc failed");
   1730 
   1731 	/* XXX redundant - see below? */
   1732 	if (cf->cf_fstate != FSTATE_STAR) {
   1733 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1734 		cf->cf_fstate = FSTATE_FOUND;
   1735 	}
   1736 
   1737 	config_devlink(dev);
   1738 
   1739 	if (config_do_twiddle && cold)
   1740 		twiddle();
   1741 	else
   1742 		aprint_naive("Found ");
   1743 	/*
   1744 	 * We want the next two printfs for normal, verbose, and quiet,
   1745 	 * but not silent (in which case, we're twiddling, instead).
   1746 	 */
   1747 	if (parent == ROOT) {
   1748 		aprint_naive("%s (root)", device_xname(dev));
   1749 		aprint_normal("%s (root)", device_xname(dev));
   1750 	} else {
   1751 		aprint_naive("%s at %s", device_xname(dev),
   1752 		    device_xname(parent));
   1753 		aprint_normal("%s at %s", device_xname(dev),
   1754 		    device_xname(parent));
   1755 		if (print)
   1756 			(void) (*print)(aux, NULL);
   1757 	}
   1758 
   1759 	/*
   1760 	 * Before attaching, clobber any unfound devices that are
   1761 	 * otherwise identical.
   1762 	 * XXX code above is redundant?
   1763 	 */
   1764 	drvname = dev->dv_cfdriver->cd_name;
   1765 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1766 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1767 			if (STREQ(cf->cf_name, drvname) &&
   1768 			    cf->cf_unit == dev->dv_unit) {
   1769 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1770 					cf->cf_fstate = FSTATE_FOUND;
   1771 			}
   1772 		}
   1773 	}
   1774 	device_register(dev, aux);
   1775 
   1776 	/* Let userland know */
   1777 	devmon_report_device(dev, true);
   1778 
   1779 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1780 
   1781 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1782 	    && !device_pmf_is_registered(dev))
   1783 		aprint_debug_dev(dev,
   1784 		    "WARNING: power management not supported\n");
   1785 
   1786 	config_process_deferred(&deferred_config_queue, dev);
   1787 
   1788 	device_register_post_config(dev, aux);
   1789 	return dev;
   1790 }
   1791 
   1792 device_t
   1793 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1794     cfarg_t tag, ...)
   1795 {
   1796 	device_t dev;
   1797 	va_list ap;
   1798 
   1799 	KASSERT(KERNEL_LOCKED_P());
   1800 
   1801 	va_start(ap, tag);
   1802 	dev = config_vattach(parent, cf, aux, print, tag, ap);
   1803 	va_end(ap);
   1804 
   1805 	return dev;
   1806 }
   1807 
   1808 /*
   1809  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1810  * way are silently inserted into the device tree, and their children
   1811  * attached.
   1812  *
   1813  * Note that because pseudo-devices are attached silently, any information
   1814  * the attach routine wishes to print should be prefixed with the device
   1815  * name by the attach routine.
   1816  */
   1817 device_t
   1818 config_attach_pseudo(cfdata_t cf)
   1819 {
   1820 	device_t dev;
   1821 
   1822 	KASSERT(KERNEL_LOCKED_P());
   1823 
   1824 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
   1825 	if (!dev)
   1826 		return NULL;
   1827 
   1828 	/* XXX mark busy in cfdata */
   1829 
   1830 	if (cf->cf_fstate != FSTATE_STAR) {
   1831 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1832 		cf->cf_fstate = FSTATE_FOUND;
   1833 	}
   1834 
   1835 	config_devlink(dev);
   1836 
   1837 #if 0	/* XXXJRT not yet */
   1838 	device_register(dev, NULL);	/* like a root node */
   1839 #endif
   1840 
   1841 	/* Let userland know */
   1842 	devmon_report_device(dev, true);
   1843 
   1844 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1845 
   1846 	config_process_deferred(&deferred_config_queue, dev);
   1847 	return dev;
   1848 }
   1849 
   1850 /*
   1851  * Caller must hold alldevs_lock.
   1852  */
   1853 static void
   1854 config_collect_garbage(struct devicelist *garbage)
   1855 {
   1856 	device_t dv;
   1857 
   1858 	KASSERT(!cpu_intr_p());
   1859 	KASSERT(!cpu_softintr_p());
   1860 	KASSERT(mutex_owned(&alldevs_lock));
   1861 
   1862 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1863 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1864 			if (dv->dv_del_gen != 0)
   1865 				break;
   1866 		}
   1867 		if (dv == NULL) {
   1868 			alldevs_garbage = false;
   1869 			break;
   1870 		}
   1871 		config_devunlink(dv, garbage);
   1872 	}
   1873 	KASSERT(mutex_owned(&alldevs_lock));
   1874 }
   1875 
   1876 static void
   1877 config_dump_garbage(struct devicelist *garbage)
   1878 {
   1879 	device_t dv;
   1880 
   1881 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1882 		TAILQ_REMOVE(garbage, dv, dv_list);
   1883 		config_devdelete(dv);
   1884 	}
   1885 }
   1886 
   1887 /*
   1888  * Detach a device.  Optionally forced (e.g. because of hardware
   1889  * removal) and quiet.  Returns zero if successful, non-zero
   1890  * (an error code) otherwise.
   1891  *
   1892  * Note that this code wants to be run from a process context, so
   1893  * that the detach can sleep to allow processes which have a device
   1894  * open to run and unwind their stacks.
   1895  */
   1896 int
   1897 config_detach(device_t dev, int flags)
   1898 {
   1899 	struct alldevs_foray af;
   1900 	struct cftable *ct;
   1901 	cfdata_t cf;
   1902 	const struct cfattach *ca;
   1903 	struct cfdriver *cd;
   1904 	device_t d __diagused;
   1905 	int rv = 0;
   1906 
   1907 	KASSERT(KERNEL_LOCKED_P());
   1908 
   1909 	cf = dev->dv_cfdata;
   1910 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1911 		cf->cf_fstate == FSTATE_STAR),
   1912 	    "config_detach: %s: bad device fstate: %d",
   1913 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1914 
   1915 	cd = dev->dv_cfdriver;
   1916 	KASSERT(cd != NULL);
   1917 
   1918 	ca = dev->dv_cfattach;
   1919 	KASSERT(ca != NULL);
   1920 
   1921 	mutex_enter(&alldevs_lock);
   1922 	if (dev->dv_del_gen != 0) {
   1923 		mutex_exit(&alldevs_lock);
   1924 #ifdef DIAGNOSTIC
   1925 		printf("%s: %s is already detached\n", __func__,
   1926 		    device_xname(dev));
   1927 #endif /* DIAGNOSTIC */
   1928 		return ENOENT;
   1929 	}
   1930 	alldevs_nwrite++;
   1931 	mutex_exit(&alldevs_lock);
   1932 
   1933 	if (!detachall &&
   1934 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1935 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1936 		rv = EOPNOTSUPP;
   1937 	} else if (ca->ca_detach != NULL) {
   1938 		rv = (*ca->ca_detach)(dev, flags);
   1939 	} else
   1940 		rv = EOPNOTSUPP;
   1941 
   1942 	/*
   1943 	 * If it was not possible to detach the device, then we either
   1944 	 * panic() (for the forced but failed case), or return an error.
   1945 	 *
   1946 	 * If it was possible to detach the device, ensure that the
   1947 	 * device is deactivated.
   1948 	 */
   1949 	if (rv == 0)
   1950 		dev->dv_flags &= ~DVF_ACTIVE;
   1951 	else if ((flags & DETACH_FORCE) == 0)
   1952 		goto out;
   1953 	else {
   1954 		panic("config_detach: forced detach of %s failed (%d)",
   1955 		    device_xname(dev), rv);
   1956 	}
   1957 
   1958 	/*
   1959 	 * The device has now been successfully detached.
   1960 	 */
   1961 
   1962 	/* Let userland know */
   1963 	devmon_report_device(dev, false);
   1964 
   1965 #ifdef DIAGNOSTIC
   1966 	/*
   1967 	 * Sanity: If you're successfully detached, you should have no
   1968 	 * children.  (Note that because children must be attached
   1969 	 * after parents, we only need to search the latter part of
   1970 	 * the list.)
   1971 	 */
   1972 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1973 	    d = TAILQ_NEXT(d, dv_list)) {
   1974 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1975 			printf("config_detach: detached device %s"
   1976 			    " has children %s\n", device_xname(dev),
   1977 			    device_xname(d));
   1978 			panic("config_detach");
   1979 		}
   1980 	}
   1981 #endif
   1982 
   1983 	/* notify the parent that the child is gone */
   1984 	if (dev->dv_parent) {
   1985 		device_t p = dev->dv_parent;
   1986 		if (p->dv_cfattach->ca_childdetached)
   1987 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1988 	}
   1989 
   1990 	/*
   1991 	 * Mark cfdata to show that the unit can be reused, if possible.
   1992 	 */
   1993 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1994 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1995 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1996 				if (cf->cf_fstate == FSTATE_FOUND &&
   1997 				    cf->cf_unit == dev->dv_unit)
   1998 					cf->cf_fstate = FSTATE_NOTFOUND;
   1999 			}
   2000 		}
   2001 	}
   2002 
   2003 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   2004 		aprint_normal_dev(dev, "detached\n");
   2005 
   2006 out:
   2007 	config_alldevs_enter(&af);
   2008 	KASSERT(alldevs_nwrite != 0);
   2009 	--alldevs_nwrite;
   2010 	if (rv == 0 && dev->dv_del_gen == 0) {
   2011 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   2012 			config_devunlink(dev, &af.af_garbage);
   2013 		else {
   2014 			dev->dv_del_gen = alldevs_gen;
   2015 			alldevs_garbage = true;
   2016 		}
   2017 	}
   2018 	config_alldevs_exit(&af);
   2019 
   2020 	return rv;
   2021 }
   2022 
   2023 int
   2024 config_detach_children(device_t parent, int flags)
   2025 {
   2026 	device_t dv;
   2027 	deviter_t di;
   2028 	int error = 0;
   2029 
   2030 	KASSERT(KERNEL_LOCKED_P());
   2031 
   2032 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   2033 	     dv = deviter_next(&di)) {
   2034 		if (device_parent(dv) != parent)
   2035 			continue;
   2036 		if ((error = config_detach(dv, flags)) != 0)
   2037 			break;
   2038 	}
   2039 	deviter_release(&di);
   2040 	return error;
   2041 }
   2042 
   2043 device_t
   2044 shutdown_first(struct shutdown_state *s)
   2045 {
   2046 	if (!s->initialized) {
   2047 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   2048 		s->initialized = true;
   2049 	}
   2050 	return shutdown_next(s);
   2051 }
   2052 
   2053 device_t
   2054 shutdown_next(struct shutdown_state *s)
   2055 {
   2056 	device_t dv;
   2057 
   2058 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2059 		;
   2060 
   2061 	if (dv == NULL)
   2062 		s->initialized = false;
   2063 
   2064 	return dv;
   2065 }
   2066 
   2067 bool
   2068 config_detach_all(int how)
   2069 {
   2070 	static struct shutdown_state s;
   2071 	device_t curdev;
   2072 	bool progress = false;
   2073 	int flags;
   2074 
   2075 	KERNEL_LOCK(1, NULL);
   2076 
   2077 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2078 		goto out;
   2079 
   2080 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2081 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2082 	else
   2083 		flags = DETACH_SHUTDOWN;
   2084 
   2085 	for (curdev = shutdown_first(&s); curdev != NULL;
   2086 	     curdev = shutdown_next(&s)) {
   2087 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2088 		if (config_detach(curdev, flags) == 0) {
   2089 			progress = true;
   2090 			aprint_debug("success.");
   2091 		} else
   2092 			aprint_debug("failed.");
   2093 	}
   2094 
   2095 out:	KERNEL_UNLOCK_ONE(NULL);
   2096 	return progress;
   2097 }
   2098 
   2099 static bool
   2100 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2101 {
   2102 	device_t dv;
   2103 
   2104 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2105 		if (device_parent(dv) == ancestor)
   2106 			return true;
   2107 	}
   2108 	return false;
   2109 }
   2110 
   2111 int
   2112 config_deactivate(device_t dev)
   2113 {
   2114 	deviter_t di;
   2115 	const struct cfattach *ca;
   2116 	device_t descendant;
   2117 	int s, rv = 0, oflags;
   2118 
   2119 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2120 	     descendant != NULL;
   2121 	     descendant = deviter_next(&di)) {
   2122 		if (dev != descendant &&
   2123 		    !device_is_ancestor_of(dev, descendant))
   2124 			continue;
   2125 
   2126 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2127 			continue;
   2128 
   2129 		ca = descendant->dv_cfattach;
   2130 		oflags = descendant->dv_flags;
   2131 
   2132 		descendant->dv_flags &= ~DVF_ACTIVE;
   2133 		if (ca->ca_activate == NULL)
   2134 			continue;
   2135 		s = splhigh();
   2136 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2137 		splx(s);
   2138 		if (rv != 0)
   2139 			descendant->dv_flags = oflags;
   2140 	}
   2141 	deviter_release(&di);
   2142 	return rv;
   2143 }
   2144 
   2145 /*
   2146  * Defer the configuration of the specified device until all
   2147  * of its parent's devices have been attached.
   2148  */
   2149 void
   2150 config_defer(device_t dev, void (*func)(device_t))
   2151 {
   2152 	struct deferred_config *dc;
   2153 
   2154 	if (dev->dv_parent == NULL)
   2155 		panic("config_defer: can't defer config of a root device");
   2156 
   2157 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2158 
   2159 	config_pending_incr(dev);
   2160 
   2161 	mutex_enter(&config_misc_lock);
   2162 #ifdef DIAGNOSTIC
   2163 	struct deferred_config *odc;
   2164 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2165 		if (odc->dc_dev == dev)
   2166 			panic("config_defer: deferred twice");
   2167 	}
   2168 #endif
   2169 	dc->dc_dev = dev;
   2170 	dc->dc_func = func;
   2171 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2172 	mutex_exit(&config_misc_lock);
   2173 }
   2174 
   2175 /*
   2176  * Defer some autoconfiguration for a device until after interrupts
   2177  * are enabled.
   2178  */
   2179 void
   2180 config_interrupts(device_t dev, void (*func)(device_t))
   2181 {
   2182 	struct deferred_config *dc;
   2183 
   2184 	/*
   2185 	 * If interrupts are enabled, callback now.
   2186 	 */
   2187 	if (cold == 0) {
   2188 		(*func)(dev);
   2189 		return;
   2190 	}
   2191 
   2192 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2193 
   2194 	config_pending_incr(dev);
   2195 
   2196 	mutex_enter(&config_misc_lock);
   2197 #ifdef DIAGNOSTIC
   2198 	struct deferred_config *odc;
   2199 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2200 		if (odc->dc_dev == dev)
   2201 			panic("config_interrupts: deferred twice");
   2202 	}
   2203 #endif
   2204 	dc->dc_dev = dev;
   2205 	dc->dc_func = func;
   2206 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2207 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2208 	mutex_exit(&config_misc_lock);
   2209 }
   2210 
   2211 /*
   2212  * Defer some autoconfiguration for a device until after root file system
   2213  * is mounted (to load firmware etc).
   2214  */
   2215 void
   2216 config_mountroot(device_t dev, void (*func)(device_t))
   2217 {
   2218 	struct deferred_config *dc;
   2219 
   2220 	/*
   2221 	 * If root file system is mounted, callback now.
   2222 	 */
   2223 	if (root_is_mounted) {
   2224 		(*func)(dev);
   2225 		return;
   2226 	}
   2227 
   2228 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2229 
   2230 	mutex_enter(&config_misc_lock);
   2231 #ifdef DIAGNOSTIC
   2232 	struct deferred_config *odc;
   2233 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2234 		if (odc->dc_dev == dev)
   2235 			panic("%s: deferred twice", __func__);
   2236 	}
   2237 #endif
   2238 
   2239 	dc->dc_dev = dev;
   2240 	dc->dc_func = func;
   2241 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2242 	mutex_exit(&config_misc_lock);
   2243 }
   2244 
   2245 /*
   2246  * Process a deferred configuration queue.
   2247  */
   2248 static void
   2249 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2250 {
   2251 	struct deferred_config *dc;
   2252 
   2253 	KASSERT(KERNEL_LOCKED_P());
   2254 
   2255 	mutex_enter(&config_misc_lock);
   2256 	dc = TAILQ_FIRST(queue);
   2257 	while (dc) {
   2258 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2259 			TAILQ_REMOVE(queue, dc, dc_queue);
   2260 			mutex_exit(&config_misc_lock);
   2261 
   2262 			(*dc->dc_func)(dc->dc_dev);
   2263 			config_pending_decr(dc->dc_dev);
   2264 			kmem_free(dc, sizeof(*dc));
   2265 
   2266 			mutex_enter(&config_misc_lock);
   2267 			/* Restart, queue might have changed */
   2268 			dc = TAILQ_FIRST(queue);
   2269 		} else {
   2270 			dc = TAILQ_NEXT(dc, dc_queue);
   2271 		}
   2272 	}
   2273 	mutex_exit(&config_misc_lock);
   2274 }
   2275 
   2276 /*
   2277  * Manipulate the config_pending semaphore.
   2278  */
   2279 void
   2280 config_pending_incr(device_t dev)
   2281 {
   2282 
   2283 	mutex_enter(&config_misc_lock);
   2284 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2285 	    "%s: excess config_pending_incr", device_xname(dev));
   2286 	if (dev->dv_pending++ == 0)
   2287 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2288 #ifdef DEBUG_AUTOCONF
   2289 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2290 #endif
   2291 	mutex_exit(&config_misc_lock);
   2292 }
   2293 
   2294 void
   2295 config_pending_decr(device_t dev)
   2296 {
   2297 
   2298 	mutex_enter(&config_misc_lock);
   2299 	KASSERTMSG(dev->dv_pending > 0,
   2300 	    "%s: excess config_pending_decr", device_xname(dev));
   2301 	if (--dev->dv_pending == 0)
   2302 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2303 #ifdef DEBUG_AUTOCONF
   2304 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2305 #endif
   2306 	if (TAILQ_EMPTY(&config_pending))
   2307 		cv_broadcast(&config_misc_cv);
   2308 	mutex_exit(&config_misc_lock);
   2309 }
   2310 
   2311 /*
   2312  * Register a "finalization" routine.  Finalization routines are
   2313  * called iteratively once all real devices have been found during
   2314  * autoconfiguration, for as long as any one finalizer has done
   2315  * any work.
   2316  */
   2317 int
   2318 config_finalize_register(device_t dev, int (*fn)(device_t))
   2319 {
   2320 	struct finalize_hook *f;
   2321 	int error = 0;
   2322 
   2323 	KERNEL_LOCK(1, NULL);
   2324 
   2325 	/*
   2326 	 * If finalization has already been done, invoke the
   2327 	 * callback function now.
   2328 	 */
   2329 	if (config_finalize_done) {
   2330 		while ((*fn)(dev) != 0)
   2331 			/* loop */ ;
   2332 		goto out;
   2333 	}
   2334 
   2335 	/* Ensure this isn't already on the list. */
   2336 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2337 		if (f->f_func == fn && f->f_dev == dev) {
   2338 			error = EEXIST;
   2339 			goto out;
   2340 		}
   2341 	}
   2342 
   2343 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2344 	f->f_func = fn;
   2345 	f->f_dev = dev;
   2346 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2347 
   2348 	/* Success!  */
   2349 	error = 0;
   2350 
   2351 out:	KERNEL_UNLOCK_ONE(NULL);
   2352 	return error;
   2353 }
   2354 
   2355 void
   2356 config_finalize(void)
   2357 {
   2358 	struct finalize_hook *f;
   2359 	struct pdevinit *pdev;
   2360 	extern struct pdevinit pdevinit[];
   2361 	int errcnt, rv;
   2362 
   2363 	/*
   2364 	 * Now that device driver threads have been created, wait for
   2365 	 * them to finish any deferred autoconfiguration.
   2366 	 */
   2367 	mutex_enter(&config_misc_lock);
   2368 	while (!TAILQ_EMPTY(&config_pending)) {
   2369 		device_t dev;
   2370 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2371 			aprint_debug_dev(dev, "holding up boot\n");
   2372 		cv_wait(&config_misc_cv, &config_misc_lock);
   2373 	}
   2374 	mutex_exit(&config_misc_lock);
   2375 
   2376 	KERNEL_LOCK(1, NULL);
   2377 
   2378 	/* Attach pseudo-devices. */
   2379 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2380 		(*pdev->pdev_attach)(pdev->pdev_count);
   2381 
   2382 	/* Run the hooks until none of them does any work. */
   2383 	do {
   2384 		rv = 0;
   2385 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2386 			rv |= (*f->f_func)(f->f_dev);
   2387 	} while (rv != 0);
   2388 
   2389 	config_finalize_done = 1;
   2390 
   2391 	/* Now free all the hooks. */
   2392 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2393 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2394 		kmem_free(f, sizeof(*f));
   2395 	}
   2396 
   2397 	KERNEL_UNLOCK_ONE(NULL);
   2398 
   2399 	errcnt = aprint_get_error_count();
   2400 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2401 	    (boothowto & AB_VERBOSE) == 0) {
   2402 		mutex_enter(&config_misc_lock);
   2403 		if (config_do_twiddle) {
   2404 			config_do_twiddle = 0;
   2405 			printf_nolog(" done.\n");
   2406 		}
   2407 		mutex_exit(&config_misc_lock);
   2408 	}
   2409 	if (errcnt != 0) {
   2410 		printf("WARNING: %d error%s while detecting hardware; "
   2411 		    "check system log.\n", errcnt,
   2412 		    errcnt == 1 ? "" : "s");
   2413 	}
   2414 }
   2415 
   2416 void
   2417 config_twiddle_init(void)
   2418 {
   2419 
   2420 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2421 		config_do_twiddle = 1;
   2422 	}
   2423 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2424 }
   2425 
   2426 void
   2427 config_twiddle_fn(void *cookie)
   2428 {
   2429 
   2430 	mutex_enter(&config_misc_lock);
   2431 	if (config_do_twiddle) {
   2432 		twiddle();
   2433 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2434 	}
   2435 	mutex_exit(&config_misc_lock);
   2436 }
   2437 
   2438 static void
   2439 config_alldevs_enter(struct alldevs_foray *af)
   2440 {
   2441 	TAILQ_INIT(&af->af_garbage);
   2442 	mutex_enter(&alldevs_lock);
   2443 	config_collect_garbage(&af->af_garbage);
   2444 }
   2445 
   2446 static void
   2447 config_alldevs_exit(struct alldevs_foray *af)
   2448 {
   2449 	mutex_exit(&alldevs_lock);
   2450 	config_dump_garbage(&af->af_garbage);
   2451 }
   2452 
   2453 /*
   2454  * device_lookup:
   2455  *
   2456  *	Look up a device instance for a given driver.
   2457  */
   2458 device_t
   2459 device_lookup(cfdriver_t cd, int unit)
   2460 {
   2461 	device_t dv;
   2462 
   2463 	mutex_enter(&alldevs_lock);
   2464 	if (unit < 0 || unit >= cd->cd_ndevs)
   2465 		dv = NULL;
   2466 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2467 		dv = NULL;
   2468 	mutex_exit(&alldevs_lock);
   2469 
   2470 	return dv;
   2471 }
   2472 
   2473 /*
   2474  * device_lookup_private:
   2475  *
   2476  *	Look up a softc instance for a given driver.
   2477  */
   2478 void *
   2479 device_lookup_private(cfdriver_t cd, int unit)
   2480 {
   2481 
   2482 	return device_private(device_lookup(cd, unit));
   2483 }
   2484 
   2485 /*
   2486  * device_find_by_xname:
   2487  *
   2488  *	Returns the device of the given name or NULL if it doesn't exist.
   2489  */
   2490 device_t
   2491 device_find_by_xname(const char *name)
   2492 {
   2493 	device_t dv;
   2494 	deviter_t di;
   2495 
   2496 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2497 		if (strcmp(device_xname(dv), name) == 0)
   2498 			break;
   2499 	}
   2500 	deviter_release(&di);
   2501 
   2502 	return dv;
   2503 }
   2504 
   2505 /*
   2506  * device_find_by_driver_unit:
   2507  *
   2508  *	Returns the device of the given driver name and unit or
   2509  *	NULL if it doesn't exist.
   2510  */
   2511 device_t
   2512 device_find_by_driver_unit(const char *name, int unit)
   2513 {
   2514 	struct cfdriver *cd;
   2515 
   2516 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2517 		return NULL;
   2518 	return device_lookup(cd, unit);
   2519 }
   2520 
   2521 static bool
   2522 match_strcmp(const char * const s1, const char * const s2)
   2523 {
   2524 	return strcmp(s1, s2) == 0;
   2525 }
   2526 
   2527 static bool
   2528 match_pmatch(const char * const s1, const char * const s2)
   2529 {
   2530 	return pmatch(s1, s2, NULL) == 2;
   2531 }
   2532 
   2533 static bool
   2534 strarray_match_internal(const char ** const strings,
   2535     unsigned int const nstrings, const char * const str,
   2536     unsigned int * const indexp,
   2537     bool (*match_fn)(const char *, const char *))
   2538 {
   2539 	unsigned int i;
   2540 
   2541 	if (strings == NULL || nstrings == 0) {
   2542 		return false;
   2543 	}
   2544 
   2545 	for (i = 0; i < nstrings; i++) {
   2546 		if ((*match_fn)(strings[i], str)) {
   2547 			*indexp = i;
   2548 			return true;
   2549 		}
   2550 	}
   2551 
   2552 	return false;
   2553 }
   2554 
   2555 static int
   2556 strarray_match(const char ** const strings, unsigned int const nstrings,
   2557     const char * const str)
   2558 {
   2559 	unsigned int idx;
   2560 
   2561 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2562 				    match_strcmp)) {
   2563 		return (int)(nstrings - idx);
   2564 	}
   2565 	return 0;
   2566 }
   2567 
   2568 static int
   2569 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2570     const char * const pattern)
   2571 {
   2572 	unsigned int idx;
   2573 
   2574 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2575 				    match_pmatch)) {
   2576 		return (int)(nstrings - idx);
   2577 	}
   2578 	return 0;
   2579 }
   2580 
   2581 static int
   2582 device_compatible_match_strarray_internal(
   2583     const char **device_compats, int ndevice_compats,
   2584     const struct device_compatible_entry *driver_compats,
   2585     const struct device_compatible_entry **matching_entryp,
   2586     int (*match_fn)(const char **, unsigned int, const char *))
   2587 {
   2588 	const struct device_compatible_entry *dce = NULL;
   2589 	int rv;
   2590 
   2591 	if (ndevice_compats == 0 || device_compats == NULL ||
   2592 	    driver_compats == NULL)
   2593 		return 0;
   2594 
   2595 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2596 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2597 		if (rv != 0) {
   2598 			if (matching_entryp != NULL) {
   2599 				*matching_entryp = dce;
   2600 			}
   2601 			return rv;
   2602 		}
   2603 	}
   2604 	return 0;
   2605 }
   2606 
   2607 /*
   2608  * device_compatible_match:
   2609  *
   2610  *	Match a driver's "compatible" data against a device's
   2611  *	"compatible" strings.  Returns resulted weighted by
   2612  *	which device "compatible" string was matched.
   2613  */
   2614 int
   2615 device_compatible_match(const char **device_compats, int ndevice_compats,
   2616     const struct device_compatible_entry *driver_compats)
   2617 {
   2618 	return device_compatible_match_strarray_internal(device_compats,
   2619 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2620 }
   2621 
   2622 /*
   2623  * device_compatible_pmatch:
   2624  *
   2625  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2626  *	the device "compatible" strings against patterns in the
   2627  *	driver's "compatible" data.
   2628  */
   2629 int
   2630 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2631     const struct device_compatible_entry *driver_compats)
   2632 {
   2633 	return device_compatible_match_strarray_internal(device_compats,
   2634 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2635 }
   2636 
   2637 static int
   2638 device_compatible_match_strlist_internal(
   2639     const char * const device_compats, size_t const device_compatsize,
   2640     const struct device_compatible_entry *driver_compats,
   2641     const struct device_compatible_entry **matching_entryp,
   2642     int (*match_fn)(const char *, size_t, const char *))
   2643 {
   2644 	const struct device_compatible_entry *dce = NULL;
   2645 	int rv;
   2646 
   2647 	if (device_compats == NULL || device_compatsize == 0 ||
   2648 	    driver_compats == NULL)
   2649 		return 0;
   2650 
   2651 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2652 		rv = (*match_fn)(device_compats, device_compatsize,
   2653 		    dce->compat);
   2654 		if (rv != 0) {
   2655 			if (matching_entryp != NULL) {
   2656 				*matching_entryp = dce;
   2657 			}
   2658 			return rv;
   2659 		}
   2660 	}
   2661 	return 0;
   2662 }
   2663 
   2664 /*
   2665  * device_compatible_match_strlist:
   2666  *
   2667  *	Like device_compatible_match(), but take the device
   2668  *	"compatible" strings as an OpenFirmware-style string
   2669  *	list.
   2670  */
   2671 int
   2672 device_compatible_match_strlist(
   2673     const char * const device_compats, size_t const device_compatsize,
   2674     const struct device_compatible_entry *driver_compats)
   2675 {
   2676 	return device_compatible_match_strlist_internal(device_compats,
   2677 	    device_compatsize, driver_compats, NULL, strlist_match);
   2678 }
   2679 
   2680 /*
   2681  * device_compatible_pmatch_strlist:
   2682  *
   2683  *	Like device_compatible_pmatch(), but take the device
   2684  *	"compatible" strings as an OpenFirmware-style string
   2685  *	list.
   2686  */
   2687 int
   2688 device_compatible_pmatch_strlist(
   2689     const char * const device_compats, size_t const device_compatsize,
   2690     const struct device_compatible_entry *driver_compats)
   2691 {
   2692 	return device_compatible_match_strlist_internal(device_compats,
   2693 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2694 }
   2695 
   2696 static int
   2697 device_compatible_match_id_internal(
   2698     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2699     const struct device_compatible_entry *driver_compats,
   2700     const struct device_compatible_entry **matching_entryp)
   2701 {
   2702 	const struct device_compatible_entry *dce = NULL;
   2703 
   2704 	if (mask == 0)
   2705 		return 0;
   2706 
   2707 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2708 		if ((id & mask) == dce->id) {
   2709 			if (matching_entryp != NULL) {
   2710 				*matching_entryp = dce;
   2711 			}
   2712 			return 1;
   2713 		}
   2714 	}
   2715 	return 0;
   2716 }
   2717 
   2718 /*
   2719  * device_compatible_match_id:
   2720  *
   2721  *	Like device_compatible_match(), but takes a single
   2722  *	unsigned integer device ID.
   2723  */
   2724 int
   2725 device_compatible_match_id(
   2726     uintptr_t const id, uintptr_t const sentinel_id,
   2727     const struct device_compatible_entry *driver_compats)
   2728 {
   2729 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2730 	    sentinel_id, driver_compats, NULL);
   2731 }
   2732 
   2733 /*
   2734  * device_compatible_lookup:
   2735  *
   2736  *	Look up and return the device_compatible_entry, using the
   2737  *	same matching criteria used by device_compatible_match().
   2738  */
   2739 const struct device_compatible_entry *
   2740 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2741 			 const struct device_compatible_entry *driver_compats)
   2742 {
   2743 	const struct device_compatible_entry *dce;
   2744 
   2745 	if (device_compatible_match_strarray_internal(device_compats,
   2746 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2747 		return dce;
   2748 	}
   2749 	return NULL;
   2750 }
   2751 
   2752 /*
   2753  * device_compatible_plookup:
   2754  *
   2755  *	Look up and return the device_compatible_entry, using the
   2756  *	same matching criteria used by device_compatible_pmatch().
   2757  */
   2758 const struct device_compatible_entry *
   2759 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2760 			  const struct device_compatible_entry *driver_compats)
   2761 {
   2762 	const struct device_compatible_entry *dce;
   2763 
   2764 	if (device_compatible_match_strarray_internal(device_compats,
   2765 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2766 		return dce;
   2767 	}
   2768 	return NULL;
   2769 }
   2770 
   2771 /*
   2772  * device_compatible_lookup_strlist:
   2773  *
   2774  *	Like device_compatible_lookup(), but take the device
   2775  *	"compatible" strings as an OpenFirmware-style string
   2776  *	list.
   2777  */
   2778 const struct device_compatible_entry *
   2779 device_compatible_lookup_strlist(
   2780     const char * const device_compats, size_t const device_compatsize,
   2781     const struct device_compatible_entry *driver_compats)
   2782 {
   2783 	const struct device_compatible_entry *dce;
   2784 
   2785 	if (device_compatible_match_strlist_internal(device_compats,
   2786 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2787 		return dce;
   2788 	}
   2789 	return NULL;
   2790 }
   2791 
   2792 /*
   2793  * device_compatible_plookup_strlist:
   2794  *
   2795  *	Like device_compatible_plookup(), but take the device
   2796  *	"compatible" strings as an OpenFirmware-style string
   2797  *	list.
   2798  */
   2799 const struct device_compatible_entry *
   2800 device_compatible_plookup_strlist(
   2801     const char * const device_compats, size_t const device_compatsize,
   2802     const struct device_compatible_entry *driver_compats)
   2803 {
   2804 	const struct device_compatible_entry *dce;
   2805 
   2806 	if (device_compatible_match_strlist_internal(device_compats,
   2807 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2808 		return dce;
   2809 	}
   2810 	return NULL;
   2811 }
   2812 
   2813 /*
   2814  * device_compatible_lookup_id:
   2815  *
   2816  *	Like device_compatible_lookup(), but takes a single
   2817  *	unsigned integer device ID.
   2818  */
   2819 const struct device_compatible_entry *
   2820 device_compatible_lookup_id(
   2821     uintptr_t const id, uintptr_t const sentinel_id,
   2822     const struct device_compatible_entry *driver_compats)
   2823 {
   2824 	const struct device_compatible_entry *dce;
   2825 
   2826 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2827 	    sentinel_id, driver_compats, &dce)) {
   2828 		return dce;
   2829 	}
   2830 	return NULL;
   2831 }
   2832 
   2833 /*
   2834  * Power management related functions.
   2835  */
   2836 
   2837 bool
   2838 device_pmf_is_registered(device_t dev)
   2839 {
   2840 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2841 }
   2842 
   2843 bool
   2844 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2845 {
   2846 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2847 		return true;
   2848 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2849 		return false;
   2850 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2851 	    dev->dv_driver_suspend != NULL &&
   2852 	    !(*dev->dv_driver_suspend)(dev, qual))
   2853 		return false;
   2854 
   2855 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2856 	return true;
   2857 }
   2858 
   2859 bool
   2860 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2861 {
   2862 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2863 		return true;
   2864 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2865 		return false;
   2866 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2867 	    dev->dv_driver_resume != NULL &&
   2868 	    !(*dev->dv_driver_resume)(dev, qual))
   2869 		return false;
   2870 
   2871 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2872 	return true;
   2873 }
   2874 
   2875 bool
   2876 device_pmf_driver_shutdown(device_t dev, int how)
   2877 {
   2878 
   2879 	if (*dev->dv_driver_shutdown != NULL &&
   2880 	    !(*dev->dv_driver_shutdown)(dev, how))
   2881 		return false;
   2882 	return true;
   2883 }
   2884 
   2885 bool
   2886 device_pmf_driver_register(device_t dev,
   2887     bool (*suspend)(device_t, const pmf_qual_t *),
   2888     bool (*resume)(device_t, const pmf_qual_t *),
   2889     bool (*shutdown)(device_t, int))
   2890 {
   2891 	dev->dv_driver_suspend = suspend;
   2892 	dev->dv_driver_resume = resume;
   2893 	dev->dv_driver_shutdown = shutdown;
   2894 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2895 	return true;
   2896 }
   2897 
   2898 static const char *
   2899 curlwp_name(void)
   2900 {
   2901 	if (curlwp->l_name != NULL)
   2902 		return curlwp->l_name;
   2903 	else
   2904 		return curlwp->l_proc->p_comm;
   2905 }
   2906 
   2907 void
   2908 device_pmf_driver_deregister(device_t dev)
   2909 {
   2910 	device_lock_t dvl = device_getlock(dev);
   2911 
   2912 	dev->dv_driver_suspend = NULL;
   2913 	dev->dv_driver_resume = NULL;
   2914 
   2915 	mutex_enter(&dvl->dvl_mtx);
   2916 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2917 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2918 		/* Wake a thread that waits for the lock.  That
   2919 		 * thread will fail to acquire the lock, and then
   2920 		 * it will wake the next thread that waits for the
   2921 		 * lock, or else it will wake us.
   2922 		 */
   2923 		cv_signal(&dvl->dvl_cv);
   2924 		pmflock_debug(dev, __func__, __LINE__);
   2925 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2926 		pmflock_debug(dev, __func__, __LINE__);
   2927 	}
   2928 	mutex_exit(&dvl->dvl_mtx);
   2929 }
   2930 
   2931 bool
   2932 device_pmf_driver_child_register(device_t dev)
   2933 {
   2934 	device_t parent = device_parent(dev);
   2935 
   2936 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2937 		return true;
   2938 	return (*parent->dv_driver_child_register)(dev);
   2939 }
   2940 
   2941 void
   2942 device_pmf_driver_set_child_register(device_t dev,
   2943     bool (*child_register)(device_t))
   2944 {
   2945 	dev->dv_driver_child_register = child_register;
   2946 }
   2947 
   2948 static void
   2949 pmflock_debug(device_t dev, const char *func, int line)
   2950 {
   2951 	device_lock_t dvl = device_getlock(dev);
   2952 
   2953 	aprint_debug_dev(dev,
   2954 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2955 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2956 }
   2957 
   2958 static bool
   2959 device_pmf_lock1(device_t dev)
   2960 {
   2961 	device_lock_t dvl = device_getlock(dev);
   2962 
   2963 	while (device_pmf_is_registered(dev) &&
   2964 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2965 		dvl->dvl_nwait++;
   2966 		pmflock_debug(dev, __func__, __LINE__);
   2967 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2968 		pmflock_debug(dev, __func__, __LINE__);
   2969 		dvl->dvl_nwait--;
   2970 	}
   2971 	if (!device_pmf_is_registered(dev)) {
   2972 		pmflock_debug(dev, __func__, __LINE__);
   2973 		/* We could not acquire the lock, but some other thread may
   2974 		 * wait for it, also.  Wake that thread.
   2975 		 */
   2976 		cv_signal(&dvl->dvl_cv);
   2977 		return false;
   2978 	}
   2979 	dvl->dvl_nlock++;
   2980 	dvl->dvl_holder = curlwp;
   2981 	pmflock_debug(dev, __func__, __LINE__);
   2982 	return true;
   2983 }
   2984 
   2985 bool
   2986 device_pmf_lock(device_t dev)
   2987 {
   2988 	bool rc;
   2989 	device_lock_t dvl = device_getlock(dev);
   2990 
   2991 	mutex_enter(&dvl->dvl_mtx);
   2992 	rc = device_pmf_lock1(dev);
   2993 	mutex_exit(&dvl->dvl_mtx);
   2994 
   2995 	return rc;
   2996 }
   2997 
   2998 void
   2999 device_pmf_unlock(device_t dev)
   3000 {
   3001 	device_lock_t dvl = device_getlock(dev);
   3002 
   3003 	KASSERT(dvl->dvl_nlock > 0);
   3004 	mutex_enter(&dvl->dvl_mtx);
   3005 	if (--dvl->dvl_nlock == 0)
   3006 		dvl->dvl_holder = NULL;
   3007 	cv_signal(&dvl->dvl_cv);
   3008 	pmflock_debug(dev, __func__, __LINE__);
   3009 	mutex_exit(&dvl->dvl_mtx);
   3010 }
   3011 
   3012 device_lock_t
   3013 device_getlock(device_t dev)
   3014 {
   3015 	return &dev->dv_lock;
   3016 }
   3017 
   3018 void *
   3019 device_pmf_bus_private(device_t dev)
   3020 {
   3021 	return dev->dv_bus_private;
   3022 }
   3023 
   3024 bool
   3025 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   3026 {
   3027 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3028 		return true;
   3029 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   3030 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3031 		return false;
   3032 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3033 	    dev->dv_bus_suspend != NULL &&
   3034 	    !(*dev->dv_bus_suspend)(dev, qual))
   3035 		return false;
   3036 
   3037 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   3038 	return true;
   3039 }
   3040 
   3041 bool
   3042 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   3043 {
   3044 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   3045 		return true;
   3046 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3047 	    dev->dv_bus_resume != NULL &&
   3048 	    !(*dev->dv_bus_resume)(dev, qual))
   3049 		return false;
   3050 
   3051 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   3052 	return true;
   3053 }
   3054 
   3055 bool
   3056 device_pmf_bus_shutdown(device_t dev, int how)
   3057 {
   3058 
   3059 	if (*dev->dv_bus_shutdown != NULL &&
   3060 	    !(*dev->dv_bus_shutdown)(dev, how))
   3061 		return false;
   3062 	return true;
   3063 }
   3064 
   3065 void
   3066 device_pmf_bus_register(device_t dev, void *priv,
   3067     bool (*suspend)(device_t, const pmf_qual_t *),
   3068     bool (*resume)(device_t, const pmf_qual_t *),
   3069     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   3070 {
   3071 	dev->dv_bus_private = priv;
   3072 	dev->dv_bus_resume = resume;
   3073 	dev->dv_bus_suspend = suspend;
   3074 	dev->dv_bus_shutdown = shutdown;
   3075 	dev->dv_bus_deregister = deregister;
   3076 }
   3077 
   3078 void
   3079 device_pmf_bus_deregister(device_t dev)
   3080 {
   3081 	if (dev->dv_bus_deregister == NULL)
   3082 		return;
   3083 	(*dev->dv_bus_deregister)(dev);
   3084 	dev->dv_bus_private = NULL;
   3085 	dev->dv_bus_suspend = NULL;
   3086 	dev->dv_bus_resume = NULL;
   3087 	dev->dv_bus_deregister = NULL;
   3088 }
   3089 
   3090 void *
   3091 device_pmf_class_private(device_t dev)
   3092 {
   3093 	return dev->dv_class_private;
   3094 }
   3095 
   3096 bool
   3097 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3098 {
   3099 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3100 		return true;
   3101 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3102 	    dev->dv_class_suspend != NULL &&
   3103 	    !(*dev->dv_class_suspend)(dev, qual))
   3104 		return false;
   3105 
   3106 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3107 	return true;
   3108 }
   3109 
   3110 bool
   3111 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3112 {
   3113 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3114 		return true;
   3115 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3116 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3117 		return false;
   3118 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3119 	    dev->dv_class_resume != NULL &&
   3120 	    !(*dev->dv_class_resume)(dev, qual))
   3121 		return false;
   3122 
   3123 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3124 	return true;
   3125 }
   3126 
   3127 void
   3128 device_pmf_class_register(device_t dev, void *priv,
   3129     bool (*suspend)(device_t, const pmf_qual_t *),
   3130     bool (*resume)(device_t, const pmf_qual_t *),
   3131     void (*deregister)(device_t))
   3132 {
   3133 	dev->dv_class_private = priv;
   3134 	dev->dv_class_suspend = suspend;
   3135 	dev->dv_class_resume = resume;
   3136 	dev->dv_class_deregister = deregister;
   3137 }
   3138 
   3139 void
   3140 device_pmf_class_deregister(device_t dev)
   3141 {
   3142 	if (dev->dv_class_deregister == NULL)
   3143 		return;
   3144 	(*dev->dv_class_deregister)(dev);
   3145 	dev->dv_class_private = NULL;
   3146 	dev->dv_class_suspend = NULL;
   3147 	dev->dv_class_resume = NULL;
   3148 	dev->dv_class_deregister = NULL;
   3149 }
   3150 
   3151 bool
   3152 device_active(device_t dev, devactive_t type)
   3153 {
   3154 	size_t i;
   3155 
   3156 	if (dev->dv_activity_count == 0)
   3157 		return false;
   3158 
   3159 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3160 		if (dev->dv_activity_handlers[i] == NULL)
   3161 			break;
   3162 		(*dev->dv_activity_handlers[i])(dev, type);
   3163 	}
   3164 
   3165 	return true;
   3166 }
   3167 
   3168 bool
   3169 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3170 {
   3171 	void (**new_handlers)(device_t, devactive_t);
   3172 	void (**old_handlers)(device_t, devactive_t);
   3173 	size_t i, old_size, new_size;
   3174 	int s;
   3175 
   3176 	old_handlers = dev->dv_activity_handlers;
   3177 	old_size = dev->dv_activity_count;
   3178 
   3179 	KASSERT(old_size == 0 || old_handlers != NULL);
   3180 
   3181 	for (i = 0; i < old_size; ++i) {
   3182 		KASSERT(old_handlers[i] != handler);
   3183 		if (old_handlers[i] == NULL) {
   3184 			old_handlers[i] = handler;
   3185 			return true;
   3186 		}
   3187 	}
   3188 
   3189 	new_size = old_size + 4;
   3190 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3191 
   3192 	for (i = 0; i < old_size; ++i)
   3193 		new_handlers[i] = old_handlers[i];
   3194 	new_handlers[old_size] = handler;
   3195 	for (i = old_size+1; i < new_size; ++i)
   3196 		new_handlers[i] = NULL;
   3197 
   3198 	s = splhigh();
   3199 	dev->dv_activity_count = new_size;
   3200 	dev->dv_activity_handlers = new_handlers;
   3201 	splx(s);
   3202 
   3203 	if (old_size > 0)
   3204 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3205 
   3206 	return true;
   3207 }
   3208 
   3209 void
   3210 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3211 {
   3212 	void (**old_handlers)(device_t, devactive_t);
   3213 	size_t i, old_size;
   3214 	int s;
   3215 
   3216 	old_handlers = dev->dv_activity_handlers;
   3217 	old_size = dev->dv_activity_count;
   3218 
   3219 	for (i = 0; i < old_size; ++i) {
   3220 		if (old_handlers[i] == handler)
   3221 			break;
   3222 		if (old_handlers[i] == NULL)
   3223 			return; /* XXX panic? */
   3224 	}
   3225 
   3226 	if (i == old_size)
   3227 		return; /* XXX panic? */
   3228 
   3229 	for (; i < old_size - 1; ++i) {
   3230 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3231 			continue;
   3232 
   3233 		if (i == 0) {
   3234 			s = splhigh();
   3235 			dev->dv_activity_count = 0;
   3236 			dev->dv_activity_handlers = NULL;
   3237 			splx(s);
   3238 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3239 		}
   3240 		return;
   3241 	}
   3242 	old_handlers[i] = NULL;
   3243 }
   3244 
   3245 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3246 static bool
   3247 device_exists_at(device_t dv, devgen_t gen)
   3248 {
   3249 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3250 	    dv->dv_add_gen <= gen;
   3251 }
   3252 
   3253 static bool
   3254 deviter_visits(const deviter_t *di, device_t dv)
   3255 {
   3256 	return device_exists_at(dv, di->di_gen);
   3257 }
   3258 
   3259 /*
   3260  * Device Iteration
   3261  *
   3262  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3263  *     each device_t's in the device tree.
   3264  *
   3265  * deviter_init(di, flags): initialize the device iterator `di'
   3266  *     to "walk" the device tree.  deviter_next(di) will return
   3267  *     the first device_t in the device tree, or NULL if there are
   3268  *     no devices.
   3269  *
   3270  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3271  *     caller intends to modify the device tree by calling
   3272  *     config_detach(9) on devices in the order that the iterator
   3273  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3274  *     nearest the "root" of the device tree to be returned, first;
   3275  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3276  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3277  *     indicating both that deviter_init() should not respect any
   3278  *     locks on the device tree, and that deviter_next(di) may run
   3279  *     in more than one LWP before the walk has finished.
   3280  *
   3281  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3282  *     once.
   3283  *
   3284  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3285  *
   3286  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3287  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3288  *
   3289  * deviter_first(di, flags): initialize the device iterator `di'
   3290  *     and return the first device_t in the device tree, or NULL
   3291  *     if there are no devices.  The statement
   3292  *
   3293  *         dv = deviter_first(di);
   3294  *
   3295  *     is shorthand for
   3296  *
   3297  *         deviter_init(di);
   3298  *         dv = deviter_next(di);
   3299  *
   3300  * deviter_next(di): return the next device_t in the device tree,
   3301  *     or NULL if there are no more devices.  deviter_next(di)
   3302  *     is undefined if `di' was not initialized with deviter_init() or
   3303  *     deviter_first().
   3304  *
   3305  * deviter_release(di): stops iteration (subsequent calls to
   3306  *     deviter_next() will return NULL), releases any locks and
   3307  *     resources held by the device iterator.
   3308  *
   3309  * Device iteration does not return device_t's in any particular
   3310  * order.  An iterator will never return the same device_t twice.
   3311  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3312  * is called repeatedly on the same `di', it will eventually return
   3313  * NULL.  It is ok to attach/detach devices during device iteration.
   3314  */
   3315 void
   3316 deviter_init(deviter_t *di, deviter_flags_t flags)
   3317 {
   3318 	device_t dv;
   3319 
   3320 	memset(di, 0, sizeof(*di));
   3321 
   3322 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3323 		flags |= DEVITER_F_RW;
   3324 
   3325 	mutex_enter(&alldevs_lock);
   3326 	if ((flags & DEVITER_F_RW) != 0)
   3327 		alldevs_nwrite++;
   3328 	else
   3329 		alldevs_nread++;
   3330 	di->di_gen = alldevs_gen++;
   3331 	di->di_flags = flags;
   3332 
   3333 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3334 	case DEVITER_F_LEAVES_FIRST:
   3335 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3336 			if (!deviter_visits(di, dv))
   3337 				continue;
   3338 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3339 		}
   3340 		break;
   3341 	case DEVITER_F_ROOT_FIRST:
   3342 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3343 			if (!deviter_visits(di, dv))
   3344 				continue;
   3345 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3346 		}
   3347 		break;
   3348 	default:
   3349 		break;
   3350 	}
   3351 
   3352 	deviter_reinit(di);
   3353 	mutex_exit(&alldevs_lock);
   3354 }
   3355 
   3356 static void
   3357 deviter_reinit(deviter_t *di)
   3358 {
   3359 
   3360 	KASSERT(mutex_owned(&alldevs_lock));
   3361 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3362 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3363 	else
   3364 		di->di_prev = TAILQ_FIRST(&alldevs);
   3365 }
   3366 
   3367 device_t
   3368 deviter_first(deviter_t *di, deviter_flags_t flags)
   3369 {
   3370 
   3371 	deviter_init(di, flags);
   3372 	return deviter_next(di);
   3373 }
   3374 
   3375 static device_t
   3376 deviter_next2(deviter_t *di)
   3377 {
   3378 	device_t dv;
   3379 
   3380 	KASSERT(mutex_owned(&alldevs_lock));
   3381 
   3382 	dv = di->di_prev;
   3383 
   3384 	if (dv == NULL)
   3385 		return NULL;
   3386 
   3387 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3388 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3389 	else
   3390 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3391 
   3392 	return dv;
   3393 }
   3394 
   3395 static device_t
   3396 deviter_next1(deviter_t *di)
   3397 {
   3398 	device_t dv;
   3399 
   3400 	KASSERT(mutex_owned(&alldevs_lock));
   3401 
   3402 	do {
   3403 		dv = deviter_next2(di);
   3404 	} while (dv != NULL && !deviter_visits(di, dv));
   3405 
   3406 	return dv;
   3407 }
   3408 
   3409 device_t
   3410 deviter_next(deviter_t *di)
   3411 {
   3412 	device_t dv = NULL;
   3413 
   3414 	mutex_enter(&alldevs_lock);
   3415 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3416 	case 0:
   3417 		dv = deviter_next1(di);
   3418 		break;
   3419 	case DEVITER_F_LEAVES_FIRST:
   3420 		while (di->di_curdepth >= 0) {
   3421 			if ((dv = deviter_next1(di)) == NULL) {
   3422 				di->di_curdepth--;
   3423 				deviter_reinit(di);
   3424 			} else if (dv->dv_depth == di->di_curdepth)
   3425 				break;
   3426 		}
   3427 		break;
   3428 	case DEVITER_F_ROOT_FIRST:
   3429 		while (di->di_curdepth <= di->di_maxdepth) {
   3430 			if ((dv = deviter_next1(di)) == NULL) {
   3431 				di->di_curdepth++;
   3432 				deviter_reinit(di);
   3433 			} else if (dv->dv_depth == di->di_curdepth)
   3434 				break;
   3435 		}
   3436 		break;
   3437 	default:
   3438 		break;
   3439 	}
   3440 	mutex_exit(&alldevs_lock);
   3441 
   3442 	return dv;
   3443 }
   3444 
   3445 void
   3446 deviter_release(deviter_t *di)
   3447 {
   3448 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3449 
   3450 	mutex_enter(&alldevs_lock);
   3451 	if (rw)
   3452 		--alldevs_nwrite;
   3453 	else
   3454 		--alldevs_nread;
   3455 	/* XXX wake a garbage-collection thread */
   3456 	mutex_exit(&alldevs_lock);
   3457 }
   3458 
   3459 const char *
   3460 cfdata_ifattr(const struct cfdata *cf)
   3461 {
   3462 	return cf->cf_pspec->cfp_iattr;
   3463 }
   3464 
   3465 bool
   3466 ifattr_match(const char *snull, const char *t)
   3467 {
   3468 	return (snull == NULL) || strcmp(snull, t) == 0;
   3469 }
   3470 
   3471 void
   3472 null_childdetached(device_t self, device_t child)
   3473 {
   3474 	/* do nothing */
   3475 }
   3476 
   3477 static void
   3478 sysctl_detach_setup(struct sysctllog **clog)
   3479 {
   3480 
   3481 	sysctl_createv(clog, 0, NULL, NULL,
   3482 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3483 		CTLTYPE_BOOL, "detachall",
   3484 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3485 		NULL, 0, &detachall, 0,
   3486 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3487 }
   3488