Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.285
      1 /* $NetBSD: subr_autoconf.c,v 1.285 2021/06/13 00:11:17 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #define	__SUBR_AUTOCONF_PRIVATE	/* see <sys/device.h> */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.285 2021/06/13 00:11:17 riastradh Exp $");
     83 
     84 #ifdef _KERNEL_OPT
     85 #include "opt_ddb.h"
     86 #include "drvctl.h"
     87 #endif
     88 
     89 #include <sys/param.h>
     90 #include <sys/device.h>
     91 #include <sys/disklabel.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/kmem.h>
     95 #include <sys/systm.h>
     96 #include <sys/kernel.h>
     97 #include <sys/errno.h>
     98 #include <sys/proc.h>
     99 #include <sys/reboot.h>
    100 #include <sys/kthread.h>
    101 #include <sys/buf.h>
    102 #include <sys/dirent.h>
    103 #include <sys/mount.h>
    104 #include <sys/namei.h>
    105 #include <sys/unistd.h>
    106 #include <sys/fcntl.h>
    107 #include <sys/lockf.h>
    108 #include <sys/callout.h>
    109 #include <sys/devmon.h>
    110 #include <sys/cpu.h>
    111 #include <sys/sysctl.h>
    112 #include <sys/stdarg.h>
    113 
    114 #include <sys/disk.h>
    115 
    116 #include <sys/rndsource.h>
    117 
    118 #include <machine/limits.h>
    119 
    120 /*
    121  * Autoconfiguration subroutines.
    122  */
    123 
    124 /*
    125  * Device autoconfiguration timings are mixed into the entropy pool.
    126  */
    127 static krndsource_t rnd_autoconf_source;
    128 
    129 /*
    130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    131  * devices and drivers are found via these tables.
    132  */
    133 extern struct cfdata cfdata[];
    134 extern const short cfroots[];
    135 
    136 /*
    137  * List of all cfdriver structures.  We use this to detect duplicates
    138  * when other cfdrivers are loaded.
    139  */
    140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    141 extern struct cfdriver * const cfdriver_list_initial[];
    142 
    143 /*
    144  * Initial list of cfattach's.
    145  */
    146 extern const struct cfattachinit cfattachinit[];
    147 
    148 /*
    149  * List of cfdata tables.  We always have one such list -- the one
    150  * built statically when the kernel was configured.
    151  */
    152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    153 static struct cftable initcftable;
    154 
    155 #define	ROOT ((device_t)NULL)
    156 
    157 struct matchinfo {
    158 	cfsubmatch_t fn;
    159 	device_t parent;
    160 	const int *locs;
    161 	void	*aux;
    162 	struct	cfdata *match;
    163 	int	pri;
    164 };
    165 
    166 struct alldevs_foray {
    167 	int			af_s;
    168 	struct devicelist	af_garbage;
    169 };
    170 
    171 static char *number(char *, int);
    172 static void mapply(struct matchinfo *, cfdata_t);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 static struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 static struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 static int interrupt_config_threads = 8;
    202 static struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 static int mountroot_config_threads = 2;
    205 static lwp_t **mountroot_config_lwpids;
    206 static size_t mountroot_config_lwpids_size;
    207 bool root_is_mounted = false;
    208 
    209 static void config_process_deferred(struct deferred_config_head *, device_t);
    210 
    211 /* Hooks to finalize configuration once all real devices have been found. */
    212 struct finalize_hook {
    213 	TAILQ_ENTRY(finalize_hook) f_list;
    214 	int (*f_func)(device_t);
    215 	device_t f_dev;
    216 };
    217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    219 static int config_finalize_done;
    220 
    221 /* list of all devices */
    222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    223 static kmutex_t alldevs_lock __cacheline_aligned;
    224 static devgen_t alldevs_gen = 1;
    225 static int alldevs_nread = 0;
    226 static int alldevs_nwrite = 0;
    227 static bool alldevs_garbage = false;
    228 
    229 static struct devicelist config_pending =
    230     TAILQ_HEAD_INITIALIZER(config_pending);
    231 static kmutex_t config_misc_lock;
    232 static kcondvar_t config_misc_cv;
    233 
    234 static bool detachall = false;
    235 
    236 #define	STREQ(s1, s2)			\
    237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    238 
    239 static bool config_initialized = false;	/* config_init() has been called. */
    240 
    241 static int config_do_twiddle;
    242 static callout_t config_twiddle_ch;
    243 
    244 static void sysctl_detach_setup(struct sysctllog **);
    245 
    246 int no_devmon_insert(const char *, prop_dictionary_t);
    247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    248 
    249 typedef int (*cfdriver_fn)(struct cfdriver *);
    250 static int
    251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    253 	const char *style, bool dopanic)
    254 {
    255 	void (*pr)(const char *, ...) __printflike(1, 2) =
    256 	    dopanic ? panic : printf;
    257 	int i, error = 0, e2 __diagused;
    258 
    259 	for (i = 0; cfdriverv[i] != NULL; i++) {
    260 		if ((error = drv_do(cfdriverv[i])) != 0) {
    261 			pr("configure: `%s' driver %s failed: %d",
    262 			    cfdriverv[i]->cd_name, style, error);
    263 			goto bad;
    264 		}
    265 	}
    266 
    267 	KASSERT(error == 0);
    268 	return 0;
    269 
    270  bad:
    271 	printf("\n");
    272 	for (i--; i >= 0; i--) {
    273 		e2 = drv_undo(cfdriverv[i]);
    274 		KASSERT(e2 == 0);
    275 	}
    276 
    277 	return error;
    278 }
    279 
    280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    281 static int
    282 frob_cfattachvec(const struct cfattachinit *cfattachv,
    283 	cfattach_fn att_do, cfattach_fn att_undo,
    284 	const char *style, bool dopanic)
    285 {
    286 	const struct cfattachinit *cfai = NULL;
    287 	void (*pr)(const char *, ...) __printflike(1, 2) =
    288 	    dopanic ? panic : printf;
    289 	int j = 0, error = 0, e2 __diagused;
    290 
    291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    293 			if ((error = att_do(cfai->cfai_name,
    294 			    cfai->cfai_list[j])) != 0) {
    295 				pr("configure: attachment `%s' "
    296 				    "of `%s' driver %s failed: %d",
    297 				    cfai->cfai_list[j]->ca_name,
    298 				    cfai->cfai_name, style, error);
    299 				goto bad;
    300 			}
    301 		}
    302 	}
    303 
    304 	KASSERT(error == 0);
    305 	return 0;
    306 
    307  bad:
    308 	/*
    309 	 * Rollback in reverse order.  dunno if super-important, but
    310 	 * do that anyway.  Although the code looks a little like
    311 	 * someone did a little integration (in the math sense).
    312 	 */
    313 	printf("\n");
    314 	if (cfai) {
    315 		bool last;
    316 
    317 		for (last = false; last == false; ) {
    318 			if (cfai == &cfattachv[0])
    319 				last = true;
    320 			for (j--; j >= 0; j--) {
    321 				e2 = att_undo(cfai->cfai_name,
    322 				    cfai->cfai_list[j]);
    323 				KASSERT(e2 == 0);
    324 			}
    325 			if (!last) {
    326 				cfai--;
    327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    328 					;
    329 			}
    330 		}
    331 	}
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 
    345 	KASSERT(config_initialized == false);
    346 
    347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    348 
    349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	cv_init(&config_misc_cv, "cfgmisc");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    363 	    RND_FLAG_COLLECT_TIME);
    364 
    365 	config_initialized = true;
    366 }
    367 
    368 /*
    369  * Init or fini drivers and attachments.  Either all or none
    370  * are processed (via rollback).  It would be nice if this were
    371  * atomic to outside consumers, but with the current state of
    372  * locking ...
    373  */
    374 int
    375 config_init_component(struct cfdriver * const *cfdriverv,
    376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    377 {
    378 	int error;
    379 
    380 	KERNEL_LOCK(1, NULL);
    381 
    382 	if ((error = frob_cfdrivervec(cfdriverv,
    383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    384 		goto out;
    385 	if ((error = frob_cfattachvec(cfattachv,
    386 	    config_cfattach_attach, config_cfattach_detach,
    387 	    "init", false)) != 0) {
    388 		frob_cfdrivervec(cfdriverv,
    389 	            config_cfdriver_detach, NULL, "init rollback", true);
    390 		goto out;
    391 	}
    392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    393 		frob_cfattachvec(cfattachv,
    394 		    config_cfattach_detach, NULL, "init rollback", true);
    395 		frob_cfdrivervec(cfdriverv,
    396 	            config_cfdriver_detach, NULL, "init rollback", true);
    397 		goto out;
    398 	}
    399 
    400 	/* Success!  */
    401 	error = 0;
    402 
    403 out:	KERNEL_UNLOCK_ONE(NULL);
    404 	return error;
    405 }
    406 
    407 int
    408 config_fini_component(struct cfdriver * const *cfdriverv,
    409 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    410 {
    411 	int error;
    412 
    413 	KERNEL_LOCK(1, NULL);
    414 
    415 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    416 		goto out;
    417 	if ((error = frob_cfattachvec(cfattachv,
    418 	    config_cfattach_detach, config_cfattach_attach,
    419 	    "fini", false)) != 0) {
    420 		if (config_cfdata_attach(cfdatav, 0) != 0)
    421 			panic("config_cfdata fini rollback failed");
    422 		goto out;
    423 	}
    424 	if ((error = frob_cfdrivervec(cfdriverv,
    425 	    config_cfdriver_detach, config_cfdriver_attach,
    426 	    "fini", false)) != 0) {
    427 		frob_cfattachvec(cfattachv,
    428 	            config_cfattach_attach, NULL, "fini rollback", true);
    429 		if (config_cfdata_attach(cfdatav, 0) != 0)
    430 			panic("config_cfdata fini rollback failed");
    431 		goto out;
    432 	}
    433 
    434 	/* Success!  */
    435 	error = 0;
    436 
    437 out:	KERNEL_UNLOCK_ONE(NULL);
    438 	return error;
    439 }
    440 
    441 void
    442 config_init_mi(void)
    443 {
    444 
    445 	if (!config_initialized)
    446 		config_init();
    447 
    448 	sysctl_detach_setup(NULL);
    449 }
    450 
    451 void
    452 config_deferred(device_t dev)
    453 {
    454 
    455 	KASSERT(KERNEL_LOCKED_P());
    456 
    457 	config_process_deferred(&deferred_config_queue, dev);
    458 	config_process_deferred(&interrupt_config_queue, dev);
    459 	config_process_deferred(&mountroot_config_queue, dev);
    460 }
    461 
    462 static void
    463 config_interrupts_thread(void *cookie)
    464 {
    465 	struct deferred_config *dc;
    466 	device_t dev;
    467 
    468 	mutex_enter(&config_misc_lock);
    469 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    470 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    471 		mutex_exit(&config_misc_lock);
    472 
    473 		dev = dc->dc_dev;
    474 		(*dc->dc_func)(dev);
    475 		if (!device_pmf_is_registered(dev))
    476 			aprint_debug_dev(dev,
    477 			    "WARNING: power management not supported\n");
    478 		config_pending_decr(dev);
    479 		kmem_free(dc, sizeof(*dc));
    480 
    481 		mutex_enter(&config_misc_lock);
    482 	}
    483 	mutex_exit(&config_misc_lock);
    484 
    485 	kthread_exit(0);
    486 }
    487 
    488 void
    489 config_create_interruptthreads(void)
    490 {
    491 	int i;
    492 
    493 	for (i = 0; i < interrupt_config_threads; i++) {
    494 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    495 		    config_interrupts_thread, NULL, NULL, "configintr");
    496 	}
    497 }
    498 
    499 static void
    500 config_mountroot_thread(void *cookie)
    501 {
    502 	struct deferred_config *dc;
    503 
    504 	mutex_enter(&config_misc_lock);
    505 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    506 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    507 		mutex_exit(&config_misc_lock);
    508 
    509 		(*dc->dc_func)(dc->dc_dev);
    510 		kmem_free(dc, sizeof(*dc));
    511 
    512 		mutex_enter(&config_misc_lock);
    513 	}
    514 	mutex_exit(&config_misc_lock);
    515 
    516 	kthread_exit(0);
    517 }
    518 
    519 void
    520 config_create_mountrootthreads(void)
    521 {
    522 	int i;
    523 
    524 	if (!root_is_mounted)
    525 		root_is_mounted = true;
    526 
    527 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    528 				       mountroot_config_threads;
    529 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    530 					     KM_NOSLEEP);
    531 	KASSERT(mountroot_config_lwpids);
    532 	for (i = 0; i < mountroot_config_threads; i++) {
    533 		mountroot_config_lwpids[i] = 0;
    534 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    535 				     NULL, config_mountroot_thread, NULL,
    536 				     &mountroot_config_lwpids[i],
    537 				     "configroot");
    538 	}
    539 }
    540 
    541 void
    542 config_finalize_mountroot(void)
    543 {
    544 	int i, error;
    545 
    546 	for (i = 0; i < mountroot_config_threads; i++) {
    547 		if (mountroot_config_lwpids[i] == 0)
    548 			continue;
    549 
    550 		error = kthread_join(mountroot_config_lwpids[i]);
    551 		if (error)
    552 			printf("%s: thread %x joined with error %d\n",
    553 			       __func__, i, error);
    554 	}
    555 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    556 }
    557 
    558 /*
    559  * Announce device attach/detach to userland listeners.
    560  */
    561 
    562 int
    563 no_devmon_insert(const char *name, prop_dictionary_t p)
    564 {
    565 
    566 	return ENODEV;
    567 }
    568 
    569 static void
    570 devmon_report_device(device_t dev, bool isattach)
    571 {
    572 	prop_dictionary_t ev, dict = device_properties(dev);
    573 	const char *parent;
    574 	const char *what;
    575 	const char *where;
    576 	device_t pdev = device_parent(dev);
    577 
    578 	/* If currently no drvctl device, just return */
    579 	if (devmon_insert_vec == no_devmon_insert)
    580 		return;
    581 
    582 	ev = prop_dictionary_create();
    583 	if (ev == NULL)
    584 		return;
    585 
    586 	what = (isattach ? "device-attach" : "device-detach");
    587 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    588 	if (prop_dictionary_get_string(dict, "location", &where)) {
    589 		prop_dictionary_set_string(ev, "location", where);
    590 		aprint_debug("ev: %s %s at %s in [%s]\n",
    591 		    what, device_xname(dev), parent, where);
    592 	}
    593 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    594 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    595 		prop_object_release(ev);
    596 		return;
    597 	}
    598 
    599 	if ((*devmon_insert_vec)(what, ev) != 0)
    600 		prop_object_release(ev);
    601 }
    602 
    603 /*
    604  * Add a cfdriver to the system.
    605  */
    606 int
    607 config_cfdriver_attach(struct cfdriver *cd)
    608 {
    609 	struct cfdriver *lcd;
    610 
    611 	/* Make sure this driver isn't already in the system. */
    612 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    613 		if (STREQ(lcd->cd_name, cd->cd_name))
    614 			return EEXIST;
    615 	}
    616 
    617 	LIST_INIT(&cd->cd_attach);
    618 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    619 
    620 	return 0;
    621 }
    622 
    623 /*
    624  * Remove a cfdriver from the system.
    625  */
    626 int
    627 config_cfdriver_detach(struct cfdriver *cd)
    628 {
    629 	struct alldevs_foray af;
    630 	int i, rc = 0;
    631 
    632 	config_alldevs_enter(&af);
    633 	/* Make sure there are no active instances. */
    634 	for (i = 0; i < cd->cd_ndevs; i++) {
    635 		if (cd->cd_devs[i] != NULL) {
    636 			rc = EBUSY;
    637 			break;
    638 		}
    639 	}
    640 	config_alldevs_exit(&af);
    641 
    642 	if (rc != 0)
    643 		return rc;
    644 
    645 	/* ...and no attachments loaded. */
    646 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    647 		return EBUSY;
    648 
    649 	LIST_REMOVE(cd, cd_list);
    650 
    651 	KASSERT(cd->cd_devs == NULL);
    652 
    653 	return 0;
    654 }
    655 
    656 /*
    657  * Look up a cfdriver by name.
    658  */
    659 struct cfdriver *
    660 config_cfdriver_lookup(const char *name)
    661 {
    662 	struct cfdriver *cd;
    663 
    664 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    665 		if (STREQ(cd->cd_name, name))
    666 			return cd;
    667 	}
    668 
    669 	return NULL;
    670 }
    671 
    672 /*
    673  * Add a cfattach to the specified driver.
    674  */
    675 int
    676 config_cfattach_attach(const char *driver, struct cfattach *ca)
    677 {
    678 	struct cfattach *lca;
    679 	struct cfdriver *cd;
    680 
    681 	cd = config_cfdriver_lookup(driver);
    682 	if (cd == NULL)
    683 		return ESRCH;
    684 
    685 	/* Make sure this attachment isn't already on this driver. */
    686 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    687 		if (STREQ(lca->ca_name, ca->ca_name))
    688 			return EEXIST;
    689 	}
    690 
    691 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    692 
    693 	return 0;
    694 }
    695 
    696 /*
    697  * Remove a cfattach from the specified driver.
    698  */
    699 int
    700 config_cfattach_detach(const char *driver, struct cfattach *ca)
    701 {
    702 	struct alldevs_foray af;
    703 	struct cfdriver *cd;
    704 	device_t dev;
    705 	int i, rc = 0;
    706 
    707 	cd = config_cfdriver_lookup(driver);
    708 	if (cd == NULL)
    709 		return ESRCH;
    710 
    711 	config_alldevs_enter(&af);
    712 	/* Make sure there are no active instances. */
    713 	for (i = 0; i < cd->cd_ndevs; i++) {
    714 		if ((dev = cd->cd_devs[i]) == NULL)
    715 			continue;
    716 		if (dev->dv_cfattach == ca) {
    717 			rc = EBUSY;
    718 			break;
    719 		}
    720 	}
    721 	config_alldevs_exit(&af);
    722 
    723 	if (rc != 0)
    724 		return rc;
    725 
    726 	LIST_REMOVE(ca, ca_list);
    727 
    728 	return 0;
    729 }
    730 
    731 /*
    732  * Look up a cfattach by name.
    733  */
    734 static struct cfattach *
    735 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    736 {
    737 	struct cfattach *ca;
    738 
    739 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    740 		if (STREQ(ca->ca_name, atname))
    741 			return ca;
    742 	}
    743 
    744 	return NULL;
    745 }
    746 
    747 /*
    748  * Look up a cfattach by driver/attachment name.
    749  */
    750 struct cfattach *
    751 config_cfattach_lookup(const char *name, const char *atname)
    752 {
    753 	struct cfdriver *cd;
    754 
    755 	cd = config_cfdriver_lookup(name);
    756 	if (cd == NULL)
    757 		return NULL;
    758 
    759 	return config_cfattach_lookup_cd(cd, atname);
    760 }
    761 
    762 /*
    763  * Apply the matching function and choose the best.  This is used
    764  * a few times and we want to keep the code small.
    765  */
    766 static void
    767 mapply(struct matchinfo *m, cfdata_t cf)
    768 {
    769 	int pri;
    770 
    771 	if (m->fn != NULL) {
    772 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    773 	} else {
    774 		pri = config_match(m->parent, cf, m->aux);
    775 	}
    776 	if (pri > m->pri) {
    777 		m->match = cf;
    778 		m->pri = pri;
    779 	}
    780 }
    781 
    782 int
    783 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    784 {
    785 	const struct cfiattrdata *ci;
    786 	const struct cflocdesc *cl;
    787 	int nlocs, i;
    788 
    789 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    790 	KASSERT(ci);
    791 	nlocs = ci->ci_loclen;
    792 	KASSERT(!nlocs || locs);
    793 	for (i = 0; i < nlocs; i++) {
    794 		cl = &ci->ci_locdesc[i];
    795 		if (cl->cld_defaultstr != NULL &&
    796 		    cf->cf_loc[i] == cl->cld_default)
    797 			continue;
    798 		if (cf->cf_loc[i] == locs[i])
    799 			continue;
    800 		return 0;
    801 	}
    802 
    803 	return config_match(parent, cf, aux);
    804 }
    805 
    806 /*
    807  * Helper function: check whether the driver supports the interface attribute
    808  * and return its descriptor structure.
    809  */
    810 static const struct cfiattrdata *
    811 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    812 {
    813 	const struct cfiattrdata * const *cpp;
    814 
    815 	if (cd->cd_attrs == NULL)
    816 		return 0;
    817 
    818 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    819 		if (STREQ((*cpp)->ci_name, ia)) {
    820 			/* Match. */
    821 			return *cpp;
    822 		}
    823 	}
    824 	return 0;
    825 }
    826 
    827 #if defined(DIAGNOSTIC)
    828 static int
    829 cfdriver_iattr_count(const struct cfdriver *cd)
    830 {
    831 	const struct cfiattrdata * const *cpp;
    832 	int i;
    833 
    834 	if (cd->cd_attrs == NULL)
    835 		return 0;
    836 
    837 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    838 		i++;
    839 	}
    840 	return i;
    841 }
    842 #endif /* DIAGNOSTIC */
    843 
    844 /*
    845  * Lookup an interface attribute description by name.
    846  * If the driver is given, consider only its supported attributes.
    847  */
    848 const struct cfiattrdata *
    849 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    850 {
    851 	const struct cfdriver *d;
    852 	const struct cfiattrdata *ia;
    853 
    854 	if (cd)
    855 		return cfdriver_get_iattr(cd, name);
    856 
    857 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    858 		ia = cfdriver_get_iattr(d, name);
    859 		if (ia)
    860 			return ia;
    861 	}
    862 	return 0;
    863 }
    864 
    865 /*
    866  * Determine if `parent' is a potential parent for a device spec based
    867  * on `cfp'.
    868  */
    869 static int
    870 cfparent_match(const device_t parent, const struct cfparent *cfp)
    871 {
    872 	struct cfdriver *pcd;
    873 
    874 	/* We don't match root nodes here. */
    875 	if (cfp == NULL)
    876 		return 0;
    877 
    878 	pcd = parent->dv_cfdriver;
    879 	KASSERT(pcd != NULL);
    880 
    881 	/*
    882 	 * First, ensure this parent has the correct interface
    883 	 * attribute.
    884 	 */
    885 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    886 		return 0;
    887 
    888 	/*
    889 	 * If no specific parent device instance was specified (i.e.
    890 	 * we're attaching to the attribute only), we're done!
    891 	 */
    892 	if (cfp->cfp_parent == NULL)
    893 		return 1;
    894 
    895 	/*
    896 	 * Check the parent device's name.
    897 	 */
    898 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    899 		return 0;	/* not the same parent */
    900 
    901 	/*
    902 	 * Make sure the unit number matches.
    903 	 */
    904 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    905 	    cfp->cfp_unit == parent->dv_unit)
    906 		return 1;
    907 
    908 	/* Unit numbers don't match. */
    909 	return 0;
    910 }
    911 
    912 /*
    913  * Helper for config_cfdata_attach(): check all devices whether it could be
    914  * parent any attachment in the config data table passed, and rescan.
    915  */
    916 static void
    917 rescan_with_cfdata(const struct cfdata *cf)
    918 {
    919 	device_t d;
    920 	const struct cfdata *cf1;
    921 	deviter_t di;
    922 
    923 	KASSERT(KERNEL_LOCKED_P());
    924 
    925 	/*
    926 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    927 	 * the outer loop.
    928 	 */
    929 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    930 
    931 		if (!(d->dv_cfattach->ca_rescan))
    932 			continue;
    933 
    934 		for (cf1 = cf; cf1->cf_name; cf1++) {
    935 
    936 			if (!cfparent_match(d, cf1->cf_pspec))
    937 				continue;
    938 
    939 			(*d->dv_cfattach->ca_rescan)(d,
    940 				cfdata_ifattr(cf1), cf1->cf_loc);
    941 
    942 			config_deferred(d);
    943 		}
    944 	}
    945 	deviter_release(&di);
    946 }
    947 
    948 /*
    949  * Attach a supplemental config data table and rescan potential
    950  * parent devices if required.
    951  */
    952 int
    953 config_cfdata_attach(cfdata_t cf, int scannow)
    954 {
    955 	struct cftable *ct;
    956 
    957 	KERNEL_LOCK(1, NULL);
    958 
    959 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    960 	ct->ct_cfdata = cf;
    961 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    962 
    963 	if (scannow)
    964 		rescan_with_cfdata(cf);
    965 
    966 	KERNEL_UNLOCK_ONE();
    967 
    968 	return 0;
    969 }
    970 
    971 /*
    972  * Helper for config_cfdata_detach: check whether a device is
    973  * found through any attachment in the config data table.
    974  */
    975 static int
    976 dev_in_cfdata(device_t d, cfdata_t cf)
    977 {
    978 	const struct cfdata *cf1;
    979 
    980 	for (cf1 = cf; cf1->cf_name; cf1++)
    981 		if (d->dv_cfdata == cf1)
    982 			return 1;
    983 
    984 	return 0;
    985 }
    986 
    987 /*
    988  * Detach a supplemental config data table. Detach all devices found
    989  * through that table (and thus keeping references to it) before.
    990  */
    991 int
    992 config_cfdata_detach(cfdata_t cf)
    993 {
    994 	device_t d;
    995 	int error = 0;
    996 	struct cftable *ct;
    997 	deviter_t di;
    998 
    999 	KERNEL_LOCK(1, NULL);
   1000 
   1001 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
   1002 	     d = deviter_next(&di)) {
   1003 		if (!dev_in_cfdata(d, cf))
   1004 			continue;
   1005 		if ((error = config_detach(d, 0)) != 0)
   1006 			break;
   1007 	}
   1008 	deviter_release(&di);
   1009 	if (error) {
   1010 		aprint_error_dev(d, "unable to detach instance\n");
   1011 		goto out;
   1012 	}
   1013 
   1014 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1015 		if (ct->ct_cfdata == cf) {
   1016 			TAILQ_REMOVE(&allcftables, ct, ct_list);
   1017 			kmem_free(ct, sizeof(*ct));
   1018 			error = 0;
   1019 			goto out;
   1020 		}
   1021 	}
   1022 
   1023 	/* not found -- shouldn't happen */
   1024 	error = EINVAL;
   1025 
   1026 out:	KERNEL_UNLOCK_ONE(NULL);
   1027 	return error;
   1028 }
   1029 
   1030 /*
   1031  * Invoke the "match" routine for a cfdata entry on behalf of
   1032  * an external caller, usually a direct config "submatch" routine.
   1033  */
   1034 int
   1035 config_match(device_t parent, cfdata_t cf, void *aux)
   1036 {
   1037 	struct cfattach *ca;
   1038 
   1039 	KASSERT(KERNEL_LOCKED_P());
   1040 
   1041 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1042 	if (ca == NULL) {
   1043 		/* No attachment for this entry, oh well. */
   1044 		return 0;
   1045 	}
   1046 
   1047 	return (*ca->ca_match)(parent, cf, aux);
   1048 }
   1049 
   1050 /*
   1051  * Invoke the "probe" routine for a cfdata entry on behalf of
   1052  * an external caller, usually an indirect config "search" routine.
   1053  */
   1054 int
   1055 config_probe(device_t parent, cfdata_t cf, void *aux)
   1056 {
   1057 	/*
   1058 	 * This is currently a synonym for config_match(), but this
   1059 	 * is an implementation detail; "match" and "probe" routines
   1060 	 * have different behaviors.
   1061 	 *
   1062 	 * XXX config_probe() should return a bool, because there is
   1063 	 * XXX no match score for probe -- it's either there or it's
   1064 	 * XXX not, but some ports abuse the return value as a way
   1065 	 * XXX to attach "critical" devices before "non-critical"
   1066 	 * XXX devices.
   1067 	 */
   1068 	return config_match(parent, cf, aux);
   1069 }
   1070 
   1071 static void
   1072 config_get_cfargs(cfarg_t tag,
   1073 		  cfsubmatch_t *fnp,		/* output */
   1074 		  const char **ifattrp,		/* output */
   1075 		  const int **locsp,		/* output */
   1076 		  devhandle_t *handlep,		/* output */
   1077 		  va_list ap)
   1078 {
   1079 	cfsubmatch_t fn = NULL;
   1080 	const char *ifattr = NULL;
   1081 	const int *locs = NULL;
   1082 	devhandle_t handle;
   1083 
   1084 	devhandle_invalidate(&handle);
   1085 
   1086 	while (tag != CFARG_EOL) {
   1087 		switch (tag) {
   1088 		/*
   1089 		 * CFARG_SUBMATCH and CFARG_SEARCH are synonyms, but this
   1090 		 * is merely an implementation detail.  They are distinct
   1091 		 * from the caller's point of view.
   1092 		 */
   1093 		case CFARG_SUBMATCH:
   1094 		case CFARG_SEARCH:
   1095 			/* Only allow one function to be specified. */
   1096 			if (fn != NULL) {
   1097 				panic("%s: caller specified both "
   1098 				    "SUBMATCH and SEARCH", __func__);
   1099 			}
   1100 			fn = va_arg(ap, cfsubmatch_t);
   1101 			break;
   1102 
   1103 		case CFARG_IATTR:
   1104 			ifattr = va_arg(ap, const char *);
   1105 			break;
   1106 
   1107 		case CFARG_LOCATORS:
   1108 			locs = va_arg(ap, const int *);
   1109 			break;
   1110 
   1111 		case CFARG_DEVHANDLE:
   1112 			handle = va_arg(ap, devhandle_t);
   1113 			break;
   1114 
   1115 		default:
   1116 			panic("%s: unknown cfarg tag: %d\n",
   1117 			    __func__, tag);
   1118 		}
   1119 		tag = va_arg(ap, cfarg_t);
   1120 	}
   1121 
   1122 	if (fnp != NULL)
   1123 		*fnp = fn;
   1124 	if (ifattrp != NULL)
   1125 		*ifattrp = ifattr;
   1126 	if (locsp != NULL)
   1127 		*locsp = locs;
   1128 	if (handlep != NULL)
   1129 		*handlep = handle;
   1130 }
   1131 
   1132 /*
   1133  * Iterate over all potential children of some device, calling the given
   1134  * function (default being the child's match function) for each one.
   1135  * Nonzero returns are matches; the highest value returned is considered
   1136  * the best match.  Return the `found child' if we got a match, or NULL
   1137  * otherwise.  The `aux' pointer is simply passed on through.
   1138  *
   1139  * Note that this function is designed so that it can be used to apply
   1140  * an arbitrary function to all potential children (its return value
   1141  * can be ignored).
   1142  */
   1143 cfdata_t
   1144 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
   1145 {
   1146 	cfsubmatch_t fn;
   1147 	const char *ifattr;
   1148 	const int *locs;
   1149 	struct cftable *ct;
   1150 	cfdata_t cf;
   1151 	struct matchinfo m;
   1152 
   1153 	config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
   1154 
   1155 	KASSERT(config_initialized);
   1156 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1157 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1158 
   1159 	m.fn = fn;
   1160 	m.parent = parent;
   1161 	m.locs = locs;
   1162 	m.aux = aux;
   1163 	m.match = NULL;
   1164 	m.pri = 0;
   1165 
   1166 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1167 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1168 
   1169 			/* We don't match root nodes here. */
   1170 			if (!cf->cf_pspec)
   1171 				continue;
   1172 
   1173 			/*
   1174 			 * Skip cf if no longer eligible, otherwise scan
   1175 			 * through parents for one matching `parent', and
   1176 			 * try match function.
   1177 			 */
   1178 			if (cf->cf_fstate == FSTATE_FOUND)
   1179 				continue;
   1180 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1181 			    cf->cf_fstate == FSTATE_DSTAR)
   1182 				continue;
   1183 
   1184 			/*
   1185 			 * If an interface attribute was specified,
   1186 			 * consider only children which attach to
   1187 			 * that attribute.
   1188 			 */
   1189 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1190 				continue;
   1191 
   1192 			if (cfparent_match(parent, cf->cf_pspec))
   1193 				mapply(&m, cf);
   1194 		}
   1195 	}
   1196 	return m.match;
   1197 }
   1198 
   1199 cfdata_t
   1200 config_search(device_t parent, void *aux, cfarg_t tag, ...)
   1201 {
   1202 	cfdata_t cf;
   1203 	va_list ap;
   1204 
   1205 	va_start(ap, tag);
   1206 	cf = config_vsearch(parent, aux, tag, ap);
   1207 	va_end(ap);
   1208 
   1209 	return cf;
   1210 }
   1211 
   1212 /*
   1213  * Find the given root device.
   1214  * This is much like config_search, but there is no parent.
   1215  * Don't bother with multiple cfdata tables; the root node
   1216  * must always be in the initial table.
   1217  */
   1218 cfdata_t
   1219 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1220 {
   1221 	cfdata_t cf;
   1222 	const short *p;
   1223 	struct matchinfo m;
   1224 
   1225 	m.fn = fn;
   1226 	m.parent = ROOT;
   1227 	m.aux = aux;
   1228 	m.match = NULL;
   1229 	m.pri = 0;
   1230 	m.locs = 0;
   1231 	/*
   1232 	 * Look at root entries for matching name.  We do not bother
   1233 	 * with found-state here since only one root should ever be
   1234 	 * searched (and it must be done first).
   1235 	 */
   1236 	for (p = cfroots; *p >= 0; p++) {
   1237 		cf = &cfdata[*p];
   1238 		if (strcmp(cf->cf_name, rootname) == 0)
   1239 			mapply(&m, cf);
   1240 	}
   1241 	return m.match;
   1242 }
   1243 
   1244 static const char * const msgs[] = {
   1245 [QUIET]		=	"",
   1246 [UNCONF]	=	" not configured\n",
   1247 [UNSUPP]	=	" unsupported\n",
   1248 };
   1249 
   1250 /*
   1251  * The given `aux' argument describes a device that has been found
   1252  * on the given parent, but not necessarily configured.  Locate the
   1253  * configuration data for that device (using the submatch function
   1254  * provided, or using candidates' cd_match configuration driver
   1255  * functions) and attach it, and return its device_t.  If the device was
   1256  * not configured, call the given `print' function and return NULL.
   1257  */
   1258 device_t
   1259 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
   1260     va_list ap)
   1261 {
   1262 	cfdata_t cf;
   1263 	va_list nap;
   1264 
   1265 	va_copy(nap, ap);
   1266 	cf = config_vsearch(parent, aux, tag, nap);
   1267 	va_end(nap);
   1268 
   1269 	if (cf != NULL) {
   1270 		return config_vattach(parent, cf, aux, print, tag, ap);
   1271 	}
   1272 
   1273 	if (print) {
   1274 		if (config_do_twiddle && cold)
   1275 			twiddle();
   1276 
   1277 		const int pret = (*print)(aux, device_xname(parent));
   1278 		KASSERT(pret >= 0);
   1279 		KASSERT(pret < __arraycount(msgs));
   1280 		KASSERT(msgs[pret] != NULL);
   1281 		aprint_normal("%s", msgs[pret]);
   1282 	}
   1283 
   1284 	/*
   1285 	 * This has the effect of mixing in a single timestamp to the
   1286 	 * entropy pool.  Experiments indicate the estimator will almost
   1287 	 * always attribute one bit of entropy to this sample; analysis
   1288 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1289 	 * bits of entropy/sample so this seems appropriately conservative.
   1290 	 */
   1291 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1292 	return NULL;
   1293 }
   1294 
   1295 device_t
   1296 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
   1297 {
   1298 	device_t dev;
   1299 	va_list ap;
   1300 
   1301 	va_start(ap, tag);
   1302 	dev = config_vfound(parent, aux, print, tag, ap);
   1303 	va_end(ap);
   1304 
   1305 	return dev;
   1306 }
   1307 
   1308 /*
   1309  * As above, but for root devices.
   1310  */
   1311 device_t
   1312 config_rootfound(const char *rootname, void *aux)
   1313 {
   1314 	cfdata_t cf;
   1315 	device_t dev = NULL;
   1316 
   1317 	KERNEL_LOCK(1, NULL);
   1318 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1319 		dev = config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
   1320 	else
   1321 		aprint_error("root device %s not configured\n", rootname);
   1322 	KERNEL_UNLOCK_ONE(NULL);
   1323 	return dev;
   1324 }
   1325 
   1326 /* just like sprintf(buf, "%d") except that it works from the end */
   1327 static char *
   1328 number(char *ep, int n)
   1329 {
   1330 
   1331 	*--ep = 0;
   1332 	while (n >= 10) {
   1333 		*--ep = (n % 10) + '0';
   1334 		n /= 10;
   1335 	}
   1336 	*--ep = n + '0';
   1337 	return ep;
   1338 }
   1339 
   1340 /*
   1341  * Expand the size of the cd_devs array if necessary.
   1342  *
   1343  * The caller must hold alldevs_lock. config_makeroom() may release and
   1344  * re-acquire alldevs_lock, so callers should re-check conditions such
   1345  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1346  * returns.
   1347  */
   1348 static void
   1349 config_makeroom(int n, struct cfdriver *cd)
   1350 {
   1351 	int ondevs, nndevs;
   1352 	device_t *osp, *nsp;
   1353 
   1354 	KASSERT(mutex_owned(&alldevs_lock));
   1355 	alldevs_nwrite++;
   1356 
   1357 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1358 		;
   1359 
   1360 	while (n >= cd->cd_ndevs) {
   1361 		/*
   1362 		 * Need to expand the array.
   1363 		 */
   1364 		ondevs = cd->cd_ndevs;
   1365 		osp = cd->cd_devs;
   1366 
   1367 		/*
   1368 		 * Release alldevs_lock around allocation, which may
   1369 		 * sleep.
   1370 		 */
   1371 		mutex_exit(&alldevs_lock);
   1372 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1373 		mutex_enter(&alldevs_lock);
   1374 
   1375 		/*
   1376 		 * If another thread moved the array while we did
   1377 		 * not hold alldevs_lock, try again.
   1378 		 */
   1379 		if (cd->cd_devs != osp) {
   1380 			mutex_exit(&alldevs_lock);
   1381 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1382 			mutex_enter(&alldevs_lock);
   1383 			continue;
   1384 		}
   1385 
   1386 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1387 		if (ondevs != 0)
   1388 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1389 
   1390 		cd->cd_ndevs = nndevs;
   1391 		cd->cd_devs = nsp;
   1392 		if (ondevs != 0) {
   1393 			mutex_exit(&alldevs_lock);
   1394 			kmem_free(osp, sizeof(device_t) * ondevs);
   1395 			mutex_enter(&alldevs_lock);
   1396 		}
   1397 	}
   1398 	KASSERT(mutex_owned(&alldevs_lock));
   1399 	alldevs_nwrite--;
   1400 }
   1401 
   1402 /*
   1403  * Put dev into the devices list.
   1404  */
   1405 static void
   1406 config_devlink(device_t dev)
   1407 {
   1408 
   1409 	mutex_enter(&alldevs_lock);
   1410 
   1411 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1412 
   1413 	dev->dv_add_gen = alldevs_gen;
   1414 	/* It is safe to add a device to the tail of the list while
   1415 	 * readers and writers are in the list.
   1416 	 */
   1417 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1418 	mutex_exit(&alldevs_lock);
   1419 }
   1420 
   1421 static void
   1422 config_devfree(device_t dev)
   1423 {
   1424 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1425 
   1426 	if (dev->dv_cfattach->ca_devsize > 0)
   1427 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1428 	kmem_free(dev, sizeof(*dev));
   1429 }
   1430 
   1431 /*
   1432  * Caller must hold alldevs_lock.
   1433  */
   1434 static void
   1435 config_devunlink(device_t dev, struct devicelist *garbage)
   1436 {
   1437 	struct device_garbage *dg = &dev->dv_garbage;
   1438 	cfdriver_t cd = device_cfdriver(dev);
   1439 	int i;
   1440 
   1441 	KASSERT(mutex_owned(&alldevs_lock));
   1442 
   1443  	/* Unlink from device list.  Link to garbage list. */
   1444 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1445 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1446 
   1447 	/* Remove from cfdriver's array. */
   1448 	cd->cd_devs[dev->dv_unit] = NULL;
   1449 
   1450 	/*
   1451 	 * If the device now has no units in use, unlink its softc array.
   1452 	 */
   1453 	for (i = 0; i < cd->cd_ndevs; i++) {
   1454 		if (cd->cd_devs[i] != NULL)
   1455 			break;
   1456 	}
   1457 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1458 	if (i == cd->cd_ndevs) {
   1459 		dg->dg_ndevs = cd->cd_ndevs;
   1460 		dg->dg_devs = cd->cd_devs;
   1461 		cd->cd_devs = NULL;
   1462 		cd->cd_ndevs = 0;
   1463 	}
   1464 }
   1465 
   1466 static void
   1467 config_devdelete(device_t dev)
   1468 {
   1469 	struct device_garbage *dg = &dev->dv_garbage;
   1470 	device_lock_t dvl = device_getlock(dev);
   1471 
   1472 	if (dg->dg_devs != NULL)
   1473 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1474 
   1475 	cv_destroy(&dvl->dvl_cv);
   1476 	mutex_destroy(&dvl->dvl_mtx);
   1477 
   1478 	KASSERT(dev->dv_properties != NULL);
   1479 	prop_object_release(dev->dv_properties);
   1480 
   1481 	if (dev->dv_activity_handlers)
   1482 		panic("%s with registered handlers", __func__);
   1483 
   1484 	if (dev->dv_locators) {
   1485 		size_t amount = *--dev->dv_locators;
   1486 		kmem_free(dev->dv_locators, amount);
   1487 	}
   1488 
   1489 	config_devfree(dev);
   1490 }
   1491 
   1492 static int
   1493 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1494 {
   1495 	int unit;
   1496 
   1497 	if (cf->cf_fstate == FSTATE_STAR) {
   1498 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1499 			if (cd->cd_devs[unit] == NULL)
   1500 				break;
   1501 		/*
   1502 		 * unit is now the unit of the first NULL device pointer,
   1503 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1504 		 */
   1505 	} else {
   1506 		unit = cf->cf_unit;
   1507 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1508 			unit = -1;
   1509 	}
   1510 	return unit;
   1511 }
   1512 
   1513 static int
   1514 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1515 {
   1516 	struct alldevs_foray af;
   1517 	int unit;
   1518 
   1519 	config_alldevs_enter(&af);
   1520 	for (;;) {
   1521 		unit = config_unit_nextfree(cd, cf);
   1522 		if (unit == -1)
   1523 			break;
   1524 		if (unit < cd->cd_ndevs) {
   1525 			cd->cd_devs[unit] = dev;
   1526 			dev->dv_unit = unit;
   1527 			break;
   1528 		}
   1529 		config_makeroom(unit, cd);
   1530 	}
   1531 	config_alldevs_exit(&af);
   1532 
   1533 	return unit;
   1534 }
   1535 
   1536 static device_t
   1537 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
   1538     va_list ap)
   1539 {
   1540 	cfdriver_t cd;
   1541 	cfattach_t ca;
   1542 	size_t lname, lunit;
   1543 	const char *xunit;
   1544 	int myunit;
   1545 	char num[10];
   1546 	device_t dev;
   1547 	void *dev_private;
   1548 	const struct cfiattrdata *ia;
   1549 	device_lock_t dvl;
   1550 	const int *locs;
   1551 
   1552 	cd = config_cfdriver_lookup(cf->cf_name);
   1553 	if (cd == NULL)
   1554 		return NULL;
   1555 
   1556 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1557 	if (ca == NULL)
   1558 		return NULL;
   1559 
   1560 	/* get memory for all device vars */
   1561 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1562 	if (ca->ca_devsize > 0) {
   1563 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1564 	} else {
   1565 		dev_private = NULL;
   1566 	}
   1567 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1568 
   1569 	/*
   1570 	 * If a handle was supplied to config_attach(), we'll get it
   1571 	 * assigned automatically here.  If not, then we'll get the
   1572 	 * default invalid handle.
   1573 	 */
   1574 	config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
   1575 
   1576 	dev->dv_class = cd->cd_class;
   1577 	dev->dv_cfdata = cf;
   1578 	dev->dv_cfdriver = cd;
   1579 	dev->dv_cfattach = ca;
   1580 	dev->dv_activity_count = 0;
   1581 	dev->dv_activity_handlers = NULL;
   1582 	dev->dv_private = dev_private;
   1583 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1584 
   1585 	myunit = config_unit_alloc(dev, cd, cf);
   1586 	if (myunit == -1) {
   1587 		config_devfree(dev);
   1588 		return NULL;
   1589 	}
   1590 
   1591 	/* compute length of name and decimal expansion of unit number */
   1592 	lname = strlen(cd->cd_name);
   1593 	xunit = number(&num[sizeof(num)], myunit);
   1594 	lunit = &num[sizeof(num)] - xunit;
   1595 	if (lname + lunit > sizeof(dev->dv_xname))
   1596 		panic("config_vdevalloc: device name too long");
   1597 
   1598 	dvl = device_getlock(dev);
   1599 
   1600 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1601 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1602 
   1603 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1604 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1605 	dev->dv_parent = parent;
   1606 	if (parent != NULL)
   1607 		dev->dv_depth = parent->dv_depth + 1;
   1608 	else
   1609 		dev->dv_depth = 0;
   1610 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1611 	if (locs) {
   1612 		KASSERT(parent); /* no locators at root */
   1613 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1614 		dev->dv_locators =
   1615 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1616 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1617 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
   1618 	}
   1619 	dev->dv_properties = prop_dictionary_create();
   1620 	KASSERT(dev->dv_properties != NULL);
   1621 
   1622 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1623 	    "device-driver", dev->dv_cfdriver->cd_name);
   1624 	prop_dictionary_set_uint16(dev->dv_properties,
   1625 	    "device-unit", dev->dv_unit);
   1626 	if (parent != NULL) {
   1627 		prop_dictionary_set_string(dev->dv_properties,
   1628 		    "device-parent", device_xname(parent));
   1629 	}
   1630 
   1631 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1632 		config_add_attrib_dict(dev);
   1633 
   1634 	return dev;
   1635 }
   1636 
   1637 static device_t
   1638 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
   1639 {
   1640 	device_t dev;
   1641 	va_list ap;
   1642 
   1643 	va_start(ap, tag);
   1644 	dev = config_vdevalloc(parent, cf, tag, ap);
   1645 	va_end(ap);
   1646 
   1647 	return dev;
   1648 }
   1649 
   1650 /*
   1651  * Create an array of device attach attributes and add it
   1652  * to the device's dv_properties dictionary.
   1653  *
   1654  * <key>interface-attributes</key>
   1655  * <array>
   1656  *    <dict>
   1657  *       <key>attribute-name</key>
   1658  *       <string>foo</string>
   1659  *       <key>locators</key>
   1660  *       <array>
   1661  *          <dict>
   1662  *             <key>loc-name</key>
   1663  *             <string>foo-loc1</string>
   1664  *          </dict>
   1665  *          <dict>
   1666  *             <key>loc-name</key>
   1667  *             <string>foo-loc2</string>
   1668  *             <key>default</key>
   1669  *             <string>foo-loc2-default</string>
   1670  *          </dict>
   1671  *          ...
   1672  *       </array>
   1673  *    </dict>
   1674  *    ...
   1675  * </array>
   1676  */
   1677 
   1678 static void
   1679 config_add_attrib_dict(device_t dev)
   1680 {
   1681 	int i, j;
   1682 	const struct cfiattrdata *ci;
   1683 	prop_dictionary_t attr_dict, loc_dict;
   1684 	prop_array_t attr_array, loc_array;
   1685 
   1686 	if ((attr_array = prop_array_create()) == NULL)
   1687 		return;
   1688 
   1689 	for (i = 0; ; i++) {
   1690 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1691 			break;
   1692 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1693 			break;
   1694 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1695 		    ci->ci_name);
   1696 
   1697 		/* Create an array of the locator names and defaults */
   1698 
   1699 		if (ci->ci_loclen != 0 &&
   1700 		    (loc_array = prop_array_create()) != NULL) {
   1701 			for (j = 0; j < ci->ci_loclen; j++) {
   1702 				loc_dict = prop_dictionary_create();
   1703 				if (loc_dict == NULL)
   1704 					continue;
   1705 				prop_dictionary_set_string_nocopy(loc_dict,
   1706 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1707 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1708 					prop_dictionary_set_string_nocopy(
   1709 					    loc_dict, "default",
   1710 					    ci->ci_locdesc[j].cld_defaultstr);
   1711 				prop_array_set(loc_array, j, loc_dict);
   1712 				prop_object_release(loc_dict);
   1713 			}
   1714 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1715 			    loc_array);
   1716 		}
   1717 		prop_array_add(attr_array, attr_dict);
   1718 		prop_object_release(attr_dict);
   1719 	}
   1720 	if (i == 0)
   1721 		prop_object_release(attr_array);
   1722 	else
   1723 		prop_dictionary_set_and_rel(dev->dv_properties,
   1724 		    "interface-attributes", attr_array);
   1725 
   1726 	return;
   1727 }
   1728 
   1729 /*
   1730  * Attach a found device.
   1731  */
   1732 device_t
   1733 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1734     cfarg_t tag, va_list ap)
   1735 {
   1736 	device_t dev;
   1737 	struct cftable *ct;
   1738 	const char *drvname;
   1739 	bool deferred;
   1740 
   1741 	KASSERT(KERNEL_LOCKED_P());
   1742 
   1743 	dev = config_vdevalloc(parent, cf, tag, ap);
   1744 	if (!dev)
   1745 		panic("config_attach: allocation of device softc failed");
   1746 
   1747 	/* XXX redundant - see below? */
   1748 	if (cf->cf_fstate != FSTATE_STAR) {
   1749 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1750 		cf->cf_fstate = FSTATE_FOUND;
   1751 	}
   1752 
   1753 	config_devlink(dev);
   1754 
   1755 	if (config_do_twiddle && cold)
   1756 		twiddle();
   1757 	else
   1758 		aprint_naive("Found ");
   1759 	/*
   1760 	 * We want the next two printfs for normal, verbose, and quiet,
   1761 	 * but not silent (in which case, we're twiddling, instead).
   1762 	 */
   1763 	if (parent == ROOT) {
   1764 		aprint_naive("%s (root)", device_xname(dev));
   1765 		aprint_normal("%s (root)", device_xname(dev));
   1766 	} else {
   1767 		aprint_naive("%s at %s", device_xname(dev),
   1768 		    device_xname(parent));
   1769 		aprint_normal("%s at %s", device_xname(dev),
   1770 		    device_xname(parent));
   1771 		if (print)
   1772 			(void) (*print)(aux, NULL);
   1773 	}
   1774 
   1775 	/*
   1776 	 * Before attaching, clobber any unfound devices that are
   1777 	 * otherwise identical.
   1778 	 * XXX code above is redundant?
   1779 	 */
   1780 	drvname = dev->dv_cfdriver->cd_name;
   1781 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1782 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1783 			if (STREQ(cf->cf_name, drvname) &&
   1784 			    cf->cf_unit == dev->dv_unit) {
   1785 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1786 					cf->cf_fstate = FSTATE_FOUND;
   1787 			}
   1788 		}
   1789 	}
   1790 	device_register(dev, aux);
   1791 
   1792 	/* Let userland know */
   1793 	devmon_report_device(dev, true);
   1794 
   1795 	config_pending_incr(dev);
   1796 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1797 	config_pending_decr(dev);
   1798 
   1799 	mutex_enter(&config_misc_lock);
   1800 	deferred = (dev->dv_pending != 0);
   1801 	mutex_exit(&config_misc_lock);
   1802 
   1803 	if (!deferred && !device_pmf_is_registered(dev))
   1804 		aprint_debug_dev(dev,
   1805 		    "WARNING: power management not supported\n");
   1806 
   1807 	config_process_deferred(&deferred_config_queue, dev);
   1808 
   1809 	device_register_post_config(dev, aux);
   1810 	return dev;
   1811 }
   1812 
   1813 device_t
   1814 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1815     cfarg_t tag, ...)
   1816 {
   1817 	device_t dev;
   1818 	va_list ap;
   1819 
   1820 	KASSERT(KERNEL_LOCKED_P());
   1821 
   1822 	va_start(ap, tag);
   1823 	dev = config_vattach(parent, cf, aux, print, tag, ap);
   1824 	va_end(ap);
   1825 
   1826 	return dev;
   1827 }
   1828 
   1829 /*
   1830  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1831  * way are silently inserted into the device tree, and their children
   1832  * attached.
   1833  *
   1834  * Note that because pseudo-devices are attached silently, any information
   1835  * the attach routine wishes to print should be prefixed with the device
   1836  * name by the attach routine.
   1837  */
   1838 device_t
   1839 config_attach_pseudo(cfdata_t cf)
   1840 {
   1841 	device_t dev;
   1842 
   1843 	KERNEL_LOCK(1, NULL);
   1844 
   1845 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
   1846 	if (!dev)
   1847 		goto out;
   1848 
   1849 	/* XXX mark busy in cfdata */
   1850 
   1851 	if (cf->cf_fstate != FSTATE_STAR) {
   1852 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1853 		cf->cf_fstate = FSTATE_FOUND;
   1854 	}
   1855 
   1856 	config_devlink(dev);
   1857 
   1858 #if 0	/* XXXJRT not yet */
   1859 	device_register(dev, NULL);	/* like a root node */
   1860 #endif
   1861 
   1862 	/* Let userland know */
   1863 	devmon_report_device(dev, true);
   1864 
   1865 	config_pending_incr(dev);
   1866 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1867 	config_pending_decr(dev);
   1868 
   1869 	config_process_deferred(&deferred_config_queue, dev);
   1870 
   1871 out:	KERNEL_UNLOCK_ONE(NULL);
   1872 	return dev;
   1873 }
   1874 
   1875 /*
   1876  * Caller must hold alldevs_lock.
   1877  */
   1878 static void
   1879 config_collect_garbage(struct devicelist *garbage)
   1880 {
   1881 	device_t dv;
   1882 
   1883 	KASSERT(!cpu_intr_p());
   1884 	KASSERT(!cpu_softintr_p());
   1885 	KASSERT(mutex_owned(&alldevs_lock));
   1886 
   1887 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1888 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1889 			if (dv->dv_del_gen != 0)
   1890 				break;
   1891 		}
   1892 		if (dv == NULL) {
   1893 			alldevs_garbage = false;
   1894 			break;
   1895 		}
   1896 		config_devunlink(dv, garbage);
   1897 	}
   1898 	KASSERT(mutex_owned(&alldevs_lock));
   1899 }
   1900 
   1901 static void
   1902 config_dump_garbage(struct devicelist *garbage)
   1903 {
   1904 	device_t dv;
   1905 
   1906 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1907 		TAILQ_REMOVE(garbage, dv, dv_list);
   1908 		config_devdelete(dv);
   1909 	}
   1910 }
   1911 
   1912 static int
   1913 config_detach_enter(device_t dev)
   1914 {
   1915 	int error;
   1916 
   1917 	mutex_enter(&config_misc_lock);
   1918 	for (;;) {
   1919 		if (dev->dv_pending == 0 && dev->dv_detaching == NULL) {
   1920 			dev->dv_detaching = curlwp;
   1921 			error = 0;
   1922 			break;
   1923 		}
   1924 		KASSERTMSG(dev->dv_detaching != curlwp,
   1925 		    "recursively detaching %s", device_xname(dev));
   1926 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
   1927 		if (error)
   1928 			break;
   1929 	}
   1930 	KASSERT(error || dev->dv_detaching == curlwp);
   1931 	mutex_exit(&config_misc_lock);
   1932 
   1933 	return error;
   1934 }
   1935 
   1936 static void
   1937 config_detach_exit(device_t dev)
   1938 {
   1939 
   1940 	mutex_enter(&config_misc_lock);
   1941 	KASSERT(dev->dv_detaching == curlwp);
   1942 	dev->dv_detaching = NULL;
   1943 	cv_broadcast(&config_misc_cv);
   1944 	mutex_exit(&config_misc_lock);
   1945 }
   1946 
   1947 /*
   1948  * Detach a device.  Optionally forced (e.g. because of hardware
   1949  * removal) and quiet.  Returns zero if successful, non-zero
   1950  * (an error code) otherwise.
   1951  *
   1952  * Note that this code wants to be run from a process context, so
   1953  * that the detach can sleep to allow processes which have a device
   1954  * open to run and unwind their stacks.
   1955  */
   1956 int
   1957 config_detach(device_t dev, int flags)
   1958 {
   1959 	struct alldevs_foray af;
   1960 	struct cftable *ct;
   1961 	cfdata_t cf;
   1962 	const struct cfattach *ca;
   1963 	struct cfdriver *cd;
   1964 	device_t d __diagused;
   1965 	int rv = 0;
   1966 
   1967 	KASSERT(KERNEL_LOCKED_P());
   1968 
   1969 	cf = dev->dv_cfdata;
   1970 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1971 		cf->cf_fstate == FSTATE_STAR),
   1972 	    "config_detach: %s: bad device fstate: %d",
   1973 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1974 
   1975 	cd = dev->dv_cfdriver;
   1976 	KASSERT(cd != NULL);
   1977 
   1978 	ca = dev->dv_cfattach;
   1979 	KASSERT(ca != NULL);
   1980 
   1981 	/*
   1982 	 * Only one detach at a time, please -- and not until fully
   1983 	 * attached.
   1984 	 */
   1985 	rv = config_detach_enter(dev);
   1986 	if (rv)
   1987 		return rv;
   1988 
   1989 	mutex_enter(&alldevs_lock);
   1990 	if (dev->dv_del_gen != 0) {
   1991 		mutex_exit(&alldevs_lock);
   1992 #ifdef DIAGNOSTIC
   1993 		printf("%s: %s is already detached\n", __func__,
   1994 		    device_xname(dev));
   1995 #endif /* DIAGNOSTIC */
   1996 		config_detach_exit(dev);
   1997 		return ENOENT;
   1998 	}
   1999 	alldevs_nwrite++;
   2000 	mutex_exit(&alldevs_lock);
   2001 
   2002 	if (!detachall &&
   2003 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   2004 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   2005 		rv = EOPNOTSUPP;
   2006 	} else if (ca->ca_detach != NULL) {
   2007 		rv = (*ca->ca_detach)(dev, flags);
   2008 	} else
   2009 		rv = EOPNOTSUPP;
   2010 
   2011 	/*
   2012 	 * If it was not possible to detach the device, then we either
   2013 	 * panic() (for the forced but failed case), or return an error.
   2014 	 *
   2015 	 * If it was possible to detach the device, ensure that the
   2016 	 * device is deactivated.
   2017 	 */
   2018 	if (rv == 0)
   2019 		dev->dv_flags &= ~DVF_ACTIVE;
   2020 	else if ((flags & DETACH_FORCE) == 0)
   2021 		goto out;
   2022 	else {
   2023 		panic("config_detach: forced detach of %s failed (%d)",
   2024 		    device_xname(dev), rv);
   2025 	}
   2026 
   2027 	/*
   2028 	 * The device has now been successfully detached.
   2029 	 */
   2030 
   2031 	/* Let userland know */
   2032 	devmon_report_device(dev, false);
   2033 
   2034 #ifdef DIAGNOSTIC
   2035 	/*
   2036 	 * Sanity: If you're successfully detached, you should have no
   2037 	 * children.  (Note that because children must be attached
   2038 	 * after parents, we only need to search the latter part of
   2039 	 * the list.)
   2040 	 */
   2041 	mutex_enter(&alldevs_lock);
   2042 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   2043 	    d = TAILQ_NEXT(d, dv_list)) {
   2044 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   2045 			printf("config_detach: detached device %s"
   2046 			    " has children %s\n", device_xname(dev),
   2047 			    device_xname(d));
   2048 			panic("config_detach");
   2049 		}
   2050 	}
   2051 	mutex_exit(&alldevs_lock);
   2052 #endif
   2053 
   2054 	/* notify the parent that the child is gone */
   2055 	if (dev->dv_parent) {
   2056 		device_t p = dev->dv_parent;
   2057 		if (p->dv_cfattach->ca_childdetached)
   2058 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   2059 	}
   2060 
   2061 	/*
   2062 	 * Mark cfdata to show that the unit can be reused, if possible.
   2063 	 */
   2064 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   2065 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   2066 			if (STREQ(cf->cf_name, cd->cd_name)) {
   2067 				if (cf->cf_fstate == FSTATE_FOUND &&
   2068 				    cf->cf_unit == dev->dv_unit)
   2069 					cf->cf_fstate = FSTATE_NOTFOUND;
   2070 			}
   2071 		}
   2072 	}
   2073 
   2074 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   2075 		aprint_normal_dev(dev, "detached\n");
   2076 
   2077 out:
   2078 	config_detach_exit(dev);
   2079 
   2080 	config_alldevs_enter(&af);
   2081 	KASSERT(alldevs_nwrite != 0);
   2082 	--alldevs_nwrite;
   2083 	if (rv == 0 && dev->dv_del_gen == 0) {
   2084 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   2085 			config_devunlink(dev, &af.af_garbage);
   2086 		else {
   2087 			dev->dv_del_gen = alldevs_gen;
   2088 			alldevs_garbage = true;
   2089 		}
   2090 	}
   2091 	config_alldevs_exit(&af);
   2092 
   2093 	return rv;
   2094 }
   2095 
   2096 int
   2097 config_detach_children(device_t parent, int flags)
   2098 {
   2099 	device_t dv;
   2100 	deviter_t di;
   2101 	int error = 0;
   2102 
   2103 	KASSERT(KERNEL_LOCKED_P());
   2104 
   2105 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   2106 	     dv = deviter_next(&di)) {
   2107 		if (device_parent(dv) != parent)
   2108 			continue;
   2109 		if ((error = config_detach(dv, flags)) != 0)
   2110 			break;
   2111 	}
   2112 	deviter_release(&di);
   2113 	return error;
   2114 }
   2115 
   2116 device_t
   2117 shutdown_first(struct shutdown_state *s)
   2118 {
   2119 	if (!s->initialized) {
   2120 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   2121 		s->initialized = true;
   2122 	}
   2123 	return shutdown_next(s);
   2124 }
   2125 
   2126 device_t
   2127 shutdown_next(struct shutdown_state *s)
   2128 {
   2129 	device_t dv;
   2130 
   2131 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2132 		;
   2133 
   2134 	if (dv == NULL)
   2135 		s->initialized = false;
   2136 
   2137 	return dv;
   2138 }
   2139 
   2140 bool
   2141 config_detach_all(int how)
   2142 {
   2143 	static struct shutdown_state s;
   2144 	device_t curdev;
   2145 	bool progress = false;
   2146 	int flags;
   2147 
   2148 	KERNEL_LOCK(1, NULL);
   2149 
   2150 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2151 		goto out;
   2152 
   2153 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2154 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2155 	else
   2156 		flags = DETACH_SHUTDOWN;
   2157 
   2158 	for (curdev = shutdown_first(&s); curdev != NULL;
   2159 	     curdev = shutdown_next(&s)) {
   2160 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2161 		if (config_detach(curdev, flags) == 0) {
   2162 			progress = true;
   2163 			aprint_debug("success.");
   2164 		} else
   2165 			aprint_debug("failed.");
   2166 	}
   2167 
   2168 out:	KERNEL_UNLOCK_ONE(NULL);
   2169 	return progress;
   2170 }
   2171 
   2172 static bool
   2173 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2174 {
   2175 	device_t dv;
   2176 
   2177 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2178 		if (device_parent(dv) == ancestor)
   2179 			return true;
   2180 	}
   2181 	return false;
   2182 }
   2183 
   2184 int
   2185 config_deactivate(device_t dev)
   2186 {
   2187 	deviter_t di;
   2188 	const struct cfattach *ca;
   2189 	device_t descendant;
   2190 	int s, rv = 0, oflags;
   2191 
   2192 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2193 	     descendant != NULL;
   2194 	     descendant = deviter_next(&di)) {
   2195 		if (dev != descendant &&
   2196 		    !device_is_ancestor_of(dev, descendant))
   2197 			continue;
   2198 
   2199 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2200 			continue;
   2201 
   2202 		ca = descendant->dv_cfattach;
   2203 		oflags = descendant->dv_flags;
   2204 
   2205 		descendant->dv_flags &= ~DVF_ACTIVE;
   2206 		if (ca->ca_activate == NULL)
   2207 			continue;
   2208 		s = splhigh();
   2209 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2210 		splx(s);
   2211 		if (rv != 0)
   2212 			descendant->dv_flags = oflags;
   2213 	}
   2214 	deviter_release(&di);
   2215 	return rv;
   2216 }
   2217 
   2218 /*
   2219  * Defer the configuration of the specified device until all
   2220  * of its parent's devices have been attached.
   2221  */
   2222 void
   2223 config_defer(device_t dev, void (*func)(device_t))
   2224 {
   2225 	struct deferred_config *dc;
   2226 
   2227 	if (dev->dv_parent == NULL)
   2228 		panic("config_defer: can't defer config of a root device");
   2229 
   2230 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2231 
   2232 	config_pending_incr(dev);
   2233 
   2234 	mutex_enter(&config_misc_lock);
   2235 #ifdef DIAGNOSTIC
   2236 	struct deferred_config *odc;
   2237 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2238 		if (odc->dc_dev == dev)
   2239 			panic("config_defer: deferred twice");
   2240 	}
   2241 #endif
   2242 	dc->dc_dev = dev;
   2243 	dc->dc_func = func;
   2244 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2245 	mutex_exit(&config_misc_lock);
   2246 }
   2247 
   2248 /*
   2249  * Defer some autoconfiguration for a device until after interrupts
   2250  * are enabled.
   2251  */
   2252 void
   2253 config_interrupts(device_t dev, void (*func)(device_t))
   2254 {
   2255 	struct deferred_config *dc;
   2256 
   2257 	/*
   2258 	 * If interrupts are enabled, callback now.
   2259 	 */
   2260 	if (cold == 0) {
   2261 		(*func)(dev);
   2262 		return;
   2263 	}
   2264 
   2265 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2266 
   2267 	config_pending_incr(dev);
   2268 
   2269 	mutex_enter(&config_misc_lock);
   2270 #ifdef DIAGNOSTIC
   2271 	struct deferred_config *odc;
   2272 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2273 		if (odc->dc_dev == dev)
   2274 			panic("config_interrupts: deferred twice");
   2275 	}
   2276 #endif
   2277 	dc->dc_dev = dev;
   2278 	dc->dc_func = func;
   2279 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2280 	mutex_exit(&config_misc_lock);
   2281 }
   2282 
   2283 /*
   2284  * Defer some autoconfiguration for a device until after root file system
   2285  * is mounted (to load firmware etc).
   2286  */
   2287 void
   2288 config_mountroot(device_t dev, void (*func)(device_t))
   2289 {
   2290 	struct deferred_config *dc;
   2291 
   2292 	/*
   2293 	 * If root file system is mounted, callback now.
   2294 	 */
   2295 	if (root_is_mounted) {
   2296 		(*func)(dev);
   2297 		return;
   2298 	}
   2299 
   2300 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2301 
   2302 	mutex_enter(&config_misc_lock);
   2303 #ifdef DIAGNOSTIC
   2304 	struct deferred_config *odc;
   2305 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2306 		if (odc->dc_dev == dev)
   2307 			panic("%s: deferred twice", __func__);
   2308 	}
   2309 #endif
   2310 
   2311 	dc->dc_dev = dev;
   2312 	dc->dc_func = func;
   2313 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2314 	mutex_exit(&config_misc_lock);
   2315 }
   2316 
   2317 /*
   2318  * Process a deferred configuration queue.
   2319  */
   2320 static void
   2321 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2322 {
   2323 	struct deferred_config *dc;
   2324 
   2325 	KASSERT(KERNEL_LOCKED_P());
   2326 
   2327 	mutex_enter(&config_misc_lock);
   2328 	dc = TAILQ_FIRST(queue);
   2329 	while (dc) {
   2330 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2331 			TAILQ_REMOVE(queue, dc, dc_queue);
   2332 			mutex_exit(&config_misc_lock);
   2333 
   2334 			(*dc->dc_func)(dc->dc_dev);
   2335 			config_pending_decr(dc->dc_dev);
   2336 			kmem_free(dc, sizeof(*dc));
   2337 
   2338 			mutex_enter(&config_misc_lock);
   2339 			/* Restart, queue might have changed */
   2340 			dc = TAILQ_FIRST(queue);
   2341 		} else {
   2342 			dc = TAILQ_NEXT(dc, dc_queue);
   2343 		}
   2344 	}
   2345 	mutex_exit(&config_misc_lock);
   2346 }
   2347 
   2348 /*
   2349  * Manipulate the config_pending semaphore.
   2350  */
   2351 void
   2352 config_pending_incr(device_t dev)
   2353 {
   2354 
   2355 	mutex_enter(&config_misc_lock);
   2356 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2357 	    "%s: excess config_pending_incr", device_xname(dev));
   2358 	if (dev->dv_pending++ == 0)
   2359 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2360 #ifdef DEBUG_AUTOCONF
   2361 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2362 #endif
   2363 	mutex_exit(&config_misc_lock);
   2364 }
   2365 
   2366 void
   2367 config_pending_decr(device_t dev)
   2368 {
   2369 
   2370 	mutex_enter(&config_misc_lock);
   2371 	KASSERTMSG(dev->dv_pending > 0,
   2372 	    "%s: excess config_pending_decr", device_xname(dev));
   2373 	if (--dev->dv_pending == 0) {
   2374 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2375 		cv_broadcast(&config_misc_cv);
   2376 	}
   2377 #ifdef DEBUG_AUTOCONF
   2378 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2379 #endif
   2380 	mutex_exit(&config_misc_lock);
   2381 }
   2382 
   2383 /*
   2384  * Register a "finalization" routine.  Finalization routines are
   2385  * called iteratively once all real devices have been found during
   2386  * autoconfiguration, for as long as any one finalizer has done
   2387  * any work.
   2388  */
   2389 int
   2390 config_finalize_register(device_t dev, int (*fn)(device_t))
   2391 {
   2392 	struct finalize_hook *f;
   2393 	int error = 0;
   2394 
   2395 	KERNEL_LOCK(1, NULL);
   2396 
   2397 	/*
   2398 	 * If finalization has already been done, invoke the
   2399 	 * callback function now.
   2400 	 */
   2401 	if (config_finalize_done) {
   2402 		while ((*fn)(dev) != 0)
   2403 			/* loop */ ;
   2404 		goto out;
   2405 	}
   2406 
   2407 	/* Ensure this isn't already on the list. */
   2408 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2409 		if (f->f_func == fn && f->f_dev == dev) {
   2410 			error = EEXIST;
   2411 			goto out;
   2412 		}
   2413 	}
   2414 
   2415 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2416 	f->f_func = fn;
   2417 	f->f_dev = dev;
   2418 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2419 
   2420 	/* Success!  */
   2421 	error = 0;
   2422 
   2423 out:	KERNEL_UNLOCK_ONE(NULL);
   2424 	return error;
   2425 }
   2426 
   2427 void
   2428 config_finalize(void)
   2429 {
   2430 	struct finalize_hook *f;
   2431 	struct pdevinit *pdev;
   2432 	extern struct pdevinit pdevinit[];
   2433 	int errcnt, rv;
   2434 
   2435 	/*
   2436 	 * Now that device driver threads have been created, wait for
   2437 	 * them to finish any deferred autoconfiguration.
   2438 	 */
   2439 	mutex_enter(&config_misc_lock);
   2440 	while (!TAILQ_EMPTY(&config_pending)) {
   2441 		device_t dev;
   2442 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2443 			aprint_debug_dev(dev, "holding up boot\n");
   2444 		cv_wait(&config_misc_cv, &config_misc_lock);
   2445 	}
   2446 	mutex_exit(&config_misc_lock);
   2447 
   2448 	KERNEL_LOCK(1, NULL);
   2449 
   2450 	/* Attach pseudo-devices. */
   2451 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2452 		(*pdev->pdev_attach)(pdev->pdev_count);
   2453 
   2454 	/* Run the hooks until none of them does any work. */
   2455 	do {
   2456 		rv = 0;
   2457 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2458 			rv |= (*f->f_func)(f->f_dev);
   2459 	} while (rv != 0);
   2460 
   2461 	config_finalize_done = 1;
   2462 
   2463 	/* Now free all the hooks. */
   2464 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2465 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2466 		kmem_free(f, sizeof(*f));
   2467 	}
   2468 
   2469 	KERNEL_UNLOCK_ONE(NULL);
   2470 
   2471 	errcnt = aprint_get_error_count();
   2472 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2473 	    (boothowto & AB_VERBOSE) == 0) {
   2474 		mutex_enter(&config_misc_lock);
   2475 		if (config_do_twiddle) {
   2476 			config_do_twiddle = 0;
   2477 			printf_nolog(" done.\n");
   2478 		}
   2479 		mutex_exit(&config_misc_lock);
   2480 	}
   2481 	if (errcnt != 0) {
   2482 		printf("WARNING: %d error%s while detecting hardware; "
   2483 		    "check system log.\n", errcnt,
   2484 		    errcnt == 1 ? "" : "s");
   2485 	}
   2486 }
   2487 
   2488 void
   2489 config_twiddle_init(void)
   2490 {
   2491 
   2492 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2493 		config_do_twiddle = 1;
   2494 	}
   2495 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2496 }
   2497 
   2498 void
   2499 config_twiddle_fn(void *cookie)
   2500 {
   2501 
   2502 	mutex_enter(&config_misc_lock);
   2503 	if (config_do_twiddle) {
   2504 		twiddle();
   2505 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2506 	}
   2507 	mutex_exit(&config_misc_lock);
   2508 }
   2509 
   2510 static void
   2511 config_alldevs_enter(struct alldevs_foray *af)
   2512 {
   2513 	TAILQ_INIT(&af->af_garbage);
   2514 	mutex_enter(&alldevs_lock);
   2515 	config_collect_garbage(&af->af_garbage);
   2516 }
   2517 
   2518 static void
   2519 config_alldevs_exit(struct alldevs_foray *af)
   2520 {
   2521 	mutex_exit(&alldevs_lock);
   2522 	config_dump_garbage(&af->af_garbage);
   2523 }
   2524 
   2525 /*
   2526  * device_lookup:
   2527  *
   2528  *	Look up a device instance for a given driver.
   2529  */
   2530 device_t
   2531 device_lookup(cfdriver_t cd, int unit)
   2532 {
   2533 	device_t dv;
   2534 
   2535 	mutex_enter(&alldevs_lock);
   2536 	if (unit < 0 || unit >= cd->cd_ndevs)
   2537 		dv = NULL;
   2538 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2539 		dv = NULL;
   2540 	mutex_exit(&alldevs_lock);
   2541 
   2542 	return dv;
   2543 }
   2544 
   2545 /*
   2546  * device_lookup_private:
   2547  *
   2548  *	Look up a softc instance for a given driver.
   2549  */
   2550 void *
   2551 device_lookup_private(cfdriver_t cd, int unit)
   2552 {
   2553 
   2554 	return device_private(device_lookup(cd, unit));
   2555 }
   2556 
   2557 /*
   2558  * device_find_by_xname:
   2559  *
   2560  *	Returns the device of the given name or NULL if it doesn't exist.
   2561  */
   2562 device_t
   2563 device_find_by_xname(const char *name)
   2564 {
   2565 	device_t dv;
   2566 	deviter_t di;
   2567 
   2568 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2569 		if (strcmp(device_xname(dv), name) == 0)
   2570 			break;
   2571 	}
   2572 	deviter_release(&di);
   2573 
   2574 	return dv;
   2575 }
   2576 
   2577 /*
   2578  * device_find_by_driver_unit:
   2579  *
   2580  *	Returns the device of the given driver name and unit or
   2581  *	NULL if it doesn't exist.
   2582  */
   2583 device_t
   2584 device_find_by_driver_unit(const char *name, int unit)
   2585 {
   2586 	struct cfdriver *cd;
   2587 
   2588 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2589 		return NULL;
   2590 	return device_lookup(cd, unit);
   2591 }
   2592 
   2593 static bool
   2594 match_strcmp(const char * const s1, const char * const s2)
   2595 {
   2596 	return strcmp(s1, s2) == 0;
   2597 }
   2598 
   2599 static bool
   2600 match_pmatch(const char * const s1, const char * const s2)
   2601 {
   2602 	return pmatch(s1, s2, NULL) == 2;
   2603 }
   2604 
   2605 static bool
   2606 strarray_match_internal(const char ** const strings,
   2607     unsigned int const nstrings, const char * const str,
   2608     unsigned int * const indexp,
   2609     bool (*match_fn)(const char *, const char *))
   2610 {
   2611 	unsigned int i;
   2612 
   2613 	if (strings == NULL || nstrings == 0) {
   2614 		return false;
   2615 	}
   2616 
   2617 	for (i = 0; i < nstrings; i++) {
   2618 		if ((*match_fn)(strings[i], str)) {
   2619 			*indexp = i;
   2620 			return true;
   2621 		}
   2622 	}
   2623 
   2624 	return false;
   2625 }
   2626 
   2627 static int
   2628 strarray_match(const char ** const strings, unsigned int const nstrings,
   2629     const char * const str)
   2630 {
   2631 	unsigned int idx;
   2632 
   2633 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2634 				    match_strcmp)) {
   2635 		return (int)(nstrings - idx);
   2636 	}
   2637 	return 0;
   2638 }
   2639 
   2640 static int
   2641 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2642     const char * const pattern)
   2643 {
   2644 	unsigned int idx;
   2645 
   2646 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2647 				    match_pmatch)) {
   2648 		return (int)(nstrings - idx);
   2649 	}
   2650 	return 0;
   2651 }
   2652 
   2653 static int
   2654 device_compatible_match_strarray_internal(
   2655     const char **device_compats, int ndevice_compats,
   2656     const struct device_compatible_entry *driver_compats,
   2657     const struct device_compatible_entry **matching_entryp,
   2658     int (*match_fn)(const char **, unsigned int, const char *))
   2659 {
   2660 	const struct device_compatible_entry *dce = NULL;
   2661 	int rv;
   2662 
   2663 	if (ndevice_compats == 0 || device_compats == NULL ||
   2664 	    driver_compats == NULL)
   2665 		return 0;
   2666 
   2667 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2668 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2669 		if (rv != 0) {
   2670 			if (matching_entryp != NULL) {
   2671 				*matching_entryp = dce;
   2672 			}
   2673 			return rv;
   2674 		}
   2675 	}
   2676 	return 0;
   2677 }
   2678 
   2679 /*
   2680  * device_compatible_match:
   2681  *
   2682  *	Match a driver's "compatible" data against a device's
   2683  *	"compatible" strings.  Returns resulted weighted by
   2684  *	which device "compatible" string was matched.
   2685  */
   2686 int
   2687 device_compatible_match(const char **device_compats, int ndevice_compats,
   2688     const struct device_compatible_entry *driver_compats)
   2689 {
   2690 	return device_compatible_match_strarray_internal(device_compats,
   2691 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2692 }
   2693 
   2694 /*
   2695  * device_compatible_pmatch:
   2696  *
   2697  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2698  *	the device "compatible" strings against patterns in the
   2699  *	driver's "compatible" data.
   2700  */
   2701 int
   2702 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2703     const struct device_compatible_entry *driver_compats)
   2704 {
   2705 	return device_compatible_match_strarray_internal(device_compats,
   2706 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2707 }
   2708 
   2709 static int
   2710 device_compatible_match_strlist_internal(
   2711     const char * const device_compats, size_t const device_compatsize,
   2712     const struct device_compatible_entry *driver_compats,
   2713     const struct device_compatible_entry **matching_entryp,
   2714     int (*match_fn)(const char *, size_t, const char *))
   2715 {
   2716 	const struct device_compatible_entry *dce = NULL;
   2717 	int rv;
   2718 
   2719 	if (device_compats == NULL || device_compatsize == 0 ||
   2720 	    driver_compats == NULL)
   2721 		return 0;
   2722 
   2723 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2724 		rv = (*match_fn)(device_compats, device_compatsize,
   2725 		    dce->compat);
   2726 		if (rv != 0) {
   2727 			if (matching_entryp != NULL) {
   2728 				*matching_entryp = dce;
   2729 			}
   2730 			return rv;
   2731 		}
   2732 	}
   2733 	return 0;
   2734 }
   2735 
   2736 /*
   2737  * device_compatible_match_strlist:
   2738  *
   2739  *	Like device_compatible_match(), but take the device
   2740  *	"compatible" strings as an OpenFirmware-style string
   2741  *	list.
   2742  */
   2743 int
   2744 device_compatible_match_strlist(
   2745     const char * const device_compats, size_t const device_compatsize,
   2746     const struct device_compatible_entry *driver_compats)
   2747 {
   2748 	return device_compatible_match_strlist_internal(device_compats,
   2749 	    device_compatsize, driver_compats, NULL, strlist_match);
   2750 }
   2751 
   2752 /*
   2753  * device_compatible_pmatch_strlist:
   2754  *
   2755  *	Like device_compatible_pmatch(), but take the device
   2756  *	"compatible" strings as an OpenFirmware-style string
   2757  *	list.
   2758  */
   2759 int
   2760 device_compatible_pmatch_strlist(
   2761     const char * const device_compats, size_t const device_compatsize,
   2762     const struct device_compatible_entry *driver_compats)
   2763 {
   2764 	return device_compatible_match_strlist_internal(device_compats,
   2765 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2766 }
   2767 
   2768 static int
   2769 device_compatible_match_id_internal(
   2770     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2771     const struct device_compatible_entry *driver_compats,
   2772     const struct device_compatible_entry **matching_entryp)
   2773 {
   2774 	const struct device_compatible_entry *dce = NULL;
   2775 
   2776 	if (mask == 0)
   2777 		return 0;
   2778 
   2779 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2780 		if ((id & mask) == dce->id) {
   2781 			if (matching_entryp != NULL) {
   2782 				*matching_entryp = dce;
   2783 			}
   2784 			return 1;
   2785 		}
   2786 	}
   2787 	return 0;
   2788 }
   2789 
   2790 /*
   2791  * device_compatible_match_id:
   2792  *
   2793  *	Like device_compatible_match(), but takes a single
   2794  *	unsigned integer device ID.
   2795  */
   2796 int
   2797 device_compatible_match_id(
   2798     uintptr_t const id, uintptr_t const sentinel_id,
   2799     const struct device_compatible_entry *driver_compats)
   2800 {
   2801 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2802 	    sentinel_id, driver_compats, NULL);
   2803 }
   2804 
   2805 /*
   2806  * device_compatible_lookup:
   2807  *
   2808  *	Look up and return the device_compatible_entry, using the
   2809  *	same matching criteria used by device_compatible_match().
   2810  */
   2811 const struct device_compatible_entry *
   2812 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2813 			 const struct device_compatible_entry *driver_compats)
   2814 {
   2815 	const struct device_compatible_entry *dce;
   2816 
   2817 	if (device_compatible_match_strarray_internal(device_compats,
   2818 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   2819 		return dce;
   2820 	}
   2821 	return NULL;
   2822 }
   2823 
   2824 /*
   2825  * device_compatible_plookup:
   2826  *
   2827  *	Look up and return the device_compatible_entry, using the
   2828  *	same matching criteria used by device_compatible_pmatch().
   2829  */
   2830 const struct device_compatible_entry *
   2831 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   2832 			  const struct device_compatible_entry *driver_compats)
   2833 {
   2834 	const struct device_compatible_entry *dce;
   2835 
   2836 	if (device_compatible_match_strarray_internal(device_compats,
   2837 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   2838 		return dce;
   2839 	}
   2840 	return NULL;
   2841 }
   2842 
   2843 /*
   2844  * device_compatible_lookup_strlist:
   2845  *
   2846  *	Like device_compatible_lookup(), but take the device
   2847  *	"compatible" strings as an OpenFirmware-style string
   2848  *	list.
   2849  */
   2850 const struct device_compatible_entry *
   2851 device_compatible_lookup_strlist(
   2852     const char * const device_compats, size_t const device_compatsize,
   2853     const struct device_compatible_entry *driver_compats)
   2854 {
   2855 	const struct device_compatible_entry *dce;
   2856 
   2857 	if (device_compatible_match_strlist_internal(device_compats,
   2858 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   2859 		return dce;
   2860 	}
   2861 	return NULL;
   2862 }
   2863 
   2864 /*
   2865  * device_compatible_plookup_strlist:
   2866  *
   2867  *	Like device_compatible_plookup(), but take the device
   2868  *	"compatible" strings as an OpenFirmware-style string
   2869  *	list.
   2870  */
   2871 const struct device_compatible_entry *
   2872 device_compatible_plookup_strlist(
   2873     const char * const device_compats, size_t const device_compatsize,
   2874     const struct device_compatible_entry *driver_compats)
   2875 {
   2876 	const struct device_compatible_entry *dce;
   2877 
   2878 	if (device_compatible_match_strlist_internal(device_compats,
   2879 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   2880 		return dce;
   2881 	}
   2882 	return NULL;
   2883 }
   2884 
   2885 /*
   2886  * device_compatible_lookup_id:
   2887  *
   2888  *	Like device_compatible_lookup(), but takes a single
   2889  *	unsigned integer device ID.
   2890  */
   2891 const struct device_compatible_entry *
   2892 device_compatible_lookup_id(
   2893     uintptr_t const id, uintptr_t const sentinel_id,
   2894     const struct device_compatible_entry *driver_compats)
   2895 {
   2896 	const struct device_compatible_entry *dce;
   2897 
   2898 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   2899 	    sentinel_id, driver_compats, &dce)) {
   2900 		return dce;
   2901 	}
   2902 	return NULL;
   2903 }
   2904 
   2905 /*
   2906  * Power management related functions.
   2907  */
   2908 
   2909 bool
   2910 device_pmf_is_registered(device_t dev)
   2911 {
   2912 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2913 }
   2914 
   2915 bool
   2916 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2917 {
   2918 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2919 		return true;
   2920 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2921 		return false;
   2922 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2923 	    dev->dv_driver_suspend != NULL &&
   2924 	    !(*dev->dv_driver_suspend)(dev, qual))
   2925 		return false;
   2926 
   2927 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2928 	return true;
   2929 }
   2930 
   2931 bool
   2932 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2933 {
   2934 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2935 		return true;
   2936 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2937 		return false;
   2938 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2939 	    dev->dv_driver_resume != NULL &&
   2940 	    !(*dev->dv_driver_resume)(dev, qual))
   2941 		return false;
   2942 
   2943 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2944 	return true;
   2945 }
   2946 
   2947 bool
   2948 device_pmf_driver_shutdown(device_t dev, int how)
   2949 {
   2950 
   2951 	if (*dev->dv_driver_shutdown != NULL &&
   2952 	    !(*dev->dv_driver_shutdown)(dev, how))
   2953 		return false;
   2954 	return true;
   2955 }
   2956 
   2957 bool
   2958 device_pmf_driver_register(device_t dev,
   2959     bool (*suspend)(device_t, const pmf_qual_t *),
   2960     bool (*resume)(device_t, const pmf_qual_t *),
   2961     bool (*shutdown)(device_t, int))
   2962 {
   2963 	dev->dv_driver_suspend = suspend;
   2964 	dev->dv_driver_resume = resume;
   2965 	dev->dv_driver_shutdown = shutdown;
   2966 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2967 	return true;
   2968 }
   2969 
   2970 static const char *
   2971 curlwp_name(void)
   2972 {
   2973 	if (curlwp->l_name != NULL)
   2974 		return curlwp->l_name;
   2975 	else
   2976 		return curlwp->l_proc->p_comm;
   2977 }
   2978 
   2979 void
   2980 device_pmf_driver_deregister(device_t dev)
   2981 {
   2982 	device_lock_t dvl = device_getlock(dev);
   2983 
   2984 	dev->dv_driver_suspend = NULL;
   2985 	dev->dv_driver_resume = NULL;
   2986 
   2987 	mutex_enter(&dvl->dvl_mtx);
   2988 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2989 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2990 		/* Wake a thread that waits for the lock.  That
   2991 		 * thread will fail to acquire the lock, and then
   2992 		 * it will wake the next thread that waits for the
   2993 		 * lock, or else it will wake us.
   2994 		 */
   2995 		cv_signal(&dvl->dvl_cv);
   2996 		pmflock_debug(dev, __func__, __LINE__);
   2997 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2998 		pmflock_debug(dev, __func__, __LINE__);
   2999 	}
   3000 	mutex_exit(&dvl->dvl_mtx);
   3001 }
   3002 
   3003 bool
   3004 device_pmf_driver_child_register(device_t dev)
   3005 {
   3006 	device_t parent = device_parent(dev);
   3007 
   3008 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   3009 		return true;
   3010 	return (*parent->dv_driver_child_register)(dev);
   3011 }
   3012 
   3013 void
   3014 device_pmf_driver_set_child_register(device_t dev,
   3015     bool (*child_register)(device_t))
   3016 {
   3017 	dev->dv_driver_child_register = child_register;
   3018 }
   3019 
   3020 static void
   3021 pmflock_debug(device_t dev, const char *func, int line)
   3022 {
   3023 	device_lock_t dvl = device_getlock(dev);
   3024 
   3025 	aprint_debug_dev(dev,
   3026 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   3027 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   3028 }
   3029 
   3030 static bool
   3031 device_pmf_lock1(device_t dev)
   3032 {
   3033 	device_lock_t dvl = device_getlock(dev);
   3034 
   3035 	while (device_pmf_is_registered(dev) &&
   3036 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   3037 		dvl->dvl_nwait++;
   3038 		pmflock_debug(dev, __func__, __LINE__);
   3039 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3040 		pmflock_debug(dev, __func__, __LINE__);
   3041 		dvl->dvl_nwait--;
   3042 	}
   3043 	if (!device_pmf_is_registered(dev)) {
   3044 		pmflock_debug(dev, __func__, __LINE__);
   3045 		/* We could not acquire the lock, but some other thread may
   3046 		 * wait for it, also.  Wake that thread.
   3047 		 */
   3048 		cv_signal(&dvl->dvl_cv);
   3049 		return false;
   3050 	}
   3051 	dvl->dvl_nlock++;
   3052 	dvl->dvl_holder = curlwp;
   3053 	pmflock_debug(dev, __func__, __LINE__);
   3054 	return true;
   3055 }
   3056 
   3057 bool
   3058 device_pmf_lock(device_t dev)
   3059 {
   3060 	bool rc;
   3061 	device_lock_t dvl = device_getlock(dev);
   3062 
   3063 	mutex_enter(&dvl->dvl_mtx);
   3064 	rc = device_pmf_lock1(dev);
   3065 	mutex_exit(&dvl->dvl_mtx);
   3066 
   3067 	return rc;
   3068 }
   3069 
   3070 void
   3071 device_pmf_unlock(device_t dev)
   3072 {
   3073 	device_lock_t dvl = device_getlock(dev);
   3074 
   3075 	KASSERT(dvl->dvl_nlock > 0);
   3076 	mutex_enter(&dvl->dvl_mtx);
   3077 	if (--dvl->dvl_nlock == 0)
   3078 		dvl->dvl_holder = NULL;
   3079 	cv_signal(&dvl->dvl_cv);
   3080 	pmflock_debug(dev, __func__, __LINE__);
   3081 	mutex_exit(&dvl->dvl_mtx);
   3082 }
   3083 
   3084 device_lock_t
   3085 device_getlock(device_t dev)
   3086 {
   3087 	return &dev->dv_lock;
   3088 }
   3089 
   3090 void *
   3091 device_pmf_bus_private(device_t dev)
   3092 {
   3093 	return dev->dv_bus_private;
   3094 }
   3095 
   3096 bool
   3097 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   3098 {
   3099 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3100 		return true;
   3101 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   3102 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3103 		return false;
   3104 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3105 	    dev->dv_bus_suspend != NULL &&
   3106 	    !(*dev->dv_bus_suspend)(dev, qual))
   3107 		return false;
   3108 
   3109 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   3110 	return true;
   3111 }
   3112 
   3113 bool
   3114 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   3115 {
   3116 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   3117 		return true;
   3118 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3119 	    dev->dv_bus_resume != NULL &&
   3120 	    !(*dev->dv_bus_resume)(dev, qual))
   3121 		return false;
   3122 
   3123 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   3124 	return true;
   3125 }
   3126 
   3127 bool
   3128 device_pmf_bus_shutdown(device_t dev, int how)
   3129 {
   3130 
   3131 	if (*dev->dv_bus_shutdown != NULL &&
   3132 	    !(*dev->dv_bus_shutdown)(dev, how))
   3133 		return false;
   3134 	return true;
   3135 }
   3136 
   3137 void
   3138 device_pmf_bus_register(device_t dev, void *priv,
   3139     bool (*suspend)(device_t, const pmf_qual_t *),
   3140     bool (*resume)(device_t, const pmf_qual_t *),
   3141     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   3142 {
   3143 	dev->dv_bus_private = priv;
   3144 	dev->dv_bus_resume = resume;
   3145 	dev->dv_bus_suspend = suspend;
   3146 	dev->dv_bus_shutdown = shutdown;
   3147 	dev->dv_bus_deregister = deregister;
   3148 }
   3149 
   3150 void
   3151 device_pmf_bus_deregister(device_t dev)
   3152 {
   3153 	if (dev->dv_bus_deregister == NULL)
   3154 		return;
   3155 	(*dev->dv_bus_deregister)(dev);
   3156 	dev->dv_bus_private = NULL;
   3157 	dev->dv_bus_suspend = NULL;
   3158 	dev->dv_bus_resume = NULL;
   3159 	dev->dv_bus_deregister = NULL;
   3160 }
   3161 
   3162 void *
   3163 device_pmf_class_private(device_t dev)
   3164 {
   3165 	return dev->dv_class_private;
   3166 }
   3167 
   3168 bool
   3169 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3170 {
   3171 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3172 		return true;
   3173 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3174 	    dev->dv_class_suspend != NULL &&
   3175 	    !(*dev->dv_class_suspend)(dev, qual))
   3176 		return false;
   3177 
   3178 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3179 	return true;
   3180 }
   3181 
   3182 bool
   3183 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3184 {
   3185 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3186 		return true;
   3187 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3188 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3189 		return false;
   3190 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3191 	    dev->dv_class_resume != NULL &&
   3192 	    !(*dev->dv_class_resume)(dev, qual))
   3193 		return false;
   3194 
   3195 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3196 	return true;
   3197 }
   3198 
   3199 void
   3200 device_pmf_class_register(device_t dev, void *priv,
   3201     bool (*suspend)(device_t, const pmf_qual_t *),
   3202     bool (*resume)(device_t, const pmf_qual_t *),
   3203     void (*deregister)(device_t))
   3204 {
   3205 	dev->dv_class_private = priv;
   3206 	dev->dv_class_suspend = suspend;
   3207 	dev->dv_class_resume = resume;
   3208 	dev->dv_class_deregister = deregister;
   3209 }
   3210 
   3211 void
   3212 device_pmf_class_deregister(device_t dev)
   3213 {
   3214 	if (dev->dv_class_deregister == NULL)
   3215 		return;
   3216 	(*dev->dv_class_deregister)(dev);
   3217 	dev->dv_class_private = NULL;
   3218 	dev->dv_class_suspend = NULL;
   3219 	dev->dv_class_resume = NULL;
   3220 	dev->dv_class_deregister = NULL;
   3221 }
   3222 
   3223 bool
   3224 device_active(device_t dev, devactive_t type)
   3225 {
   3226 	size_t i;
   3227 
   3228 	if (dev->dv_activity_count == 0)
   3229 		return false;
   3230 
   3231 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3232 		if (dev->dv_activity_handlers[i] == NULL)
   3233 			break;
   3234 		(*dev->dv_activity_handlers[i])(dev, type);
   3235 	}
   3236 
   3237 	return true;
   3238 }
   3239 
   3240 bool
   3241 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3242 {
   3243 	void (**new_handlers)(device_t, devactive_t);
   3244 	void (**old_handlers)(device_t, devactive_t);
   3245 	size_t i, old_size, new_size;
   3246 	int s;
   3247 
   3248 	old_handlers = dev->dv_activity_handlers;
   3249 	old_size = dev->dv_activity_count;
   3250 
   3251 	KASSERT(old_size == 0 || old_handlers != NULL);
   3252 
   3253 	for (i = 0; i < old_size; ++i) {
   3254 		KASSERT(old_handlers[i] != handler);
   3255 		if (old_handlers[i] == NULL) {
   3256 			old_handlers[i] = handler;
   3257 			return true;
   3258 		}
   3259 	}
   3260 
   3261 	new_size = old_size + 4;
   3262 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3263 
   3264 	for (i = 0; i < old_size; ++i)
   3265 		new_handlers[i] = old_handlers[i];
   3266 	new_handlers[old_size] = handler;
   3267 	for (i = old_size+1; i < new_size; ++i)
   3268 		new_handlers[i] = NULL;
   3269 
   3270 	s = splhigh();
   3271 	dev->dv_activity_count = new_size;
   3272 	dev->dv_activity_handlers = new_handlers;
   3273 	splx(s);
   3274 
   3275 	if (old_size > 0)
   3276 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3277 
   3278 	return true;
   3279 }
   3280 
   3281 void
   3282 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3283 {
   3284 	void (**old_handlers)(device_t, devactive_t);
   3285 	size_t i, old_size;
   3286 	int s;
   3287 
   3288 	old_handlers = dev->dv_activity_handlers;
   3289 	old_size = dev->dv_activity_count;
   3290 
   3291 	for (i = 0; i < old_size; ++i) {
   3292 		if (old_handlers[i] == handler)
   3293 			break;
   3294 		if (old_handlers[i] == NULL)
   3295 			return; /* XXX panic? */
   3296 	}
   3297 
   3298 	if (i == old_size)
   3299 		return; /* XXX panic? */
   3300 
   3301 	for (; i < old_size - 1; ++i) {
   3302 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3303 			continue;
   3304 
   3305 		if (i == 0) {
   3306 			s = splhigh();
   3307 			dev->dv_activity_count = 0;
   3308 			dev->dv_activity_handlers = NULL;
   3309 			splx(s);
   3310 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3311 		}
   3312 		return;
   3313 	}
   3314 	old_handlers[i] = NULL;
   3315 }
   3316 
   3317 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3318 static bool
   3319 device_exists_at(device_t dv, devgen_t gen)
   3320 {
   3321 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3322 	    dv->dv_add_gen <= gen;
   3323 }
   3324 
   3325 static bool
   3326 deviter_visits(const deviter_t *di, device_t dv)
   3327 {
   3328 	return device_exists_at(dv, di->di_gen);
   3329 }
   3330 
   3331 /*
   3332  * Device Iteration
   3333  *
   3334  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3335  *     each device_t's in the device tree.
   3336  *
   3337  * deviter_init(di, flags): initialize the device iterator `di'
   3338  *     to "walk" the device tree.  deviter_next(di) will return
   3339  *     the first device_t in the device tree, or NULL if there are
   3340  *     no devices.
   3341  *
   3342  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3343  *     caller intends to modify the device tree by calling
   3344  *     config_detach(9) on devices in the order that the iterator
   3345  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3346  *     nearest the "root" of the device tree to be returned, first;
   3347  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3348  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3349  *     indicating both that deviter_init() should not respect any
   3350  *     locks on the device tree, and that deviter_next(di) may run
   3351  *     in more than one LWP before the walk has finished.
   3352  *
   3353  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3354  *     once.
   3355  *
   3356  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3357  *
   3358  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3359  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3360  *
   3361  * deviter_first(di, flags): initialize the device iterator `di'
   3362  *     and return the first device_t in the device tree, or NULL
   3363  *     if there are no devices.  The statement
   3364  *
   3365  *         dv = deviter_first(di);
   3366  *
   3367  *     is shorthand for
   3368  *
   3369  *         deviter_init(di);
   3370  *         dv = deviter_next(di);
   3371  *
   3372  * deviter_next(di): return the next device_t in the device tree,
   3373  *     or NULL if there are no more devices.  deviter_next(di)
   3374  *     is undefined if `di' was not initialized with deviter_init() or
   3375  *     deviter_first().
   3376  *
   3377  * deviter_release(di): stops iteration (subsequent calls to
   3378  *     deviter_next() will return NULL), releases any locks and
   3379  *     resources held by the device iterator.
   3380  *
   3381  * Device iteration does not return device_t's in any particular
   3382  * order.  An iterator will never return the same device_t twice.
   3383  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3384  * is called repeatedly on the same `di', it will eventually return
   3385  * NULL.  It is ok to attach/detach devices during device iteration.
   3386  */
   3387 void
   3388 deviter_init(deviter_t *di, deviter_flags_t flags)
   3389 {
   3390 	device_t dv;
   3391 
   3392 	memset(di, 0, sizeof(*di));
   3393 
   3394 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3395 		flags |= DEVITER_F_RW;
   3396 
   3397 	mutex_enter(&alldevs_lock);
   3398 	if ((flags & DEVITER_F_RW) != 0)
   3399 		alldevs_nwrite++;
   3400 	else
   3401 		alldevs_nread++;
   3402 	di->di_gen = alldevs_gen++;
   3403 	di->di_flags = flags;
   3404 
   3405 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3406 	case DEVITER_F_LEAVES_FIRST:
   3407 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3408 			if (!deviter_visits(di, dv))
   3409 				continue;
   3410 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3411 		}
   3412 		break;
   3413 	case DEVITER_F_ROOT_FIRST:
   3414 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3415 			if (!deviter_visits(di, dv))
   3416 				continue;
   3417 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3418 		}
   3419 		break;
   3420 	default:
   3421 		break;
   3422 	}
   3423 
   3424 	deviter_reinit(di);
   3425 	mutex_exit(&alldevs_lock);
   3426 }
   3427 
   3428 static void
   3429 deviter_reinit(deviter_t *di)
   3430 {
   3431 
   3432 	KASSERT(mutex_owned(&alldevs_lock));
   3433 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3434 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3435 	else
   3436 		di->di_prev = TAILQ_FIRST(&alldevs);
   3437 }
   3438 
   3439 device_t
   3440 deviter_first(deviter_t *di, deviter_flags_t flags)
   3441 {
   3442 
   3443 	deviter_init(di, flags);
   3444 	return deviter_next(di);
   3445 }
   3446 
   3447 static device_t
   3448 deviter_next2(deviter_t *di)
   3449 {
   3450 	device_t dv;
   3451 
   3452 	KASSERT(mutex_owned(&alldevs_lock));
   3453 
   3454 	dv = di->di_prev;
   3455 
   3456 	if (dv == NULL)
   3457 		return NULL;
   3458 
   3459 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3460 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3461 	else
   3462 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3463 
   3464 	return dv;
   3465 }
   3466 
   3467 static device_t
   3468 deviter_next1(deviter_t *di)
   3469 {
   3470 	device_t dv;
   3471 
   3472 	KASSERT(mutex_owned(&alldevs_lock));
   3473 
   3474 	do {
   3475 		dv = deviter_next2(di);
   3476 	} while (dv != NULL && !deviter_visits(di, dv));
   3477 
   3478 	return dv;
   3479 }
   3480 
   3481 device_t
   3482 deviter_next(deviter_t *di)
   3483 {
   3484 	device_t dv = NULL;
   3485 
   3486 	mutex_enter(&alldevs_lock);
   3487 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3488 	case 0:
   3489 		dv = deviter_next1(di);
   3490 		break;
   3491 	case DEVITER_F_LEAVES_FIRST:
   3492 		while (di->di_curdepth >= 0) {
   3493 			if ((dv = deviter_next1(di)) == NULL) {
   3494 				di->di_curdepth--;
   3495 				deviter_reinit(di);
   3496 			} else if (dv->dv_depth == di->di_curdepth)
   3497 				break;
   3498 		}
   3499 		break;
   3500 	case DEVITER_F_ROOT_FIRST:
   3501 		while (di->di_curdepth <= di->di_maxdepth) {
   3502 			if ((dv = deviter_next1(di)) == NULL) {
   3503 				di->di_curdepth++;
   3504 				deviter_reinit(di);
   3505 			} else if (dv->dv_depth == di->di_curdepth)
   3506 				break;
   3507 		}
   3508 		break;
   3509 	default:
   3510 		break;
   3511 	}
   3512 	mutex_exit(&alldevs_lock);
   3513 
   3514 	return dv;
   3515 }
   3516 
   3517 void
   3518 deviter_release(deviter_t *di)
   3519 {
   3520 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3521 
   3522 	mutex_enter(&alldevs_lock);
   3523 	if (rw)
   3524 		--alldevs_nwrite;
   3525 	else
   3526 		--alldevs_nread;
   3527 	/* XXX wake a garbage-collection thread */
   3528 	mutex_exit(&alldevs_lock);
   3529 }
   3530 
   3531 const char *
   3532 cfdata_ifattr(const struct cfdata *cf)
   3533 {
   3534 	return cf->cf_pspec->cfp_iattr;
   3535 }
   3536 
   3537 bool
   3538 ifattr_match(const char *snull, const char *t)
   3539 {
   3540 	return (snull == NULL) || strcmp(snull, t) == 0;
   3541 }
   3542 
   3543 void
   3544 null_childdetached(device_t self, device_t child)
   3545 {
   3546 	/* do nothing */
   3547 }
   3548 
   3549 static void
   3550 sysctl_detach_setup(struct sysctllog **clog)
   3551 {
   3552 
   3553 	sysctl_createv(clog, 0, NULL, NULL,
   3554 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3555 		CTLTYPE_BOOL, "detachall",
   3556 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3557 		NULL, 0, &detachall, 0,
   3558 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3559 }
   3560