Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.302
      1 /* $NetBSD: subr_autoconf.c,v 1.302 2022/08/12 16:16:12 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.302 2022/08/12 16:16:12 riastradh Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/device_impl.h>
     90 #include <sys/disklabel.h>
     91 #include <sys/conf.h>
     92 #include <sys/kauth.h>
     93 #include <sys/kmem.h>
     94 #include <sys/systm.h>
     95 #include <sys/kernel.h>
     96 #include <sys/errno.h>
     97 #include <sys/proc.h>
     98 #include <sys/reboot.h>
     99 #include <sys/kthread.h>
    100 #include <sys/buf.h>
    101 #include <sys/dirent.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 #include <sys/stdarg.h>
    112 #include <sys/localcount.h>
    113 
    114 #include <sys/disk.h>
    115 
    116 #include <sys/rndsource.h>
    117 
    118 #include <machine/limits.h>
    119 
    120 /*
    121  * Autoconfiguration subroutines.
    122  */
    123 
    124 /*
    125  * Device autoconfiguration timings are mixed into the entropy pool.
    126  */
    127 static krndsource_t rnd_autoconf_source;
    128 
    129 /*
    130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    131  * devices and drivers are found via these tables.
    132  */
    133 extern struct cfdata cfdata[];
    134 extern const short cfroots[];
    135 
    136 /*
    137  * List of all cfdriver structures.  We use this to detect duplicates
    138  * when other cfdrivers are loaded.
    139  */
    140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    141 extern struct cfdriver * const cfdriver_list_initial[];
    142 
    143 /*
    144  * Initial list of cfattach's.
    145  */
    146 extern const struct cfattachinit cfattachinit[];
    147 
    148 /*
    149  * List of cfdata tables.  We always have one such list -- the one
    150  * built statically when the kernel was configured.
    151  */
    152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    153 static struct cftable initcftable;
    154 
    155 #define	ROOT ((device_t)NULL)
    156 
    157 struct matchinfo {
    158 	cfsubmatch_t fn;
    159 	device_t parent;
    160 	const int *locs;
    161 	void	*aux;
    162 	struct	cfdata *match;
    163 	int	pri;
    164 };
    165 
    166 struct alldevs_foray {
    167 	int			af_s;
    168 	struct devicelist	af_garbage;
    169 };
    170 
    171 /*
    172  * Internal version of the cfargs structure; all versions are
    173  * canonicalized to this.
    174  */
    175 struct cfargs_internal {
    176 	union {
    177 		cfsubmatch_t	submatch;/* submatch function (direct config) */
    178 		cfsearch_t	search;	 /* search function (indirect config) */
    179 	};
    180 	const char *	iattr;		/* interface attribute */
    181 	const int *	locators;	/* locators array */
    182 	devhandle_t	devhandle;	/* devhandle_t (by value) */
    183 };
    184 
    185 static char *number(char *, int);
    186 static void mapply(struct matchinfo *, cfdata_t);
    187 static void config_devdelete(device_t);
    188 static void config_devunlink(device_t, struct devicelist *);
    189 static void config_makeroom(int, struct cfdriver *);
    190 static void config_devlink(device_t);
    191 static void config_alldevs_enter(struct alldevs_foray *);
    192 static void config_alldevs_exit(struct alldevs_foray *);
    193 static void config_add_attrib_dict(device_t);
    194 static device_t	config_attach_internal(device_t, cfdata_t, void *,
    195 		    cfprint_t, const struct cfargs_internal *);
    196 
    197 static void config_collect_garbage(struct devicelist *);
    198 static void config_dump_garbage(struct devicelist *);
    199 
    200 static void pmflock_debug(device_t, const char *, int);
    201 
    202 static device_t deviter_next1(deviter_t *);
    203 static void deviter_reinit(deviter_t *);
    204 
    205 struct deferred_config {
    206 	TAILQ_ENTRY(deferred_config) dc_queue;
    207 	device_t dc_dev;
    208 	void (*dc_func)(device_t);
    209 };
    210 
    211 TAILQ_HEAD(deferred_config_head, deferred_config);
    212 
    213 static struct deferred_config_head deferred_config_queue =
    214 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    215 static struct deferred_config_head interrupt_config_queue =
    216 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    217 static int interrupt_config_threads = 8;
    218 static struct deferred_config_head mountroot_config_queue =
    219 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    220 static int mountroot_config_threads = 2;
    221 static lwp_t **mountroot_config_lwpids;
    222 static size_t mountroot_config_lwpids_size;
    223 bool root_is_mounted = false;
    224 
    225 static void config_process_deferred(struct deferred_config_head *, device_t);
    226 
    227 /* Hooks to finalize configuration once all real devices have been found. */
    228 struct finalize_hook {
    229 	TAILQ_ENTRY(finalize_hook) f_list;
    230 	int (*f_func)(device_t);
    231 	device_t f_dev;
    232 };
    233 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    234 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    235 static int config_finalize_done;
    236 
    237 /* list of all devices */
    238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    239 static kmutex_t alldevs_lock __cacheline_aligned;
    240 static devgen_t alldevs_gen = 1;
    241 static int alldevs_nread = 0;
    242 static int alldevs_nwrite = 0;
    243 static bool alldevs_garbage = false;
    244 
    245 static struct devicelist config_pending =
    246     TAILQ_HEAD_INITIALIZER(config_pending);
    247 static kmutex_t config_misc_lock;
    248 static kcondvar_t config_misc_cv;
    249 
    250 static bool detachall = false;
    251 
    252 #define	STREQ(s1, s2)			\
    253 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    254 
    255 static bool config_initialized = false;	/* config_init() has been called. */
    256 
    257 static int config_do_twiddle;
    258 static callout_t config_twiddle_ch;
    259 
    260 static void sysctl_detach_setup(struct sysctllog **);
    261 
    262 int no_devmon_insert(const char *, prop_dictionary_t);
    263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    264 
    265 typedef int (*cfdriver_fn)(struct cfdriver *);
    266 static int
    267 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    268 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    269 	const char *style, bool dopanic)
    270 {
    271 	void (*pr)(const char *, ...) __printflike(1, 2) =
    272 	    dopanic ? panic : printf;
    273 	int i, error = 0, e2 __diagused;
    274 
    275 	for (i = 0; cfdriverv[i] != NULL; i++) {
    276 		if ((error = drv_do(cfdriverv[i])) != 0) {
    277 			pr("configure: `%s' driver %s failed: %d",
    278 			    cfdriverv[i]->cd_name, style, error);
    279 			goto bad;
    280 		}
    281 	}
    282 
    283 	KASSERT(error == 0);
    284 	return 0;
    285 
    286  bad:
    287 	printf("\n");
    288 	for (i--; i >= 0; i--) {
    289 		e2 = drv_undo(cfdriverv[i]);
    290 		KASSERT(e2 == 0);
    291 	}
    292 
    293 	return error;
    294 }
    295 
    296 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    297 static int
    298 frob_cfattachvec(const struct cfattachinit *cfattachv,
    299 	cfattach_fn att_do, cfattach_fn att_undo,
    300 	const char *style, bool dopanic)
    301 {
    302 	const struct cfattachinit *cfai = NULL;
    303 	void (*pr)(const char *, ...) __printflike(1, 2) =
    304 	    dopanic ? panic : printf;
    305 	int j = 0, error = 0, e2 __diagused;
    306 
    307 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    308 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    309 			if ((error = att_do(cfai->cfai_name,
    310 			    cfai->cfai_list[j])) != 0) {
    311 				pr("configure: attachment `%s' "
    312 				    "of `%s' driver %s failed: %d",
    313 				    cfai->cfai_list[j]->ca_name,
    314 				    cfai->cfai_name, style, error);
    315 				goto bad;
    316 			}
    317 		}
    318 	}
    319 
    320 	KASSERT(error == 0);
    321 	return 0;
    322 
    323  bad:
    324 	/*
    325 	 * Rollback in reverse order.  dunno if super-important, but
    326 	 * do that anyway.  Although the code looks a little like
    327 	 * someone did a little integration (in the math sense).
    328 	 */
    329 	printf("\n");
    330 	if (cfai) {
    331 		bool last;
    332 
    333 		for (last = false; last == false; ) {
    334 			if (cfai == &cfattachv[0])
    335 				last = true;
    336 			for (j--; j >= 0; j--) {
    337 				e2 = att_undo(cfai->cfai_name,
    338 				    cfai->cfai_list[j]);
    339 				KASSERT(e2 == 0);
    340 			}
    341 			if (!last) {
    342 				cfai--;
    343 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    344 					;
    345 			}
    346 		}
    347 	}
    348 
    349 	return error;
    350 }
    351 
    352 /*
    353  * Initialize the autoconfiguration data structures.  Normally this
    354  * is done by configure(), but some platforms need to do this very
    355  * early (to e.g. initialize the console).
    356  */
    357 void
    358 config_init(void)
    359 {
    360 
    361 	KASSERT(config_initialized == false);
    362 
    363 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    364 
    365 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    366 	cv_init(&config_misc_cv, "cfgmisc");
    367 
    368 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    369 
    370 	frob_cfdrivervec(cfdriver_list_initial,
    371 	    config_cfdriver_attach, NULL, "bootstrap", true);
    372 	frob_cfattachvec(cfattachinit,
    373 	    config_cfattach_attach, NULL, "bootstrap", true);
    374 
    375 	initcftable.ct_cfdata = cfdata;
    376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    377 
    378 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    379 	    RND_FLAG_COLLECT_TIME);
    380 
    381 	config_initialized = true;
    382 }
    383 
    384 /*
    385  * Init or fini drivers and attachments.  Either all or none
    386  * are processed (via rollback).  It would be nice if this were
    387  * atomic to outside consumers, but with the current state of
    388  * locking ...
    389  */
    390 int
    391 config_init_component(struct cfdriver * const *cfdriverv,
    392 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    393 {
    394 	int error;
    395 
    396 	KERNEL_LOCK(1, NULL);
    397 
    398 	if ((error = frob_cfdrivervec(cfdriverv,
    399 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    400 		goto out;
    401 	if ((error = frob_cfattachvec(cfattachv,
    402 	    config_cfattach_attach, config_cfattach_detach,
    403 	    "init", false)) != 0) {
    404 		frob_cfdrivervec(cfdriverv,
    405 	            config_cfdriver_detach, NULL, "init rollback", true);
    406 		goto out;
    407 	}
    408 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    409 		frob_cfattachvec(cfattachv,
    410 		    config_cfattach_detach, NULL, "init rollback", true);
    411 		frob_cfdrivervec(cfdriverv,
    412 	            config_cfdriver_detach, NULL, "init rollback", true);
    413 		goto out;
    414 	}
    415 
    416 	/* Success!  */
    417 	error = 0;
    418 
    419 out:	KERNEL_UNLOCK_ONE(NULL);
    420 	return error;
    421 }
    422 
    423 int
    424 config_fini_component(struct cfdriver * const *cfdriverv,
    425 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    426 {
    427 	int error;
    428 
    429 	KERNEL_LOCK(1, NULL);
    430 
    431 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    432 		goto out;
    433 	if ((error = frob_cfattachvec(cfattachv,
    434 	    config_cfattach_detach, config_cfattach_attach,
    435 	    "fini", false)) != 0) {
    436 		if (config_cfdata_attach(cfdatav, 0) != 0)
    437 			panic("config_cfdata fini rollback failed");
    438 		goto out;
    439 	}
    440 	if ((error = frob_cfdrivervec(cfdriverv,
    441 	    config_cfdriver_detach, config_cfdriver_attach,
    442 	    "fini", false)) != 0) {
    443 		frob_cfattachvec(cfattachv,
    444 	            config_cfattach_attach, NULL, "fini rollback", true);
    445 		if (config_cfdata_attach(cfdatav, 0) != 0)
    446 			panic("config_cfdata fini rollback failed");
    447 		goto out;
    448 	}
    449 
    450 	/* Success!  */
    451 	error = 0;
    452 
    453 out:	KERNEL_UNLOCK_ONE(NULL);
    454 	return error;
    455 }
    456 
    457 void
    458 config_init_mi(void)
    459 {
    460 
    461 	if (!config_initialized)
    462 		config_init();
    463 
    464 	sysctl_detach_setup(NULL);
    465 }
    466 
    467 void
    468 config_deferred(device_t dev)
    469 {
    470 
    471 	KASSERT(KERNEL_LOCKED_P());
    472 
    473 	config_process_deferred(&deferred_config_queue, dev);
    474 	config_process_deferred(&interrupt_config_queue, dev);
    475 	config_process_deferred(&mountroot_config_queue, dev);
    476 }
    477 
    478 static void
    479 config_interrupts_thread(void *cookie)
    480 {
    481 	struct deferred_config *dc;
    482 	device_t dev;
    483 
    484 	mutex_enter(&config_misc_lock);
    485 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    486 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    487 		mutex_exit(&config_misc_lock);
    488 
    489 		dev = dc->dc_dev;
    490 		(*dc->dc_func)(dev);
    491 		if (!device_pmf_is_registered(dev))
    492 			aprint_debug_dev(dev,
    493 			    "WARNING: power management not supported\n");
    494 		config_pending_decr(dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_interruptthreads(void)
    506 {
    507 	int i;
    508 
    509 	for (i = 0; i < interrupt_config_threads; i++) {
    510 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    511 		    config_interrupts_thread, NULL, NULL, "configintr");
    512 	}
    513 }
    514 
    515 static void
    516 config_mountroot_thread(void *cookie)
    517 {
    518 	struct deferred_config *dc;
    519 
    520 	mutex_enter(&config_misc_lock);
    521 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    522 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    523 		mutex_exit(&config_misc_lock);
    524 
    525 		(*dc->dc_func)(dc->dc_dev);
    526 		kmem_free(dc, sizeof(*dc));
    527 
    528 		mutex_enter(&config_misc_lock);
    529 	}
    530 	mutex_exit(&config_misc_lock);
    531 
    532 	kthread_exit(0);
    533 }
    534 
    535 void
    536 config_create_mountrootthreads(void)
    537 {
    538 	int i;
    539 
    540 	if (!root_is_mounted)
    541 		root_is_mounted = true;
    542 
    543 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    544 				       mountroot_config_threads;
    545 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    546 					     KM_NOSLEEP);
    547 	KASSERT(mountroot_config_lwpids);
    548 	for (i = 0; i < mountroot_config_threads; i++) {
    549 		mountroot_config_lwpids[i] = 0;
    550 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    551 				     NULL, config_mountroot_thread, NULL,
    552 				     &mountroot_config_lwpids[i],
    553 				     "configroot");
    554 	}
    555 }
    556 
    557 void
    558 config_finalize_mountroot(void)
    559 {
    560 	int i, error;
    561 
    562 	for (i = 0; i < mountroot_config_threads; i++) {
    563 		if (mountroot_config_lwpids[i] == 0)
    564 			continue;
    565 
    566 		error = kthread_join(mountroot_config_lwpids[i]);
    567 		if (error)
    568 			printf("%s: thread %x joined with error %d\n",
    569 			       __func__, i, error);
    570 	}
    571 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    572 }
    573 
    574 /*
    575  * Announce device attach/detach to userland listeners.
    576  */
    577 
    578 int
    579 no_devmon_insert(const char *name, prop_dictionary_t p)
    580 {
    581 
    582 	return ENODEV;
    583 }
    584 
    585 static void
    586 devmon_report_device(device_t dev, bool isattach)
    587 {
    588 	prop_dictionary_t ev, dict = device_properties(dev);
    589 	const char *parent;
    590 	const char *what;
    591 	const char *where;
    592 	device_t pdev = device_parent(dev);
    593 
    594 	/* If currently no drvctl device, just return */
    595 	if (devmon_insert_vec == no_devmon_insert)
    596 		return;
    597 
    598 	ev = prop_dictionary_create();
    599 	if (ev == NULL)
    600 		return;
    601 
    602 	what = (isattach ? "device-attach" : "device-detach");
    603 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    604 	if (prop_dictionary_get_string(dict, "location", &where)) {
    605 		prop_dictionary_set_string(ev, "location", where);
    606 		aprint_debug("ev: %s %s at %s in [%s]\n",
    607 		    what, device_xname(dev), parent, where);
    608 	}
    609 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    610 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    611 		prop_object_release(ev);
    612 		return;
    613 	}
    614 
    615 	if ((*devmon_insert_vec)(what, ev) != 0)
    616 		prop_object_release(ev);
    617 }
    618 
    619 /*
    620  * Add a cfdriver to the system.
    621  */
    622 int
    623 config_cfdriver_attach(struct cfdriver *cd)
    624 {
    625 	struct cfdriver *lcd;
    626 
    627 	/* Make sure this driver isn't already in the system. */
    628 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    629 		if (STREQ(lcd->cd_name, cd->cd_name))
    630 			return EEXIST;
    631 	}
    632 
    633 	LIST_INIT(&cd->cd_attach);
    634 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    635 
    636 	return 0;
    637 }
    638 
    639 /*
    640  * Remove a cfdriver from the system.
    641  */
    642 int
    643 config_cfdriver_detach(struct cfdriver *cd)
    644 {
    645 	struct alldevs_foray af;
    646 	int i, rc = 0;
    647 
    648 	config_alldevs_enter(&af);
    649 	/* Make sure there are no active instances. */
    650 	for (i = 0; i < cd->cd_ndevs; i++) {
    651 		if (cd->cd_devs[i] != NULL) {
    652 			rc = EBUSY;
    653 			break;
    654 		}
    655 	}
    656 	config_alldevs_exit(&af);
    657 
    658 	if (rc != 0)
    659 		return rc;
    660 
    661 	/* ...and no attachments loaded. */
    662 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    663 		return EBUSY;
    664 
    665 	LIST_REMOVE(cd, cd_list);
    666 
    667 	KASSERT(cd->cd_devs == NULL);
    668 
    669 	return 0;
    670 }
    671 
    672 /*
    673  * Look up a cfdriver by name.
    674  */
    675 struct cfdriver *
    676 config_cfdriver_lookup(const char *name)
    677 {
    678 	struct cfdriver *cd;
    679 
    680 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    681 		if (STREQ(cd->cd_name, name))
    682 			return cd;
    683 	}
    684 
    685 	return NULL;
    686 }
    687 
    688 /*
    689  * Add a cfattach to the specified driver.
    690  */
    691 int
    692 config_cfattach_attach(const char *driver, struct cfattach *ca)
    693 {
    694 	struct cfattach *lca;
    695 	struct cfdriver *cd;
    696 
    697 	cd = config_cfdriver_lookup(driver);
    698 	if (cd == NULL)
    699 		return ESRCH;
    700 
    701 	/* Make sure this attachment isn't already on this driver. */
    702 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    703 		if (STREQ(lca->ca_name, ca->ca_name))
    704 			return EEXIST;
    705 	}
    706 
    707 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    708 
    709 	return 0;
    710 }
    711 
    712 /*
    713  * Remove a cfattach from the specified driver.
    714  */
    715 int
    716 config_cfattach_detach(const char *driver, struct cfattach *ca)
    717 {
    718 	struct alldevs_foray af;
    719 	struct cfdriver *cd;
    720 	device_t dev;
    721 	int i, rc = 0;
    722 
    723 	cd = config_cfdriver_lookup(driver);
    724 	if (cd == NULL)
    725 		return ESRCH;
    726 
    727 	config_alldevs_enter(&af);
    728 	/* Make sure there are no active instances. */
    729 	for (i = 0; i < cd->cd_ndevs; i++) {
    730 		if ((dev = cd->cd_devs[i]) == NULL)
    731 			continue;
    732 		if (dev->dv_cfattach == ca) {
    733 			rc = EBUSY;
    734 			break;
    735 		}
    736 	}
    737 	config_alldevs_exit(&af);
    738 
    739 	if (rc != 0)
    740 		return rc;
    741 
    742 	LIST_REMOVE(ca, ca_list);
    743 
    744 	return 0;
    745 }
    746 
    747 /*
    748  * Look up a cfattach by name.
    749  */
    750 static struct cfattach *
    751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    752 {
    753 	struct cfattach *ca;
    754 
    755 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    756 		if (STREQ(ca->ca_name, atname))
    757 			return ca;
    758 	}
    759 
    760 	return NULL;
    761 }
    762 
    763 /*
    764  * Look up a cfattach by driver/attachment name.
    765  */
    766 struct cfattach *
    767 config_cfattach_lookup(const char *name, const char *atname)
    768 {
    769 	struct cfdriver *cd;
    770 
    771 	cd = config_cfdriver_lookup(name);
    772 	if (cd == NULL)
    773 		return NULL;
    774 
    775 	return config_cfattach_lookup_cd(cd, atname);
    776 }
    777 
    778 /*
    779  * Apply the matching function and choose the best.  This is used
    780  * a few times and we want to keep the code small.
    781  */
    782 static void
    783 mapply(struct matchinfo *m, cfdata_t cf)
    784 {
    785 	int pri;
    786 
    787 	if (m->fn != NULL) {
    788 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    789 	} else {
    790 		pri = config_match(m->parent, cf, m->aux);
    791 	}
    792 	if (pri > m->pri) {
    793 		m->match = cf;
    794 		m->pri = pri;
    795 	}
    796 }
    797 
    798 int
    799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    800 {
    801 	const struct cfiattrdata *ci;
    802 	const struct cflocdesc *cl;
    803 	int nlocs, i;
    804 
    805 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    806 	KASSERT(ci);
    807 	nlocs = ci->ci_loclen;
    808 	KASSERT(!nlocs || locs);
    809 	for (i = 0; i < nlocs; i++) {
    810 		cl = &ci->ci_locdesc[i];
    811 		if (cl->cld_defaultstr != NULL &&
    812 		    cf->cf_loc[i] == cl->cld_default)
    813 			continue;
    814 		if (cf->cf_loc[i] == locs[i])
    815 			continue;
    816 		return 0;
    817 	}
    818 
    819 	return config_match(parent, cf, aux);
    820 }
    821 
    822 /*
    823  * Helper function: check whether the driver supports the interface attribute
    824  * and return its descriptor structure.
    825  */
    826 static const struct cfiattrdata *
    827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    828 {
    829 	const struct cfiattrdata * const *cpp;
    830 
    831 	if (cd->cd_attrs == NULL)
    832 		return 0;
    833 
    834 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    835 		if (STREQ((*cpp)->ci_name, ia)) {
    836 			/* Match. */
    837 			return *cpp;
    838 		}
    839 	}
    840 	return 0;
    841 }
    842 
    843 static int __diagused
    844 cfdriver_iattr_count(const struct cfdriver *cd)
    845 {
    846 	const struct cfiattrdata * const *cpp;
    847 	int i;
    848 
    849 	if (cd->cd_attrs == NULL)
    850 		return 0;
    851 
    852 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    853 		i++;
    854 	}
    855 	return i;
    856 }
    857 
    858 /*
    859  * Lookup an interface attribute description by name.
    860  * If the driver is given, consider only its supported attributes.
    861  */
    862 const struct cfiattrdata *
    863 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    864 {
    865 	const struct cfdriver *d;
    866 	const struct cfiattrdata *ia;
    867 
    868 	if (cd)
    869 		return cfdriver_get_iattr(cd, name);
    870 
    871 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    872 		ia = cfdriver_get_iattr(d, name);
    873 		if (ia)
    874 			return ia;
    875 	}
    876 	return 0;
    877 }
    878 
    879 /*
    880  * Determine if `parent' is a potential parent for a device spec based
    881  * on `cfp'.
    882  */
    883 static int
    884 cfparent_match(const device_t parent, const struct cfparent *cfp)
    885 {
    886 	struct cfdriver *pcd;
    887 
    888 	/* We don't match root nodes here. */
    889 	if (cfp == NULL)
    890 		return 0;
    891 
    892 	pcd = parent->dv_cfdriver;
    893 	KASSERT(pcd != NULL);
    894 
    895 	/*
    896 	 * First, ensure this parent has the correct interface
    897 	 * attribute.
    898 	 */
    899 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    900 		return 0;
    901 
    902 	/*
    903 	 * If no specific parent device instance was specified (i.e.
    904 	 * we're attaching to the attribute only), we're done!
    905 	 */
    906 	if (cfp->cfp_parent == NULL)
    907 		return 1;
    908 
    909 	/*
    910 	 * Check the parent device's name.
    911 	 */
    912 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    913 		return 0;	/* not the same parent */
    914 
    915 	/*
    916 	 * Make sure the unit number matches.
    917 	 */
    918 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    919 	    cfp->cfp_unit == parent->dv_unit)
    920 		return 1;
    921 
    922 	/* Unit numbers don't match. */
    923 	return 0;
    924 }
    925 
    926 /*
    927  * Helper for config_cfdata_attach(): check all devices whether it could be
    928  * parent any attachment in the config data table passed, and rescan.
    929  */
    930 static void
    931 rescan_with_cfdata(const struct cfdata *cf)
    932 {
    933 	device_t d;
    934 	const struct cfdata *cf1;
    935 	deviter_t di;
    936 
    937 	KASSERT(KERNEL_LOCKED_P());
    938 
    939 	/*
    940 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    941 	 * the outer loop.
    942 	 */
    943 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    944 
    945 		if (!(d->dv_cfattach->ca_rescan))
    946 			continue;
    947 
    948 		for (cf1 = cf; cf1->cf_name; cf1++) {
    949 
    950 			if (!cfparent_match(d, cf1->cf_pspec))
    951 				continue;
    952 
    953 			(*d->dv_cfattach->ca_rescan)(d,
    954 				cfdata_ifattr(cf1), cf1->cf_loc);
    955 
    956 			config_deferred(d);
    957 		}
    958 	}
    959 	deviter_release(&di);
    960 }
    961 
    962 /*
    963  * Attach a supplemental config data table and rescan potential
    964  * parent devices if required.
    965  */
    966 int
    967 config_cfdata_attach(cfdata_t cf, int scannow)
    968 {
    969 	struct cftable *ct;
    970 
    971 	KERNEL_LOCK(1, NULL);
    972 
    973 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    974 	ct->ct_cfdata = cf;
    975 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    976 
    977 	if (scannow)
    978 		rescan_with_cfdata(cf);
    979 
    980 	KERNEL_UNLOCK_ONE(NULL);
    981 
    982 	return 0;
    983 }
    984 
    985 /*
    986  * Helper for config_cfdata_detach: check whether a device is
    987  * found through any attachment in the config data table.
    988  */
    989 static int
    990 dev_in_cfdata(device_t d, cfdata_t cf)
    991 {
    992 	const struct cfdata *cf1;
    993 
    994 	for (cf1 = cf; cf1->cf_name; cf1++)
    995 		if (d->dv_cfdata == cf1)
    996 			return 1;
    997 
    998 	return 0;
    999 }
   1000 
   1001 /*
   1002  * Detach a supplemental config data table. Detach all devices found
   1003  * through that table (and thus keeping references to it) before.
   1004  */
   1005 int
   1006 config_cfdata_detach(cfdata_t cf)
   1007 {
   1008 	device_t d;
   1009 	int error = 0;
   1010 	struct cftable *ct;
   1011 	deviter_t di;
   1012 
   1013 	KERNEL_LOCK(1, NULL);
   1014 
   1015 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
   1016 	     d = deviter_next(&di)) {
   1017 		if (!dev_in_cfdata(d, cf))
   1018 			continue;
   1019 		if ((error = config_detach(d, 0)) != 0)
   1020 			break;
   1021 	}
   1022 	deviter_release(&di);
   1023 	if (error) {
   1024 		aprint_error_dev(d, "unable to detach instance\n");
   1025 		goto out;
   1026 	}
   1027 
   1028 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1029 		if (ct->ct_cfdata == cf) {
   1030 			TAILQ_REMOVE(&allcftables, ct, ct_list);
   1031 			kmem_free(ct, sizeof(*ct));
   1032 			error = 0;
   1033 			goto out;
   1034 		}
   1035 	}
   1036 
   1037 	/* not found -- shouldn't happen */
   1038 	error = EINVAL;
   1039 
   1040 out:	KERNEL_UNLOCK_ONE(NULL);
   1041 	return error;
   1042 }
   1043 
   1044 /*
   1045  * Invoke the "match" routine for a cfdata entry on behalf of
   1046  * an external caller, usually a direct config "submatch" routine.
   1047  */
   1048 int
   1049 config_match(device_t parent, cfdata_t cf, void *aux)
   1050 {
   1051 	struct cfattach *ca;
   1052 
   1053 	KASSERT(KERNEL_LOCKED_P());
   1054 
   1055 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1056 	if (ca == NULL) {
   1057 		/* No attachment for this entry, oh well. */
   1058 		return 0;
   1059 	}
   1060 
   1061 	return (*ca->ca_match)(parent, cf, aux);
   1062 }
   1063 
   1064 /*
   1065  * Invoke the "probe" routine for a cfdata entry on behalf of
   1066  * an external caller, usually an indirect config "search" routine.
   1067  */
   1068 int
   1069 config_probe(device_t parent, cfdata_t cf, void *aux)
   1070 {
   1071 	/*
   1072 	 * This is currently a synonym for config_match(), but this
   1073 	 * is an implementation detail; "match" and "probe" routines
   1074 	 * have different behaviors.
   1075 	 *
   1076 	 * XXX config_probe() should return a bool, because there is
   1077 	 * XXX no match score for probe -- it's either there or it's
   1078 	 * XXX not, but some ports abuse the return value as a way
   1079 	 * XXX to attach "critical" devices before "non-critical"
   1080 	 * XXX devices.
   1081 	 */
   1082 	return config_match(parent, cf, aux);
   1083 }
   1084 
   1085 static struct cfargs_internal *
   1086 cfargs_canonicalize(const struct cfargs * const cfargs,
   1087     struct cfargs_internal * const store)
   1088 {
   1089 	struct cfargs_internal *args = store;
   1090 
   1091 	memset(args, 0, sizeof(*args));
   1092 
   1093 	/* If none specified, are all-NULL pointers are good. */
   1094 	if (cfargs == NULL) {
   1095 		return args;
   1096 	}
   1097 
   1098 	/*
   1099 	 * Only one arguments version is recognized at this time.
   1100 	 */
   1101 	if (cfargs->cfargs_version != CFARGS_VERSION) {
   1102 		panic("cfargs_canonicalize: unknown version %lu\n",
   1103 		    (unsigned long)cfargs->cfargs_version);
   1104 	}
   1105 
   1106 	/*
   1107 	 * submatch and search are mutually-exclusive.
   1108 	 */
   1109 	if (cfargs->submatch != NULL && cfargs->search != NULL) {
   1110 		panic("cfargs_canonicalize: submatch and search are "
   1111 		      "mutually-exclusive");
   1112 	}
   1113 	if (cfargs->submatch != NULL) {
   1114 		args->submatch = cfargs->submatch;
   1115 	} else if (cfargs->search != NULL) {
   1116 		args->search = cfargs->search;
   1117 	}
   1118 
   1119 	args->iattr = cfargs->iattr;
   1120 	args->locators = cfargs->locators;
   1121 	args->devhandle = cfargs->devhandle;
   1122 
   1123 	return args;
   1124 }
   1125 
   1126 /*
   1127  * Iterate over all potential children of some device, calling the given
   1128  * function (default being the child's match function) for each one.
   1129  * Nonzero returns are matches; the highest value returned is considered
   1130  * the best match.  Return the `found child' if we got a match, or NULL
   1131  * otherwise.  The `aux' pointer is simply passed on through.
   1132  *
   1133  * Note that this function is designed so that it can be used to apply
   1134  * an arbitrary function to all potential children (its return value
   1135  * can be ignored).
   1136  */
   1137 static cfdata_t
   1138 config_search_internal(device_t parent, void *aux,
   1139     const struct cfargs_internal * const args)
   1140 {
   1141 	struct cftable *ct;
   1142 	cfdata_t cf;
   1143 	struct matchinfo m;
   1144 
   1145 	KASSERT(config_initialized);
   1146 	KASSERT(!args->iattr ||
   1147 		cfdriver_get_iattr(parent->dv_cfdriver, args->iattr));
   1148 	KASSERT(args->iattr ||
   1149 		cfdriver_iattr_count(parent->dv_cfdriver) < 2);
   1150 
   1151 	m.fn = args->submatch;		/* N.B. union */
   1152 	m.parent = parent;
   1153 	m.locs = args->locators;
   1154 	m.aux = aux;
   1155 	m.match = NULL;
   1156 	m.pri = 0;
   1157 
   1158 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1159 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1160 
   1161 			/* We don't match root nodes here. */
   1162 			if (!cf->cf_pspec)
   1163 				continue;
   1164 
   1165 			/*
   1166 			 * Skip cf if no longer eligible, otherwise scan
   1167 			 * through parents for one matching `parent', and
   1168 			 * try match function.
   1169 			 */
   1170 			if (cf->cf_fstate == FSTATE_FOUND)
   1171 				continue;
   1172 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1173 			    cf->cf_fstate == FSTATE_DSTAR)
   1174 				continue;
   1175 
   1176 			/*
   1177 			 * If an interface attribute was specified,
   1178 			 * consider only children which attach to
   1179 			 * that attribute.
   1180 			 */
   1181 			if (args->iattr != NULL &&
   1182 			    !STREQ(args->iattr, cfdata_ifattr(cf)))
   1183 				continue;
   1184 
   1185 			if (cfparent_match(parent, cf->cf_pspec))
   1186 				mapply(&m, cf);
   1187 		}
   1188 	}
   1189 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1190 	return m.match;
   1191 }
   1192 
   1193 cfdata_t
   1194 config_search(device_t parent, void *aux, const struct cfargs *cfargs)
   1195 {
   1196 	cfdata_t cf;
   1197 	struct cfargs_internal store;
   1198 
   1199 	cf = config_search_internal(parent, aux,
   1200 	    cfargs_canonicalize(cfargs, &store));
   1201 
   1202 	return cf;
   1203 }
   1204 
   1205 /*
   1206  * Find the given root device.
   1207  * This is much like config_search, but there is no parent.
   1208  * Don't bother with multiple cfdata tables; the root node
   1209  * must always be in the initial table.
   1210  */
   1211 cfdata_t
   1212 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1213 {
   1214 	cfdata_t cf;
   1215 	const short *p;
   1216 	struct matchinfo m;
   1217 
   1218 	m.fn = fn;
   1219 	m.parent = ROOT;
   1220 	m.aux = aux;
   1221 	m.match = NULL;
   1222 	m.pri = 0;
   1223 	m.locs = 0;
   1224 	/*
   1225 	 * Look at root entries for matching name.  We do not bother
   1226 	 * with found-state here since only one root should ever be
   1227 	 * searched (and it must be done first).
   1228 	 */
   1229 	for (p = cfroots; *p >= 0; p++) {
   1230 		cf = &cfdata[*p];
   1231 		if (strcmp(cf->cf_name, rootname) == 0)
   1232 			mapply(&m, cf);
   1233 	}
   1234 	return m.match;
   1235 }
   1236 
   1237 static const char * const msgs[] = {
   1238 [QUIET]		=	"",
   1239 [UNCONF]	=	" not configured\n",
   1240 [UNSUPP]	=	" unsupported\n",
   1241 };
   1242 
   1243 /*
   1244  * The given `aux' argument describes a device that has been found
   1245  * on the given parent, but not necessarily configured.  Locate the
   1246  * configuration data for that device (using the submatch function
   1247  * provided, or using candidates' cd_match configuration driver
   1248  * functions) and attach it, and return its device_t.  If the device was
   1249  * not configured, call the given `print' function and return NULL.
   1250  */
   1251 device_t
   1252 config_found(device_t parent, void *aux, cfprint_t print,
   1253     const struct cfargs * const cfargs)
   1254 {
   1255 	cfdata_t cf;
   1256 	struct cfargs_internal store;
   1257 	const struct cfargs_internal * const args =
   1258 	    cfargs_canonicalize(cfargs, &store);
   1259 
   1260 	cf = config_search_internal(parent, aux, args);
   1261 	if (cf != NULL) {
   1262 		return config_attach_internal(parent, cf, aux, print, args);
   1263 	}
   1264 
   1265 	if (print) {
   1266 		if (config_do_twiddle && cold)
   1267 			twiddle();
   1268 
   1269 		const int pret = (*print)(aux, device_xname(parent));
   1270 		KASSERT(pret >= 0);
   1271 		KASSERT(pret < __arraycount(msgs));
   1272 		KASSERT(msgs[pret] != NULL);
   1273 		aprint_normal("%s", msgs[pret]);
   1274 	}
   1275 
   1276 	return NULL;
   1277 }
   1278 
   1279 /*
   1280  * As above, but for root devices.
   1281  */
   1282 device_t
   1283 config_rootfound(const char *rootname, void *aux)
   1284 {
   1285 	cfdata_t cf;
   1286 	device_t dev = NULL;
   1287 
   1288 	KERNEL_LOCK(1, NULL);
   1289 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1290 		dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
   1291 	else
   1292 		aprint_error("root device %s not configured\n", rootname);
   1293 	KERNEL_UNLOCK_ONE(NULL);
   1294 	return dev;
   1295 }
   1296 
   1297 /* just like sprintf(buf, "%d") except that it works from the end */
   1298 static char *
   1299 number(char *ep, int n)
   1300 {
   1301 
   1302 	*--ep = 0;
   1303 	while (n >= 10) {
   1304 		*--ep = (n % 10) + '0';
   1305 		n /= 10;
   1306 	}
   1307 	*--ep = n + '0';
   1308 	return ep;
   1309 }
   1310 
   1311 /*
   1312  * Expand the size of the cd_devs array if necessary.
   1313  *
   1314  * The caller must hold alldevs_lock. config_makeroom() may release and
   1315  * re-acquire alldevs_lock, so callers should re-check conditions such
   1316  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1317  * returns.
   1318  */
   1319 static void
   1320 config_makeroom(int n, struct cfdriver *cd)
   1321 {
   1322 	int ondevs, nndevs;
   1323 	device_t *osp, *nsp;
   1324 
   1325 	KASSERT(mutex_owned(&alldevs_lock));
   1326 	alldevs_nwrite++;
   1327 
   1328 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1329 		;
   1330 
   1331 	while (n >= cd->cd_ndevs) {
   1332 		/*
   1333 		 * Need to expand the array.
   1334 		 */
   1335 		ondevs = cd->cd_ndevs;
   1336 		osp = cd->cd_devs;
   1337 
   1338 		/*
   1339 		 * Release alldevs_lock around allocation, which may
   1340 		 * sleep.
   1341 		 */
   1342 		mutex_exit(&alldevs_lock);
   1343 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1344 		mutex_enter(&alldevs_lock);
   1345 
   1346 		/*
   1347 		 * If another thread moved the array while we did
   1348 		 * not hold alldevs_lock, try again.
   1349 		 */
   1350 		if (cd->cd_devs != osp) {
   1351 			mutex_exit(&alldevs_lock);
   1352 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1353 			mutex_enter(&alldevs_lock);
   1354 			continue;
   1355 		}
   1356 
   1357 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1358 		if (ondevs != 0)
   1359 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1360 
   1361 		cd->cd_ndevs = nndevs;
   1362 		cd->cd_devs = nsp;
   1363 		if (ondevs != 0) {
   1364 			mutex_exit(&alldevs_lock);
   1365 			kmem_free(osp, sizeof(device_t) * ondevs);
   1366 			mutex_enter(&alldevs_lock);
   1367 		}
   1368 	}
   1369 	KASSERT(mutex_owned(&alldevs_lock));
   1370 	alldevs_nwrite--;
   1371 }
   1372 
   1373 /*
   1374  * Put dev into the devices list.
   1375  */
   1376 static void
   1377 config_devlink(device_t dev)
   1378 {
   1379 
   1380 	mutex_enter(&alldevs_lock);
   1381 
   1382 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1383 
   1384 	dev->dv_add_gen = alldevs_gen;
   1385 	/* It is safe to add a device to the tail of the list while
   1386 	 * readers and writers are in the list.
   1387 	 */
   1388 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1389 	mutex_exit(&alldevs_lock);
   1390 }
   1391 
   1392 static void
   1393 config_devfree(device_t dev)
   1394 {
   1395 
   1396 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1397 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1398 
   1399 	if (dev->dv_cfattach->ca_devsize > 0)
   1400 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1401 	kmem_free(dev, sizeof(*dev));
   1402 }
   1403 
   1404 /*
   1405  * Caller must hold alldevs_lock.
   1406  */
   1407 static void
   1408 config_devunlink(device_t dev, struct devicelist *garbage)
   1409 {
   1410 	struct device_garbage *dg = &dev->dv_garbage;
   1411 	cfdriver_t cd = device_cfdriver(dev);
   1412 	int i;
   1413 
   1414 	KASSERT(mutex_owned(&alldevs_lock));
   1415 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1416 
   1417  	/* Unlink from device list.  Link to garbage list. */
   1418 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1419 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1420 
   1421 	/* Remove from cfdriver's array. */
   1422 	cd->cd_devs[dev->dv_unit] = NULL;
   1423 
   1424 	/*
   1425 	 * If the device now has no units in use, unlink its softc array.
   1426 	 */
   1427 	for (i = 0; i < cd->cd_ndevs; i++) {
   1428 		if (cd->cd_devs[i] != NULL)
   1429 			break;
   1430 	}
   1431 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1432 	if (i == cd->cd_ndevs) {
   1433 		dg->dg_ndevs = cd->cd_ndevs;
   1434 		dg->dg_devs = cd->cd_devs;
   1435 		cd->cd_devs = NULL;
   1436 		cd->cd_ndevs = 0;
   1437 	}
   1438 }
   1439 
   1440 static void
   1441 config_devdelete(device_t dev)
   1442 {
   1443 	struct device_garbage *dg = &dev->dv_garbage;
   1444 	device_lock_t dvl = device_getlock(dev);
   1445 
   1446 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1447 
   1448 	if (dg->dg_devs != NULL)
   1449 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1450 
   1451 	localcount_fini(dev->dv_localcount);
   1452 	kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));
   1453 
   1454 	cv_destroy(&dvl->dvl_cv);
   1455 	mutex_destroy(&dvl->dvl_mtx);
   1456 
   1457 	KASSERT(dev->dv_properties != NULL);
   1458 	prop_object_release(dev->dv_properties);
   1459 
   1460 	if (dev->dv_activity_handlers)
   1461 		panic("%s with registered handlers", __func__);
   1462 
   1463 	if (dev->dv_locators) {
   1464 		size_t amount = *--dev->dv_locators;
   1465 		kmem_free(dev->dv_locators, amount);
   1466 	}
   1467 
   1468 	config_devfree(dev);
   1469 }
   1470 
   1471 static int
   1472 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1473 {
   1474 	int unit = cf->cf_unit;
   1475 
   1476 	if (unit < 0)
   1477 		return -1;
   1478 	if (cf->cf_fstate == FSTATE_STAR) {
   1479 		for (; unit < cd->cd_ndevs; unit++)
   1480 			if (cd->cd_devs[unit] == NULL)
   1481 				break;
   1482 		/*
   1483 		 * unit is now the unit of the first NULL device pointer,
   1484 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1485 		 */
   1486 	} else {
   1487 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1488 			unit = -1;
   1489 	}
   1490 	return unit;
   1491 }
   1492 
   1493 static int
   1494 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1495 {
   1496 	struct alldevs_foray af;
   1497 	int unit;
   1498 
   1499 	config_alldevs_enter(&af);
   1500 	for (;;) {
   1501 		unit = config_unit_nextfree(cd, cf);
   1502 		if (unit == -1)
   1503 			break;
   1504 		if (unit < cd->cd_ndevs) {
   1505 			cd->cd_devs[unit] = dev;
   1506 			dev->dv_unit = unit;
   1507 			break;
   1508 		}
   1509 		config_makeroom(unit, cd);
   1510 	}
   1511 	config_alldevs_exit(&af);
   1512 
   1513 	return unit;
   1514 }
   1515 
   1516 static device_t
   1517 config_devalloc(const device_t parent, const cfdata_t cf,
   1518     const struct cfargs_internal * const args)
   1519 {
   1520 	cfdriver_t cd;
   1521 	cfattach_t ca;
   1522 	size_t lname, lunit;
   1523 	const char *xunit;
   1524 	int myunit;
   1525 	char num[10];
   1526 	device_t dev;
   1527 	void *dev_private;
   1528 	const struct cfiattrdata *ia;
   1529 	device_lock_t dvl;
   1530 
   1531 	cd = config_cfdriver_lookup(cf->cf_name);
   1532 	if (cd == NULL)
   1533 		return NULL;
   1534 
   1535 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1536 	if (ca == NULL)
   1537 		return NULL;
   1538 
   1539 	/* get memory for all device vars */
   1540 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1541 	if (ca->ca_devsize > 0) {
   1542 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1543 	} else {
   1544 		dev_private = NULL;
   1545 	}
   1546 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1547 
   1548 	dev->dv_handle = args->devhandle;
   1549 
   1550 	dev->dv_class = cd->cd_class;
   1551 	dev->dv_cfdata = cf;
   1552 	dev->dv_cfdriver = cd;
   1553 	dev->dv_cfattach = ca;
   1554 	dev->dv_activity_count = 0;
   1555 	dev->dv_activity_handlers = NULL;
   1556 	dev->dv_private = dev_private;
   1557 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1558 	dev->dv_attaching = curlwp;
   1559 
   1560 	myunit = config_unit_alloc(dev, cd, cf);
   1561 	if (myunit == -1) {
   1562 		config_devfree(dev);
   1563 		return NULL;
   1564 	}
   1565 
   1566 	/* compute length of name and decimal expansion of unit number */
   1567 	lname = strlen(cd->cd_name);
   1568 	xunit = number(&num[sizeof(num)], myunit);
   1569 	lunit = &num[sizeof(num)] - xunit;
   1570 	if (lname + lunit > sizeof(dev->dv_xname))
   1571 		panic("config_devalloc: device name too long");
   1572 
   1573 	dvl = device_getlock(dev);
   1574 
   1575 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1576 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1577 
   1578 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1579 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1580 	dev->dv_parent = parent;
   1581 	if (parent != NULL)
   1582 		dev->dv_depth = parent->dv_depth + 1;
   1583 	else
   1584 		dev->dv_depth = 0;
   1585 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1586 	if (args->locators) {
   1587 		KASSERT(parent); /* no locators at root */
   1588 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1589 		dev->dv_locators =
   1590 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1591 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1592 		memcpy(dev->dv_locators, args->locators,
   1593 		    sizeof(int) * ia->ci_loclen);
   1594 	}
   1595 	dev->dv_properties = prop_dictionary_create();
   1596 	KASSERT(dev->dv_properties != NULL);
   1597 
   1598 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1599 	    "device-driver", dev->dv_cfdriver->cd_name);
   1600 	prop_dictionary_set_uint16(dev->dv_properties,
   1601 	    "device-unit", dev->dv_unit);
   1602 	if (parent != NULL) {
   1603 		prop_dictionary_set_string(dev->dv_properties,
   1604 		    "device-parent", device_xname(parent));
   1605 	}
   1606 
   1607 	dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
   1608 	    KM_SLEEP);
   1609 	localcount_init(dev->dv_localcount);
   1610 
   1611 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1612 		config_add_attrib_dict(dev);
   1613 
   1614 	return dev;
   1615 }
   1616 
   1617 /*
   1618  * Create an array of device attach attributes and add it
   1619  * to the device's dv_properties dictionary.
   1620  *
   1621  * <key>interface-attributes</key>
   1622  * <array>
   1623  *    <dict>
   1624  *       <key>attribute-name</key>
   1625  *       <string>foo</string>
   1626  *       <key>locators</key>
   1627  *       <array>
   1628  *          <dict>
   1629  *             <key>loc-name</key>
   1630  *             <string>foo-loc1</string>
   1631  *          </dict>
   1632  *          <dict>
   1633  *             <key>loc-name</key>
   1634  *             <string>foo-loc2</string>
   1635  *             <key>default</key>
   1636  *             <string>foo-loc2-default</string>
   1637  *          </dict>
   1638  *          ...
   1639  *       </array>
   1640  *    </dict>
   1641  *    ...
   1642  * </array>
   1643  */
   1644 
   1645 static void
   1646 config_add_attrib_dict(device_t dev)
   1647 {
   1648 	int i, j;
   1649 	const struct cfiattrdata *ci;
   1650 	prop_dictionary_t attr_dict, loc_dict;
   1651 	prop_array_t attr_array, loc_array;
   1652 
   1653 	if ((attr_array = prop_array_create()) == NULL)
   1654 		return;
   1655 
   1656 	for (i = 0; ; i++) {
   1657 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1658 			break;
   1659 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1660 			break;
   1661 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1662 		    ci->ci_name);
   1663 
   1664 		/* Create an array of the locator names and defaults */
   1665 
   1666 		if (ci->ci_loclen != 0 &&
   1667 		    (loc_array = prop_array_create()) != NULL) {
   1668 			for (j = 0; j < ci->ci_loclen; j++) {
   1669 				loc_dict = prop_dictionary_create();
   1670 				if (loc_dict == NULL)
   1671 					continue;
   1672 				prop_dictionary_set_string_nocopy(loc_dict,
   1673 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1674 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1675 					prop_dictionary_set_string_nocopy(
   1676 					    loc_dict, "default",
   1677 					    ci->ci_locdesc[j].cld_defaultstr);
   1678 				prop_array_set(loc_array, j, loc_dict);
   1679 				prop_object_release(loc_dict);
   1680 			}
   1681 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1682 			    loc_array);
   1683 		}
   1684 		prop_array_add(attr_array, attr_dict);
   1685 		prop_object_release(attr_dict);
   1686 	}
   1687 	if (i == 0)
   1688 		prop_object_release(attr_array);
   1689 	else
   1690 		prop_dictionary_set_and_rel(dev->dv_properties,
   1691 		    "interface-attributes", attr_array);
   1692 
   1693 	return;
   1694 }
   1695 
   1696 /*
   1697  * Attach a found device.
   1698  */
   1699 static device_t
   1700 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1701     const struct cfargs_internal * const args)
   1702 {
   1703 	device_t dev;
   1704 	struct cftable *ct;
   1705 	const char *drvname;
   1706 	bool deferred;
   1707 
   1708 	KASSERT(KERNEL_LOCKED_P());
   1709 
   1710 	dev = config_devalloc(parent, cf, args);
   1711 	if (!dev)
   1712 		panic("config_attach: allocation of device softc failed");
   1713 
   1714 	/* XXX redundant - see below? */
   1715 	if (cf->cf_fstate != FSTATE_STAR) {
   1716 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1717 		cf->cf_fstate = FSTATE_FOUND;
   1718 	}
   1719 
   1720 	config_devlink(dev);
   1721 
   1722 	if (config_do_twiddle && cold)
   1723 		twiddle();
   1724 	else
   1725 		aprint_naive("Found ");
   1726 	/*
   1727 	 * We want the next two printfs for normal, verbose, and quiet,
   1728 	 * but not silent (in which case, we're twiddling, instead).
   1729 	 */
   1730 	if (parent == ROOT) {
   1731 		aprint_naive("%s (root)", device_xname(dev));
   1732 		aprint_normal("%s (root)", device_xname(dev));
   1733 	} else {
   1734 		aprint_naive("%s at %s", device_xname(dev),
   1735 		    device_xname(parent));
   1736 		aprint_normal("%s at %s", device_xname(dev),
   1737 		    device_xname(parent));
   1738 		if (print)
   1739 			(void) (*print)(aux, NULL);
   1740 	}
   1741 
   1742 	/*
   1743 	 * Before attaching, clobber any unfound devices that are
   1744 	 * otherwise identical.
   1745 	 * XXX code above is redundant?
   1746 	 */
   1747 	drvname = dev->dv_cfdriver->cd_name;
   1748 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1749 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1750 			if (STREQ(cf->cf_name, drvname) &&
   1751 			    cf->cf_unit == dev->dv_unit) {
   1752 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1753 					cf->cf_fstate = FSTATE_FOUND;
   1754 			}
   1755 		}
   1756 	}
   1757 	device_register(dev, aux);
   1758 
   1759 	/* Let userland know */
   1760 	devmon_report_device(dev, true);
   1761 
   1762 	/*
   1763 	 * Prevent detach until the driver's attach function, and all
   1764 	 * deferred actions, have finished.
   1765 	 */
   1766 	config_pending_incr(dev);
   1767 
   1768 	/* Call the driver's attach function.  */
   1769 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1770 
   1771 	/*
   1772 	 * Allow other threads to acquire references to the device now
   1773 	 * that the driver's attach function is done.
   1774 	 */
   1775 	mutex_enter(&config_misc_lock);
   1776 	KASSERT(dev->dv_attaching == curlwp);
   1777 	dev->dv_attaching = NULL;
   1778 	cv_broadcast(&config_misc_cv);
   1779 	mutex_exit(&config_misc_lock);
   1780 
   1781 	/*
   1782 	 * Synchronous parts of attach are done.  Allow detach, unless
   1783 	 * the driver's attach function scheduled deferred actions.
   1784 	 */
   1785 	config_pending_decr(dev);
   1786 
   1787 	mutex_enter(&config_misc_lock);
   1788 	deferred = (dev->dv_pending != 0);
   1789 	mutex_exit(&config_misc_lock);
   1790 
   1791 	if (!deferred && !device_pmf_is_registered(dev))
   1792 		aprint_debug_dev(dev,
   1793 		    "WARNING: power management not supported\n");
   1794 
   1795 	config_process_deferred(&deferred_config_queue, dev);
   1796 
   1797 	device_register_post_config(dev, aux);
   1798 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1799 	return dev;
   1800 }
   1801 
   1802 device_t
   1803 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1804     const struct cfargs *cfargs)
   1805 {
   1806 	struct cfargs_internal store;
   1807 
   1808 	KASSERT(KERNEL_LOCKED_P());
   1809 
   1810 	return config_attach_internal(parent, cf, aux, print,
   1811 	    cfargs_canonicalize(cfargs, &store));
   1812 }
   1813 
   1814 /*
   1815  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1816  * way are silently inserted into the device tree, and their children
   1817  * attached.
   1818  *
   1819  * Note that because pseudo-devices are attached silently, any information
   1820  * the attach routine wishes to print should be prefixed with the device
   1821  * name by the attach routine.
   1822  */
   1823 device_t
   1824 config_attach_pseudo(cfdata_t cf)
   1825 {
   1826 	device_t dev;
   1827 
   1828 	KERNEL_LOCK(1, NULL);
   1829 
   1830 	struct cfargs_internal args = { };
   1831 	dev = config_devalloc(ROOT, cf, &args);
   1832 	if (!dev)
   1833 		goto out;
   1834 
   1835 	/* XXX mark busy in cfdata */
   1836 
   1837 	if (cf->cf_fstate != FSTATE_STAR) {
   1838 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1839 		cf->cf_fstate = FSTATE_FOUND;
   1840 	}
   1841 
   1842 	config_devlink(dev);
   1843 
   1844 #if 0	/* XXXJRT not yet */
   1845 	device_register(dev, NULL);	/* like a root node */
   1846 #endif
   1847 
   1848 	/* Let userland know */
   1849 	devmon_report_device(dev, true);
   1850 
   1851 	/*
   1852 	 * Prevent detach until the driver's attach function, and all
   1853 	 * deferred actions, have finished.
   1854 	 */
   1855 	config_pending_incr(dev);
   1856 
   1857 	/* Call the driver's attach function.  */
   1858 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1859 
   1860 	/*
   1861 	 * Allow other threads to acquire references to the device now
   1862 	 * that the driver's attach function is done.
   1863 	 */
   1864 	mutex_enter(&config_misc_lock);
   1865 	KASSERT(dev->dv_attaching == curlwp);
   1866 	dev->dv_attaching = NULL;
   1867 	cv_broadcast(&config_misc_cv);
   1868 	mutex_exit(&config_misc_lock);
   1869 
   1870 	/*
   1871 	 * Synchronous parts of attach are done.  Allow detach, unless
   1872 	 * the driver's attach function scheduled deferred actions.
   1873 	 */
   1874 	config_pending_decr(dev);
   1875 
   1876 	config_process_deferred(&deferred_config_queue, dev);
   1877 
   1878 out:	KERNEL_UNLOCK_ONE(NULL);
   1879 	return dev;
   1880 }
   1881 
   1882 /*
   1883  * Caller must hold alldevs_lock.
   1884  */
   1885 static void
   1886 config_collect_garbage(struct devicelist *garbage)
   1887 {
   1888 	device_t dv;
   1889 
   1890 	KASSERT(!cpu_intr_p());
   1891 	KASSERT(!cpu_softintr_p());
   1892 	KASSERT(mutex_owned(&alldevs_lock));
   1893 
   1894 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1895 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1896 			if (dv->dv_del_gen != 0)
   1897 				break;
   1898 		}
   1899 		if (dv == NULL) {
   1900 			alldevs_garbage = false;
   1901 			break;
   1902 		}
   1903 		config_devunlink(dv, garbage);
   1904 	}
   1905 	KASSERT(mutex_owned(&alldevs_lock));
   1906 }
   1907 
   1908 static void
   1909 config_dump_garbage(struct devicelist *garbage)
   1910 {
   1911 	device_t dv;
   1912 
   1913 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1914 		TAILQ_REMOVE(garbage, dv, dv_list);
   1915 		config_devdelete(dv);
   1916 	}
   1917 }
   1918 
   1919 static int
   1920 config_detach_enter(device_t dev)
   1921 {
   1922 	struct lwp *l __diagused;
   1923 	int error = 0;
   1924 
   1925 	mutex_enter(&config_misc_lock);
   1926 
   1927 	/*
   1928 	 * Wait until attach has fully completed, and until any
   1929 	 * concurrent detach (e.g., drvctl racing with USB event
   1930 	 * thread) has completed.
   1931 	 *
   1932 	 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
   1933 	 * deviter) to ensure the winner of the race doesn't free the
   1934 	 * device leading the loser of the race into use-after-free.
   1935 	 *
   1936 	 * XXX Not all callers do this!
   1937 	 */
   1938 	while (dev->dv_pending || dev->dv_detaching) {
   1939 		KASSERTMSG(dev->dv_detaching != curlwp,
   1940 		    "recursively detaching %s", device_xname(dev));
   1941 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
   1942 		if (error)
   1943 			goto out;
   1944 	}
   1945 
   1946 	/*
   1947 	 * Attach has completed, and no other concurrent detach is
   1948 	 * running.  Claim the device for detaching.  This will cause
   1949 	 * all new attempts to acquire references to block.
   1950 	 */
   1951 	KASSERTMSG((l = dev->dv_attaching) == NULL,
   1952 	    "lwp %ld [%s] @ %p attaching",
   1953 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l);
   1954 	KASSERTMSG((l = dev->dv_detaching) == NULL,
   1955 	    "lwp %ld [%s] @ %p detaching",
   1956 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l);
   1957 	dev->dv_detaching = curlwp;
   1958 
   1959 out:	mutex_exit(&config_misc_lock);
   1960 	return error;
   1961 }
   1962 
   1963 static void
   1964 config_detach_exit(device_t dev)
   1965 {
   1966 	struct lwp *l __diagused;
   1967 
   1968 	mutex_enter(&config_misc_lock);
   1969 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   1970 	    "lwp %ld [%s] @ %p detaching",
   1971 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l);
   1972 	dev->dv_detaching = NULL;
   1973 	cv_broadcast(&config_misc_cv);
   1974 	mutex_exit(&config_misc_lock);
   1975 }
   1976 
   1977 /*
   1978  * Detach a device.  Optionally forced (e.g. because of hardware
   1979  * removal) and quiet.  Returns zero if successful, non-zero
   1980  * (an error code) otherwise.
   1981  *
   1982  * Note that this code wants to be run from a process context, so
   1983  * that the detach can sleep to allow processes which have a device
   1984  * open to run and unwind their stacks.
   1985  */
   1986 int
   1987 config_detach(device_t dev, int flags)
   1988 {
   1989 	struct alldevs_foray af;
   1990 	struct cftable *ct;
   1991 	cfdata_t cf;
   1992 	const struct cfattach *ca;
   1993 	struct cfdriver *cd;
   1994 	device_t d __diagused;
   1995 	int rv = 0;
   1996 
   1997 	KERNEL_LOCK(1, NULL);
   1998 
   1999 	cf = dev->dv_cfdata;
   2000 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   2001 		cf->cf_fstate == FSTATE_STAR),
   2002 	    "config_detach: %s: bad device fstate: %d",
   2003 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   2004 
   2005 	cd = dev->dv_cfdriver;
   2006 	KASSERT(cd != NULL);
   2007 
   2008 	ca = dev->dv_cfattach;
   2009 	KASSERT(ca != NULL);
   2010 
   2011 	/*
   2012 	 * Only one detach at a time, please -- and not until fully
   2013 	 * attached.
   2014 	 */
   2015 	rv = config_detach_enter(dev);
   2016 	if (rv) {
   2017 		KERNEL_UNLOCK_ONE(NULL);
   2018 		return rv;
   2019 	}
   2020 
   2021 	mutex_enter(&alldevs_lock);
   2022 	if (dev->dv_del_gen != 0) {
   2023 		mutex_exit(&alldevs_lock);
   2024 #ifdef DIAGNOSTIC
   2025 		printf("%s: %s is already detached\n", __func__,
   2026 		    device_xname(dev));
   2027 #endif /* DIAGNOSTIC */
   2028 		config_detach_exit(dev);
   2029 		KERNEL_UNLOCK_ONE(NULL);
   2030 		return ENOENT;
   2031 	}
   2032 	alldevs_nwrite++;
   2033 	mutex_exit(&alldevs_lock);
   2034 
   2035 	/*
   2036 	 * Call the driver's .ca_detach function, unless it has none or
   2037 	 * we are skipping it because it's unforced shutdown time and
   2038 	 * the driver didn't ask to detach on shutdown.
   2039 	 */
   2040 	if (!detachall &&
   2041 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   2042 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   2043 		rv = EOPNOTSUPP;
   2044 	} else if (ca->ca_detach != NULL) {
   2045 		rv = (*ca->ca_detach)(dev, flags);
   2046 	} else
   2047 		rv = EOPNOTSUPP;
   2048 
   2049 	/*
   2050 	 * If it was not possible to detach the device, then we either
   2051 	 * panic() (for the forced but failed case), or return an error.
   2052 	 */
   2053 	if (rv) {
   2054 		/*
   2055 		 * Detach failed -- likely EOPNOTSUPP or EBUSY.  Driver
   2056 		 * must not have called config_detach_commit.
   2057 		 */
   2058 		KASSERTMSG(!dev->dv_detached,
   2059 		    "%s committed to detaching and then backed out",
   2060 		    device_xname(dev));
   2061 		if (flags & DETACH_FORCE) {
   2062 			panic("config_detach: forced detach of %s failed (%d)",
   2063 			    device_xname(dev), rv);
   2064 		}
   2065 		goto out;
   2066 	}
   2067 
   2068 	/*
   2069 	 * The device has now been successfully detached.
   2070 	 */
   2071 
   2072 	/*
   2073 	 * If .ca_detach didn't commit to detach, then do that for it.
   2074 	 * This wakes any pending device_lookup_acquire calls so they
   2075 	 * will fail.
   2076 	 */
   2077 	config_detach_commit(dev);
   2078 
   2079 	/*
   2080 	 * If it was possible to detach the device, ensure that the
   2081 	 * device is deactivated.
   2082 	 */
   2083 	dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */
   2084 
   2085 	/*
   2086 	 * Wait for all device_lookup_acquire references -- mostly, for
   2087 	 * all attempts to open the device -- to drain.  It is the
   2088 	 * responsibility of .ca_detach to ensure anything with open
   2089 	 * references will be interrupted and release them promptly,
   2090 	 * not block indefinitely.  All new attempts to acquire
   2091 	 * references will fail, as config_detach_commit has arranged
   2092 	 * by now.
   2093 	 */
   2094 	mutex_enter(&config_misc_lock);
   2095 	localcount_drain(dev->dv_localcount,
   2096 	    &config_misc_cv, &config_misc_lock);
   2097 	mutex_exit(&config_misc_lock);
   2098 
   2099 	/* Let userland know */
   2100 	devmon_report_device(dev, false);
   2101 
   2102 #ifdef DIAGNOSTIC
   2103 	/*
   2104 	 * Sanity: If you're successfully detached, you should have no
   2105 	 * children.  (Note that because children must be attached
   2106 	 * after parents, we only need to search the latter part of
   2107 	 * the list.)
   2108 	 */
   2109 	mutex_enter(&alldevs_lock);
   2110 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   2111 	    d = TAILQ_NEXT(d, dv_list)) {
   2112 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   2113 			printf("config_detach: detached device %s"
   2114 			    " has children %s\n", device_xname(dev),
   2115 			    device_xname(d));
   2116 			panic("config_detach");
   2117 		}
   2118 	}
   2119 	mutex_exit(&alldevs_lock);
   2120 #endif
   2121 
   2122 	/* notify the parent that the child is gone */
   2123 	if (dev->dv_parent) {
   2124 		device_t p = dev->dv_parent;
   2125 		if (p->dv_cfattach->ca_childdetached)
   2126 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   2127 	}
   2128 
   2129 	/*
   2130 	 * Mark cfdata to show that the unit can be reused, if possible.
   2131 	 */
   2132 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   2133 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   2134 			if (STREQ(cf->cf_name, cd->cd_name)) {
   2135 				if (cf->cf_fstate == FSTATE_FOUND &&
   2136 				    cf->cf_unit == dev->dv_unit)
   2137 					cf->cf_fstate = FSTATE_NOTFOUND;
   2138 			}
   2139 		}
   2140 	}
   2141 
   2142 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   2143 		aprint_normal_dev(dev, "detached\n");
   2144 
   2145 out:
   2146 	config_detach_exit(dev);
   2147 
   2148 	config_alldevs_enter(&af);
   2149 	KASSERT(alldevs_nwrite != 0);
   2150 	--alldevs_nwrite;
   2151 	if (rv == 0 && dev->dv_del_gen == 0) {
   2152 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   2153 			config_devunlink(dev, &af.af_garbage);
   2154 		else {
   2155 			dev->dv_del_gen = alldevs_gen;
   2156 			alldevs_garbage = true;
   2157 		}
   2158 	}
   2159 	config_alldevs_exit(&af);
   2160 
   2161 	KERNEL_UNLOCK_ONE(NULL);
   2162 
   2163 	return rv;
   2164 }
   2165 
   2166 /*
   2167  * config_detach_commit(dev)
   2168  *
   2169  *	Issued by a driver's .ca_detach routine to notify anyone
   2170  *	waiting in device_lookup_acquire that the driver is committed
   2171  *	to detaching the device, which allows device_lookup_acquire to
   2172  *	wake up and fail immediately.
   2173  *
   2174  *	Safe to call multiple times -- idempotent.  Must be called
   2175  *	during config_detach_enter/exit.  Safe to use with
   2176  *	device_lookup because the device is not actually removed from
   2177  *	the table until after config_detach_exit.
   2178  */
   2179 void
   2180 config_detach_commit(device_t dev)
   2181 {
   2182 	struct lwp *l __diagused;
   2183 
   2184 	mutex_enter(&config_misc_lock);
   2185 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   2186 	    "lwp %ld [%s] @ %p detaching",
   2187 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l);
   2188 	dev->dv_detached = true;
   2189 	cv_broadcast(&config_misc_cv);
   2190 	mutex_exit(&config_misc_lock);
   2191 }
   2192 
   2193 int
   2194 config_detach_children(device_t parent, int flags)
   2195 {
   2196 	device_t dv;
   2197 	deviter_t di;
   2198 	int error = 0;
   2199 
   2200 	KASSERT(KERNEL_LOCKED_P());
   2201 
   2202 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   2203 	     dv = deviter_next(&di)) {
   2204 		if (device_parent(dv) != parent)
   2205 			continue;
   2206 		if ((error = config_detach(dv, flags)) != 0)
   2207 			break;
   2208 	}
   2209 	deviter_release(&di);
   2210 	return error;
   2211 }
   2212 
   2213 device_t
   2214 shutdown_first(struct shutdown_state *s)
   2215 {
   2216 	if (!s->initialized) {
   2217 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   2218 		s->initialized = true;
   2219 	}
   2220 	return shutdown_next(s);
   2221 }
   2222 
   2223 device_t
   2224 shutdown_next(struct shutdown_state *s)
   2225 {
   2226 	device_t dv;
   2227 
   2228 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2229 		;
   2230 
   2231 	if (dv == NULL)
   2232 		s->initialized = false;
   2233 
   2234 	return dv;
   2235 }
   2236 
   2237 bool
   2238 config_detach_all(int how)
   2239 {
   2240 	static struct shutdown_state s;
   2241 	device_t curdev;
   2242 	bool progress = false;
   2243 	int flags;
   2244 
   2245 	KERNEL_LOCK(1, NULL);
   2246 
   2247 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2248 		goto out;
   2249 
   2250 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2251 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2252 	else
   2253 		flags = DETACH_SHUTDOWN;
   2254 
   2255 	for (curdev = shutdown_first(&s); curdev != NULL;
   2256 	     curdev = shutdown_next(&s)) {
   2257 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2258 		if (config_detach(curdev, flags) == 0) {
   2259 			progress = true;
   2260 			aprint_debug("success.");
   2261 		} else
   2262 			aprint_debug("failed.");
   2263 	}
   2264 
   2265 out:	KERNEL_UNLOCK_ONE(NULL);
   2266 	return progress;
   2267 }
   2268 
   2269 static bool
   2270 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2271 {
   2272 	device_t dv;
   2273 
   2274 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2275 		if (device_parent(dv) == ancestor)
   2276 			return true;
   2277 	}
   2278 	return false;
   2279 }
   2280 
   2281 int
   2282 config_deactivate(device_t dev)
   2283 {
   2284 	deviter_t di;
   2285 	const struct cfattach *ca;
   2286 	device_t descendant;
   2287 	int s, rv = 0, oflags;
   2288 
   2289 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2290 	     descendant != NULL;
   2291 	     descendant = deviter_next(&di)) {
   2292 		if (dev != descendant &&
   2293 		    !device_is_ancestor_of(dev, descendant))
   2294 			continue;
   2295 
   2296 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2297 			continue;
   2298 
   2299 		ca = descendant->dv_cfattach;
   2300 		oflags = descendant->dv_flags;
   2301 
   2302 		descendant->dv_flags &= ~DVF_ACTIVE;
   2303 		if (ca->ca_activate == NULL)
   2304 			continue;
   2305 		s = splhigh();
   2306 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2307 		splx(s);
   2308 		if (rv != 0)
   2309 			descendant->dv_flags = oflags;
   2310 	}
   2311 	deviter_release(&di);
   2312 	return rv;
   2313 }
   2314 
   2315 /*
   2316  * Defer the configuration of the specified device until all
   2317  * of its parent's devices have been attached.
   2318  */
   2319 void
   2320 config_defer(device_t dev, void (*func)(device_t))
   2321 {
   2322 	struct deferred_config *dc;
   2323 
   2324 	if (dev->dv_parent == NULL)
   2325 		panic("config_defer: can't defer config of a root device");
   2326 
   2327 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2328 
   2329 	config_pending_incr(dev);
   2330 
   2331 	mutex_enter(&config_misc_lock);
   2332 #ifdef DIAGNOSTIC
   2333 	struct deferred_config *odc;
   2334 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2335 		if (odc->dc_dev == dev)
   2336 			panic("config_defer: deferred twice");
   2337 	}
   2338 #endif
   2339 	dc->dc_dev = dev;
   2340 	dc->dc_func = func;
   2341 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2342 	mutex_exit(&config_misc_lock);
   2343 }
   2344 
   2345 /*
   2346  * Defer some autoconfiguration for a device until after interrupts
   2347  * are enabled.
   2348  */
   2349 void
   2350 config_interrupts(device_t dev, void (*func)(device_t))
   2351 {
   2352 	struct deferred_config *dc;
   2353 
   2354 	/*
   2355 	 * If interrupts are enabled, callback now.
   2356 	 */
   2357 	if (cold == 0) {
   2358 		(*func)(dev);
   2359 		return;
   2360 	}
   2361 
   2362 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2363 
   2364 	config_pending_incr(dev);
   2365 
   2366 	mutex_enter(&config_misc_lock);
   2367 #ifdef DIAGNOSTIC
   2368 	struct deferred_config *odc;
   2369 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2370 		if (odc->dc_dev == dev)
   2371 			panic("config_interrupts: deferred twice");
   2372 	}
   2373 #endif
   2374 	dc->dc_dev = dev;
   2375 	dc->dc_func = func;
   2376 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2377 	mutex_exit(&config_misc_lock);
   2378 }
   2379 
   2380 /*
   2381  * Defer some autoconfiguration for a device until after root file system
   2382  * is mounted (to load firmware etc).
   2383  */
   2384 void
   2385 config_mountroot(device_t dev, void (*func)(device_t))
   2386 {
   2387 	struct deferred_config *dc;
   2388 
   2389 	/*
   2390 	 * If root file system is mounted, callback now.
   2391 	 */
   2392 	if (root_is_mounted) {
   2393 		(*func)(dev);
   2394 		return;
   2395 	}
   2396 
   2397 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2398 
   2399 	mutex_enter(&config_misc_lock);
   2400 #ifdef DIAGNOSTIC
   2401 	struct deferred_config *odc;
   2402 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2403 		if (odc->dc_dev == dev)
   2404 			panic("%s: deferred twice", __func__);
   2405 	}
   2406 #endif
   2407 
   2408 	dc->dc_dev = dev;
   2409 	dc->dc_func = func;
   2410 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2411 	mutex_exit(&config_misc_lock);
   2412 }
   2413 
   2414 /*
   2415  * Process a deferred configuration queue.
   2416  */
   2417 static void
   2418 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2419 {
   2420 	struct deferred_config *dc;
   2421 
   2422 	KASSERT(KERNEL_LOCKED_P());
   2423 
   2424 	mutex_enter(&config_misc_lock);
   2425 	dc = TAILQ_FIRST(queue);
   2426 	while (dc) {
   2427 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2428 			TAILQ_REMOVE(queue, dc, dc_queue);
   2429 			mutex_exit(&config_misc_lock);
   2430 
   2431 			(*dc->dc_func)(dc->dc_dev);
   2432 			config_pending_decr(dc->dc_dev);
   2433 			kmem_free(dc, sizeof(*dc));
   2434 
   2435 			mutex_enter(&config_misc_lock);
   2436 			/* Restart, queue might have changed */
   2437 			dc = TAILQ_FIRST(queue);
   2438 		} else {
   2439 			dc = TAILQ_NEXT(dc, dc_queue);
   2440 		}
   2441 	}
   2442 	mutex_exit(&config_misc_lock);
   2443 }
   2444 
   2445 /*
   2446  * Manipulate the config_pending semaphore.
   2447  */
   2448 void
   2449 config_pending_incr(device_t dev)
   2450 {
   2451 
   2452 	mutex_enter(&config_misc_lock);
   2453 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2454 	    "%s: excess config_pending_incr", device_xname(dev));
   2455 	if (dev->dv_pending++ == 0)
   2456 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2457 #ifdef DEBUG_AUTOCONF
   2458 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2459 #endif
   2460 	mutex_exit(&config_misc_lock);
   2461 }
   2462 
   2463 void
   2464 config_pending_decr(device_t dev)
   2465 {
   2466 
   2467 	mutex_enter(&config_misc_lock);
   2468 	KASSERTMSG(dev->dv_pending > 0,
   2469 	    "%s: excess config_pending_decr", device_xname(dev));
   2470 	if (--dev->dv_pending == 0) {
   2471 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2472 		cv_broadcast(&config_misc_cv);
   2473 	}
   2474 #ifdef DEBUG_AUTOCONF
   2475 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2476 #endif
   2477 	mutex_exit(&config_misc_lock);
   2478 }
   2479 
   2480 /*
   2481  * Register a "finalization" routine.  Finalization routines are
   2482  * called iteratively once all real devices have been found during
   2483  * autoconfiguration, for as long as any one finalizer has done
   2484  * any work.
   2485  */
   2486 int
   2487 config_finalize_register(device_t dev, int (*fn)(device_t))
   2488 {
   2489 	struct finalize_hook *f;
   2490 	int error = 0;
   2491 
   2492 	KERNEL_LOCK(1, NULL);
   2493 
   2494 	/*
   2495 	 * If finalization has already been done, invoke the
   2496 	 * callback function now.
   2497 	 */
   2498 	if (config_finalize_done) {
   2499 		while ((*fn)(dev) != 0)
   2500 			/* loop */ ;
   2501 		goto out;
   2502 	}
   2503 
   2504 	/* Ensure this isn't already on the list. */
   2505 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2506 		if (f->f_func == fn && f->f_dev == dev) {
   2507 			error = EEXIST;
   2508 			goto out;
   2509 		}
   2510 	}
   2511 
   2512 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2513 	f->f_func = fn;
   2514 	f->f_dev = dev;
   2515 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2516 
   2517 	/* Success!  */
   2518 	error = 0;
   2519 
   2520 out:	KERNEL_UNLOCK_ONE(NULL);
   2521 	return error;
   2522 }
   2523 
   2524 void
   2525 config_finalize(void)
   2526 {
   2527 	struct finalize_hook *f;
   2528 	struct pdevinit *pdev;
   2529 	extern struct pdevinit pdevinit[];
   2530 	int errcnt, rv;
   2531 
   2532 	/*
   2533 	 * Now that device driver threads have been created, wait for
   2534 	 * them to finish any deferred autoconfiguration.
   2535 	 */
   2536 	mutex_enter(&config_misc_lock);
   2537 	while (!TAILQ_EMPTY(&config_pending)) {
   2538 		device_t dev;
   2539 		int error;
   2540 
   2541 		error = cv_timedwait(&config_misc_cv, &config_misc_lock,
   2542 		    mstohz(1000));
   2543 		if (error == EWOULDBLOCK) {
   2544 			aprint_debug("waiting for devices:");
   2545 			TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2546 				aprint_debug(" %s", device_xname(dev));
   2547 			aprint_debug("\n");
   2548 		}
   2549 	}
   2550 	mutex_exit(&config_misc_lock);
   2551 
   2552 	KERNEL_LOCK(1, NULL);
   2553 
   2554 	/* Attach pseudo-devices. */
   2555 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2556 		(*pdev->pdev_attach)(pdev->pdev_count);
   2557 
   2558 	/* Run the hooks until none of them does any work. */
   2559 	do {
   2560 		rv = 0;
   2561 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2562 			rv |= (*f->f_func)(f->f_dev);
   2563 	} while (rv != 0);
   2564 
   2565 	config_finalize_done = 1;
   2566 
   2567 	/* Now free all the hooks. */
   2568 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2569 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2570 		kmem_free(f, sizeof(*f));
   2571 	}
   2572 
   2573 	KERNEL_UNLOCK_ONE(NULL);
   2574 
   2575 	errcnt = aprint_get_error_count();
   2576 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2577 	    (boothowto & AB_VERBOSE) == 0) {
   2578 		mutex_enter(&config_misc_lock);
   2579 		if (config_do_twiddle) {
   2580 			config_do_twiddle = 0;
   2581 			printf_nolog(" done.\n");
   2582 		}
   2583 		mutex_exit(&config_misc_lock);
   2584 	}
   2585 	if (errcnt != 0) {
   2586 		printf("WARNING: %d error%s while detecting hardware; "
   2587 		    "check system log.\n", errcnt,
   2588 		    errcnt == 1 ? "" : "s");
   2589 	}
   2590 }
   2591 
   2592 void
   2593 config_twiddle_init(void)
   2594 {
   2595 
   2596 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2597 		config_do_twiddle = 1;
   2598 	}
   2599 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2600 }
   2601 
   2602 void
   2603 config_twiddle_fn(void *cookie)
   2604 {
   2605 
   2606 	mutex_enter(&config_misc_lock);
   2607 	if (config_do_twiddle) {
   2608 		twiddle();
   2609 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2610 	}
   2611 	mutex_exit(&config_misc_lock);
   2612 }
   2613 
   2614 static void
   2615 config_alldevs_enter(struct alldevs_foray *af)
   2616 {
   2617 	TAILQ_INIT(&af->af_garbage);
   2618 	mutex_enter(&alldevs_lock);
   2619 	config_collect_garbage(&af->af_garbage);
   2620 }
   2621 
   2622 static void
   2623 config_alldevs_exit(struct alldevs_foray *af)
   2624 {
   2625 	mutex_exit(&alldevs_lock);
   2626 	config_dump_garbage(&af->af_garbage);
   2627 }
   2628 
   2629 /*
   2630  * device_lookup:
   2631  *
   2632  *	Look up a device instance for a given driver.
   2633  *
   2634  *	Caller is responsible for ensuring the device's state is
   2635  *	stable, either by holding a reference already obtained with
   2636  *	device_lookup_acquire or by otherwise ensuring the device is
   2637  *	attached and can't be detached (e.g., holding an open device
   2638  *	node and ensuring *_detach calls vdevgone).
   2639  *
   2640  *	XXX Find a way to assert this.
   2641  *
   2642  *	Safe for use up to and including interrupt context at IPL_VM.
   2643  *	Never sleeps.
   2644  */
   2645 device_t
   2646 device_lookup(cfdriver_t cd, int unit)
   2647 {
   2648 	device_t dv;
   2649 
   2650 	mutex_enter(&alldevs_lock);
   2651 	if (unit < 0 || unit >= cd->cd_ndevs)
   2652 		dv = NULL;
   2653 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2654 		dv = NULL;
   2655 	mutex_exit(&alldevs_lock);
   2656 
   2657 	return dv;
   2658 }
   2659 
   2660 /*
   2661  * device_lookup_private:
   2662  *
   2663  *	Look up a softc instance for a given driver.
   2664  */
   2665 void *
   2666 device_lookup_private(cfdriver_t cd, int unit)
   2667 {
   2668 
   2669 	return device_private(device_lookup(cd, unit));
   2670 }
   2671 
   2672 /*
   2673  * device_lookup_acquire:
   2674  *
   2675  *	Look up a device instance for a given driver, and return a
   2676  *	reference to it that must be released by device_release.
   2677  *
   2678  *	=> If the device is still attaching, blocks until *_attach has
   2679  *	   returned.
   2680  *
   2681  *	=> If the device is detaching, blocks until *_detach has
   2682  *	   returned.  May succeed or fail in that case, depending on
   2683  *	   whether *_detach has backed out (EBUSY) or committed to
   2684  *	   detaching.
   2685  *
   2686  *	May sleep.
   2687  */
   2688 device_t
   2689 device_lookup_acquire(cfdriver_t cd, int unit)
   2690 {
   2691 	device_t dv;
   2692 
   2693 	ASSERT_SLEEPABLE();
   2694 
   2695 	/* XXX This should have a pserialized fast path -- TBD.  */
   2696 	mutex_enter(&config_misc_lock);
   2697 	mutex_enter(&alldevs_lock);
   2698 retry:	if (unit < 0 || unit >= cd->cd_ndevs ||
   2699 	    (dv = cd->cd_devs[unit]) == NULL ||
   2700 	    dv->dv_del_gen != 0 ||
   2701 	    dv->dv_detached) {
   2702 		dv = NULL;
   2703 	} else {
   2704 		/*
   2705 		 * Wait for the device to stabilize, if attaching or
   2706 		 * detaching.  Either way we must wait for *_attach or
   2707 		 * *_detach to complete, and either way we must retry:
   2708 		 * even if detaching, *_detach might fail (EBUSY) so
   2709 		 * the device may still be there.
   2710 		 */
   2711 		if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
   2712 		    dv->dv_detaching != NULL) {
   2713 			mutex_exit(&alldevs_lock);
   2714 			cv_wait(&config_misc_cv, &config_misc_lock);
   2715 			mutex_enter(&alldevs_lock);
   2716 			goto retry;
   2717 		}
   2718 		localcount_acquire(dv->dv_localcount);
   2719 	}
   2720 	mutex_exit(&alldevs_lock);
   2721 	mutex_exit(&config_misc_lock);
   2722 
   2723 	return dv;
   2724 }
   2725 
   2726 /*
   2727  * device_release:
   2728  *
   2729  *	Release a reference to a device acquired with
   2730  *	device_lookup_acquire.
   2731  */
   2732 void
   2733 device_release(device_t dv)
   2734 {
   2735 
   2736 	localcount_release(dv->dv_localcount,
   2737 	    &config_misc_cv, &config_misc_lock);
   2738 }
   2739 
   2740 /*
   2741  * device_find_by_xname:
   2742  *
   2743  *	Returns the device of the given name or NULL if it doesn't exist.
   2744  */
   2745 device_t
   2746 device_find_by_xname(const char *name)
   2747 {
   2748 	device_t dv;
   2749 	deviter_t di;
   2750 
   2751 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2752 		if (strcmp(device_xname(dv), name) == 0)
   2753 			break;
   2754 	}
   2755 	deviter_release(&di);
   2756 
   2757 	return dv;
   2758 }
   2759 
   2760 /*
   2761  * device_find_by_driver_unit:
   2762  *
   2763  *	Returns the device of the given driver name and unit or
   2764  *	NULL if it doesn't exist.
   2765  */
   2766 device_t
   2767 device_find_by_driver_unit(const char *name, int unit)
   2768 {
   2769 	struct cfdriver *cd;
   2770 
   2771 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2772 		return NULL;
   2773 	return device_lookup(cd, unit);
   2774 }
   2775 
   2776 static bool
   2777 match_strcmp(const char * const s1, const char * const s2)
   2778 {
   2779 	return strcmp(s1, s2) == 0;
   2780 }
   2781 
   2782 static bool
   2783 match_pmatch(const char * const s1, const char * const s2)
   2784 {
   2785 	return pmatch(s1, s2, NULL) == 2;
   2786 }
   2787 
   2788 static bool
   2789 strarray_match_internal(const char ** const strings,
   2790     unsigned int const nstrings, const char * const str,
   2791     unsigned int * const indexp,
   2792     bool (*match_fn)(const char *, const char *))
   2793 {
   2794 	unsigned int i;
   2795 
   2796 	if (strings == NULL || nstrings == 0) {
   2797 		return false;
   2798 	}
   2799 
   2800 	for (i = 0; i < nstrings; i++) {
   2801 		if ((*match_fn)(strings[i], str)) {
   2802 			*indexp = i;
   2803 			return true;
   2804 		}
   2805 	}
   2806 
   2807 	return false;
   2808 }
   2809 
   2810 static int
   2811 strarray_match(const char ** const strings, unsigned int const nstrings,
   2812     const char * const str)
   2813 {
   2814 	unsigned int idx;
   2815 
   2816 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2817 				    match_strcmp)) {
   2818 		return (int)(nstrings - idx);
   2819 	}
   2820 	return 0;
   2821 }
   2822 
   2823 static int
   2824 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2825     const char * const pattern)
   2826 {
   2827 	unsigned int idx;
   2828 
   2829 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2830 				    match_pmatch)) {
   2831 		return (int)(nstrings - idx);
   2832 	}
   2833 	return 0;
   2834 }
   2835 
   2836 static int
   2837 device_compatible_match_strarray_internal(
   2838     const char **device_compats, int ndevice_compats,
   2839     const struct device_compatible_entry *driver_compats,
   2840     const struct device_compatible_entry **matching_entryp,
   2841     int (*match_fn)(const char **, unsigned int, const char *))
   2842 {
   2843 	const struct device_compatible_entry *dce = NULL;
   2844 	int rv;
   2845 
   2846 	if (ndevice_compats == 0 || device_compats == NULL ||
   2847 	    driver_compats == NULL)
   2848 		return 0;
   2849 
   2850 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2851 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2852 		if (rv != 0) {
   2853 			if (matching_entryp != NULL) {
   2854 				*matching_entryp = dce;
   2855 			}
   2856 			return rv;
   2857 		}
   2858 	}
   2859 	return 0;
   2860 }
   2861 
   2862 /*
   2863  * device_compatible_match:
   2864  *
   2865  *	Match a driver's "compatible" data against a device's
   2866  *	"compatible" strings.  Returns resulted weighted by
   2867  *	which device "compatible" string was matched.
   2868  */
   2869 int
   2870 device_compatible_match(const char **device_compats, int ndevice_compats,
   2871     const struct device_compatible_entry *driver_compats)
   2872 {
   2873 	return device_compatible_match_strarray_internal(device_compats,
   2874 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2875 }
   2876 
   2877 /*
   2878  * device_compatible_pmatch:
   2879  *
   2880  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2881  *	the device "compatible" strings against patterns in the
   2882  *	driver's "compatible" data.
   2883  */
   2884 int
   2885 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2886     const struct device_compatible_entry *driver_compats)
   2887 {
   2888 	return device_compatible_match_strarray_internal(device_compats,
   2889 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2890 }
   2891 
   2892 static int
   2893 device_compatible_match_strlist_internal(
   2894     const char * const device_compats, size_t const device_compatsize,
   2895     const struct device_compatible_entry *driver_compats,
   2896     const struct device_compatible_entry **matching_entryp,
   2897     int (*match_fn)(const char *, size_t, const char *))
   2898 {
   2899 	const struct device_compatible_entry *dce = NULL;
   2900 	int rv;
   2901 
   2902 	if (device_compats == NULL || device_compatsize == 0 ||
   2903 	    driver_compats == NULL)
   2904 		return 0;
   2905 
   2906 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2907 		rv = (*match_fn)(device_compats, device_compatsize,
   2908 		    dce->compat);
   2909 		if (rv != 0) {
   2910 			if (matching_entryp != NULL) {
   2911 				*matching_entryp = dce;
   2912 			}
   2913 			return rv;
   2914 		}
   2915 	}
   2916 	return 0;
   2917 }
   2918 
   2919 /*
   2920  * device_compatible_match_strlist:
   2921  *
   2922  *	Like device_compatible_match(), but take the device
   2923  *	"compatible" strings as an OpenFirmware-style string
   2924  *	list.
   2925  */
   2926 int
   2927 device_compatible_match_strlist(
   2928     const char * const device_compats, size_t const device_compatsize,
   2929     const struct device_compatible_entry *driver_compats)
   2930 {
   2931 	return device_compatible_match_strlist_internal(device_compats,
   2932 	    device_compatsize, driver_compats, NULL, strlist_match);
   2933 }
   2934 
   2935 /*
   2936  * device_compatible_pmatch_strlist:
   2937  *
   2938  *	Like device_compatible_pmatch(), but take the device
   2939  *	"compatible" strings as an OpenFirmware-style string
   2940  *	list.
   2941  */
   2942 int
   2943 device_compatible_pmatch_strlist(
   2944     const char * const device_compats, size_t const device_compatsize,
   2945     const struct device_compatible_entry *driver_compats)
   2946 {
   2947 	return device_compatible_match_strlist_internal(device_compats,
   2948 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2949 }
   2950 
   2951 static int
   2952 device_compatible_match_id_internal(
   2953     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2954     const struct device_compatible_entry *driver_compats,
   2955     const struct device_compatible_entry **matching_entryp)
   2956 {
   2957 	const struct device_compatible_entry *dce = NULL;
   2958 
   2959 	if (mask == 0)
   2960 		return 0;
   2961 
   2962 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2963 		if ((id & mask) == dce->id) {
   2964 			if (matching_entryp != NULL) {
   2965 				*matching_entryp = dce;
   2966 			}
   2967 			return 1;
   2968 		}
   2969 	}
   2970 	return 0;
   2971 }
   2972 
   2973 /*
   2974  * device_compatible_match_id:
   2975  *
   2976  *	Like device_compatible_match(), but takes a single
   2977  *	unsigned integer device ID.
   2978  */
   2979 int
   2980 device_compatible_match_id(
   2981     uintptr_t const id, uintptr_t const sentinel_id,
   2982     const struct device_compatible_entry *driver_compats)
   2983 {
   2984 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   2985 	    sentinel_id, driver_compats, NULL);
   2986 }
   2987 
   2988 /*
   2989  * device_compatible_lookup:
   2990  *
   2991  *	Look up and return the device_compatible_entry, using the
   2992  *	same matching criteria used by device_compatible_match().
   2993  */
   2994 const struct device_compatible_entry *
   2995 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   2996 			 const struct device_compatible_entry *driver_compats)
   2997 {
   2998 	const struct device_compatible_entry *dce;
   2999 
   3000 	if (device_compatible_match_strarray_internal(device_compats,
   3001 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   3002 		return dce;
   3003 	}
   3004 	return NULL;
   3005 }
   3006 
   3007 /*
   3008  * device_compatible_plookup:
   3009  *
   3010  *	Look up and return the device_compatible_entry, using the
   3011  *	same matching criteria used by device_compatible_pmatch().
   3012  */
   3013 const struct device_compatible_entry *
   3014 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   3015 			  const struct device_compatible_entry *driver_compats)
   3016 {
   3017 	const struct device_compatible_entry *dce;
   3018 
   3019 	if (device_compatible_match_strarray_internal(device_compats,
   3020 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   3021 		return dce;
   3022 	}
   3023 	return NULL;
   3024 }
   3025 
   3026 /*
   3027  * device_compatible_lookup_strlist:
   3028  *
   3029  *	Like device_compatible_lookup(), but take the device
   3030  *	"compatible" strings as an OpenFirmware-style string
   3031  *	list.
   3032  */
   3033 const struct device_compatible_entry *
   3034 device_compatible_lookup_strlist(
   3035     const char * const device_compats, size_t const device_compatsize,
   3036     const struct device_compatible_entry *driver_compats)
   3037 {
   3038 	const struct device_compatible_entry *dce;
   3039 
   3040 	if (device_compatible_match_strlist_internal(device_compats,
   3041 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   3042 		return dce;
   3043 	}
   3044 	return NULL;
   3045 }
   3046 
   3047 /*
   3048  * device_compatible_plookup_strlist:
   3049  *
   3050  *	Like device_compatible_plookup(), but take the device
   3051  *	"compatible" strings as an OpenFirmware-style string
   3052  *	list.
   3053  */
   3054 const struct device_compatible_entry *
   3055 device_compatible_plookup_strlist(
   3056     const char * const device_compats, size_t const device_compatsize,
   3057     const struct device_compatible_entry *driver_compats)
   3058 {
   3059 	const struct device_compatible_entry *dce;
   3060 
   3061 	if (device_compatible_match_strlist_internal(device_compats,
   3062 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   3063 		return dce;
   3064 	}
   3065 	return NULL;
   3066 }
   3067 
   3068 /*
   3069  * device_compatible_lookup_id:
   3070  *
   3071  *	Like device_compatible_lookup(), but takes a single
   3072  *	unsigned integer device ID.
   3073  */
   3074 const struct device_compatible_entry *
   3075 device_compatible_lookup_id(
   3076     uintptr_t const id, uintptr_t const sentinel_id,
   3077     const struct device_compatible_entry *driver_compats)
   3078 {
   3079 	const struct device_compatible_entry *dce;
   3080 
   3081 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   3082 	    sentinel_id, driver_compats, &dce)) {
   3083 		return dce;
   3084 	}
   3085 	return NULL;
   3086 }
   3087 
   3088 /*
   3089  * Power management related functions.
   3090  */
   3091 
   3092 bool
   3093 device_pmf_is_registered(device_t dev)
   3094 {
   3095 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   3096 }
   3097 
   3098 bool
   3099 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   3100 {
   3101 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3102 		return true;
   3103 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3104 		return false;
   3105 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3106 	    dev->dv_driver_suspend != NULL &&
   3107 	    !(*dev->dv_driver_suspend)(dev, qual))
   3108 		return false;
   3109 
   3110 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   3111 	return true;
   3112 }
   3113 
   3114 bool
   3115 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   3116 {
   3117 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3118 		return true;
   3119 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3120 		return false;
   3121 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3122 	    dev->dv_driver_resume != NULL &&
   3123 	    !(*dev->dv_driver_resume)(dev, qual))
   3124 		return false;
   3125 
   3126 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   3127 	return true;
   3128 }
   3129 
   3130 bool
   3131 device_pmf_driver_shutdown(device_t dev, int how)
   3132 {
   3133 
   3134 	if (*dev->dv_driver_shutdown != NULL &&
   3135 	    !(*dev->dv_driver_shutdown)(dev, how))
   3136 		return false;
   3137 	return true;
   3138 }
   3139 
   3140 bool
   3141 device_pmf_driver_register(device_t dev,
   3142     bool (*suspend)(device_t, const pmf_qual_t *),
   3143     bool (*resume)(device_t, const pmf_qual_t *),
   3144     bool (*shutdown)(device_t, int))
   3145 {
   3146 	dev->dv_driver_suspend = suspend;
   3147 	dev->dv_driver_resume = resume;
   3148 	dev->dv_driver_shutdown = shutdown;
   3149 	dev->dv_flags |= DVF_POWER_HANDLERS;
   3150 	return true;
   3151 }
   3152 
   3153 void
   3154 device_pmf_driver_deregister(device_t dev)
   3155 {
   3156 	device_lock_t dvl = device_getlock(dev);
   3157 
   3158 	dev->dv_driver_suspend = NULL;
   3159 	dev->dv_driver_resume = NULL;
   3160 
   3161 	mutex_enter(&dvl->dvl_mtx);
   3162 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   3163 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   3164 		/* Wake a thread that waits for the lock.  That
   3165 		 * thread will fail to acquire the lock, and then
   3166 		 * it will wake the next thread that waits for the
   3167 		 * lock, or else it will wake us.
   3168 		 */
   3169 		cv_signal(&dvl->dvl_cv);
   3170 		pmflock_debug(dev, __func__, __LINE__);
   3171 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3172 		pmflock_debug(dev, __func__, __LINE__);
   3173 	}
   3174 	mutex_exit(&dvl->dvl_mtx);
   3175 }
   3176 
   3177 bool
   3178 device_pmf_driver_child_register(device_t dev)
   3179 {
   3180 	device_t parent = device_parent(dev);
   3181 
   3182 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   3183 		return true;
   3184 	return (*parent->dv_driver_child_register)(dev);
   3185 }
   3186 
   3187 void
   3188 device_pmf_driver_set_child_register(device_t dev,
   3189     bool (*child_register)(device_t))
   3190 {
   3191 	dev->dv_driver_child_register = child_register;
   3192 }
   3193 
   3194 static void
   3195 pmflock_debug(device_t dev, const char *func, int line)
   3196 {
   3197 #ifdef PMFLOCK_DEBUG
   3198 	device_lock_t dvl = device_getlock(dev);
   3199 	const char *curlwp_name;
   3200 
   3201 	if (curlwp->l_name != NULL)
   3202 		curlwp_name = curlwp->l_name;
   3203 	else
   3204 		curlwp_name = curlwp->l_proc->p_comm;
   3205 
   3206 	aprint_debug_dev(dev,
   3207 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   3208 	    curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   3209 #endif	/* PMFLOCK_DEBUG */
   3210 }
   3211 
   3212 static bool
   3213 device_pmf_lock1(device_t dev)
   3214 {
   3215 	device_lock_t dvl = device_getlock(dev);
   3216 
   3217 	while (device_pmf_is_registered(dev) &&
   3218 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   3219 		dvl->dvl_nwait++;
   3220 		pmflock_debug(dev, __func__, __LINE__);
   3221 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3222 		pmflock_debug(dev, __func__, __LINE__);
   3223 		dvl->dvl_nwait--;
   3224 	}
   3225 	if (!device_pmf_is_registered(dev)) {
   3226 		pmflock_debug(dev, __func__, __LINE__);
   3227 		/* We could not acquire the lock, but some other thread may
   3228 		 * wait for it, also.  Wake that thread.
   3229 		 */
   3230 		cv_signal(&dvl->dvl_cv);
   3231 		return false;
   3232 	}
   3233 	dvl->dvl_nlock++;
   3234 	dvl->dvl_holder = curlwp;
   3235 	pmflock_debug(dev, __func__, __LINE__);
   3236 	return true;
   3237 }
   3238 
   3239 bool
   3240 device_pmf_lock(device_t dev)
   3241 {
   3242 	bool rc;
   3243 	device_lock_t dvl = device_getlock(dev);
   3244 
   3245 	mutex_enter(&dvl->dvl_mtx);
   3246 	rc = device_pmf_lock1(dev);
   3247 	mutex_exit(&dvl->dvl_mtx);
   3248 
   3249 	return rc;
   3250 }
   3251 
   3252 void
   3253 device_pmf_unlock(device_t dev)
   3254 {
   3255 	device_lock_t dvl = device_getlock(dev);
   3256 
   3257 	KASSERT(dvl->dvl_nlock > 0);
   3258 	mutex_enter(&dvl->dvl_mtx);
   3259 	if (--dvl->dvl_nlock == 0)
   3260 		dvl->dvl_holder = NULL;
   3261 	cv_signal(&dvl->dvl_cv);
   3262 	pmflock_debug(dev, __func__, __LINE__);
   3263 	mutex_exit(&dvl->dvl_mtx);
   3264 }
   3265 
   3266 device_lock_t
   3267 device_getlock(device_t dev)
   3268 {
   3269 	return &dev->dv_lock;
   3270 }
   3271 
   3272 void *
   3273 device_pmf_bus_private(device_t dev)
   3274 {
   3275 	return dev->dv_bus_private;
   3276 }
   3277 
   3278 bool
   3279 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   3280 {
   3281 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3282 		return true;
   3283 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   3284 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3285 		return false;
   3286 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3287 	    dev->dv_bus_suspend != NULL &&
   3288 	    !(*dev->dv_bus_suspend)(dev, qual))
   3289 		return false;
   3290 
   3291 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   3292 	return true;
   3293 }
   3294 
   3295 bool
   3296 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   3297 {
   3298 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   3299 		return true;
   3300 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3301 	    dev->dv_bus_resume != NULL &&
   3302 	    !(*dev->dv_bus_resume)(dev, qual))
   3303 		return false;
   3304 
   3305 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   3306 	return true;
   3307 }
   3308 
   3309 bool
   3310 device_pmf_bus_shutdown(device_t dev, int how)
   3311 {
   3312 
   3313 	if (*dev->dv_bus_shutdown != NULL &&
   3314 	    !(*dev->dv_bus_shutdown)(dev, how))
   3315 		return false;
   3316 	return true;
   3317 }
   3318 
   3319 void
   3320 device_pmf_bus_register(device_t dev, void *priv,
   3321     bool (*suspend)(device_t, const pmf_qual_t *),
   3322     bool (*resume)(device_t, const pmf_qual_t *),
   3323     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   3324 {
   3325 	dev->dv_bus_private = priv;
   3326 	dev->dv_bus_resume = resume;
   3327 	dev->dv_bus_suspend = suspend;
   3328 	dev->dv_bus_shutdown = shutdown;
   3329 	dev->dv_bus_deregister = deregister;
   3330 }
   3331 
   3332 void
   3333 device_pmf_bus_deregister(device_t dev)
   3334 {
   3335 	if (dev->dv_bus_deregister == NULL)
   3336 		return;
   3337 	(*dev->dv_bus_deregister)(dev);
   3338 	dev->dv_bus_private = NULL;
   3339 	dev->dv_bus_suspend = NULL;
   3340 	dev->dv_bus_resume = NULL;
   3341 	dev->dv_bus_deregister = NULL;
   3342 }
   3343 
   3344 void *
   3345 device_pmf_class_private(device_t dev)
   3346 {
   3347 	return dev->dv_class_private;
   3348 }
   3349 
   3350 bool
   3351 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3352 {
   3353 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3354 		return true;
   3355 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3356 	    dev->dv_class_suspend != NULL &&
   3357 	    !(*dev->dv_class_suspend)(dev, qual))
   3358 		return false;
   3359 
   3360 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3361 	return true;
   3362 }
   3363 
   3364 bool
   3365 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3366 {
   3367 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3368 		return true;
   3369 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3370 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3371 		return false;
   3372 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3373 	    dev->dv_class_resume != NULL &&
   3374 	    !(*dev->dv_class_resume)(dev, qual))
   3375 		return false;
   3376 
   3377 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3378 	return true;
   3379 }
   3380 
   3381 void
   3382 device_pmf_class_register(device_t dev, void *priv,
   3383     bool (*suspend)(device_t, const pmf_qual_t *),
   3384     bool (*resume)(device_t, const pmf_qual_t *),
   3385     void (*deregister)(device_t))
   3386 {
   3387 	dev->dv_class_private = priv;
   3388 	dev->dv_class_suspend = suspend;
   3389 	dev->dv_class_resume = resume;
   3390 	dev->dv_class_deregister = deregister;
   3391 }
   3392 
   3393 void
   3394 device_pmf_class_deregister(device_t dev)
   3395 {
   3396 	if (dev->dv_class_deregister == NULL)
   3397 		return;
   3398 	(*dev->dv_class_deregister)(dev);
   3399 	dev->dv_class_private = NULL;
   3400 	dev->dv_class_suspend = NULL;
   3401 	dev->dv_class_resume = NULL;
   3402 	dev->dv_class_deregister = NULL;
   3403 }
   3404 
   3405 bool
   3406 device_active(device_t dev, devactive_t type)
   3407 {
   3408 	size_t i;
   3409 
   3410 	if (dev->dv_activity_count == 0)
   3411 		return false;
   3412 
   3413 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3414 		if (dev->dv_activity_handlers[i] == NULL)
   3415 			break;
   3416 		(*dev->dv_activity_handlers[i])(dev, type);
   3417 	}
   3418 
   3419 	return true;
   3420 }
   3421 
   3422 bool
   3423 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3424 {
   3425 	void (**new_handlers)(device_t, devactive_t);
   3426 	void (**old_handlers)(device_t, devactive_t);
   3427 	size_t i, old_size, new_size;
   3428 	int s;
   3429 
   3430 	old_handlers = dev->dv_activity_handlers;
   3431 	old_size = dev->dv_activity_count;
   3432 
   3433 	KASSERT(old_size == 0 || old_handlers != NULL);
   3434 
   3435 	for (i = 0; i < old_size; ++i) {
   3436 		KASSERT(old_handlers[i] != handler);
   3437 		if (old_handlers[i] == NULL) {
   3438 			old_handlers[i] = handler;
   3439 			return true;
   3440 		}
   3441 	}
   3442 
   3443 	new_size = old_size + 4;
   3444 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3445 
   3446 	for (i = 0; i < old_size; ++i)
   3447 		new_handlers[i] = old_handlers[i];
   3448 	new_handlers[old_size] = handler;
   3449 	for (i = old_size+1; i < new_size; ++i)
   3450 		new_handlers[i] = NULL;
   3451 
   3452 	s = splhigh();
   3453 	dev->dv_activity_count = new_size;
   3454 	dev->dv_activity_handlers = new_handlers;
   3455 	splx(s);
   3456 
   3457 	if (old_size > 0)
   3458 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3459 
   3460 	return true;
   3461 }
   3462 
   3463 void
   3464 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3465 {
   3466 	void (**old_handlers)(device_t, devactive_t);
   3467 	size_t i, old_size;
   3468 	int s;
   3469 
   3470 	old_handlers = dev->dv_activity_handlers;
   3471 	old_size = dev->dv_activity_count;
   3472 
   3473 	for (i = 0; i < old_size; ++i) {
   3474 		if (old_handlers[i] == handler)
   3475 			break;
   3476 		if (old_handlers[i] == NULL)
   3477 			return; /* XXX panic? */
   3478 	}
   3479 
   3480 	if (i == old_size)
   3481 		return; /* XXX panic? */
   3482 
   3483 	for (; i < old_size - 1; ++i) {
   3484 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3485 			continue;
   3486 
   3487 		if (i == 0) {
   3488 			s = splhigh();
   3489 			dev->dv_activity_count = 0;
   3490 			dev->dv_activity_handlers = NULL;
   3491 			splx(s);
   3492 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3493 		}
   3494 		return;
   3495 	}
   3496 	old_handlers[i] = NULL;
   3497 }
   3498 
   3499 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3500 static bool
   3501 device_exists_at(device_t dv, devgen_t gen)
   3502 {
   3503 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3504 	    dv->dv_add_gen <= gen;
   3505 }
   3506 
   3507 static bool
   3508 deviter_visits(const deviter_t *di, device_t dv)
   3509 {
   3510 	return device_exists_at(dv, di->di_gen);
   3511 }
   3512 
   3513 /*
   3514  * Device Iteration
   3515  *
   3516  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3517  *     each device_t's in the device tree.
   3518  *
   3519  * deviter_init(di, flags): initialize the device iterator `di'
   3520  *     to "walk" the device tree.  deviter_next(di) will return
   3521  *     the first device_t in the device tree, or NULL if there are
   3522  *     no devices.
   3523  *
   3524  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3525  *     caller intends to modify the device tree by calling
   3526  *     config_detach(9) on devices in the order that the iterator
   3527  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3528  *     nearest the "root" of the device tree to be returned, first;
   3529  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3530  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3531  *     indicating both that deviter_init() should not respect any
   3532  *     locks on the device tree, and that deviter_next(di) may run
   3533  *     in more than one LWP before the walk has finished.
   3534  *
   3535  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3536  *     once.
   3537  *
   3538  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3539  *
   3540  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3541  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3542  *
   3543  * deviter_first(di, flags): initialize the device iterator `di'
   3544  *     and return the first device_t in the device tree, or NULL
   3545  *     if there are no devices.  The statement
   3546  *
   3547  *         dv = deviter_first(di);
   3548  *
   3549  *     is shorthand for
   3550  *
   3551  *         deviter_init(di);
   3552  *         dv = deviter_next(di);
   3553  *
   3554  * deviter_next(di): return the next device_t in the device tree,
   3555  *     or NULL if there are no more devices.  deviter_next(di)
   3556  *     is undefined if `di' was not initialized with deviter_init() or
   3557  *     deviter_first().
   3558  *
   3559  * deviter_release(di): stops iteration (subsequent calls to
   3560  *     deviter_next() will return NULL), releases any locks and
   3561  *     resources held by the device iterator.
   3562  *
   3563  * Device iteration does not return device_t's in any particular
   3564  * order.  An iterator will never return the same device_t twice.
   3565  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3566  * is called repeatedly on the same `di', it will eventually return
   3567  * NULL.  It is ok to attach/detach devices during device iteration.
   3568  */
   3569 void
   3570 deviter_init(deviter_t *di, deviter_flags_t flags)
   3571 {
   3572 	device_t dv;
   3573 
   3574 	memset(di, 0, sizeof(*di));
   3575 
   3576 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3577 		flags |= DEVITER_F_RW;
   3578 
   3579 	mutex_enter(&alldevs_lock);
   3580 	if ((flags & DEVITER_F_RW) != 0)
   3581 		alldevs_nwrite++;
   3582 	else
   3583 		alldevs_nread++;
   3584 	di->di_gen = alldevs_gen++;
   3585 	di->di_flags = flags;
   3586 
   3587 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3588 	case DEVITER_F_LEAVES_FIRST:
   3589 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3590 			if (!deviter_visits(di, dv))
   3591 				continue;
   3592 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3593 		}
   3594 		break;
   3595 	case DEVITER_F_ROOT_FIRST:
   3596 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3597 			if (!deviter_visits(di, dv))
   3598 				continue;
   3599 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3600 		}
   3601 		break;
   3602 	default:
   3603 		break;
   3604 	}
   3605 
   3606 	deviter_reinit(di);
   3607 	mutex_exit(&alldevs_lock);
   3608 }
   3609 
   3610 static void
   3611 deviter_reinit(deviter_t *di)
   3612 {
   3613 
   3614 	KASSERT(mutex_owned(&alldevs_lock));
   3615 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3616 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3617 	else
   3618 		di->di_prev = TAILQ_FIRST(&alldevs);
   3619 }
   3620 
   3621 device_t
   3622 deviter_first(deviter_t *di, deviter_flags_t flags)
   3623 {
   3624 
   3625 	deviter_init(di, flags);
   3626 	return deviter_next(di);
   3627 }
   3628 
   3629 static device_t
   3630 deviter_next2(deviter_t *di)
   3631 {
   3632 	device_t dv;
   3633 
   3634 	KASSERT(mutex_owned(&alldevs_lock));
   3635 
   3636 	dv = di->di_prev;
   3637 
   3638 	if (dv == NULL)
   3639 		return NULL;
   3640 
   3641 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3642 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3643 	else
   3644 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3645 
   3646 	return dv;
   3647 }
   3648 
   3649 static device_t
   3650 deviter_next1(deviter_t *di)
   3651 {
   3652 	device_t dv;
   3653 
   3654 	KASSERT(mutex_owned(&alldevs_lock));
   3655 
   3656 	do {
   3657 		dv = deviter_next2(di);
   3658 	} while (dv != NULL && !deviter_visits(di, dv));
   3659 
   3660 	return dv;
   3661 }
   3662 
   3663 device_t
   3664 deviter_next(deviter_t *di)
   3665 {
   3666 	device_t dv = NULL;
   3667 
   3668 	mutex_enter(&alldevs_lock);
   3669 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3670 	case 0:
   3671 		dv = deviter_next1(di);
   3672 		break;
   3673 	case DEVITER_F_LEAVES_FIRST:
   3674 		while (di->di_curdepth >= 0) {
   3675 			if ((dv = deviter_next1(di)) == NULL) {
   3676 				di->di_curdepth--;
   3677 				deviter_reinit(di);
   3678 			} else if (dv->dv_depth == di->di_curdepth)
   3679 				break;
   3680 		}
   3681 		break;
   3682 	case DEVITER_F_ROOT_FIRST:
   3683 		while (di->di_curdepth <= di->di_maxdepth) {
   3684 			if ((dv = deviter_next1(di)) == NULL) {
   3685 				di->di_curdepth++;
   3686 				deviter_reinit(di);
   3687 			} else if (dv->dv_depth == di->di_curdepth)
   3688 				break;
   3689 		}
   3690 		break;
   3691 	default:
   3692 		break;
   3693 	}
   3694 	mutex_exit(&alldevs_lock);
   3695 
   3696 	return dv;
   3697 }
   3698 
   3699 void
   3700 deviter_release(deviter_t *di)
   3701 {
   3702 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3703 
   3704 	mutex_enter(&alldevs_lock);
   3705 	if (rw)
   3706 		--alldevs_nwrite;
   3707 	else
   3708 		--alldevs_nread;
   3709 	/* XXX wake a garbage-collection thread */
   3710 	mutex_exit(&alldevs_lock);
   3711 }
   3712 
   3713 const char *
   3714 cfdata_ifattr(const struct cfdata *cf)
   3715 {
   3716 	return cf->cf_pspec->cfp_iattr;
   3717 }
   3718 
   3719 bool
   3720 ifattr_match(const char *snull, const char *t)
   3721 {
   3722 	return (snull == NULL) || strcmp(snull, t) == 0;
   3723 }
   3724 
   3725 void
   3726 null_childdetached(device_t self, device_t child)
   3727 {
   3728 	/* do nothing */
   3729 }
   3730 
   3731 static void
   3732 sysctl_detach_setup(struct sysctllog **clog)
   3733 {
   3734 
   3735 	sysctl_createv(clog, 0, NULL, NULL,
   3736 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3737 		CTLTYPE_BOOL, "detachall",
   3738 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3739 		NULL, 0, &detachall, 0,
   3740 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3741 }
   3742