Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.309
      1 /* $NetBSD: subr_autoconf.c,v 1.309 2023/04/16 11:18:25 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.309 2023/04/16 11:18:25 riastradh Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/device_impl.h>
     90 #include <sys/disklabel.h>
     91 #include <sys/conf.h>
     92 #include <sys/kauth.h>
     93 #include <sys/kmem.h>
     94 #include <sys/systm.h>
     95 #include <sys/kernel.h>
     96 #include <sys/errno.h>
     97 #include <sys/proc.h>
     98 #include <sys/reboot.h>
     99 #include <sys/kthread.h>
    100 #include <sys/buf.h>
    101 #include <sys/dirent.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 #include <sys/stdarg.h>
    112 #include <sys/localcount.h>
    113 
    114 #include <sys/disk.h>
    115 
    116 #include <sys/rndsource.h>
    117 
    118 #include <machine/limits.h>
    119 
    120 /*
    121  * Autoconfiguration subroutines.
    122  */
    123 
    124 /*
    125  * Device autoconfiguration timings are mixed into the entropy pool.
    126  */
    127 static krndsource_t rnd_autoconf_source;
    128 
    129 /*
    130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    131  * devices and drivers are found via these tables.
    132  */
    133 extern struct cfdata cfdata[];
    134 extern const short cfroots[];
    135 
    136 /*
    137  * List of all cfdriver structures.  We use this to detect duplicates
    138  * when other cfdrivers are loaded.
    139  */
    140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    141 extern struct cfdriver * const cfdriver_list_initial[];
    142 
    143 /*
    144  * Initial list of cfattach's.
    145  */
    146 extern const struct cfattachinit cfattachinit[];
    147 
    148 /*
    149  * List of cfdata tables.  We always have one such list -- the one
    150  * built statically when the kernel was configured.
    151  */
    152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    153 static struct cftable initcftable;
    154 
    155 #define	ROOT ((device_t)NULL)
    156 
    157 struct matchinfo {
    158 	cfsubmatch_t fn;
    159 	device_t parent;
    160 	const int *locs;
    161 	void	*aux;
    162 	struct	cfdata *match;
    163 	int	pri;
    164 };
    165 
    166 struct alldevs_foray {
    167 	int			af_s;
    168 	struct devicelist	af_garbage;
    169 };
    170 
    171 /*
    172  * Internal version of the cfargs structure; all versions are
    173  * canonicalized to this.
    174  */
    175 struct cfargs_internal {
    176 	union {
    177 		cfsubmatch_t	submatch;/* submatch function (direct config) */
    178 		cfsearch_t	search;	 /* search function (indirect config) */
    179 	};
    180 	const char *	iattr;		/* interface attribute */
    181 	const int *	locators;	/* locators array */
    182 	devhandle_t	devhandle;	/* devhandle_t (by value) */
    183 };
    184 
    185 static char *number(char *, int);
    186 static void mapply(struct matchinfo *, cfdata_t);
    187 static void config_devdelete(device_t);
    188 static void config_devunlink(device_t, struct devicelist *);
    189 static void config_makeroom(int, struct cfdriver *);
    190 static void config_devlink(device_t);
    191 static void config_alldevs_enter(struct alldevs_foray *);
    192 static void config_alldevs_exit(struct alldevs_foray *);
    193 static void config_add_attrib_dict(device_t);
    194 static device_t	config_attach_internal(device_t, cfdata_t, void *,
    195 		    cfprint_t, const struct cfargs_internal *);
    196 
    197 static void config_collect_garbage(struct devicelist *);
    198 static void config_dump_garbage(struct devicelist *);
    199 
    200 static void pmflock_debug(device_t, const char *, int);
    201 
    202 static device_t deviter_next1(deviter_t *);
    203 static void deviter_reinit(deviter_t *);
    204 
    205 struct deferred_config {
    206 	TAILQ_ENTRY(deferred_config) dc_queue;
    207 	device_t dc_dev;
    208 	void (*dc_func)(device_t);
    209 };
    210 
    211 TAILQ_HEAD(deferred_config_head, deferred_config);
    212 
    213 static struct deferred_config_head deferred_config_queue =
    214 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    215 static struct deferred_config_head interrupt_config_queue =
    216 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    217 static int interrupt_config_threads = 8;
    218 static struct deferred_config_head mountroot_config_queue =
    219 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    220 static int mountroot_config_threads = 2;
    221 static lwp_t **mountroot_config_lwpids;
    222 static size_t mountroot_config_lwpids_size;
    223 bool root_is_mounted = false;
    224 
    225 static void config_process_deferred(struct deferred_config_head *, device_t);
    226 
    227 /* Hooks to finalize configuration once all real devices have been found. */
    228 struct finalize_hook {
    229 	TAILQ_ENTRY(finalize_hook) f_list;
    230 	int (*f_func)(device_t);
    231 	device_t f_dev;
    232 };
    233 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    234 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    235 static int config_finalize_done;
    236 
    237 /* list of all devices */
    238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    239 static kmutex_t alldevs_lock __cacheline_aligned;
    240 static devgen_t alldevs_gen = 1;
    241 static int alldevs_nread = 0;
    242 static int alldevs_nwrite = 0;
    243 static bool alldevs_garbage = false;
    244 
    245 static struct devicelist config_pending =
    246     TAILQ_HEAD_INITIALIZER(config_pending);
    247 static kmutex_t config_misc_lock;
    248 static kcondvar_t config_misc_cv;
    249 
    250 static bool detachall = false;
    251 
    252 #define	STREQ(s1, s2)			\
    253 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    254 
    255 static bool config_initialized = false;	/* config_init() has been called. */
    256 
    257 static int config_do_twiddle;
    258 static callout_t config_twiddle_ch;
    259 
    260 static void sysctl_detach_setup(struct sysctllog **);
    261 
    262 int no_devmon_insert(const char *, prop_dictionary_t);
    263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    264 
    265 typedef int (*cfdriver_fn)(struct cfdriver *);
    266 static int
    267 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    268 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    269 	const char *style, bool dopanic)
    270 {
    271 	void (*pr)(const char *, ...) __printflike(1, 2) =
    272 	    dopanic ? panic : printf;
    273 	int i, error = 0, e2 __diagused;
    274 
    275 	for (i = 0; cfdriverv[i] != NULL; i++) {
    276 		if ((error = drv_do(cfdriverv[i])) != 0) {
    277 			pr("configure: `%s' driver %s failed: %d",
    278 			    cfdriverv[i]->cd_name, style, error);
    279 			goto bad;
    280 		}
    281 	}
    282 
    283 	KASSERT(error == 0);
    284 	return 0;
    285 
    286  bad:
    287 	printf("\n");
    288 	for (i--; i >= 0; i--) {
    289 		e2 = drv_undo(cfdriverv[i]);
    290 		KASSERT(e2 == 0);
    291 	}
    292 
    293 	return error;
    294 }
    295 
    296 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    297 static int
    298 frob_cfattachvec(const struct cfattachinit *cfattachv,
    299 	cfattach_fn att_do, cfattach_fn att_undo,
    300 	const char *style, bool dopanic)
    301 {
    302 	const struct cfattachinit *cfai = NULL;
    303 	void (*pr)(const char *, ...) __printflike(1, 2) =
    304 	    dopanic ? panic : printf;
    305 	int j = 0, error = 0, e2 __diagused;
    306 
    307 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    308 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    309 			if ((error = att_do(cfai->cfai_name,
    310 			    cfai->cfai_list[j])) != 0) {
    311 				pr("configure: attachment `%s' "
    312 				    "of `%s' driver %s failed: %d",
    313 				    cfai->cfai_list[j]->ca_name,
    314 				    cfai->cfai_name, style, error);
    315 				goto bad;
    316 			}
    317 		}
    318 	}
    319 
    320 	KASSERT(error == 0);
    321 	return 0;
    322 
    323  bad:
    324 	/*
    325 	 * Rollback in reverse order.  dunno if super-important, but
    326 	 * do that anyway.  Although the code looks a little like
    327 	 * someone did a little integration (in the math sense).
    328 	 */
    329 	printf("\n");
    330 	if (cfai) {
    331 		bool last;
    332 
    333 		for (last = false; last == false; ) {
    334 			if (cfai == &cfattachv[0])
    335 				last = true;
    336 			for (j--; j >= 0; j--) {
    337 				e2 = att_undo(cfai->cfai_name,
    338 				    cfai->cfai_list[j]);
    339 				KASSERT(e2 == 0);
    340 			}
    341 			if (!last) {
    342 				cfai--;
    343 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    344 					;
    345 			}
    346 		}
    347 	}
    348 
    349 	return error;
    350 }
    351 
    352 /*
    353  * Initialize the autoconfiguration data structures.  Normally this
    354  * is done by configure(), but some platforms need to do this very
    355  * early (to e.g. initialize the console).
    356  */
    357 void
    358 config_init(void)
    359 {
    360 
    361 	KASSERT(config_initialized == false);
    362 
    363 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    364 
    365 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    366 	cv_init(&config_misc_cv, "cfgmisc");
    367 
    368 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    369 
    370 	frob_cfdrivervec(cfdriver_list_initial,
    371 	    config_cfdriver_attach, NULL, "bootstrap", true);
    372 	frob_cfattachvec(cfattachinit,
    373 	    config_cfattach_attach, NULL, "bootstrap", true);
    374 
    375 	initcftable.ct_cfdata = cfdata;
    376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    377 
    378 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    379 	    RND_FLAG_COLLECT_TIME);
    380 
    381 	config_initialized = true;
    382 }
    383 
    384 /*
    385  * Init or fini drivers and attachments.  Either all or none
    386  * are processed (via rollback).  It would be nice if this were
    387  * atomic to outside consumers, but with the current state of
    388  * locking ...
    389  */
    390 int
    391 config_init_component(struct cfdriver * const *cfdriverv,
    392 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    393 {
    394 	int error;
    395 
    396 	KERNEL_LOCK(1, NULL);
    397 
    398 	if ((error = frob_cfdrivervec(cfdriverv,
    399 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    400 		goto out;
    401 	if ((error = frob_cfattachvec(cfattachv,
    402 	    config_cfattach_attach, config_cfattach_detach,
    403 	    "init", false)) != 0) {
    404 		frob_cfdrivervec(cfdriverv,
    405 	            config_cfdriver_detach, NULL, "init rollback", true);
    406 		goto out;
    407 	}
    408 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    409 		frob_cfattachvec(cfattachv,
    410 		    config_cfattach_detach, NULL, "init rollback", true);
    411 		frob_cfdrivervec(cfdriverv,
    412 	            config_cfdriver_detach, NULL, "init rollback", true);
    413 		goto out;
    414 	}
    415 
    416 	/* Success!  */
    417 	error = 0;
    418 
    419 out:	KERNEL_UNLOCK_ONE(NULL);
    420 	return error;
    421 }
    422 
    423 int
    424 config_fini_component(struct cfdriver * const *cfdriverv,
    425 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    426 {
    427 	int error;
    428 
    429 	KERNEL_LOCK(1, NULL);
    430 
    431 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    432 		goto out;
    433 	if ((error = frob_cfattachvec(cfattachv,
    434 	    config_cfattach_detach, config_cfattach_attach,
    435 	    "fini", false)) != 0) {
    436 		if (config_cfdata_attach(cfdatav, 0) != 0)
    437 			panic("config_cfdata fini rollback failed");
    438 		goto out;
    439 	}
    440 	if ((error = frob_cfdrivervec(cfdriverv,
    441 	    config_cfdriver_detach, config_cfdriver_attach,
    442 	    "fini", false)) != 0) {
    443 		frob_cfattachvec(cfattachv,
    444 	            config_cfattach_attach, NULL, "fini rollback", true);
    445 		if (config_cfdata_attach(cfdatav, 0) != 0)
    446 			panic("config_cfdata fini rollback failed");
    447 		goto out;
    448 	}
    449 
    450 	/* Success!  */
    451 	error = 0;
    452 
    453 out:	KERNEL_UNLOCK_ONE(NULL);
    454 	return error;
    455 }
    456 
    457 void
    458 config_init_mi(void)
    459 {
    460 
    461 	if (!config_initialized)
    462 		config_init();
    463 
    464 	sysctl_detach_setup(NULL);
    465 }
    466 
    467 void
    468 config_deferred(device_t dev)
    469 {
    470 
    471 	KASSERT(KERNEL_LOCKED_P());
    472 
    473 	config_process_deferred(&deferred_config_queue, dev);
    474 	config_process_deferred(&interrupt_config_queue, dev);
    475 	config_process_deferred(&mountroot_config_queue, dev);
    476 }
    477 
    478 static void
    479 config_interrupts_thread(void *cookie)
    480 {
    481 	struct deferred_config *dc;
    482 	device_t dev;
    483 
    484 	mutex_enter(&config_misc_lock);
    485 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    486 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    487 		mutex_exit(&config_misc_lock);
    488 
    489 		dev = dc->dc_dev;
    490 		(*dc->dc_func)(dev);
    491 		if (!device_pmf_is_registered(dev))
    492 			aprint_debug_dev(dev,
    493 			    "WARNING: power management not supported\n");
    494 		config_pending_decr(dev);
    495 		kmem_free(dc, sizeof(*dc));
    496 
    497 		mutex_enter(&config_misc_lock);
    498 	}
    499 	mutex_exit(&config_misc_lock);
    500 
    501 	kthread_exit(0);
    502 }
    503 
    504 void
    505 config_create_interruptthreads(void)
    506 {
    507 	int i;
    508 
    509 	for (i = 0; i < interrupt_config_threads; i++) {
    510 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    511 		    config_interrupts_thread, NULL, NULL, "configintr");
    512 	}
    513 }
    514 
    515 static void
    516 config_mountroot_thread(void *cookie)
    517 {
    518 	struct deferred_config *dc;
    519 
    520 	mutex_enter(&config_misc_lock);
    521 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    522 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    523 		mutex_exit(&config_misc_lock);
    524 
    525 		(*dc->dc_func)(dc->dc_dev);
    526 		kmem_free(dc, sizeof(*dc));
    527 
    528 		mutex_enter(&config_misc_lock);
    529 	}
    530 	mutex_exit(&config_misc_lock);
    531 
    532 	kthread_exit(0);
    533 }
    534 
    535 void
    536 config_create_mountrootthreads(void)
    537 {
    538 	int i;
    539 
    540 	if (!root_is_mounted)
    541 		root_is_mounted = true;
    542 
    543 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    544 				       mountroot_config_threads;
    545 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    546 					     KM_NOSLEEP);
    547 	KASSERT(mountroot_config_lwpids);
    548 	for (i = 0; i < mountroot_config_threads; i++) {
    549 		mountroot_config_lwpids[i] = 0;
    550 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    551 				     NULL, config_mountroot_thread, NULL,
    552 				     &mountroot_config_lwpids[i],
    553 				     "configroot");
    554 	}
    555 }
    556 
    557 void
    558 config_finalize_mountroot(void)
    559 {
    560 	int i, error;
    561 
    562 	for (i = 0; i < mountroot_config_threads; i++) {
    563 		if (mountroot_config_lwpids[i] == 0)
    564 			continue;
    565 
    566 		error = kthread_join(mountroot_config_lwpids[i]);
    567 		if (error)
    568 			printf("%s: thread %x joined with error %d\n",
    569 			       __func__, i, error);
    570 	}
    571 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    572 }
    573 
    574 /*
    575  * Announce device attach/detach to userland listeners.
    576  */
    577 
    578 int
    579 no_devmon_insert(const char *name, prop_dictionary_t p)
    580 {
    581 
    582 	return ENODEV;
    583 }
    584 
    585 static void
    586 devmon_report_device(device_t dev, bool isattach)
    587 {
    588 	prop_dictionary_t ev, dict = device_properties(dev);
    589 	const char *parent;
    590 	const char *what;
    591 	const char *where;
    592 	device_t pdev = device_parent(dev);
    593 
    594 	/* If currently no drvctl device, just return */
    595 	if (devmon_insert_vec == no_devmon_insert)
    596 		return;
    597 
    598 	ev = prop_dictionary_create();
    599 	if (ev == NULL)
    600 		return;
    601 
    602 	what = (isattach ? "device-attach" : "device-detach");
    603 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    604 	if (prop_dictionary_get_string(dict, "location", &where)) {
    605 		prop_dictionary_set_string(ev, "location", where);
    606 		aprint_debug("ev: %s %s at %s in [%s]\n",
    607 		    what, device_xname(dev), parent, where);
    608 	}
    609 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    610 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    611 		prop_object_release(ev);
    612 		return;
    613 	}
    614 
    615 	if ((*devmon_insert_vec)(what, ev) != 0)
    616 		prop_object_release(ev);
    617 }
    618 
    619 /*
    620  * Add a cfdriver to the system.
    621  */
    622 int
    623 config_cfdriver_attach(struct cfdriver *cd)
    624 {
    625 	struct cfdriver *lcd;
    626 
    627 	/* Make sure this driver isn't already in the system. */
    628 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    629 		if (STREQ(lcd->cd_name, cd->cd_name))
    630 			return EEXIST;
    631 	}
    632 
    633 	LIST_INIT(&cd->cd_attach);
    634 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    635 
    636 	return 0;
    637 }
    638 
    639 /*
    640  * Remove a cfdriver from the system.
    641  */
    642 int
    643 config_cfdriver_detach(struct cfdriver *cd)
    644 {
    645 	struct alldevs_foray af;
    646 	int i, rc = 0;
    647 
    648 	config_alldevs_enter(&af);
    649 	/* Make sure there are no active instances. */
    650 	for (i = 0; i < cd->cd_ndevs; i++) {
    651 		if (cd->cd_devs[i] != NULL) {
    652 			rc = EBUSY;
    653 			break;
    654 		}
    655 	}
    656 	config_alldevs_exit(&af);
    657 
    658 	if (rc != 0)
    659 		return rc;
    660 
    661 	/* ...and no attachments loaded. */
    662 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    663 		return EBUSY;
    664 
    665 	LIST_REMOVE(cd, cd_list);
    666 
    667 	KASSERT(cd->cd_devs == NULL);
    668 
    669 	return 0;
    670 }
    671 
    672 /*
    673  * Look up a cfdriver by name.
    674  */
    675 struct cfdriver *
    676 config_cfdriver_lookup(const char *name)
    677 {
    678 	struct cfdriver *cd;
    679 
    680 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    681 		if (STREQ(cd->cd_name, name))
    682 			return cd;
    683 	}
    684 
    685 	return NULL;
    686 }
    687 
    688 /*
    689  * Add a cfattach to the specified driver.
    690  */
    691 int
    692 config_cfattach_attach(const char *driver, struct cfattach *ca)
    693 {
    694 	struct cfattach *lca;
    695 	struct cfdriver *cd;
    696 
    697 	cd = config_cfdriver_lookup(driver);
    698 	if (cd == NULL)
    699 		return ESRCH;
    700 
    701 	/* Make sure this attachment isn't already on this driver. */
    702 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    703 		if (STREQ(lca->ca_name, ca->ca_name))
    704 			return EEXIST;
    705 	}
    706 
    707 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    708 
    709 	return 0;
    710 }
    711 
    712 /*
    713  * Remove a cfattach from the specified driver.
    714  */
    715 int
    716 config_cfattach_detach(const char *driver, struct cfattach *ca)
    717 {
    718 	struct alldevs_foray af;
    719 	struct cfdriver *cd;
    720 	device_t dev;
    721 	int i, rc = 0;
    722 
    723 	cd = config_cfdriver_lookup(driver);
    724 	if (cd == NULL)
    725 		return ESRCH;
    726 
    727 	config_alldevs_enter(&af);
    728 	/* Make sure there are no active instances. */
    729 	for (i = 0; i < cd->cd_ndevs; i++) {
    730 		if ((dev = cd->cd_devs[i]) == NULL)
    731 			continue;
    732 		if (dev->dv_cfattach == ca) {
    733 			rc = EBUSY;
    734 			break;
    735 		}
    736 	}
    737 	config_alldevs_exit(&af);
    738 
    739 	if (rc != 0)
    740 		return rc;
    741 
    742 	LIST_REMOVE(ca, ca_list);
    743 
    744 	return 0;
    745 }
    746 
    747 /*
    748  * Look up a cfattach by name.
    749  */
    750 static struct cfattach *
    751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    752 {
    753 	struct cfattach *ca;
    754 
    755 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    756 		if (STREQ(ca->ca_name, atname))
    757 			return ca;
    758 	}
    759 
    760 	return NULL;
    761 }
    762 
    763 /*
    764  * Look up a cfattach by driver/attachment name.
    765  */
    766 struct cfattach *
    767 config_cfattach_lookup(const char *name, const char *atname)
    768 {
    769 	struct cfdriver *cd;
    770 
    771 	cd = config_cfdriver_lookup(name);
    772 	if (cd == NULL)
    773 		return NULL;
    774 
    775 	return config_cfattach_lookup_cd(cd, atname);
    776 }
    777 
    778 /*
    779  * Apply the matching function and choose the best.  This is used
    780  * a few times and we want to keep the code small.
    781  */
    782 static void
    783 mapply(struct matchinfo *m, cfdata_t cf)
    784 {
    785 	int pri;
    786 
    787 	if (m->fn != NULL) {
    788 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    789 	} else {
    790 		pri = config_match(m->parent, cf, m->aux);
    791 	}
    792 	if (pri > m->pri) {
    793 		m->match = cf;
    794 		m->pri = pri;
    795 	}
    796 }
    797 
    798 int
    799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    800 {
    801 	const struct cfiattrdata *ci;
    802 	const struct cflocdesc *cl;
    803 	int nlocs, i;
    804 
    805 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    806 	KASSERT(ci);
    807 	nlocs = ci->ci_loclen;
    808 	KASSERT(!nlocs || locs);
    809 	for (i = 0; i < nlocs; i++) {
    810 		cl = &ci->ci_locdesc[i];
    811 		if (cl->cld_defaultstr != NULL &&
    812 		    cf->cf_loc[i] == cl->cld_default)
    813 			continue;
    814 		if (cf->cf_loc[i] == locs[i])
    815 			continue;
    816 		return 0;
    817 	}
    818 
    819 	return config_match(parent, cf, aux);
    820 }
    821 
    822 /*
    823  * Helper function: check whether the driver supports the interface attribute
    824  * and return its descriptor structure.
    825  */
    826 static const struct cfiattrdata *
    827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    828 {
    829 	const struct cfiattrdata * const *cpp;
    830 
    831 	if (cd->cd_attrs == NULL)
    832 		return 0;
    833 
    834 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    835 		if (STREQ((*cpp)->ci_name, ia)) {
    836 			/* Match. */
    837 			return *cpp;
    838 		}
    839 	}
    840 	return 0;
    841 }
    842 
    843 static int __diagused
    844 cfdriver_iattr_count(const struct cfdriver *cd)
    845 {
    846 	const struct cfiattrdata * const *cpp;
    847 	int i;
    848 
    849 	if (cd->cd_attrs == NULL)
    850 		return 0;
    851 
    852 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    853 		i++;
    854 	}
    855 	return i;
    856 }
    857 
    858 /*
    859  * Lookup an interface attribute description by name.
    860  * If the driver is given, consider only its supported attributes.
    861  */
    862 const struct cfiattrdata *
    863 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    864 {
    865 	const struct cfdriver *d;
    866 	const struct cfiattrdata *ia;
    867 
    868 	if (cd)
    869 		return cfdriver_get_iattr(cd, name);
    870 
    871 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    872 		ia = cfdriver_get_iattr(d, name);
    873 		if (ia)
    874 			return ia;
    875 	}
    876 	return 0;
    877 }
    878 
    879 /*
    880  * Determine if `parent' is a potential parent for a device spec based
    881  * on `cfp'.
    882  */
    883 static int
    884 cfparent_match(const device_t parent, const struct cfparent *cfp)
    885 {
    886 	struct cfdriver *pcd;
    887 
    888 	/* We don't match root nodes here. */
    889 	if (cfp == NULL)
    890 		return 0;
    891 
    892 	pcd = parent->dv_cfdriver;
    893 	KASSERT(pcd != NULL);
    894 
    895 	/*
    896 	 * First, ensure this parent has the correct interface
    897 	 * attribute.
    898 	 */
    899 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    900 		return 0;
    901 
    902 	/*
    903 	 * If no specific parent device instance was specified (i.e.
    904 	 * we're attaching to the attribute only), we're done!
    905 	 */
    906 	if (cfp->cfp_parent == NULL)
    907 		return 1;
    908 
    909 	/*
    910 	 * Check the parent device's name.
    911 	 */
    912 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    913 		return 0;	/* not the same parent */
    914 
    915 	/*
    916 	 * Make sure the unit number matches.
    917 	 */
    918 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    919 	    cfp->cfp_unit == parent->dv_unit)
    920 		return 1;
    921 
    922 	/* Unit numbers don't match. */
    923 	return 0;
    924 }
    925 
    926 /*
    927  * Helper for config_cfdata_attach(): check all devices whether it could be
    928  * parent any attachment in the config data table passed, and rescan.
    929  */
    930 static void
    931 rescan_with_cfdata(const struct cfdata *cf)
    932 {
    933 	device_t d;
    934 	const struct cfdata *cf1;
    935 	deviter_t di;
    936 
    937 	KASSERT(KERNEL_LOCKED_P());
    938 
    939 	/*
    940 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    941 	 * the outer loop.
    942 	 */
    943 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    944 
    945 		if (!(d->dv_cfattach->ca_rescan))
    946 			continue;
    947 
    948 		for (cf1 = cf; cf1->cf_name; cf1++) {
    949 
    950 			if (!cfparent_match(d, cf1->cf_pspec))
    951 				continue;
    952 
    953 			(*d->dv_cfattach->ca_rescan)(d,
    954 				cfdata_ifattr(cf1), cf1->cf_loc);
    955 
    956 			config_deferred(d);
    957 		}
    958 	}
    959 	deviter_release(&di);
    960 }
    961 
    962 /*
    963  * Attach a supplemental config data table and rescan potential
    964  * parent devices if required.
    965  */
    966 int
    967 config_cfdata_attach(cfdata_t cf, int scannow)
    968 {
    969 	struct cftable *ct;
    970 
    971 	KERNEL_LOCK(1, NULL);
    972 
    973 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    974 	ct->ct_cfdata = cf;
    975 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    976 
    977 	if (scannow)
    978 		rescan_with_cfdata(cf);
    979 
    980 	KERNEL_UNLOCK_ONE(NULL);
    981 
    982 	return 0;
    983 }
    984 
    985 /*
    986  * Helper for config_cfdata_detach: check whether a device is
    987  * found through any attachment in the config data table.
    988  */
    989 static int
    990 dev_in_cfdata(device_t d, cfdata_t cf)
    991 {
    992 	const struct cfdata *cf1;
    993 
    994 	for (cf1 = cf; cf1->cf_name; cf1++)
    995 		if (d->dv_cfdata == cf1)
    996 			return 1;
    997 
    998 	return 0;
    999 }
   1000 
   1001 /*
   1002  * Detach a supplemental config data table. Detach all devices found
   1003  * through that table (and thus keeping references to it) before.
   1004  */
   1005 int
   1006 config_cfdata_detach(cfdata_t cf)
   1007 {
   1008 	device_t d;
   1009 	int error = 0;
   1010 	struct cftable *ct;
   1011 	deviter_t di;
   1012 
   1013 	KERNEL_LOCK(1, NULL);
   1014 
   1015 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
   1016 	     d = deviter_next(&di)) {
   1017 		if (!dev_in_cfdata(d, cf))
   1018 			continue;
   1019 		if ((error = config_detach(d, 0)) != 0)
   1020 			break;
   1021 	}
   1022 	deviter_release(&di);
   1023 	if (error) {
   1024 		aprint_error_dev(d, "unable to detach instance\n");
   1025 		goto out;
   1026 	}
   1027 
   1028 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1029 		if (ct->ct_cfdata == cf) {
   1030 			TAILQ_REMOVE(&allcftables, ct, ct_list);
   1031 			kmem_free(ct, sizeof(*ct));
   1032 			error = 0;
   1033 			goto out;
   1034 		}
   1035 	}
   1036 
   1037 	/* not found -- shouldn't happen */
   1038 	error = EINVAL;
   1039 
   1040 out:	KERNEL_UNLOCK_ONE(NULL);
   1041 	return error;
   1042 }
   1043 
   1044 /*
   1045  * Invoke the "match" routine for a cfdata entry on behalf of
   1046  * an external caller, usually a direct config "submatch" routine.
   1047  */
   1048 int
   1049 config_match(device_t parent, cfdata_t cf, void *aux)
   1050 {
   1051 	struct cfattach *ca;
   1052 
   1053 	KASSERT(KERNEL_LOCKED_P());
   1054 
   1055 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1056 	if (ca == NULL) {
   1057 		/* No attachment for this entry, oh well. */
   1058 		return 0;
   1059 	}
   1060 
   1061 	return (*ca->ca_match)(parent, cf, aux);
   1062 }
   1063 
   1064 /*
   1065  * Invoke the "probe" routine for a cfdata entry on behalf of
   1066  * an external caller, usually an indirect config "search" routine.
   1067  */
   1068 int
   1069 config_probe(device_t parent, cfdata_t cf, void *aux)
   1070 {
   1071 	/*
   1072 	 * This is currently a synonym for config_match(), but this
   1073 	 * is an implementation detail; "match" and "probe" routines
   1074 	 * have different behaviors.
   1075 	 *
   1076 	 * XXX config_probe() should return a bool, because there is
   1077 	 * XXX no match score for probe -- it's either there or it's
   1078 	 * XXX not, but some ports abuse the return value as a way
   1079 	 * XXX to attach "critical" devices before "non-critical"
   1080 	 * XXX devices.
   1081 	 */
   1082 	return config_match(parent, cf, aux);
   1083 }
   1084 
   1085 static struct cfargs_internal *
   1086 cfargs_canonicalize(const struct cfargs * const cfargs,
   1087     struct cfargs_internal * const store)
   1088 {
   1089 	struct cfargs_internal *args = store;
   1090 
   1091 	memset(args, 0, sizeof(*args));
   1092 
   1093 	/* If none specified, are all-NULL pointers are good. */
   1094 	if (cfargs == NULL) {
   1095 		return args;
   1096 	}
   1097 
   1098 	/*
   1099 	 * Only one arguments version is recognized at this time.
   1100 	 */
   1101 	if (cfargs->cfargs_version != CFARGS_VERSION) {
   1102 		panic("cfargs_canonicalize: unknown version %lu\n",
   1103 		    (unsigned long)cfargs->cfargs_version);
   1104 	}
   1105 
   1106 	/*
   1107 	 * submatch and search are mutually-exclusive.
   1108 	 */
   1109 	if (cfargs->submatch != NULL && cfargs->search != NULL) {
   1110 		panic("cfargs_canonicalize: submatch and search are "
   1111 		      "mutually-exclusive");
   1112 	}
   1113 	if (cfargs->submatch != NULL) {
   1114 		args->submatch = cfargs->submatch;
   1115 	} else if (cfargs->search != NULL) {
   1116 		args->search = cfargs->search;
   1117 	}
   1118 
   1119 	args->iattr = cfargs->iattr;
   1120 	args->locators = cfargs->locators;
   1121 	args->devhandle = cfargs->devhandle;
   1122 
   1123 	return args;
   1124 }
   1125 
   1126 /*
   1127  * Iterate over all potential children of some device, calling the given
   1128  * function (default being the child's match function) for each one.
   1129  * Nonzero returns are matches; the highest value returned is considered
   1130  * the best match.  Return the `found child' if we got a match, or NULL
   1131  * otherwise.  The `aux' pointer is simply passed on through.
   1132  *
   1133  * Note that this function is designed so that it can be used to apply
   1134  * an arbitrary function to all potential children (its return value
   1135  * can be ignored).
   1136  */
   1137 static cfdata_t
   1138 config_search_internal(device_t parent, void *aux,
   1139     const struct cfargs_internal * const args)
   1140 {
   1141 	struct cftable *ct;
   1142 	cfdata_t cf;
   1143 	struct matchinfo m;
   1144 
   1145 	KASSERT(config_initialized);
   1146 	KASSERTMSG((!args->iattr ||
   1147 		cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)),
   1148 	    "%s searched for child at interface attribute %s,"
   1149 	    " but device %s(4) has no such interface attribute in config(5)",
   1150 	    device_xname(parent), args->iattr,
   1151 	    parent->dv_cfdriver->cd_name);
   1152 	KASSERTMSG((args->iattr ||
   1153 		cfdriver_iattr_count(parent->dv_cfdriver) < 2),
   1154 	    "%s searched for child without interface attribute,"
   1155 	    " needed to disambiguate among the %d declared for in %s(4)"
   1156 	    " in config(5)",
   1157 	    device_xname(parent),
   1158 	    cfdriver_iattr_count(parent->dv_cfdriver),
   1159 	    parent->dv_cfdriver->cd_name);
   1160 
   1161 	m.fn = args->submatch;		/* N.B. union */
   1162 	m.parent = parent;
   1163 	m.locs = args->locators;
   1164 	m.aux = aux;
   1165 	m.match = NULL;
   1166 	m.pri = 0;
   1167 
   1168 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1169 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1170 
   1171 			/* We don't match root nodes here. */
   1172 			if (!cf->cf_pspec)
   1173 				continue;
   1174 
   1175 			/*
   1176 			 * Skip cf if no longer eligible, otherwise scan
   1177 			 * through parents for one matching `parent', and
   1178 			 * try match function.
   1179 			 */
   1180 			if (cf->cf_fstate == FSTATE_FOUND)
   1181 				continue;
   1182 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1183 			    cf->cf_fstate == FSTATE_DSTAR)
   1184 				continue;
   1185 
   1186 			/*
   1187 			 * If an interface attribute was specified,
   1188 			 * consider only children which attach to
   1189 			 * that attribute.
   1190 			 */
   1191 			if (args->iattr != NULL &&
   1192 			    !STREQ(args->iattr, cfdata_ifattr(cf)))
   1193 				continue;
   1194 
   1195 			if (cfparent_match(parent, cf->cf_pspec))
   1196 				mapply(&m, cf);
   1197 		}
   1198 	}
   1199 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1200 	return m.match;
   1201 }
   1202 
   1203 cfdata_t
   1204 config_search(device_t parent, void *aux, const struct cfargs *cfargs)
   1205 {
   1206 	cfdata_t cf;
   1207 	struct cfargs_internal store;
   1208 
   1209 	cf = config_search_internal(parent, aux,
   1210 	    cfargs_canonicalize(cfargs, &store));
   1211 
   1212 	return cf;
   1213 }
   1214 
   1215 /*
   1216  * Find the given root device.
   1217  * This is much like config_search, but there is no parent.
   1218  * Don't bother with multiple cfdata tables; the root node
   1219  * must always be in the initial table.
   1220  */
   1221 cfdata_t
   1222 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1223 {
   1224 	cfdata_t cf;
   1225 	const short *p;
   1226 	struct matchinfo m;
   1227 
   1228 	m.fn = fn;
   1229 	m.parent = ROOT;
   1230 	m.aux = aux;
   1231 	m.match = NULL;
   1232 	m.pri = 0;
   1233 	m.locs = 0;
   1234 	/*
   1235 	 * Look at root entries for matching name.  We do not bother
   1236 	 * with found-state here since only one root should ever be
   1237 	 * searched (and it must be done first).
   1238 	 */
   1239 	for (p = cfroots; *p >= 0; p++) {
   1240 		cf = &cfdata[*p];
   1241 		if (strcmp(cf->cf_name, rootname) == 0)
   1242 			mapply(&m, cf);
   1243 	}
   1244 	return m.match;
   1245 }
   1246 
   1247 static const char * const msgs[] = {
   1248 [QUIET]		=	"",
   1249 [UNCONF]	=	" not configured\n",
   1250 [UNSUPP]	=	" unsupported\n",
   1251 };
   1252 
   1253 /*
   1254  * The given `aux' argument describes a device that has been found
   1255  * on the given parent, but not necessarily configured.  Locate the
   1256  * configuration data for that device (using the submatch function
   1257  * provided, or using candidates' cd_match configuration driver
   1258  * functions) and attach it, and return its device_t.  If the device was
   1259  * not configured, call the given `print' function and return NULL.
   1260  */
   1261 device_t
   1262 config_found(device_t parent, void *aux, cfprint_t print,
   1263     const struct cfargs * const cfargs)
   1264 {
   1265 	cfdata_t cf;
   1266 	struct cfargs_internal store;
   1267 	const struct cfargs_internal * const args =
   1268 	    cfargs_canonicalize(cfargs, &store);
   1269 
   1270 	cf = config_search_internal(parent, aux, args);
   1271 	if (cf != NULL) {
   1272 		return config_attach_internal(parent, cf, aux, print, args);
   1273 	}
   1274 
   1275 	if (print) {
   1276 		if (config_do_twiddle && cold)
   1277 			twiddle();
   1278 
   1279 		const int pret = (*print)(aux, device_xname(parent));
   1280 		KASSERT(pret >= 0);
   1281 		KASSERT(pret < __arraycount(msgs));
   1282 		KASSERT(msgs[pret] != NULL);
   1283 		aprint_normal("%s", msgs[pret]);
   1284 	}
   1285 
   1286 	return NULL;
   1287 }
   1288 
   1289 /*
   1290  * As above, but for root devices.
   1291  */
   1292 device_t
   1293 config_rootfound(const char *rootname, void *aux)
   1294 {
   1295 	cfdata_t cf;
   1296 	device_t dev = NULL;
   1297 
   1298 	KERNEL_LOCK(1, NULL);
   1299 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1300 		dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
   1301 	else
   1302 		aprint_error("root device %s not configured\n", rootname);
   1303 	KERNEL_UNLOCK_ONE(NULL);
   1304 	return dev;
   1305 }
   1306 
   1307 /* just like sprintf(buf, "%d") except that it works from the end */
   1308 static char *
   1309 number(char *ep, int n)
   1310 {
   1311 
   1312 	*--ep = 0;
   1313 	while (n >= 10) {
   1314 		*--ep = (n % 10) + '0';
   1315 		n /= 10;
   1316 	}
   1317 	*--ep = n + '0';
   1318 	return ep;
   1319 }
   1320 
   1321 /*
   1322  * Expand the size of the cd_devs array if necessary.
   1323  *
   1324  * The caller must hold alldevs_lock. config_makeroom() may release and
   1325  * re-acquire alldevs_lock, so callers should re-check conditions such
   1326  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1327  * returns.
   1328  */
   1329 static void
   1330 config_makeroom(int n, struct cfdriver *cd)
   1331 {
   1332 	int ondevs, nndevs;
   1333 	device_t *osp, *nsp;
   1334 
   1335 	KASSERT(mutex_owned(&alldevs_lock));
   1336 	alldevs_nwrite++;
   1337 
   1338 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1339 		;
   1340 
   1341 	while (n >= cd->cd_ndevs) {
   1342 		/*
   1343 		 * Need to expand the array.
   1344 		 */
   1345 		ondevs = cd->cd_ndevs;
   1346 		osp = cd->cd_devs;
   1347 
   1348 		/*
   1349 		 * Release alldevs_lock around allocation, which may
   1350 		 * sleep.
   1351 		 */
   1352 		mutex_exit(&alldevs_lock);
   1353 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1354 		mutex_enter(&alldevs_lock);
   1355 
   1356 		/*
   1357 		 * If another thread moved the array while we did
   1358 		 * not hold alldevs_lock, try again.
   1359 		 */
   1360 		if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) {
   1361 			mutex_exit(&alldevs_lock);
   1362 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1363 			mutex_enter(&alldevs_lock);
   1364 			continue;
   1365 		}
   1366 
   1367 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1368 		if (ondevs != 0)
   1369 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1370 
   1371 		cd->cd_ndevs = nndevs;
   1372 		cd->cd_devs = nsp;
   1373 		if (ondevs != 0) {
   1374 			mutex_exit(&alldevs_lock);
   1375 			kmem_free(osp, sizeof(device_t) * ondevs);
   1376 			mutex_enter(&alldevs_lock);
   1377 		}
   1378 	}
   1379 	KASSERT(mutex_owned(&alldevs_lock));
   1380 	alldevs_nwrite--;
   1381 }
   1382 
   1383 /*
   1384  * Put dev into the devices list.
   1385  */
   1386 static void
   1387 config_devlink(device_t dev)
   1388 {
   1389 
   1390 	mutex_enter(&alldevs_lock);
   1391 
   1392 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1393 
   1394 	dev->dv_add_gen = alldevs_gen;
   1395 	/* It is safe to add a device to the tail of the list while
   1396 	 * readers and writers are in the list.
   1397 	 */
   1398 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1399 	mutex_exit(&alldevs_lock);
   1400 }
   1401 
   1402 static void
   1403 config_devfree(device_t dev)
   1404 {
   1405 
   1406 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1407 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1408 
   1409 	if (dev->dv_cfattach->ca_devsize > 0)
   1410 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1411 	kmem_free(dev, sizeof(*dev));
   1412 }
   1413 
   1414 /*
   1415  * Caller must hold alldevs_lock.
   1416  */
   1417 static void
   1418 config_devunlink(device_t dev, struct devicelist *garbage)
   1419 {
   1420 	struct device_garbage *dg = &dev->dv_garbage;
   1421 	cfdriver_t cd = device_cfdriver(dev);
   1422 	int i;
   1423 
   1424 	KASSERT(mutex_owned(&alldevs_lock));
   1425 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1426 
   1427  	/* Unlink from device list.  Link to garbage list. */
   1428 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1429 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1430 
   1431 	/* Remove from cfdriver's array. */
   1432 	cd->cd_devs[dev->dv_unit] = NULL;
   1433 
   1434 	/*
   1435 	 * If the device now has no units in use, unlink its softc array.
   1436 	 */
   1437 	for (i = 0; i < cd->cd_ndevs; i++) {
   1438 		if (cd->cd_devs[i] != NULL)
   1439 			break;
   1440 	}
   1441 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1442 	if (i == cd->cd_ndevs) {
   1443 		dg->dg_ndevs = cd->cd_ndevs;
   1444 		dg->dg_devs = cd->cd_devs;
   1445 		cd->cd_devs = NULL;
   1446 		cd->cd_ndevs = 0;
   1447 	}
   1448 }
   1449 
   1450 static void
   1451 config_devdelete(device_t dev)
   1452 {
   1453 	struct device_garbage *dg = &dev->dv_garbage;
   1454 	device_lock_t dvl = device_getlock(dev);
   1455 
   1456 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1457 
   1458 	if (dg->dg_devs != NULL)
   1459 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1460 
   1461 	localcount_fini(dev->dv_localcount);
   1462 	kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));
   1463 
   1464 	cv_destroy(&dvl->dvl_cv);
   1465 	mutex_destroy(&dvl->dvl_mtx);
   1466 
   1467 	KASSERT(dev->dv_properties != NULL);
   1468 	prop_object_release(dev->dv_properties);
   1469 
   1470 	if (dev->dv_activity_handlers)
   1471 		panic("%s with registered handlers", __func__);
   1472 
   1473 	if (dev->dv_locators) {
   1474 		size_t amount = *--dev->dv_locators;
   1475 		kmem_free(dev->dv_locators, amount);
   1476 	}
   1477 
   1478 	config_devfree(dev);
   1479 }
   1480 
   1481 static int
   1482 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1483 {
   1484 	int unit = cf->cf_unit;
   1485 
   1486 	KASSERT(mutex_owned(&alldevs_lock));
   1487 
   1488 	if (unit < 0)
   1489 		return -1;
   1490 	if (cf->cf_fstate == FSTATE_STAR) {
   1491 		for (; unit < cd->cd_ndevs; unit++)
   1492 			if (cd->cd_devs[unit] == NULL)
   1493 				break;
   1494 		/*
   1495 		 * unit is now the unit of the first NULL device pointer,
   1496 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1497 		 */
   1498 	} else {
   1499 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1500 			unit = -1;
   1501 	}
   1502 	return unit;
   1503 }
   1504 
   1505 static int
   1506 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1507 {
   1508 	struct alldevs_foray af;
   1509 	int unit;
   1510 
   1511 	config_alldevs_enter(&af);
   1512 	for (;;) {
   1513 		unit = config_unit_nextfree(cd, cf);
   1514 		if (unit == -1)
   1515 			break;
   1516 		if (unit < cd->cd_ndevs) {
   1517 			cd->cd_devs[unit] = dev;
   1518 			dev->dv_unit = unit;
   1519 			break;
   1520 		}
   1521 		config_makeroom(unit, cd);
   1522 	}
   1523 	config_alldevs_exit(&af);
   1524 
   1525 	return unit;
   1526 }
   1527 
   1528 static device_t
   1529 config_devalloc(const device_t parent, const cfdata_t cf,
   1530     const struct cfargs_internal * const args)
   1531 {
   1532 	cfdriver_t cd;
   1533 	cfattach_t ca;
   1534 	size_t lname, lunit;
   1535 	const char *xunit;
   1536 	int myunit;
   1537 	char num[10];
   1538 	device_t dev;
   1539 	void *dev_private;
   1540 	const struct cfiattrdata *ia;
   1541 	device_lock_t dvl;
   1542 
   1543 	cd = config_cfdriver_lookup(cf->cf_name);
   1544 	if (cd == NULL)
   1545 		return NULL;
   1546 
   1547 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1548 	if (ca == NULL)
   1549 		return NULL;
   1550 
   1551 	/* get memory for all device vars */
   1552 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1553 	if (ca->ca_devsize > 0) {
   1554 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1555 	} else {
   1556 		dev_private = NULL;
   1557 	}
   1558 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1559 
   1560 	dev->dv_handle = args->devhandle;
   1561 
   1562 	dev->dv_class = cd->cd_class;
   1563 	dev->dv_cfdata = cf;
   1564 	dev->dv_cfdriver = cd;
   1565 	dev->dv_cfattach = ca;
   1566 	dev->dv_activity_count = 0;
   1567 	dev->dv_activity_handlers = NULL;
   1568 	dev->dv_private = dev_private;
   1569 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1570 	dev->dv_attaching = curlwp;
   1571 
   1572 	myunit = config_unit_alloc(dev, cd, cf);
   1573 	if (myunit == -1) {
   1574 		config_devfree(dev);
   1575 		return NULL;
   1576 	}
   1577 
   1578 	/* compute length of name and decimal expansion of unit number */
   1579 	lname = strlen(cd->cd_name);
   1580 	xunit = number(&num[sizeof(num)], myunit);
   1581 	lunit = &num[sizeof(num)] - xunit;
   1582 	if (lname + lunit > sizeof(dev->dv_xname))
   1583 		panic("config_devalloc: device name too long");
   1584 
   1585 	dvl = device_getlock(dev);
   1586 
   1587 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1588 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1589 
   1590 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1591 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1592 	dev->dv_parent = parent;
   1593 	if (parent != NULL)
   1594 		dev->dv_depth = parent->dv_depth + 1;
   1595 	else
   1596 		dev->dv_depth = 0;
   1597 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1598 	if (args->locators) {
   1599 		KASSERT(parent); /* no locators at root */
   1600 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1601 		dev->dv_locators =
   1602 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1603 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1604 		memcpy(dev->dv_locators, args->locators,
   1605 		    sizeof(int) * ia->ci_loclen);
   1606 	}
   1607 	dev->dv_properties = prop_dictionary_create();
   1608 	KASSERT(dev->dv_properties != NULL);
   1609 
   1610 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1611 	    "device-driver", dev->dv_cfdriver->cd_name);
   1612 	prop_dictionary_set_uint16(dev->dv_properties,
   1613 	    "device-unit", dev->dv_unit);
   1614 	if (parent != NULL) {
   1615 		prop_dictionary_set_string(dev->dv_properties,
   1616 		    "device-parent", device_xname(parent));
   1617 	}
   1618 
   1619 	dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
   1620 	    KM_SLEEP);
   1621 	localcount_init(dev->dv_localcount);
   1622 
   1623 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1624 		config_add_attrib_dict(dev);
   1625 
   1626 	return dev;
   1627 }
   1628 
   1629 /*
   1630  * Create an array of device attach attributes and add it
   1631  * to the device's dv_properties dictionary.
   1632  *
   1633  * <key>interface-attributes</key>
   1634  * <array>
   1635  *    <dict>
   1636  *       <key>attribute-name</key>
   1637  *       <string>foo</string>
   1638  *       <key>locators</key>
   1639  *       <array>
   1640  *          <dict>
   1641  *             <key>loc-name</key>
   1642  *             <string>foo-loc1</string>
   1643  *          </dict>
   1644  *          <dict>
   1645  *             <key>loc-name</key>
   1646  *             <string>foo-loc2</string>
   1647  *             <key>default</key>
   1648  *             <string>foo-loc2-default</string>
   1649  *          </dict>
   1650  *          ...
   1651  *       </array>
   1652  *    </dict>
   1653  *    ...
   1654  * </array>
   1655  */
   1656 
   1657 static void
   1658 config_add_attrib_dict(device_t dev)
   1659 {
   1660 	int i, j;
   1661 	const struct cfiattrdata *ci;
   1662 	prop_dictionary_t attr_dict, loc_dict;
   1663 	prop_array_t attr_array, loc_array;
   1664 
   1665 	if ((attr_array = prop_array_create()) == NULL)
   1666 		return;
   1667 
   1668 	for (i = 0; ; i++) {
   1669 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1670 			break;
   1671 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1672 			break;
   1673 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1674 		    ci->ci_name);
   1675 
   1676 		/* Create an array of the locator names and defaults */
   1677 
   1678 		if (ci->ci_loclen != 0 &&
   1679 		    (loc_array = prop_array_create()) != NULL) {
   1680 			for (j = 0; j < ci->ci_loclen; j++) {
   1681 				loc_dict = prop_dictionary_create();
   1682 				if (loc_dict == NULL)
   1683 					continue;
   1684 				prop_dictionary_set_string_nocopy(loc_dict,
   1685 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1686 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1687 					prop_dictionary_set_string_nocopy(
   1688 					    loc_dict, "default",
   1689 					    ci->ci_locdesc[j].cld_defaultstr);
   1690 				prop_array_set(loc_array, j, loc_dict);
   1691 				prop_object_release(loc_dict);
   1692 			}
   1693 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1694 			    loc_array);
   1695 		}
   1696 		prop_array_add(attr_array, attr_dict);
   1697 		prop_object_release(attr_dict);
   1698 	}
   1699 	if (i == 0)
   1700 		prop_object_release(attr_array);
   1701 	else
   1702 		prop_dictionary_set_and_rel(dev->dv_properties,
   1703 		    "interface-attributes", attr_array);
   1704 
   1705 	return;
   1706 }
   1707 
   1708 /*
   1709  * Attach a found device.
   1710  */
   1711 static device_t
   1712 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1713     const struct cfargs_internal * const args)
   1714 {
   1715 	device_t dev;
   1716 	struct cftable *ct;
   1717 	const char *drvname;
   1718 	bool deferred;
   1719 
   1720 	KASSERT(KERNEL_LOCKED_P());
   1721 
   1722 	dev = config_devalloc(parent, cf, args);
   1723 	if (!dev)
   1724 		panic("config_attach: allocation of device softc failed");
   1725 
   1726 	/* XXX redundant - see below? */
   1727 	if (cf->cf_fstate != FSTATE_STAR) {
   1728 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1729 		cf->cf_fstate = FSTATE_FOUND;
   1730 	}
   1731 
   1732 	config_devlink(dev);
   1733 
   1734 	if (config_do_twiddle && cold)
   1735 		twiddle();
   1736 	else
   1737 		aprint_naive("Found ");
   1738 	/*
   1739 	 * We want the next two printfs for normal, verbose, and quiet,
   1740 	 * but not silent (in which case, we're twiddling, instead).
   1741 	 */
   1742 	if (parent == ROOT) {
   1743 		aprint_naive("%s (root)", device_xname(dev));
   1744 		aprint_normal("%s (root)", device_xname(dev));
   1745 	} else {
   1746 		aprint_naive("%s at %s", device_xname(dev),
   1747 		    device_xname(parent));
   1748 		aprint_normal("%s at %s", device_xname(dev),
   1749 		    device_xname(parent));
   1750 		if (print)
   1751 			(void) (*print)(aux, NULL);
   1752 	}
   1753 
   1754 	/*
   1755 	 * Before attaching, clobber any unfound devices that are
   1756 	 * otherwise identical.
   1757 	 * XXX code above is redundant?
   1758 	 */
   1759 	drvname = dev->dv_cfdriver->cd_name;
   1760 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1761 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1762 			if (STREQ(cf->cf_name, drvname) &&
   1763 			    cf->cf_unit == dev->dv_unit) {
   1764 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1765 					cf->cf_fstate = FSTATE_FOUND;
   1766 			}
   1767 		}
   1768 	}
   1769 	device_register(dev, aux);
   1770 
   1771 	/* Let userland know */
   1772 	devmon_report_device(dev, true);
   1773 
   1774 	/*
   1775 	 * Prevent detach until the driver's attach function, and all
   1776 	 * deferred actions, have finished.
   1777 	 */
   1778 	config_pending_incr(dev);
   1779 
   1780 	/* Call the driver's attach function.  */
   1781 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1782 
   1783 	/*
   1784 	 * Allow other threads to acquire references to the device now
   1785 	 * that the driver's attach function is done.
   1786 	 */
   1787 	mutex_enter(&config_misc_lock);
   1788 	KASSERT(dev->dv_attaching == curlwp);
   1789 	dev->dv_attaching = NULL;
   1790 	cv_broadcast(&config_misc_cv);
   1791 	mutex_exit(&config_misc_lock);
   1792 
   1793 	/*
   1794 	 * Synchronous parts of attach are done.  Allow detach, unless
   1795 	 * the driver's attach function scheduled deferred actions.
   1796 	 */
   1797 	config_pending_decr(dev);
   1798 
   1799 	mutex_enter(&config_misc_lock);
   1800 	deferred = (dev->dv_pending != 0);
   1801 	mutex_exit(&config_misc_lock);
   1802 
   1803 	if (!deferred && !device_pmf_is_registered(dev))
   1804 		aprint_debug_dev(dev,
   1805 		    "WARNING: power management not supported\n");
   1806 
   1807 	config_process_deferred(&deferred_config_queue, dev);
   1808 
   1809 	device_register_post_config(dev, aux);
   1810 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1811 	return dev;
   1812 }
   1813 
   1814 device_t
   1815 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1816     const struct cfargs *cfargs)
   1817 {
   1818 	struct cfargs_internal store;
   1819 
   1820 	KASSERT(KERNEL_LOCKED_P());
   1821 
   1822 	return config_attach_internal(parent, cf, aux, print,
   1823 	    cfargs_canonicalize(cfargs, &store));
   1824 }
   1825 
   1826 /*
   1827  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1828  * way are silently inserted into the device tree, and their children
   1829  * attached.
   1830  *
   1831  * Note that because pseudo-devices are attached silently, any information
   1832  * the attach routine wishes to print should be prefixed with the device
   1833  * name by the attach routine.
   1834  */
   1835 device_t
   1836 config_attach_pseudo(cfdata_t cf)
   1837 {
   1838 	device_t dev;
   1839 
   1840 	KERNEL_LOCK(1, NULL);
   1841 
   1842 	struct cfargs_internal args = { };
   1843 	dev = config_devalloc(ROOT, cf, &args);
   1844 	if (!dev)
   1845 		goto out;
   1846 
   1847 	/* XXX mark busy in cfdata */
   1848 
   1849 	if (cf->cf_fstate != FSTATE_STAR) {
   1850 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1851 		cf->cf_fstate = FSTATE_FOUND;
   1852 	}
   1853 
   1854 	config_devlink(dev);
   1855 
   1856 #if 0	/* XXXJRT not yet */
   1857 	device_register(dev, NULL);	/* like a root node */
   1858 #endif
   1859 
   1860 	/* Let userland know */
   1861 	devmon_report_device(dev, true);
   1862 
   1863 	/*
   1864 	 * Prevent detach until the driver's attach function, and all
   1865 	 * deferred actions, have finished.
   1866 	 */
   1867 	config_pending_incr(dev);
   1868 
   1869 	/* Call the driver's attach function.  */
   1870 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1871 
   1872 	/*
   1873 	 * Allow other threads to acquire references to the device now
   1874 	 * that the driver's attach function is done.
   1875 	 */
   1876 	mutex_enter(&config_misc_lock);
   1877 	KASSERT(dev->dv_attaching == curlwp);
   1878 	dev->dv_attaching = NULL;
   1879 	cv_broadcast(&config_misc_cv);
   1880 	mutex_exit(&config_misc_lock);
   1881 
   1882 	/*
   1883 	 * Synchronous parts of attach are done.  Allow detach, unless
   1884 	 * the driver's attach function scheduled deferred actions.
   1885 	 */
   1886 	config_pending_decr(dev);
   1887 
   1888 	config_process_deferred(&deferred_config_queue, dev);
   1889 
   1890 out:	KERNEL_UNLOCK_ONE(NULL);
   1891 	return dev;
   1892 }
   1893 
   1894 /*
   1895  * Caller must hold alldevs_lock.
   1896  */
   1897 static void
   1898 config_collect_garbage(struct devicelist *garbage)
   1899 {
   1900 	device_t dv;
   1901 
   1902 	KASSERT(!cpu_intr_p());
   1903 	KASSERT(!cpu_softintr_p());
   1904 	KASSERT(mutex_owned(&alldevs_lock));
   1905 
   1906 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1907 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1908 			if (dv->dv_del_gen != 0)
   1909 				break;
   1910 		}
   1911 		if (dv == NULL) {
   1912 			alldevs_garbage = false;
   1913 			break;
   1914 		}
   1915 		config_devunlink(dv, garbage);
   1916 	}
   1917 	KASSERT(mutex_owned(&alldevs_lock));
   1918 }
   1919 
   1920 static void
   1921 config_dump_garbage(struct devicelist *garbage)
   1922 {
   1923 	device_t dv;
   1924 
   1925 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1926 		TAILQ_REMOVE(garbage, dv, dv_list);
   1927 		config_devdelete(dv);
   1928 	}
   1929 }
   1930 
   1931 static int
   1932 config_detach_enter(device_t dev)
   1933 {
   1934 	struct lwp *l __diagused;
   1935 	int error = 0;
   1936 
   1937 	mutex_enter(&config_misc_lock);
   1938 
   1939 	/*
   1940 	 * Wait until attach has fully completed, and until any
   1941 	 * concurrent detach (e.g., drvctl racing with USB event
   1942 	 * thread) has completed.
   1943 	 *
   1944 	 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
   1945 	 * deviter) to ensure the winner of the race doesn't free the
   1946 	 * device leading the loser of the race into use-after-free.
   1947 	 *
   1948 	 * XXX Not all callers do this!
   1949 	 */
   1950 	while (dev->dv_pending || dev->dv_detaching) {
   1951 		KASSERTMSG(dev->dv_detaching != curlwp,
   1952 		    "recursively detaching %s", device_xname(dev));
   1953 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
   1954 		if (error)
   1955 			goto out;
   1956 	}
   1957 
   1958 	/*
   1959 	 * Attach has completed, and no other concurrent detach is
   1960 	 * running.  Claim the device for detaching.  This will cause
   1961 	 * all new attempts to acquire references to block.
   1962 	 */
   1963 	KASSERTMSG((l = dev->dv_attaching) == NULL,
   1964 	    "lwp %ld [%s] @ %p attaching %s",
   1965 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   1966 	    device_xname(dev));
   1967 	KASSERTMSG((l = dev->dv_detaching) == NULL,
   1968 	    "lwp %ld [%s] @ %p detaching %s",
   1969 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   1970 	    device_xname(dev));
   1971 	dev->dv_detaching = curlwp;
   1972 
   1973 out:	mutex_exit(&config_misc_lock);
   1974 	return error;
   1975 }
   1976 
   1977 static void
   1978 config_detach_exit(device_t dev)
   1979 {
   1980 	struct lwp *l __diagused;
   1981 
   1982 	mutex_enter(&config_misc_lock);
   1983 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
   1984 	    device_xname(dev));
   1985 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   1986 	    "lwp %ld [%s] @ %p detaching %s",
   1987 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   1988 	    device_xname(dev));
   1989 	dev->dv_detaching = NULL;
   1990 	cv_broadcast(&config_misc_cv);
   1991 	mutex_exit(&config_misc_lock);
   1992 }
   1993 
   1994 /*
   1995  * Detach a device.  Optionally forced (e.g. because of hardware
   1996  * removal) and quiet.  Returns zero if successful, non-zero
   1997  * (an error code) otherwise.
   1998  *
   1999  * Note that this code wants to be run from a process context, so
   2000  * that the detach can sleep to allow processes which have a device
   2001  * open to run and unwind their stacks.
   2002  */
   2003 int
   2004 config_detach(device_t dev, int flags)
   2005 {
   2006 	struct alldevs_foray af;
   2007 	struct cftable *ct;
   2008 	cfdata_t cf;
   2009 	const struct cfattach *ca;
   2010 	struct cfdriver *cd;
   2011 	device_t d __diagused;
   2012 	int rv = 0;
   2013 
   2014 	KERNEL_LOCK(1, NULL);
   2015 
   2016 	cf = dev->dv_cfdata;
   2017 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   2018 		cf->cf_fstate == FSTATE_STAR),
   2019 	    "config_detach: %s: bad device fstate: %d",
   2020 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   2021 
   2022 	cd = dev->dv_cfdriver;
   2023 	KASSERT(cd != NULL);
   2024 
   2025 	ca = dev->dv_cfattach;
   2026 	KASSERT(ca != NULL);
   2027 
   2028 	/*
   2029 	 * Only one detach at a time, please -- and not until fully
   2030 	 * attached.
   2031 	 */
   2032 	rv = config_detach_enter(dev);
   2033 	if (rv) {
   2034 		KERNEL_UNLOCK_ONE(NULL);
   2035 		return rv;
   2036 	}
   2037 
   2038 	mutex_enter(&alldevs_lock);
   2039 	if (dev->dv_del_gen != 0) {
   2040 		mutex_exit(&alldevs_lock);
   2041 #ifdef DIAGNOSTIC
   2042 		printf("%s: %s is already detached\n", __func__,
   2043 		    device_xname(dev));
   2044 #endif /* DIAGNOSTIC */
   2045 		config_detach_exit(dev);
   2046 		KERNEL_UNLOCK_ONE(NULL);
   2047 		return ENOENT;
   2048 	}
   2049 	alldevs_nwrite++;
   2050 	mutex_exit(&alldevs_lock);
   2051 
   2052 	/*
   2053 	 * Call the driver's .ca_detach function, unless it has none or
   2054 	 * we are skipping it because it's unforced shutdown time and
   2055 	 * the driver didn't ask to detach on shutdown.
   2056 	 */
   2057 	if (!detachall &&
   2058 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   2059 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   2060 		rv = EOPNOTSUPP;
   2061 	} else if (ca->ca_detach != NULL) {
   2062 		rv = (*ca->ca_detach)(dev, flags);
   2063 	} else
   2064 		rv = EOPNOTSUPP;
   2065 
   2066 	KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d",
   2067 	    device_xname(dev), rv);
   2068 
   2069 	/*
   2070 	 * If it was not possible to detach the device, then we either
   2071 	 * panic() (for the forced but failed case), or return an error.
   2072 	 */
   2073 	if (rv) {
   2074 		/*
   2075 		 * Detach failed -- likely EOPNOTSUPP or EBUSY.  Driver
   2076 		 * must not have called config_detach_commit.
   2077 		 */
   2078 		KASSERTMSG(!dev->dv_detach_committed,
   2079 		    "%s committed to detaching and then backed out, error=%d",
   2080 		    device_xname(dev), rv);
   2081 		if (flags & DETACH_FORCE) {
   2082 			panic("config_detach: forced detach of %s failed (%d)",
   2083 			    device_xname(dev), rv);
   2084 		}
   2085 		goto out;
   2086 	}
   2087 
   2088 	/*
   2089 	 * The device has now been successfully detached.
   2090 	 */
   2091 	dev->dv_detach_done = true;
   2092 
   2093 	/*
   2094 	 * If .ca_detach didn't commit to detach, then do that for it.
   2095 	 * This wakes any pending device_lookup_acquire calls so they
   2096 	 * will fail.
   2097 	 */
   2098 	config_detach_commit(dev);
   2099 
   2100 	/*
   2101 	 * If it was possible to detach the device, ensure that the
   2102 	 * device is deactivated.
   2103 	 */
   2104 	dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */
   2105 
   2106 	/*
   2107 	 * Wait for all device_lookup_acquire references -- mostly, for
   2108 	 * all attempts to open the device -- to drain.  It is the
   2109 	 * responsibility of .ca_detach to ensure anything with open
   2110 	 * references will be interrupted and release them promptly,
   2111 	 * not block indefinitely.  All new attempts to acquire
   2112 	 * references will fail, as config_detach_commit has arranged
   2113 	 * by now.
   2114 	 */
   2115 	mutex_enter(&config_misc_lock);
   2116 	localcount_drain(dev->dv_localcount,
   2117 	    &config_misc_cv, &config_misc_lock);
   2118 	mutex_exit(&config_misc_lock);
   2119 
   2120 	/* Let userland know */
   2121 	devmon_report_device(dev, false);
   2122 
   2123 #ifdef DIAGNOSTIC
   2124 	/*
   2125 	 * Sanity: If you're successfully detached, you should have no
   2126 	 * children.  (Note that because children must be attached
   2127 	 * after parents, we only need to search the latter part of
   2128 	 * the list.)
   2129 	 */
   2130 	mutex_enter(&alldevs_lock);
   2131 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   2132 	    d = TAILQ_NEXT(d, dv_list)) {
   2133 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   2134 			printf("config_detach: detached device %s"
   2135 			    " has children %s\n", device_xname(dev),
   2136 			    device_xname(d));
   2137 			panic("config_detach");
   2138 		}
   2139 	}
   2140 	mutex_exit(&alldevs_lock);
   2141 #endif
   2142 
   2143 	/* notify the parent that the child is gone */
   2144 	if (dev->dv_parent) {
   2145 		device_t p = dev->dv_parent;
   2146 		if (p->dv_cfattach->ca_childdetached)
   2147 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   2148 	}
   2149 
   2150 	/*
   2151 	 * Mark cfdata to show that the unit can be reused, if possible.
   2152 	 */
   2153 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   2154 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   2155 			if (STREQ(cf->cf_name, cd->cd_name)) {
   2156 				if (cf->cf_fstate == FSTATE_FOUND &&
   2157 				    cf->cf_unit == dev->dv_unit)
   2158 					cf->cf_fstate = FSTATE_NOTFOUND;
   2159 			}
   2160 		}
   2161 	}
   2162 
   2163 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   2164 		aprint_normal_dev(dev, "detached\n");
   2165 
   2166 out:
   2167 	config_detach_exit(dev);
   2168 
   2169 	config_alldevs_enter(&af);
   2170 	KASSERT(alldevs_nwrite != 0);
   2171 	--alldevs_nwrite;
   2172 	if (rv == 0 && dev->dv_del_gen == 0) {
   2173 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   2174 			config_devunlink(dev, &af.af_garbage);
   2175 		else {
   2176 			dev->dv_del_gen = alldevs_gen;
   2177 			alldevs_garbage = true;
   2178 		}
   2179 	}
   2180 	config_alldevs_exit(&af);
   2181 
   2182 	KERNEL_UNLOCK_ONE(NULL);
   2183 
   2184 	return rv;
   2185 }
   2186 
   2187 /*
   2188  * config_detach_commit(dev)
   2189  *
   2190  *	Issued by a driver's .ca_detach routine to notify anyone
   2191  *	waiting in device_lookup_acquire that the driver is committed
   2192  *	to detaching the device, which allows device_lookup_acquire to
   2193  *	wake up and fail immediately.
   2194  *
   2195  *	Safe to call multiple times -- idempotent.  Must be called
   2196  *	during config_detach_enter/exit.  Safe to use with
   2197  *	device_lookup because the device is not actually removed from
   2198  *	the table until after config_detach_exit.
   2199  */
   2200 void
   2201 config_detach_commit(device_t dev)
   2202 {
   2203 	struct lwp *l __diagused;
   2204 
   2205 	mutex_enter(&config_misc_lock);
   2206 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
   2207 	    device_xname(dev));
   2208 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   2209 	    "lwp %ld [%s] @ %p detaching %s",
   2210 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   2211 	    device_xname(dev));
   2212 	dev->dv_detach_committed = true;
   2213 	cv_broadcast(&config_misc_cv);
   2214 	mutex_exit(&config_misc_lock);
   2215 }
   2216 
   2217 int
   2218 config_detach_children(device_t parent, int flags)
   2219 {
   2220 	device_t dv;
   2221 	deviter_t di;
   2222 	int error = 0;
   2223 
   2224 	KASSERT(KERNEL_LOCKED_P());
   2225 
   2226 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   2227 	     dv = deviter_next(&di)) {
   2228 		if (device_parent(dv) != parent)
   2229 			continue;
   2230 		if ((error = config_detach(dv, flags)) != 0)
   2231 			break;
   2232 	}
   2233 	deviter_release(&di);
   2234 	return error;
   2235 }
   2236 
   2237 device_t
   2238 shutdown_first(struct shutdown_state *s)
   2239 {
   2240 	if (!s->initialized) {
   2241 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   2242 		s->initialized = true;
   2243 	}
   2244 	return shutdown_next(s);
   2245 }
   2246 
   2247 device_t
   2248 shutdown_next(struct shutdown_state *s)
   2249 {
   2250 	device_t dv;
   2251 
   2252 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2253 		;
   2254 
   2255 	if (dv == NULL)
   2256 		s->initialized = false;
   2257 
   2258 	return dv;
   2259 }
   2260 
   2261 bool
   2262 config_detach_all(int how)
   2263 {
   2264 	static struct shutdown_state s;
   2265 	device_t curdev;
   2266 	bool progress = false;
   2267 	int flags;
   2268 
   2269 	KERNEL_LOCK(1, NULL);
   2270 
   2271 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2272 		goto out;
   2273 
   2274 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2275 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2276 	else
   2277 		flags = DETACH_SHUTDOWN;
   2278 
   2279 	for (curdev = shutdown_first(&s); curdev != NULL;
   2280 	     curdev = shutdown_next(&s)) {
   2281 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2282 		if (config_detach(curdev, flags) == 0) {
   2283 			progress = true;
   2284 			aprint_debug("success.");
   2285 		} else
   2286 			aprint_debug("failed.");
   2287 	}
   2288 
   2289 out:	KERNEL_UNLOCK_ONE(NULL);
   2290 	return progress;
   2291 }
   2292 
   2293 static bool
   2294 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2295 {
   2296 	device_t dv;
   2297 
   2298 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2299 		if (device_parent(dv) == ancestor)
   2300 			return true;
   2301 	}
   2302 	return false;
   2303 }
   2304 
   2305 int
   2306 config_deactivate(device_t dev)
   2307 {
   2308 	deviter_t di;
   2309 	const struct cfattach *ca;
   2310 	device_t descendant;
   2311 	int s, rv = 0, oflags;
   2312 
   2313 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2314 	     descendant != NULL;
   2315 	     descendant = deviter_next(&di)) {
   2316 		if (dev != descendant &&
   2317 		    !device_is_ancestor_of(dev, descendant))
   2318 			continue;
   2319 
   2320 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2321 			continue;
   2322 
   2323 		ca = descendant->dv_cfattach;
   2324 		oflags = descendant->dv_flags;
   2325 
   2326 		descendant->dv_flags &= ~DVF_ACTIVE;
   2327 		if (ca->ca_activate == NULL)
   2328 			continue;
   2329 		s = splhigh();
   2330 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2331 		splx(s);
   2332 		if (rv != 0)
   2333 			descendant->dv_flags = oflags;
   2334 	}
   2335 	deviter_release(&di);
   2336 	return rv;
   2337 }
   2338 
   2339 /*
   2340  * Defer the configuration of the specified device until all
   2341  * of its parent's devices have been attached.
   2342  */
   2343 void
   2344 config_defer(device_t dev, void (*func)(device_t))
   2345 {
   2346 	struct deferred_config *dc;
   2347 
   2348 	if (dev->dv_parent == NULL)
   2349 		panic("config_defer: can't defer config of a root device");
   2350 
   2351 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2352 
   2353 	config_pending_incr(dev);
   2354 
   2355 	mutex_enter(&config_misc_lock);
   2356 #ifdef DIAGNOSTIC
   2357 	struct deferred_config *odc;
   2358 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2359 		if (odc->dc_dev == dev)
   2360 			panic("config_defer: deferred twice");
   2361 	}
   2362 #endif
   2363 	dc->dc_dev = dev;
   2364 	dc->dc_func = func;
   2365 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2366 	mutex_exit(&config_misc_lock);
   2367 }
   2368 
   2369 /*
   2370  * Defer some autoconfiguration for a device until after interrupts
   2371  * are enabled.
   2372  */
   2373 void
   2374 config_interrupts(device_t dev, void (*func)(device_t))
   2375 {
   2376 	struct deferred_config *dc;
   2377 
   2378 	/*
   2379 	 * If interrupts are enabled, callback now.
   2380 	 */
   2381 	if (cold == 0) {
   2382 		(*func)(dev);
   2383 		return;
   2384 	}
   2385 
   2386 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2387 
   2388 	config_pending_incr(dev);
   2389 
   2390 	mutex_enter(&config_misc_lock);
   2391 #ifdef DIAGNOSTIC
   2392 	struct deferred_config *odc;
   2393 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2394 		if (odc->dc_dev == dev)
   2395 			panic("config_interrupts: deferred twice");
   2396 	}
   2397 #endif
   2398 	dc->dc_dev = dev;
   2399 	dc->dc_func = func;
   2400 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2401 	mutex_exit(&config_misc_lock);
   2402 }
   2403 
   2404 /*
   2405  * Defer some autoconfiguration for a device until after root file system
   2406  * is mounted (to load firmware etc).
   2407  */
   2408 void
   2409 config_mountroot(device_t dev, void (*func)(device_t))
   2410 {
   2411 	struct deferred_config *dc;
   2412 
   2413 	/*
   2414 	 * If root file system is mounted, callback now.
   2415 	 */
   2416 	if (root_is_mounted) {
   2417 		(*func)(dev);
   2418 		return;
   2419 	}
   2420 
   2421 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2422 
   2423 	mutex_enter(&config_misc_lock);
   2424 #ifdef DIAGNOSTIC
   2425 	struct deferred_config *odc;
   2426 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2427 		if (odc->dc_dev == dev)
   2428 			panic("%s: deferred twice", __func__);
   2429 	}
   2430 #endif
   2431 
   2432 	dc->dc_dev = dev;
   2433 	dc->dc_func = func;
   2434 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2435 	mutex_exit(&config_misc_lock);
   2436 }
   2437 
   2438 /*
   2439  * Process a deferred configuration queue.
   2440  */
   2441 static void
   2442 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2443 {
   2444 	struct deferred_config *dc;
   2445 
   2446 	KASSERT(KERNEL_LOCKED_P());
   2447 
   2448 	mutex_enter(&config_misc_lock);
   2449 	dc = TAILQ_FIRST(queue);
   2450 	while (dc) {
   2451 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2452 			TAILQ_REMOVE(queue, dc, dc_queue);
   2453 			mutex_exit(&config_misc_lock);
   2454 
   2455 			(*dc->dc_func)(dc->dc_dev);
   2456 			config_pending_decr(dc->dc_dev);
   2457 			kmem_free(dc, sizeof(*dc));
   2458 
   2459 			mutex_enter(&config_misc_lock);
   2460 			/* Restart, queue might have changed */
   2461 			dc = TAILQ_FIRST(queue);
   2462 		} else {
   2463 			dc = TAILQ_NEXT(dc, dc_queue);
   2464 		}
   2465 	}
   2466 	mutex_exit(&config_misc_lock);
   2467 }
   2468 
   2469 /*
   2470  * Manipulate the config_pending semaphore.
   2471  */
   2472 void
   2473 config_pending_incr(device_t dev)
   2474 {
   2475 
   2476 	mutex_enter(&config_misc_lock);
   2477 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2478 	    "%s: excess config_pending_incr", device_xname(dev));
   2479 	if (dev->dv_pending++ == 0)
   2480 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2481 #ifdef DEBUG_AUTOCONF
   2482 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2483 #endif
   2484 	mutex_exit(&config_misc_lock);
   2485 }
   2486 
   2487 void
   2488 config_pending_decr(device_t dev)
   2489 {
   2490 
   2491 	mutex_enter(&config_misc_lock);
   2492 	KASSERTMSG(dev->dv_pending > 0,
   2493 	    "%s: excess config_pending_decr", device_xname(dev));
   2494 	if (--dev->dv_pending == 0) {
   2495 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2496 		cv_broadcast(&config_misc_cv);
   2497 	}
   2498 #ifdef DEBUG_AUTOCONF
   2499 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2500 #endif
   2501 	mutex_exit(&config_misc_lock);
   2502 }
   2503 
   2504 /*
   2505  * Register a "finalization" routine.  Finalization routines are
   2506  * called iteratively once all real devices have been found during
   2507  * autoconfiguration, for as long as any one finalizer has done
   2508  * any work.
   2509  */
   2510 int
   2511 config_finalize_register(device_t dev, int (*fn)(device_t))
   2512 {
   2513 	struct finalize_hook *f;
   2514 	int error = 0;
   2515 
   2516 	KERNEL_LOCK(1, NULL);
   2517 
   2518 	/*
   2519 	 * If finalization has already been done, invoke the
   2520 	 * callback function now.
   2521 	 */
   2522 	if (config_finalize_done) {
   2523 		while ((*fn)(dev) != 0)
   2524 			/* loop */ ;
   2525 		goto out;
   2526 	}
   2527 
   2528 	/* Ensure this isn't already on the list. */
   2529 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2530 		if (f->f_func == fn && f->f_dev == dev) {
   2531 			error = EEXIST;
   2532 			goto out;
   2533 		}
   2534 	}
   2535 
   2536 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2537 	f->f_func = fn;
   2538 	f->f_dev = dev;
   2539 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2540 
   2541 	/* Success!  */
   2542 	error = 0;
   2543 
   2544 out:	KERNEL_UNLOCK_ONE(NULL);
   2545 	return error;
   2546 }
   2547 
   2548 void
   2549 config_finalize(void)
   2550 {
   2551 	struct finalize_hook *f;
   2552 	struct pdevinit *pdev;
   2553 	extern struct pdevinit pdevinit[];
   2554 	int errcnt, rv;
   2555 
   2556 	/*
   2557 	 * Now that device driver threads have been created, wait for
   2558 	 * them to finish any deferred autoconfiguration.
   2559 	 */
   2560 	mutex_enter(&config_misc_lock);
   2561 	while (!TAILQ_EMPTY(&config_pending)) {
   2562 		device_t dev;
   2563 		int error;
   2564 
   2565 		error = cv_timedwait(&config_misc_cv, &config_misc_lock,
   2566 		    mstohz(1000));
   2567 		if (error == EWOULDBLOCK) {
   2568 			aprint_debug("waiting for devices:");
   2569 			TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2570 				aprint_debug(" %s", device_xname(dev));
   2571 			aprint_debug("\n");
   2572 		}
   2573 	}
   2574 	mutex_exit(&config_misc_lock);
   2575 
   2576 	KERNEL_LOCK(1, NULL);
   2577 
   2578 	/* Attach pseudo-devices. */
   2579 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2580 		(*pdev->pdev_attach)(pdev->pdev_count);
   2581 
   2582 	/* Run the hooks until none of them does any work. */
   2583 	do {
   2584 		rv = 0;
   2585 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2586 			rv |= (*f->f_func)(f->f_dev);
   2587 	} while (rv != 0);
   2588 
   2589 	config_finalize_done = 1;
   2590 
   2591 	/* Now free all the hooks. */
   2592 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2593 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2594 		kmem_free(f, sizeof(*f));
   2595 	}
   2596 
   2597 	KERNEL_UNLOCK_ONE(NULL);
   2598 
   2599 	errcnt = aprint_get_error_count();
   2600 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2601 	    (boothowto & AB_VERBOSE) == 0) {
   2602 		mutex_enter(&config_misc_lock);
   2603 		if (config_do_twiddle) {
   2604 			config_do_twiddle = 0;
   2605 			printf_nolog(" done.\n");
   2606 		}
   2607 		mutex_exit(&config_misc_lock);
   2608 	}
   2609 	if (errcnt != 0) {
   2610 		printf("WARNING: %d error%s while detecting hardware; "
   2611 		    "check system log.\n", errcnt,
   2612 		    errcnt == 1 ? "" : "s");
   2613 	}
   2614 }
   2615 
   2616 void
   2617 config_twiddle_init(void)
   2618 {
   2619 
   2620 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2621 		config_do_twiddle = 1;
   2622 	}
   2623 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2624 }
   2625 
   2626 void
   2627 config_twiddle_fn(void *cookie)
   2628 {
   2629 
   2630 	mutex_enter(&config_misc_lock);
   2631 	if (config_do_twiddle) {
   2632 		twiddle();
   2633 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2634 	}
   2635 	mutex_exit(&config_misc_lock);
   2636 }
   2637 
   2638 static void
   2639 config_alldevs_enter(struct alldevs_foray *af)
   2640 {
   2641 	TAILQ_INIT(&af->af_garbage);
   2642 	mutex_enter(&alldevs_lock);
   2643 	config_collect_garbage(&af->af_garbage);
   2644 }
   2645 
   2646 static void
   2647 config_alldevs_exit(struct alldevs_foray *af)
   2648 {
   2649 	mutex_exit(&alldevs_lock);
   2650 	config_dump_garbage(&af->af_garbage);
   2651 }
   2652 
   2653 /*
   2654  * device_lookup:
   2655  *
   2656  *	Look up a device instance for a given driver.
   2657  *
   2658  *	Caller is responsible for ensuring the device's state is
   2659  *	stable, either by holding a reference already obtained with
   2660  *	device_lookup_acquire or by otherwise ensuring the device is
   2661  *	attached and can't be detached (e.g., holding an open device
   2662  *	node and ensuring *_detach calls vdevgone).
   2663  *
   2664  *	XXX Find a way to assert this.
   2665  *
   2666  *	Safe for use up to and including interrupt context at IPL_VM.
   2667  *	Never sleeps.
   2668  */
   2669 device_t
   2670 device_lookup(cfdriver_t cd, int unit)
   2671 {
   2672 	device_t dv;
   2673 
   2674 	mutex_enter(&alldevs_lock);
   2675 	if (unit < 0 || unit >= cd->cd_ndevs)
   2676 		dv = NULL;
   2677 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2678 		dv = NULL;
   2679 	mutex_exit(&alldevs_lock);
   2680 
   2681 	return dv;
   2682 }
   2683 
   2684 /*
   2685  * device_lookup_private:
   2686  *
   2687  *	Look up a softc instance for a given driver.
   2688  */
   2689 void *
   2690 device_lookup_private(cfdriver_t cd, int unit)
   2691 {
   2692 
   2693 	return device_private(device_lookup(cd, unit));
   2694 }
   2695 
   2696 /*
   2697  * device_lookup_acquire:
   2698  *
   2699  *	Look up a device instance for a given driver, and return a
   2700  *	reference to it that must be released by device_release.
   2701  *
   2702  *	=> If the device is still attaching, blocks until *_attach has
   2703  *	   returned.
   2704  *
   2705  *	=> If the device is detaching, blocks until *_detach has
   2706  *	   returned.  May succeed or fail in that case, depending on
   2707  *	   whether *_detach has backed out (EBUSY) or committed to
   2708  *	   detaching.
   2709  *
   2710  *	May sleep.
   2711  */
   2712 device_t
   2713 device_lookup_acquire(cfdriver_t cd, int unit)
   2714 {
   2715 	device_t dv;
   2716 
   2717 	ASSERT_SLEEPABLE();
   2718 
   2719 	/* XXX This should have a pserialized fast path -- TBD.  */
   2720 	mutex_enter(&config_misc_lock);
   2721 	mutex_enter(&alldevs_lock);
   2722 retry:	if (unit < 0 || unit >= cd->cd_ndevs ||
   2723 	    (dv = cd->cd_devs[unit]) == NULL ||
   2724 	    dv->dv_del_gen != 0 ||
   2725 	    dv->dv_detach_committed) {
   2726 		dv = NULL;
   2727 	} else {
   2728 		/*
   2729 		 * Wait for the device to stabilize, if attaching or
   2730 		 * detaching.  Either way we must wait for *_attach or
   2731 		 * *_detach to complete, and either way we must retry:
   2732 		 * even if detaching, *_detach might fail (EBUSY) so
   2733 		 * the device may still be there.
   2734 		 */
   2735 		if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
   2736 		    dv->dv_detaching != NULL) {
   2737 			mutex_exit(&alldevs_lock);
   2738 			cv_wait(&config_misc_cv, &config_misc_lock);
   2739 			mutex_enter(&alldevs_lock);
   2740 			goto retry;
   2741 		}
   2742 		localcount_acquire(dv->dv_localcount);
   2743 	}
   2744 	mutex_exit(&alldevs_lock);
   2745 	mutex_exit(&config_misc_lock);
   2746 
   2747 	return dv;
   2748 }
   2749 
   2750 /*
   2751  * device_release:
   2752  *
   2753  *	Release a reference to a device acquired with
   2754  *	device_lookup_acquire.
   2755  */
   2756 void
   2757 device_release(device_t dv)
   2758 {
   2759 
   2760 	localcount_release(dv->dv_localcount,
   2761 	    &config_misc_cv, &config_misc_lock);
   2762 }
   2763 
   2764 /*
   2765  * device_find_by_xname:
   2766  *
   2767  *	Returns the device of the given name or NULL if it doesn't exist.
   2768  */
   2769 device_t
   2770 device_find_by_xname(const char *name)
   2771 {
   2772 	device_t dv;
   2773 	deviter_t di;
   2774 
   2775 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2776 		if (strcmp(device_xname(dv), name) == 0)
   2777 			break;
   2778 	}
   2779 	deviter_release(&di);
   2780 
   2781 	return dv;
   2782 }
   2783 
   2784 /*
   2785  * device_find_by_driver_unit:
   2786  *
   2787  *	Returns the device of the given driver name and unit or
   2788  *	NULL if it doesn't exist.
   2789  */
   2790 device_t
   2791 device_find_by_driver_unit(const char *name, int unit)
   2792 {
   2793 	struct cfdriver *cd;
   2794 
   2795 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2796 		return NULL;
   2797 	return device_lookup(cd, unit);
   2798 }
   2799 
   2800 static bool
   2801 match_strcmp(const char * const s1, const char * const s2)
   2802 {
   2803 	return strcmp(s1, s2) == 0;
   2804 }
   2805 
   2806 static bool
   2807 match_pmatch(const char * const s1, const char * const s2)
   2808 {
   2809 	return pmatch(s1, s2, NULL) == 2;
   2810 }
   2811 
   2812 static bool
   2813 strarray_match_internal(const char ** const strings,
   2814     unsigned int const nstrings, const char * const str,
   2815     unsigned int * const indexp,
   2816     bool (*match_fn)(const char *, const char *))
   2817 {
   2818 	unsigned int i;
   2819 
   2820 	if (strings == NULL || nstrings == 0) {
   2821 		return false;
   2822 	}
   2823 
   2824 	for (i = 0; i < nstrings; i++) {
   2825 		if ((*match_fn)(strings[i], str)) {
   2826 			*indexp = i;
   2827 			return true;
   2828 		}
   2829 	}
   2830 
   2831 	return false;
   2832 }
   2833 
   2834 static int
   2835 strarray_match(const char ** const strings, unsigned int const nstrings,
   2836     const char * const str)
   2837 {
   2838 	unsigned int idx;
   2839 
   2840 	if (strarray_match_internal(strings, nstrings, str, &idx,
   2841 				    match_strcmp)) {
   2842 		return (int)(nstrings - idx);
   2843 	}
   2844 	return 0;
   2845 }
   2846 
   2847 static int
   2848 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   2849     const char * const pattern)
   2850 {
   2851 	unsigned int idx;
   2852 
   2853 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   2854 				    match_pmatch)) {
   2855 		return (int)(nstrings - idx);
   2856 	}
   2857 	return 0;
   2858 }
   2859 
   2860 static int
   2861 device_compatible_match_strarray_internal(
   2862     const char **device_compats, int ndevice_compats,
   2863     const struct device_compatible_entry *driver_compats,
   2864     const struct device_compatible_entry **matching_entryp,
   2865     int (*match_fn)(const char **, unsigned int, const char *))
   2866 {
   2867 	const struct device_compatible_entry *dce = NULL;
   2868 	int rv;
   2869 
   2870 	if (ndevice_compats == 0 || device_compats == NULL ||
   2871 	    driver_compats == NULL)
   2872 		return 0;
   2873 
   2874 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2875 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   2876 		if (rv != 0) {
   2877 			if (matching_entryp != NULL) {
   2878 				*matching_entryp = dce;
   2879 			}
   2880 			return rv;
   2881 		}
   2882 	}
   2883 	return 0;
   2884 }
   2885 
   2886 /*
   2887  * device_compatible_match:
   2888  *
   2889  *	Match a driver's "compatible" data against a device's
   2890  *	"compatible" strings.  Returns resulted weighted by
   2891  *	which device "compatible" string was matched.
   2892  */
   2893 int
   2894 device_compatible_match(const char **device_compats, int ndevice_compats,
   2895     const struct device_compatible_entry *driver_compats)
   2896 {
   2897 	return device_compatible_match_strarray_internal(device_compats,
   2898 	    ndevice_compats, driver_compats, NULL, strarray_match);
   2899 }
   2900 
   2901 /*
   2902  * device_compatible_pmatch:
   2903  *
   2904  *	Like device_compatible_match(), but uses pmatch(9) to compare
   2905  *	the device "compatible" strings against patterns in the
   2906  *	driver's "compatible" data.
   2907  */
   2908 int
   2909 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   2910     const struct device_compatible_entry *driver_compats)
   2911 {
   2912 	return device_compatible_match_strarray_internal(device_compats,
   2913 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   2914 }
   2915 
   2916 static int
   2917 device_compatible_match_strlist_internal(
   2918     const char * const device_compats, size_t const device_compatsize,
   2919     const struct device_compatible_entry *driver_compats,
   2920     const struct device_compatible_entry **matching_entryp,
   2921     int (*match_fn)(const char *, size_t, const char *))
   2922 {
   2923 	const struct device_compatible_entry *dce = NULL;
   2924 	int rv;
   2925 
   2926 	if (device_compats == NULL || device_compatsize == 0 ||
   2927 	    driver_compats == NULL)
   2928 		return 0;
   2929 
   2930 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   2931 		rv = (*match_fn)(device_compats, device_compatsize,
   2932 		    dce->compat);
   2933 		if (rv != 0) {
   2934 			if (matching_entryp != NULL) {
   2935 				*matching_entryp = dce;
   2936 			}
   2937 			return rv;
   2938 		}
   2939 	}
   2940 	return 0;
   2941 }
   2942 
   2943 /*
   2944  * device_compatible_match_strlist:
   2945  *
   2946  *	Like device_compatible_match(), but take the device
   2947  *	"compatible" strings as an OpenFirmware-style string
   2948  *	list.
   2949  */
   2950 int
   2951 device_compatible_match_strlist(
   2952     const char * const device_compats, size_t const device_compatsize,
   2953     const struct device_compatible_entry *driver_compats)
   2954 {
   2955 	return device_compatible_match_strlist_internal(device_compats,
   2956 	    device_compatsize, driver_compats, NULL, strlist_match);
   2957 }
   2958 
   2959 /*
   2960  * device_compatible_pmatch_strlist:
   2961  *
   2962  *	Like device_compatible_pmatch(), but take the device
   2963  *	"compatible" strings as an OpenFirmware-style string
   2964  *	list.
   2965  */
   2966 int
   2967 device_compatible_pmatch_strlist(
   2968     const char * const device_compats, size_t const device_compatsize,
   2969     const struct device_compatible_entry *driver_compats)
   2970 {
   2971 	return device_compatible_match_strlist_internal(device_compats,
   2972 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   2973 }
   2974 
   2975 static int
   2976 device_compatible_match_id_internal(
   2977     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   2978     const struct device_compatible_entry *driver_compats,
   2979     const struct device_compatible_entry **matching_entryp)
   2980 {
   2981 	const struct device_compatible_entry *dce = NULL;
   2982 
   2983 	if (mask == 0)
   2984 		return 0;
   2985 
   2986 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   2987 		if ((id & mask) == dce->id) {
   2988 			if (matching_entryp != NULL) {
   2989 				*matching_entryp = dce;
   2990 			}
   2991 			return 1;
   2992 		}
   2993 	}
   2994 	return 0;
   2995 }
   2996 
   2997 /*
   2998  * device_compatible_match_id:
   2999  *
   3000  *	Like device_compatible_match(), but takes a single
   3001  *	unsigned integer device ID.
   3002  */
   3003 int
   3004 device_compatible_match_id(
   3005     uintptr_t const id, uintptr_t const sentinel_id,
   3006     const struct device_compatible_entry *driver_compats)
   3007 {
   3008 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   3009 	    sentinel_id, driver_compats, NULL);
   3010 }
   3011 
   3012 /*
   3013  * device_compatible_lookup:
   3014  *
   3015  *	Look up and return the device_compatible_entry, using the
   3016  *	same matching criteria used by device_compatible_match().
   3017  */
   3018 const struct device_compatible_entry *
   3019 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   3020 			 const struct device_compatible_entry *driver_compats)
   3021 {
   3022 	const struct device_compatible_entry *dce;
   3023 
   3024 	if (device_compatible_match_strarray_internal(device_compats,
   3025 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   3026 		return dce;
   3027 	}
   3028 	return NULL;
   3029 }
   3030 
   3031 /*
   3032  * device_compatible_plookup:
   3033  *
   3034  *	Look up and return the device_compatible_entry, using the
   3035  *	same matching criteria used by device_compatible_pmatch().
   3036  */
   3037 const struct device_compatible_entry *
   3038 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   3039 			  const struct device_compatible_entry *driver_compats)
   3040 {
   3041 	const struct device_compatible_entry *dce;
   3042 
   3043 	if (device_compatible_match_strarray_internal(device_compats,
   3044 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   3045 		return dce;
   3046 	}
   3047 	return NULL;
   3048 }
   3049 
   3050 /*
   3051  * device_compatible_lookup_strlist:
   3052  *
   3053  *	Like device_compatible_lookup(), but take the device
   3054  *	"compatible" strings as an OpenFirmware-style string
   3055  *	list.
   3056  */
   3057 const struct device_compatible_entry *
   3058 device_compatible_lookup_strlist(
   3059     const char * const device_compats, size_t const device_compatsize,
   3060     const struct device_compatible_entry *driver_compats)
   3061 {
   3062 	const struct device_compatible_entry *dce;
   3063 
   3064 	if (device_compatible_match_strlist_internal(device_compats,
   3065 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   3066 		return dce;
   3067 	}
   3068 	return NULL;
   3069 }
   3070 
   3071 /*
   3072  * device_compatible_plookup_strlist:
   3073  *
   3074  *	Like device_compatible_plookup(), but take the device
   3075  *	"compatible" strings as an OpenFirmware-style string
   3076  *	list.
   3077  */
   3078 const struct device_compatible_entry *
   3079 device_compatible_plookup_strlist(
   3080     const char * const device_compats, size_t const device_compatsize,
   3081     const struct device_compatible_entry *driver_compats)
   3082 {
   3083 	const struct device_compatible_entry *dce;
   3084 
   3085 	if (device_compatible_match_strlist_internal(device_compats,
   3086 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   3087 		return dce;
   3088 	}
   3089 	return NULL;
   3090 }
   3091 
   3092 /*
   3093  * device_compatible_lookup_id:
   3094  *
   3095  *	Like device_compatible_lookup(), but takes a single
   3096  *	unsigned integer device ID.
   3097  */
   3098 const struct device_compatible_entry *
   3099 device_compatible_lookup_id(
   3100     uintptr_t const id, uintptr_t const sentinel_id,
   3101     const struct device_compatible_entry *driver_compats)
   3102 {
   3103 	const struct device_compatible_entry *dce;
   3104 
   3105 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   3106 	    sentinel_id, driver_compats, &dce)) {
   3107 		return dce;
   3108 	}
   3109 	return NULL;
   3110 }
   3111 
   3112 /*
   3113  * Power management related functions.
   3114  */
   3115 
   3116 bool
   3117 device_pmf_is_registered(device_t dev)
   3118 {
   3119 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   3120 }
   3121 
   3122 bool
   3123 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   3124 {
   3125 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3126 		return true;
   3127 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3128 		return false;
   3129 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3130 	    dev->dv_driver_suspend != NULL &&
   3131 	    !(*dev->dv_driver_suspend)(dev, qual))
   3132 		return false;
   3133 
   3134 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   3135 	return true;
   3136 }
   3137 
   3138 bool
   3139 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   3140 {
   3141 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3142 		return true;
   3143 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3144 		return false;
   3145 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3146 	    dev->dv_driver_resume != NULL &&
   3147 	    !(*dev->dv_driver_resume)(dev, qual))
   3148 		return false;
   3149 
   3150 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   3151 	return true;
   3152 }
   3153 
   3154 bool
   3155 device_pmf_driver_shutdown(device_t dev, int how)
   3156 {
   3157 
   3158 	if (*dev->dv_driver_shutdown != NULL &&
   3159 	    !(*dev->dv_driver_shutdown)(dev, how))
   3160 		return false;
   3161 	return true;
   3162 }
   3163 
   3164 void
   3165 device_pmf_driver_register(device_t dev,
   3166     bool (*suspend)(device_t, const pmf_qual_t *),
   3167     bool (*resume)(device_t, const pmf_qual_t *),
   3168     bool (*shutdown)(device_t, int))
   3169 {
   3170 
   3171 	dev->dv_driver_suspend = suspend;
   3172 	dev->dv_driver_resume = resume;
   3173 	dev->dv_driver_shutdown = shutdown;
   3174 	dev->dv_flags |= DVF_POWER_HANDLERS;
   3175 }
   3176 
   3177 void
   3178 device_pmf_driver_deregister(device_t dev)
   3179 {
   3180 	device_lock_t dvl = device_getlock(dev);
   3181 
   3182 	dev->dv_driver_suspend = NULL;
   3183 	dev->dv_driver_resume = NULL;
   3184 
   3185 	mutex_enter(&dvl->dvl_mtx);
   3186 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   3187 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   3188 		/* Wake a thread that waits for the lock.  That
   3189 		 * thread will fail to acquire the lock, and then
   3190 		 * it will wake the next thread that waits for the
   3191 		 * lock, or else it will wake us.
   3192 		 */
   3193 		cv_signal(&dvl->dvl_cv);
   3194 		pmflock_debug(dev, __func__, __LINE__);
   3195 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3196 		pmflock_debug(dev, __func__, __LINE__);
   3197 	}
   3198 	mutex_exit(&dvl->dvl_mtx);
   3199 }
   3200 
   3201 void
   3202 device_pmf_driver_child_register(device_t dev)
   3203 {
   3204 	device_t parent = device_parent(dev);
   3205 
   3206 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   3207 		return;
   3208 	(*parent->dv_driver_child_register)(dev);
   3209 }
   3210 
   3211 void
   3212 device_pmf_driver_set_child_register(device_t dev,
   3213     void (*child_register)(device_t))
   3214 {
   3215 	dev->dv_driver_child_register = child_register;
   3216 }
   3217 
   3218 static void
   3219 pmflock_debug(device_t dev, const char *func, int line)
   3220 {
   3221 #ifdef PMFLOCK_DEBUG
   3222 	device_lock_t dvl = device_getlock(dev);
   3223 	const char *curlwp_name;
   3224 
   3225 	if (curlwp->l_name != NULL)
   3226 		curlwp_name = curlwp->l_name;
   3227 	else
   3228 		curlwp_name = curlwp->l_proc->p_comm;
   3229 
   3230 	aprint_debug_dev(dev,
   3231 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   3232 	    curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   3233 #endif	/* PMFLOCK_DEBUG */
   3234 }
   3235 
   3236 static bool
   3237 device_pmf_lock1(device_t dev)
   3238 {
   3239 	device_lock_t dvl = device_getlock(dev);
   3240 
   3241 	while (device_pmf_is_registered(dev) &&
   3242 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   3243 		dvl->dvl_nwait++;
   3244 		pmflock_debug(dev, __func__, __LINE__);
   3245 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3246 		pmflock_debug(dev, __func__, __LINE__);
   3247 		dvl->dvl_nwait--;
   3248 	}
   3249 	if (!device_pmf_is_registered(dev)) {
   3250 		pmflock_debug(dev, __func__, __LINE__);
   3251 		/* We could not acquire the lock, but some other thread may
   3252 		 * wait for it, also.  Wake that thread.
   3253 		 */
   3254 		cv_signal(&dvl->dvl_cv);
   3255 		return false;
   3256 	}
   3257 	dvl->dvl_nlock++;
   3258 	dvl->dvl_holder = curlwp;
   3259 	pmflock_debug(dev, __func__, __LINE__);
   3260 	return true;
   3261 }
   3262 
   3263 bool
   3264 device_pmf_lock(device_t dev)
   3265 {
   3266 	bool rc;
   3267 	device_lock_t dvl = device_getlock(dev);
   3268 
   3269 	mutex_enter(&dvl->dvl_mtx);
   3270 	rc = device_pmf_lock1(dev);
   3271 	mutex_exit(&dvl->dvl_mtx);
   3272 
   3273 	return rc;
   3274 }
   3275 
   3276 void
   3277 device_pmf_unlock(device_t dev)
   3278 {
   3279 	device_lock_t dvl = device_getlock(dev);
   3280 
   3281 	KASSERT(dvl->dvl_nlock > 0);
   3282 	mutex_enter(&dvl->dvl_mtx);
   3283 	if (--dvl->dvl_nlock == 0)
   3284 		dvl->dvl_holder = NULL;
   3285 	cv_signal(&dvl->dvl_cv);
   3286 	pmflock_debug(dev, __func__, __LINE__);
   3287 	mutex_exit(&dvl->dvl_mtx);
   3288 }
   3289 
   3290 device_lock_t
   3291 device_getlock(device_t dev)
   3292 {
   3293 	return &dev->dv_lock;
   3294 }
   3295 
   3296 void *
   3297 device_pmf_bus_private(device_t dev)
   3298 {
   3299 	return dev->dv_bus_private;
   3300 }
   3301 
   3302 bool
   3303 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   3304 {
   3305 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3306 		return true;
   3307 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   3308 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3309 		return false;
   3310 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3311 	    dev->dv_bus_suspend != NULL &&
   3312 	    !(*dev->dv_bus_suspend)(dev, qual))
   3313 		return false;
   3314 
   3315 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   3316 	return true;
   3317 }
   3318 
   3319 bool
   3320 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   3321 {
   3322 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   3323 		return true;
   3324 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3325 	    dev->dv_bus_resume != NULL &&
   3326 	    !(*dev->dv_bus_resume)(dev, qual))
   3327 		return false;
   3328 
   3329 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   3330 	return true;
   3331 }
   3332 
   3333 bool
   3334 device_pmf_bus_shutdown(device_t dev, int how)
   3335 {
   3336 
   3337 	if (*dev->dv_bus_shutdown != NULL &&
   3338 	    !(*dev->dv_bus_shutdown)(dev, how))
   3339 		return false;
   3340 	return true;
   3341 }
   3342 
   3343 void
   3344 device_pmf_bus_register(device_t dev, void *priv,
   3345     bool (*suspend)(device_t, const pmf_qual_t *),
   3346     bool (*resume)(device_t, const pmf_qual_t *),
   3347     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   3348 {
   3349 	dev->dv_bus_private = priv;
   3350 	dev->dv_bus_resume = resume;
   3351 	dev->dv_bus_suspend = suspend;
   3352 	dev->dv_bus_shutdown = shutdown;
   3353 	dev->dv_bus_deregister = deregister;
   3354 }
   3355 
   3356 void
   3357 device_pmf_bus_deregister(device_t dev)
   3358 {
   3359 	if (dev->dv_bus_deregister == NULL)
   3360 		return;
   3361 	(*dev->dv_bus_deregister)(dev);
   3362 	dev->dv_bus_private = NULL;
   3363 	dev->dv_bus_suspend = NULL;
   3364 	dev->dv_bus_resume = NULL;
   3365 	dev->dv_bus_deregister = NULL;
   3366 }
   3367 
   3368 void *
   3369 device_pmf_class_private(device_t dev)
   3370 {
   3371 	return dev->dv_class_private;
   3372 }
   3373 
   3374 bool
   3375 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3376 {
   3377 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3378 		return true;
   3379 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3380 	    dev->dv_class_suspend != NULL &&
   3381 	    !(*dev->dv_class_suspend)(dev, qual))
   3382 		return false;
   3383 
   3384 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3385 	return true;
   3386 }
   3387 
   3388 bool
   3389 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3390 {
   3391 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3392 		return true;
   3393 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3394 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3395 		return false;
   3396 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3397 	    dev->dv_class_resume != NULL &&
   3398 	    !(*dev->dv_class_resume)(dev, qual))
   3399 		return false;
   3400 
   3401 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3402 	return true;
   3403 }
   3404 
   3405 void
   3406 device_pmf_class_register(device_t dev, void *priv,
   3407     bool (*suspend)(device_t, const pmf_qual_t *),
   3408     bool (*resume)(device_t, const pmf_qual_t *),
   3409     void (*deregister)(device_t))
   3410 {
   3411 	dev->dv_class_private = priv;
   3412 	dev->dv_class_suspend = suspend;
   3413 	dev->dv_class_resume = resume;
   3414 	dev->dv_class_deregister = deregister;
   3415 }
   3416 
   3417 void
   3418 device_pmf_class_deregister(device_t dev)
   3419 {
   3420 	if (dev->dv_class_deregister == NULL)
   3421 		return;
   3422 	(*dev->dv_class_deregister)(dev);
   3423 	dev->dv_class_private = NULL;
   3424 	dev->dv_class_suspend = NULL;
   3425 	dev->dv_class_resume = NULL;
   3426 	dev->dv_class_deregister = NULL;
   3427 }
   3428 
   3429 bool
   3430 device_active(device_t dev, devactive_t type)
   3431 {
   3432 	size_t i;
   3433 
   3434 	if (dev->dv_activity_count == 0)
   3435 		return false;
   3436 
   3437 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3438 		if (dev->dv_activity_handlers[i] == NULL)
   3439 			break;
   3440 		(*dev->dv_activity_handlers[i])(dev, type);
   3441 	}
   3442 
   3443 	return true;
   3444 }
   3445 
   3446 bool
   3447 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3448 {
   3449 	void (**new_handlers)(device_t, devactive_t);
   3450 	void (**old_handlers)(device_t, devactive_t);
   3451 	size_t i, old_size, new_size;
   3452 	int s;
   3453 
   3454 	old_handlers = dev->dv_activity_handlers;
   3455 	old_size = dev->dv_activity_count;
   3456 
   3457 	KASSERT(old_size == 0 || old_handlers != NULL);
   3458 
   3459 	for (i = 0; i < old_size; ++i) {
   3460 		KASSERT(old_handlers[i] != handler);
   3461 		if (old_handlers[i] == NULL) {
   3462 			old_handlers[i] = handler;
   3463 			return true;
   3464 		}
   3465 	}
   3466 
   3467 	new_size = old_size + 4;
   3468 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3469 
   3470 	for (i = 0; i < old_size; ++i)
   3471 		new_handlers[i] = old_handlers[i];
   3472 	new_handlers[old_size] = handler;
   3473 	for (i = old_size+1; i < new_size; ++i)
   3474 		new_handlers[i] = NULL;
   3475 
   3476 	s = splhigh();
   3477 	dev->dv_activity_count = new_size;
   3478 	dev->dv_activity_handlers = new_handlers;
   3479 	splx(s);
   3480 
   3481 	if (old_size > 0)
   3482 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3483 
   3484 	return true;
   3485 }
   3486 
   3487 void
   3488 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3489 {
   3490 	void (**old_handlers)(device_t, devactive_t);
   3491 	size_t i, old_size;
   3492 	int s;
   3493 
   3494 	old_handlers = dev->dv_activity_handlers;
   3495 	old_size = dev->dv_activity_count;
   3496 
   3497 	for (i = 0; i < old_size; ++i) {
   3498 		if (old_handlers[i] == handler)
   3499 			break;
   3500 		if (old_handlers[i] == NULL)
   3501 			return; /* XXX panic? */
   3502 	}
   3503 
   3504 	if (i == old_size)
   3505 		return; /* XXX panic? */
   3506 
   3507 	for (; i < old_size - 1; ++i) {
   3508 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3509 			continue;
   3510 
   3511 		if (i == 0) {
   3512 			s = splhigh();
   3513 			dev->dv_activity_count = 0;
   3514 			dev->dv_activity_handlers = NULL;
   3515 			splx(s);
   3516 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3517 		}
   3518 		return;
   3519 	}
   3520 	old_handlers[i] = NULL;
   3521 }
   3522 
   3523 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3524 static bool
   3525 device_exists_at(device_t dv, devgen_t gen)
   3526 {
   3527 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3528 	    dv->dv_add_gen <= gen;
   3529 }
   3530 
   3531 static bool
   3532 deviter_visits(const deviter_t *di, device_t dv)
   3533 {
   3534 	return device_exists_at(dv, di->di_gen);
   3535 }
   3536 
   3537 /*
   3538  * Device Iteration
   3539  *
   3540  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3541  *     each device_t's in the device tree.
   3542  *
   3543  * deviter_init(di, flags): initialize the device iterator `di'
   3544  *     to "walk" the device tree.  deviter_next(di) will return
   3545  *     the first device_t in the device tree, or NULL if there are
   3546  *     no devices.
   3547  *
   3548  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3549  *     caller intends to modify the device tree by calling
   3550  *     config_detach(9) on devices in the order that the iterator
   3551  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3552  *     nearest the "root" of the device tree to be returned, first;
   3553  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3554  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3555  *     indicating both that deviter_init() should not respect any
   3556  *     locks on the device tree, and that deviter_next(di) may run
   3557  *     in more than one LWP before the walk has finished.
   3558  *
   3559  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3560  *     once.
   3561  *
   3562  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3563  *
   3564  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3565  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3566  *
   3567  * deviter_first(di, flags): initialize the device iterator `di'
   3568  *     and return the first device_t in the device tree, or NULL
   3569  *     if there are no devices.  The statement
   3570  *
   3571  *         dv = deviter_first(di);
   3572  *
   3573  *     is shorthand for
   3574  *
   3575  *         deviter_init(di);
   3576  *         dv = deviter_next(di);
   3577  *
   3578  * deviter_next(di): return the next device_t in the device tree,
   3579  *     or NULL if there are no more devices.  deviter_next(di)
   3580  *     is undefined if `di' was not initialized with deviter_init() or
   3581  *     deviter_first().
   3582  *
   3583  * deviter_release(di): stops iteration (subsequent calls to
   3584  *     deviter_next() will return NULL), releases any locks and
   3585  *     resources held by the device iterator.
   3586  *
   3587  * Device iteration does not return device_t's in any particular
   3588  * order.  An iterator will never return the same device_t twice.
   3589  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3590  * is called repeatedly on the same `di', it will eventually return
   3591  * NULL.  It is ok to attach/detach devices during device iteration.
   3592  */
   3593 void
   3594 deviter_init(deviter_t *di, deviter_flags_t flags)
   3595 {
   3596 	device_t dv;
   3597 
   3598 	memset(di, 0, sizeof(*di));
   3599 
   3600 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3601 		flags |= DEVITER_F_RW;
   3602 
   3603 	mutex_enter(&alldevs_lock);
   3604 	if ((flags & DEVITER_F_RW) != 0)
   3605 		alldevs_nwrite++;
   3606 	else
   3607 		alldevs_nread++;
   3608 	di->di_gen = alldevs_gen++;
   3609 	di->di_flags = flags;
   3610 
   3611 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3612 	case DEVITER_F_LEAVES_FIRST:
   3613 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3614 			if (!deviter_visits(di, dv))
   3615 				continue;
   3616 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3617 		}
   3618 		break;
   3619 	case DEVITER_F_ROOT_FIRST:
   3620 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3621 			if (!deviter_visits(di, dv))
   3622 				continue;
   3623 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3624 		}
   3625 		break;
   3626 	default:
   3627 		break;
   3628 	}
   3629 
   3630 	deviter_reinit(di);
   3631 	mutex_exit(&alldevs_lock);
   3632 }
   3633 
   3634 static void
   3635 deviter_reinit(deviter_t *di)
   3636 {
   3637 
   3638 	KASSERT(mutex_owned(&alldevs_lock));
   3639 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3640 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3641 	else
   3642 		di->di_prev = TAILQ_FIRST(&alldevs);
   3643 }
   3644 
   3645 device_t
   3646 deviter_first(deviter_t *di, deviter_flags_t flags)
   3647 {
   3648 
   3649 	deviter_init(di, flags);
   3650 	return deviter_next(di);
   3651 }
   3652 
   3653 static device_t
   3654 deviter_next2(deviter_t *di)
   3655 {
   3656 	device_t dv;
   3657 
   3658 	KASSERT(mutex_owned(&alldevs_lock));
   3659 
   3660 	dv = di->di_prev;
   3661 
   3662 	if (dv == NULL)
   3663 		return NULL;
   3664 
   3665 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3666 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3667 	else
   3668 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3669 
   3670 	return dv;
   3671 }
   3672 
   3673 static device_t
   3674 deviter_next1(deviter_t *di)
   3675 {
   3676 	device_t dv;
   3677 
   3678 	KASSERT(mutex_owned(&alldevs_lock));
   3679 
   3680 	do {
   3681 		dv = deviter_next2(di);
   3682 	} while (dv != NULL && !deviter_visits(di, dv));
   3683 
   3684 	return dv;
   3685 }
   3686 
   3687 device_t
   3688 deviter_next(deviter_t *di)
   3689 {
   3690 	device_t dv = NULL;
   3691 
   3692 	mutex_enter(&alldevs_lock);
   3693 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3694 	case 0:
   3695 		dv = deviter_next1(di);
   3696 		break;
   3697 	case DEVITER_F_LEAVES_FIRST:
   3698 		while (di->di_curdepth >= 0) {
   3699 			if ((dv = deviter_next1(di)) == NULL) {
   3700 				di->di_curdepth--;
   3701 				deviter_reinit(di);
   3702 			} else if (dv->dv_depth == di->di_curdepth)
   3703 				break;
   3704 		}
   3705 		break;
   3706 	case DEVITER_F_ROOT_FIRST:
   3707 		while (di->di_curdepth <= di->di_maxdepth) {
   3708 			if ((dv = deviter_next1(di)) == NULL) {
   3709 				di->di_curdepth++;
   3710 				deviter_reinit(di);
   3711 			} else if (dv->dv_depth == di->di_curdepth)
   3712 				break;
   3713 		}
   3714 		break;
   3715 	default:
   3716 		break;
   3717 	}
   3718 	mutex_exit(&alldevs_lock);
   3719 
   3720 	return dv;
   3721 }
   3722 
   3723 void
   3724 deviter_release(deviter_t *di)
   3725 {
   3726 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3727 
   3728 	mutex_enter(&alldevs_lock);
   3729 	if (rw)
   3730 		--alldevs_nwrite;
   3731 	else
   3732 		--alldevs_nread;
   3733 	/* XXX wake a garbage-collection thread */
   3734 	mutex_exit(&alldevs_lock);
   3735 }
   3736 
   3737 const char *
   3738 cfdata_ifattr(const struct cfdata *cf)
   3739 {
   3740 	return cf->cf_pspec->cfp_iattr;
   3741 }
   3742 
   3743 bool
   3744 ifattr_match(const char *snull, const char *t)
   3745 {
   3746 	return (snull == NULL) || strcmp(snull, t) == 0;
   3747 }
   3748 
   3749 void
   3750 null_childdetached(device_t self, device_t child)
   3751 {
   3752 	/* do nothing */
   3753 }
   3754 
   3755 static void
   3756 sysctl_detach_setup(struct sysctllog **clog)
   3757 {
   3758 
   3759 	sysctl_createv(clog, 0, NULL, NULL,
   3760 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3761 		CTLTYPE_BOOL, "detachall",
   3762 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3763 		NULL, 0, &detachall, 0,
   3764 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3765 }
   3766