subr_blist.c revision 1.3 1 1.3 yamt /* $NetBSD: subr_blist.c,v 1.3 2005/04/06 11:35:54 yamt Exp $ */
2 1.2 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 1.1 yamt * Redistribution and use in source and binary forms, with or without
6 1.1 yamt * modification, are permitted provided that the following conditions
7 1.1 yamt * are met:
8 1.1 yamt * 1. Redistributions of source code must retain the above copyright
9 1.1 yamt * notice, this list of conditions and the following disclaimer.
10 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer in the
12 1.1 yamt * documentation and/or other materials provided with the distribution.
13 1.1 yamt * 4. Neither the name of the University nor the names of its contributors
14 1.1 yamt * may be used to endorse or promote products derived from this software
15 1.1 yamt * without specific prior written permission.
16 1.1 yamt *
17 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 1.1 yamt * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 1.1 yamt * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 1.1 yamt * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 1.1 yamt * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 1.1 yamt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 1.1 yamt * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 1.1 yamt * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 1.1 yamt */
29 1.1 yamt /*
30 1.1 yamt * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
31 1.1 yamt *
32 1.1 yamt * This module implements a general bitmap allocator/deallocator. The
33 1.1 yamt * allocator eats around 2 bits per 'block'. The module does not
34 1.1 yamt * try to interpret the meaning of a 'block' other then to return
35 1.3 yamt * BLIST_NONE on an allocation failure.
36 1.1 yamt *
37 1.1 yamt * A radix tree is used to maintain the bitmap. Two radix constants are
38 1.1 yamt * involved: One for the bitmaps contained in the leaf nodes (typically
39 1.1 yamt * 32), and one for the meta nodes (typically 16). Both meta and leaf
40 1.1 yamt * nodes have a hint field. This field gives us a hint as to the largest
41 1.1 yamt * free contiguous range of blocks under the node. It may contain a
42 1.1 yamt * value that is too high, but will never contain a value that is too
43 1.1 yamt * low. When the radix tree is searched, allocation failures in subtrees
44 1.1 yamt * update the hint.
45 1.1 yamt *
46 1.1 yamt * The radix tree also implements two collapsed states for meta nodes:
47 1.1 yamt * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
48 1.1 yamt * in either of these two states, all information contained underneath
49 1.1 yamt * the node is considered stale. These states are used to optimize
50 1.1 yamt * allocation and freeing operations.
51 1.1 yamt *
52 1.1 yamt * The hinting greatly increases code efficiency for allocations while
53 1.1 yamt * the general radix structure optimizes both allocations and frees. The
54 1.1 yamt * radix tree should be able to operate well no matter how much
55 1.1 yamt * fragmentation there is and no matter how large a bitmap is used.
56 1.1 yamt *
57 1.1 yamt * Unlike the rlist code, the blist code wires all necessary memory at
58 1.1 yamt * creation time. Neither allocations nor frees require interaction with
59 1.1 yamt * the memory subsystem. In contrast, the rlist code may allocate memory
60 1.1 yamt * on an rlist_free() call. The non-blocking features of the blist code
61 1.1 yamt * are used to great advantage in the swap code (vm/nswap_pager.c). The
62 1.1 yamt * rlist code uses a little less overall memory then the blist code (but
63 1.1 yamt * due to swap interleaving not all that much less), but the blist code
64 1.1 yamt * scales much, much better.
65 1.1 yamt *
66 1.1 yamt * LAYOUT: The radix tree is layed out recursively using a
67 1.1 yamt * linear array. Each meta node is immediately followed (layed out
68 1.1 yamt * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
69 1.1 yamt * is a recursive structure but one that can be easily scanned through
70 1.1 yamt * a very simple 'skip' calculation. In order to support large radixes,
71 1.1 yamt * portions of the tree may reside outside our memory allocation. We
72 1.1 yamt * handle this with an early-termination optimization (when bighint is
73 1.1 yamt * set to -1) on the scan. The memory allocation is only large enough
74 1.1 yamt * to cover the number of blocks requested at creation time even if it
75 1.1 yamt * must be encompassed in larger root-node radix.
76 1.1 yamt *
77 1.1 yamt * NOTE: the allocator cannot currently allocate more then
78 1.1 yamt * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
79 1.1 yamt * large' if you try. This is an area that could use improvement. The
80 1.1 yamt * radix is large enough that this restriction does not effect the swap
81 1.1 yamt * system, though. Currently only the allocation code is effected by
82 1.1 yamt * this algorithmic unfeature. The freeing code can handle arbitrary
83 1.1 yamt * ranges.
84 1.1 yamt *
85 1.1 yamt * This code can be compiled stand-alone for debugging.
86 1.1 yamt */
87 1.1 yamt
88 1.1 yamt #include <sys/cdefs.h>
89 1.3 yamt __KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.3 2005/04/06 11:35:54 yamt Exp $");
90 1.2 yamt #if 0
91 1.1 yamt __FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92 1.2 yamt #endif
93 1.1 yamt
94 1.1 yamt #ifdef _KERNEL
95 1.1 yamt
96 1.1 yamt #include <sys/param.h>
97 1.1 yamt #include <sys/systm.h>
98 1.1 yamt #include <sys/lock.h>
99 1.1 yamt #include <sys/kernel.h>
100 1.1 yamt #include <sys/blist.h>
101 1.1 yamt #include <sys/malloc.h>
102 1.1 yamt #include <sys/proc.h>
103 1.1 yamt
104 1.1 yamt #else
105 1.1 yamt
106 1.1 yamt #ifndef BLIST_NO_DEBUG
107 1.1 yamt #define BLIST_DEBUG
108 1.1 yamt #endif
109 1.1 yamt
110 1.1 yamt #include <sys/types.h>
111 1.1 yamt #include <stdio.h>
112 1.1 yamt #include <string.h>
113 1.1 yamt #include <stdlib.h>
114 1.1 yamt #include <stdarg.h>
115 1.3 yamt #include <inttypes.h>
116 1.1 yamt
117 1.1 yamt #define malloc(a,b,c) calloc(a, 1)
118 1.1 yamt #define free(a,b) free(a)
119 1.1 yamt
120 1.3 yamt #include "../sys/blist.h"
121 1.1 yamt
122 1.1 yamt void panic(const char *ctl, ...);
123 1.1 yamt
124 1.1 yamt #endif
125 1.1 yamt
126 1.1 yamt /*
127 1.1 yamt * static support functions
128 1.1 yamt */
129 1.1 yamt
130 1.3 yamt static uint64_t blst_leaf_alloc(blmeta_t *scan, uint64_t blk, int count);
131 1.3 yamt static uint64_t blst_meta_alloc(blmeta_t *scan, uint64_t blk,
132 1.3 yamt uint64_t count, uint64_t radix, int skip);
133 1.3 yamt static void blst_leaf_free(blmeta_t *scan, uint64_t relblk, int count);
134 1.3 yamt static void blst_meta_free(blmeta_t *scan, uint64_t freeBlk, uint64_t count,
135 1.3 yamt uint64_t radix, int skip, uint64_t blk);
136 1.3 yamt static void blst_copy(blmeta_t *scan, uint64_t blk, uint64_t radix,
137 1.3 yamt uint64_t skip, blist_t dest, uint64_t count);
138 1.3 yamt static int blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count);
139 1.3 yamt static int blst_meta_fill(blmeta_t *scan, uint64_t allocBlk, uint64_t count,
140 1.3 yamt uint64_t radix, int skip, uint64_t blk);
141 1.3 yamt static uint64_t blst_radix_init(blmeta_t *scan, uint64_t radix,
142 1.3 yamt int skip, uint64_t count);
143 1.1 yamt #ifndef _KERNEL
144 1.3 yamt static void blst_radix_print(blmeta_t *scan, uint64_t blk,
145 1.3 yamt uint64_t radix, int skip, int tab);
146 1.1 yamt #endif
147 1.1 yamt
148 1.1 yamt #ifdef _KERNEL
149 1.3 yamt static MALLOC_DEFINE(M_BLIST, "blist", "Bitmap allocator");
150 1.1 yamt #endif
151 1.1 yamt
152 1.1 yamt /*
153 1.1 yamt * blist_create() - create a blist capable of handling up to the specified
154 1.1 yamt * number of blocks
155 1.1 yamt *
156 1.1 yamt * blocks must be greater then 0
157 1.1 yamt *
158 1.1 yamt * The smallest blist consists of a single leaf node capable of
159 1.1 yamt * managing BLIST_BMAP_RADIX blocks.
160 1.1 yamt */
161 1.1 yamt
162 1.1 yamt blist_t
163 1.3 yamt blist_create(uint64_t blocks)
164 1.1 yamt {
165 1.1 yamt blist_t bl;
166 1.1 yamt int radix;
167 1.1 yamt int skip = 0;
168 1.1 yamt
169 1.1 yamt /*
170 1.1 yamt * Calculate radix and skip field used for scanning.
171 1.1 yamt */
172 1.1 yamt radix = BLIST_BMAP_RADIX;
173 1.1 yamt
174 1.1 yamt while (radix < blocks) {
175 1.1 yamt radix *= BLIST_META_RADIX;
176 1.1 yamt skip = (skip + 1) * BLIST_META_RADIX;
177 1.1 yamt }
178 1.1 yamt
179 1.3 yamt bl = malloc(sizeof(struct blist), M_BLIST, M_WAITOK | M_ZERO);
180 1.1 yamt
181 1.1 yamt bl->bl_blocks = blocks;
182 1.1 yamt bl->bl_radix = radix;
183 1.1 yamt bl->bl_skip = skip;
184 1.1 yamt bl->bl_rootblks = 1 +
185 1.1 yamt blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
186 1.3 yamt bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_BLIST, M_WAITOK);
187 1.1 yamt
188 1.1 yamt #if defined(BLIST_DEBUG)
189 1.1 yamt printf(
190 1.3 yamt "BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
191 1.3 yamt ", requiring %" PRIu64 "K of ram\n",
192 1.3 yamt bl->bl_blocks,
193 1.3 yamt bl->bl_blocks * 4 / 1024,
194 1.3 yamt (bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
195 1.1 yamt );
196 1.3 yamt printf("BLIST raw radix tree contains %" PRIu64 " records\n",
197 1.3 yamt bl->bl_rootblks);
198 1.1 yamt #endif
199 1.1 yamt blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
200 1.1 yamt
201 1.1 yamt return(bl);
202 1.1 yamt }
203 1.1 yamt
204 1.1 yamt void
205 1.1 yamt blist_destroy(blist_t bl)
206 1.1 yamt {
207 1.3 yamt free(bl->bl_root, M_BLIST);
208 1.3 yamt free(bl, M_BLIST);
209 1.1 yamt }
210 1.1 yamt
211 1.1 yamt /*
212 1.1 yamt * blist_alloc() - reserve space in the block bitmap. Return the base
213 1.3 yamt * of a contiguous region or BLIST_NONE if space could
214 1.1 yamt * not be allocated.
215 1.1 yamt */
216 1.1 yamt
217 1.3 yamt uint64_t
218 1.3 yamt blist_alloc(blist_t bl, uint64_t count)
219 1.1 yamt {
220 1.3 yamt uint64_t blk = BLIST_NONE;
221 1.1 yamt
222 1.1 yamt if (bl) {
223 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
224 1.1 yamt blk = blst_leaf_alloc(bl->bl_root, 0, count);
225 1.1 yamt else
226 1.1 yamt blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
227 1.3 yamt if (blk != BLIST_NONE)
228 1.1 yamt bl->bl_free -= count;
229 1.1 yamt }
230 1.1 yamt return(blk);
231 1.1 yamt }
232 1.1 yamt
233 1.1 yamt /*
234 1.1 yamt * blist_free() - free up space in the block bitmap. Return the base
235 1.1 yamt * of a contiguous region. Panic if an inconsistancy is
236 1.1 yamt * found.
237 1.1 yamt */
238 1.1 yamt
239 1.1 yamt void
240 1.3 yamt blist_free(blist_t bl, uint64_t blkno, uint64_t count)
241 1.1 yamt {
242 1.1 yamt if (bl) {
243 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
244 1.1 yamt blst_leaf_free(bl->bl_root, blkno, count);
245 1.1 yamt else
246 1.1 yamt blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
247 1.1 yamt bl->bl_free += count;
248 1.1 yamt }
249 1.1 yamt }
250 1.1 yamt
251 1.1 yamt /*
252 1.1 yamt * blist_fill() - mark a region in the block bitmap as off-limits
253 1.1 yamt * to the allocator (i.e. allocate it), ignoring any
254 1.1 yamt * existing allocations. Return the number of blocks
255 1.1 yamt * actually filled that were free before the call.
256 1.1 yamt */
257 1.1 yamt
258 1.1 yamt int
259 1.3 yamt blist_fill(blist_t bl, uint64_t blkno, uint64_t count)
260 1.1 yamt {
261 1.1 yamt int filled;
262 1.1 yamt
263 1.1 yamt if (bl) {
264 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
265 1.1 yamt filled = blst_leaf_fill(bl->bl_root, blkno, count);
266 1.1 yamt else
267 1.1 yamt filled = blst_meta_fill(bl->bl_root, blkno, count,
268 1.1 yamt bl->bl_radix, bl->bl_skip, 0);
269 1.1 yamt bl->bl_free -= filled;
270 1.1 yamt return filled;
271 1.1 yamt } else
272 1.1 yamt return 0;
273 1.1 yamt }
274 1.1 yamt
275 1.1 yamt /*
276 1.1 yamt * blist_resize() - resize an existing radix tree to handle the
277 1.1 yamt * specified number of blocks. This will reallocate
278 1.1 yamt * the tree and transfer the previous bitmap to the new
279 1.1 yamt * one. When extending the tree you can specify whether
280 1.1 yamt * the new blocks are to left allocated or freed.
281 1.1 yamt */
282 1.1 yamt
283 1.1 yamt void
284 1.3 yamt blist_resize(blist_t *pbl, uint64_t count, int freenew)
285 1.1 yamt {
286 1.1 yamt blist_t newbl = blist_create(count);
287 1.1 yamt blist_t save = *pbl;
288 1.1 yamt
289 1.1 yamt *pbl = newbl;
290 1.1 yamt if (count > save->bl_blocks)
291 1.1 yamt count = save->bl_blocks;
292 1.1 yamt blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
293 1.1 yamt
294 1.1 yamt /*
295 1.1 yamt * If resizing upwards, should we free the new space or not?
296 1.1 yamt */
297 1.1 yamt if (freenew && count < newbl->bl_blocks) {
298 1.1 yamt blist_free(newbl, count, newbl->bl_blocks - count);
299 1.1 yamt }
300 1.1 yamt blist_destroy(save);
301 1.1 yamt }
302 1.1 yamt
303 1.1 yamt #ifdef BLIST_DEBUG
304 1.1 yamt
305 1.1 yamt /*
306 1.1 yamt * blist_print() - dump radix tree
307 1.1 yamt */
308 1.1 yamt
309 1.1 yamt void
310 1.1 yamt blist_print(blist_t bl)
311 1.1 yamt {
312 1.1 yamt printf("BLIST {\n");
313 1.1 yamt blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
314 1.1 yamt printf("}\n");
315 1.1 yamt }
316 1.1 yamt
317 1.1 yamt #endif
318 1.1 yamt
319 1.1 yamt /************************************************************************
320 1.1 yamt * ALLOCATION SUPPORT FUNCTIONS *
321 1.1 yamt ************************************************************************
322 1.1 yamt *
323 1.1 yamt * These support functions do all the actual work. They may seem
324 1.1 yamt * rather longish, but that's because I've commented them up. The
325 1.1 yamt * actual code is straight forward.
326 1.1 yamt *
327 1.1 yamt */
328 1.1 yamt
329 1.1 yamt /*
330 1.1 yamt * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
331 1.1 yamt *
332 1.1 yamt * This is the core of the allocator and is optimized for the 1 block
333 1.1 yamt * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
334 1.1 yamt * somewhat slower. The 1 block allocation case is log2 and extremely
335 1.1 yamt * quick.
336 1.1 yamt */
337 1.1 yamt
338 1.3 yamt static uint64_t
339 1.1 yamt blst_leaf_alloc(
340 1.1 yamt blmeta_t *scan,
341 1.3 yamt uint64_t blk,
342 1.1 yamt int count
343 1.1 yamt ) {
344 1.3 yamt uint64_t orig = scan->u.bmu_bitmap;
345 1.1 yamt
346 1.1 yamt if (orig == 0) {
347 1.1 yamt /*
348 1.1 yamt * Optimize bitmap all-allocated case. Also, count = 1
349 1.1 yamt * case assumes at least 1 bit is free in the bitmap, so
350 1.1 yamt * we have to take care of this case here.
351 1.1 yamt */
352 1.1 yamt scan->bm_bighint = 0;
353 1.3 yamt return(BLIST_NONE);
354 1.1 yamt }
355 1.1 yamt if (count == 1) {
356 1.1 yamt /*
357 1.1 yamt * Optimized code to allocate one bit out of the bitmap
358 1.1 yamt */
359 1.3 yamt uint64_t mask;
360 1.1 yamt int j = BLIST_BMAP_RADIX/2;
361 1.1 yamt int r = 0;
362 1.1 yamt
363 1.3 yamt mask = (uint64_t)-1 >> (BLIST_BMAP_RADIX/2);
364 1.1 yamt
365 1.1 yamt while (j) {
366 1.1 yamt if ((orig & mask) == 0) {
367 1.1 yamt r += j;
368 1.1 yamt orig >>= j;
369 1.1 yamt }
370 1.1 yamt j >>= 1;
371 1.1 yamt mask >>= j;
372 1.1 yamt }
373 1.3 yamt scan->u.bmu_bitmap &= ~((uint64_t)1 << r);
374 1.1 yamt return(blk + r);
375 1.1 yamt }
376 1.1 yamt if (count <= BLIST_BMAP_RADIX) {
377 1.1 yamt /*
378 1.1 yamt * non-optimized code to allocate N bits out of the bitmap.
379 1.1 yamt * The more bits, the faster the code runs. It will run
380 1.1 yamt * the slowest allocating 2 bits, but since there aren't any
381 1.1 yamt * memory ops in the core loop (or shouldn't be, anyway),
382 1.1 yamt * you probably won't notice the difference.
383 1.1 yamt */
384 1.1 yamt int j;
385 1.1 yamt int n = BLIST_BMAP_RADIX - count;
386 1.3 yamt uint64_t mask;
387 1.1 yamt
388 1.3 yamt mask = (uint64_t)-1 >> n;
389 1.1 yamt
390 1.1 yamt for (j = 0; j <= n; ++j) {
391 1.1 yamt if ((orig & mask) == mask) {
392 1.1 yamt scan->u.bmu_bitmap &= ~mask;
393 1.1 yamt return(blk + j);
394 1.1 yamt }
395 1.1 yamt mask = (mask << 1);
396 1.1 yamt }
397 1.1 yamt }
398 1.1 yamt /*
399 1.1 yamt * We couldn't allocate count in this subtree, update bighint.
400 1.1 yamt */
401 1.1 yamt scan->bm_bighint = count - 1;
402 1.3 yamt return(BLIST_NONE);
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt /*
406 1.1 yamt * blist_meta_alloc() - allocate at a meta in the radix tree.
407 1.1 yamt *
408 1.1 yamt * Attempt to allocate at a meta node. If we can't, we update
409 1.1 yamt * bighint and return a failure. Updating bighint optimize future
410 1.1 yamt * calls that hit this node. We have to check for our collapse cases
411 1.1 yamt * and we have a few optimizations strewn in as well.
412 1.1 yamt */
413 1.1 yamt
414 1.3 yamt static uint64_t
415 1.1 yamt blst_meta_alloc(
416 1.1 yamt blmeta_t *scan,
417 1.3 yamt uint64_t blk,
418 1.3 yamt uint64_t count,
419 1.3 yamt uint64_t radix,
420 1.1 yamt int skip
421 1.1 yamt ) {
422 1.1 yamt int i;
423 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
424 1.1 yamt
425 1.1 yamt if (scan->u.bmu_avail == 0) {
426 1.1 yamt /*
427 1.1 yamt * ALL-ALLOCATED special case
428 1.1 yamt */
429 1.1 yamt scan->bm_bighint = count;
430 1.3 yamt return(BLIST_NONE);
431 1.1 yamt }
432 1.1 yamt
433 1.1 yamt if (scan->u.bmu_avail == radix) {
434 1.1 yamt radix /= BLIST_META_RADIX;
435 1.1 yamt
436 1.1 yamt /*
437 1.1 yamt * ALL-FREE special case, initialize uninitialize
438 1.1 yamt * sublevel.
439 1.1 yamt */
440 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
441 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
442 1.1 yamt break;
443 1.1 yamt if (next_skip == 1) {
444 1.3 yamt scan[i].u.bmu_bitmap = (uint64_t)-1;
445 1.1 yamt scan[i].bm_bighint = BLIST_BMAP_RADIX;
446 1.1 yamt } else {
447 1.1 yamt scan[i].bm_bighint = radix;
448 1.1 yamt scan[i].u.bmu_avail = radix;
449 1.1 yamt }
450 1.1 yamt }
451 1.1 yamt } else {
452 1.1 yamt radix /= BLIST_META_RADIX;
453 1.1 yamt }
454 1.1 yamt
455 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
456 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1) {
457 1.3 yamt /*
458 1.3 yamt * Terminator
459 1.3 yamt */
460 1.3 yamt break;
461 1.3 yamt } else if (count <= scan[i].bm_bighint) {
462 1.1 yamt /*
463 1.1 yamt * count fits in object
464 1.1 yamt */
465 1.3 yamt uint64_t r;
466 1.1 yamt if (next_skip == 1) {
467 1.1 yamt r = blst_leaf_alloc(&scan[i], blk, count);
468 1.1 yamt } else {
469 1.1 yamt r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
470 1.1 yamt }
471 1.3 yamt if (r != BLIST_NONE) {
472 1.1 yamt scan->u.bmu_avail -= count;
473 1.1 yamt if (scan->bm_bighint > scan->u.bmu_avail)
474 1.1 yamt scan->bm_bighint = scan->u.bmu_avail;
475 1.1 yamt return(r);
476 1.1 yamt }
477 1.1 yamt } else if (count > radix) {
478 1.1 yamt /*
479 1.1 yamt * count does not fit in object even if it were
480 1.1 yamt * complete free.
481 1.1 yamt */
482 1.1 yamt panic("blist_meta_alloc: allocation too large");
483 1.1 yamt }
484 1.1 yamt blk += radix;
485 1.1 yamt }
486 1.1 yamt
487 1.1 yamt /*
488 1.1 yamt * We couldn't allocate count in this subtree, update bighint.
489 1.1 yamt */
490 1.1 yamt if (scan->bm_bighint >= count)
491 1.1 yamt scan->bm_bighint = count - 1;
492 1.3 yamt return(BLIST_NONE);
493 1.1 yamt }
494 1.1 yamt
495 1.1 yamt /*
496 1.1 yamt * BLST_LEAF_FREE() - free allocated block from leaf bitmap
497 1.1 yamt *
498 1.1 yamt */
499 1.1 yamt
500 1.1 yamt static void
501 1.1 yamt blst_leaf_free(
502 1.1 yamt blmeta_t *scan,
503 1.3 yamt uint64_t blk,
504 1.1 yamt int count
505 1.1 yamt ) {
506 1.1 yamt /*
507 1.1 yamt * free some data in this bitmap
508 1.1 yamt *
509 1.1 yamt * e.g.
510 1.1 yamt * 0000111111111110000
511 1.1 yamt * \_________/\__/
512 1.1 yamt * v n
513 1.1 yamt */
514 1.1 yamt int n = blk & (BLIST_BMAP_RADIX - 1);
515 1.3 yamt uint64_t mask;
516 1.1 yamt
517 1.3 yamt mask = ((uint64_t)-1 << n) &
518 1.3 yamt ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
519 1.1 yamt
520 1.1 yamt if (scan->u.bmu_bitmap & mask)
521 1.1 yamt panic("blst_radix_free: freeing free block");
522 1.1 yamt scan->u.bmu_bitmap |= mask;
523 1.1 yamt
524 1.1 yamt /*
525 1.1 yamt * We could probably do a better job here. We are required to make
526 1.1 yamt * bighint at least as large as the biggest contiguous block of
527 1.1 yamt * data. If we just shoehorn it, a little extra overhead will
528 1.1 yamt * be incured on the next allocation (but only that one typically).
529 1.1 yamt */
530 1.1 yamt scan->bm_bighint = BLIST_BMAP_RADIX;
531 1.1 yamt }
532 1.1 yamt
533 1.1 yamt /*
534 1.1 yamt * BLST_META_FREE() - free allocated blocks from radix tree meta info
535 1.1 yamt *
536 1.1 yamt * This support routine frees a range of blocks from the bitmap.
537 1.1 yamt * The range must be entirely enclosed by this radix node. If a
538 1.1 yamt * meta node, we break the range down recursively to free blocks
539 1.1 yamt * in subnodes (which means that this code can free an arbitrary
540 1.1 yamt * range whereas the allocation code cannot allocate an arbitrary
541 1.1 yamt * range).
542 1.1 yamt */
543 1.1 yamt
544 1.1 yamt static void
545 1.1 yamt blst_meta_free(
546 1.1 yamt blmeta_t *scan,
547 1.3 yamt uint64_t freeBlk,
548 1.3 yamt uint64_t count,
549 1.3 yamt uint64_t radix,
550 1.1 yamt int skip,
551 1.3 yamt uint64_t blk
552 1.1 yamt ) {
553 1.1 yamt int i;
554 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
555 1.1 yamt
556 1.1 yamt #if 0
557 1.3 yamt printf("FREE (%" PRIx64 ",%" PRIu64
558 1.3 yamt ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
559 1.3 yamt freeBlk, count,
560 1.3 yamt blk, radix
561 1.1 yamt );
562 1.1 yamt #endif
563 1.1 yamt
564 1.1 yamt if (scan->u.bmu_avail == 0) {
565 1.1 yamt /*
566 1.1 yamt * ALL-ALLOCATED special case, with possible
567 1.1 yamt * shortcut to ALL-FREE special case.
568 1.1 yamt */
569 1.1 yamt scan->u.bmu_avail = count;
570 1.1 yamt scan->bm_bighint = count;
571 1.1 yamt
572 1.1 yamt if (count != radix) {
573 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
574 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
575 1.1 yamt break;
576 1.1 yamt scan[i].bm_bighint = 0;
577 1.1 yamt if (next_skip == 1) {
578 1.1 yamt scan[i].u.bmu_bitmap = 0;
579 1.1 yamt } else {
580 1.1 yamt scan[i].u.bmu_avail = 0;
581 1.1 yamt }
582 1.1 yamt }
583 1.1 yamt /* fall through */
584 1.1 yamt }
585 1.1 yamt } else {
586 1.1 yamt scan->u.bmu_avail += count;
587 1.1 yamt /* scan->bm_bighint = radix; */
588 1.1 yamt }
589 1.1 yamt
590 1.1 yamt /*
591 1.1 yamt * ALL-FREE special case.
592 1.1 yamt */
593 1.1 yamt
594 1.1 yamt if (scan->u.bmu_avail == radix)
595 1.1 yamt return;
596 1.1 yamt if (scan->u.bmu_avail > radix)
597 1.3 yamt panic("blst_meta_free: freeing already free blocks (%"
598 1.3 yamt PRIu64 ") %" PRIu64 "/%" PRIu64,
599 1.3 yamt count, scan->u.bmu_avail, radix);
600 1.1 yamt
601 1.1 yamt /*
602 1.1 yamt * Break the free down into its components
603 1.1 yamt */
604 1.1 yamt
605 1.1 yamt radix /= BLIST_META_RADIX;
606 1.1 yamt
607 1.1 yamt i = (freeBlk - blk) / radix;
608 1.1 yamt blk += i * radix;
609 1.1 yamt i = i * next_skip + 1;
610 1.1 yamt
611 1.1 yamt while (i <= skip && blk < freeBlk + count) {
612 1.3 yamt uint64_t v;
613 1.1 yamt
614 1.1 yamt v = blk + radix - freeBlk;
615 1.1 yamt if (v > count)
616 1.1 yamt v = count;
617 1.1 yamt
618 1.3 yamt if (scan->bm_bighint == (uint64_t)-1)
619 1.1 yamt panic("blst_meta_free: freeing unexpected range");
620 1.1 yamt
621 1.1 yamt if (next_skip == 1) {
622 1.1 yamt blst_leaf_free(&scan[i], freeBlk, v);
623 1.1 yamt } else {
624 1.1 yamt blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
625 1.1 yamt }
626 1.1 yamt if (scan->bm_bighint < scan[i].bm_bighint)
627 1.1 yamt scan->bm_bighint = scan[i].bm_bighint;
628 1.1 yamt count -= v;
629 1.1 yamt freeBlk += v;
630 1.1 yamt blk += radix;
631 1.1 yamt i += next_skip;
632 1.1 yamt }
633 1.1 yamt }
634 1.1 yamt
635 1.1 yamt /*
636 1.1 yamt * BLIST_RADIX_COPY() - copy one radix tree to another
637 1.1 yamt *
638 1.1 yamt * Locates free space in the source tree and frees it in the destination
639 1.1 yamt * tree. The space may not already be free in the destination.
640 1.1 yamt */
641 1.1 yamt
642 1.1 yamt static void blst_copy(
643 1.1 yamt blmeta_t *scan,
644 1.3 yamt uint64_t blk,
645 1.3 yamt uint64_t radix,
646 1.3 yamt uint64_t skip,
647 1.1 yamt blist_t dest,
648 1.3 yamt uint64_t count
649 1.1 yamt ) {
650 1.1 yamt int next_skip;
651 1.1 yamt int i;
652 1.1 yamt
653 1.1 yamt /*
654 1.1 yamt * Leaf node
655 1.1 yamt */
656 1.1 yamt
657 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
658 1.3 yamt uint64_t v = scan->u.bmu_bitmap;
659 1.1 yamt
660 1.3 yamt if (v == (uint64_t)-1) {
661 1.1 yamt blist_free(dest, blk, count);
662 1.1 yamt } else if (v != 0) {
663 1.1 yamt int i;
664 1.1 yamt
665 1.1 yamt for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
666 1.1 yamt if (v & (1 << i))
667 1.1 yamt blist_free(dest, blk + i, 1);
668 1.1 yamt }
669 1.1 yamt }
670 1.1 yamt return;
671 1.1 yamt }
672 1.1 yamt
673 1.1 yamt /*
674 1.1 yamt * Meta node
675 1.1 yamt */
676 1.1 yamt
677 1.1 yamt if (scan->u.bmu_avail == 0) {
678 1.1 yamt /*
679 1.1 yamt * Source all allocated, leave dest allocated
680 1.1 yamt */
681 1.1 yamt return;
682 1.1 yamt }
683 1.1 yamt if (scan->u.bmu_avail == radix) {
684 1.1 yamt /*
685 1.1 yamt * Source all free, free entire dest
686 1.1 yamt */
687 1.1 yamt if (count < radix)
688 1.1 yamt blist_free(dest, blk, count);
689 1.1 yamt else
690 1.1 yamt blist_free(dest, blk, radix);
691 1.1 yamt return;
692 1.1 yamt }
693 1.1 yamt
694 1.1 yamt
695 1.1 yamt radix /= BLIST_META_RADIX;
696 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
697 1.1 yamt
698 1.1 yamt for (i = 1; count && i <= skip; i += next_skip) {
699 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
700 1.1 yamt break;
701 1.1 yamt
702 1.1 yamt if (count >= radix) {
703 1.1 yamt blst_copy(
704 1.1 yamt &scan[i],
705 1.1 yamt blk,
706 1.1 yamt radix,
707 1.1 yamt next_skip - 1,
708 1.1 yamt dest,
709 1.1 yamt radix
710 1.1 yamt );
711 1.1 yamt count -= radix;
712 1.1 yamt } else {
713 1.1 yamt if (count) {
714 1.1 yamt blst_copy(
715 1.1 yamt &scan[i],
716 1.1 yamt blk,
717 1.1 yamt radix,
718 1.1 yamt next_skip - 1,
719 1.1 yamt dest,
720 1.1 yamt count
721 1.1 yamt );
722 1.1 yamt }
723 1.1 yamt count = 0;
724 1.1 yamt }
725 1.1 yamt blk += radix;
726 1.1 yamt }
727 1.1 yamt }
728 1.1 yamt
729 1.1 yamt /*
730 1.1 yamt * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
731 1.1 yamt *
732 1.1 yamt * This routine allocates all blocks in the specified range
733 1.1 yamt * regardless of any existing allocations in that range. Returns
734 1.1 yamt * the number of blocks allocated by the call.
735 1.1 yamt */
736 1.1 yamt
737 1.1 yamt static int
738 1.3 yamt blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count)
739 1.1 yamt {
740 1.1 yamt int n = blk & (BLIST_BMAP_RADIX - 1);
741 1.1 yamt int nblks;
742 1.3 yamt uint64_t mask, bitmap;
743 1.1 yamt
744 1.3 yamt mask = ((uint64_t)-1 << n) &
745 1.3 yamt ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
746 1.1 yamt
747 1.1 yamt /* Count the number of blocks we're about to allocate */
748 1.1 yamt bitmap = scan->u.bmu_bitmap & mask;
749 1.1 yamt for (nblks = 0; bitmap != 0; nblks++)
750 1.1 yamt bitmap &= bitmap - 1;
751 1.1 yamt
752 1.1 yamt scan->u.bmu_bitmap &= ~mask;
753 1.1 yamt return nblks;
754 1.1 yamt }
755 1.1 yamt
756 1.1 yamt /*
757 1.1 yamt * BLIST_META_FILL() - allocate specific blocks at a meta node
758 1.1 yamt *
759 1.1 yamt * This routine allocates the specified range of blocks,
760 1.1 yamt * regardless of any existing allocations in the range. The
761 1.1 yamt * range must be within the extent of this node. Returns the
762 1.1 yamt * number of blocks allocated by the call.
763 1.1 yamt */
764 1.1 yamt static int
765 1.1 yamt blst_meta_fill(
766 1.1 yamt blmeta_t *scan,
767 1.3 yamt uint64_t allocBlk,
768 1.3 yamt uint64_t count,
769 1.3 yamt uint64_t radix,
770 1.1 yamt int skip,
771 1.3 yamt uint64_t blk
772 1.1 yamt ) {
773 1.1 yamt int i;
774 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
775 1.1 yamt int nblks = 0;
776 1.1 yamt
777 1.1 yamt if (count == radix || scan->u.bmu_avail == 0) {
778 1.1 yamt /*
779 1.1 yamt * ALL-ALLOCATED special case
780 1.1 yamt */
781 1.1 yamt nblks = scan->u.bmu_avail;
782 1.1 yamt scan->u.bmu_avail = 0;
783 1.1 yamt scan->bm_bighint = count;
784 1.1 yamt return nblks;
785 1.1 yamt }
786 1.1 yamt
787 1.1 yamt if (scan->u.bmu_avail == radix) {
788 1.1 yamt radix /= BLIST_META_RADIX;
789 1.1 yamt
790 1.1 yamt /*
791 1.1 yamt * ALL-FREE special case, initialize sublevel
792 1.1 yamt */
793 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
794 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
795 1.1 yamt break;
796 1.1 yamt if (next_skip == 1) {
797 1.3 yamt scan[i].u.bmu_bitmap = (uint64_t)-1;
798 1.1 yamt scan[i].bm_bighint = BLIST_BMAP_RADIX;
799 1.1 yamt } else {
800 1.1 yamt scan[i].bm_bighint = radix;
801 1.1 yamt scan[i].u.bmu_avail = radix;
802 1.1 yamt }
803 1.1 yamt }
804 1.1 yamt } else {
805 1.1 yamt radix /= BLIST_META_RADIX;
806 1.1 yamt }
807 1.1 yamt
808 1.1 yamt if (count > radix)
809 1.1 yamt panic("blist_meta_fill: allocation too large");
810 1.1 yamt
811 1.1 yamt i = (allocBlk - blk) / radix;
812 1.1 yamt blk += i * radix;
813 1.1 yamt i = i * next_skip + 1;
814 1.1 yamt
815 1.1 yamt while (i <= skip && blk < allocBlk + count) {
816 1.3 yamt uint64_t v;
817 1.1 yamt
818 1.1 yamt v = blk + radix - allocBlk;
819 1.1 yamt if (v > count)
820 1.1 yamt v = count;
821 1.1 yamt
822 1.3 yamt if (scan->bm_bighint == (uint64_t)-1)
823 1.1 yamt panic("blst_meta_fill: filling unexpected range");
824 1.1 yamt
825 1.1 yamt if (next_skip == 1) {
826 1.1 yamt nblks += blst_leaf_fill(&scan[i], allocBlk, v);
827 1.1 yamt } else {
828 1.1 yamt nblks += blst_meta_fill(&scan[i], allocBlk, v,
829 1.1 yamt radix, next_skip - 1, blk);
830 1.1 yamt }
831 1.1 yamt count -= v;
832 1.1 yamt allocBlk += v;
833 1.1 yamt blk += radix;
834 1.1 yamt i += next_skip;
835 1.1 yamt }
836 1.1 yamt scan->u.bmu_avail -= nblks;
837 1.1 yamt return nblks;
838 1.1 yamt }
839 1.1 yamt
840 1.1 yamt /*
841 1.1 yamt * BLST_RADIX_INIT() - initialize radix tree
842 1.1 yamt *
843 1.1 yamt * Initialize our meta structures and bitmaps and calculate the exact
844 1.1 yamt * amount of space required to manage 'count' blocks - this space may
845 1.1 yamt * be considerably less then the calculated radix due to the large
846 1.1 yamt * RADIX values we use.
847 1.1 yamt */
848 1.1 yamt
849 1.3 yamt static uint64_t
850 1.3 yamt blst_radix_init(blmeta_t *scan, uint64_t radix, int skip, uint64_t count)
851 1.1 yamt {
852 1.1 yamt int i;
853 1.1 yamt int next_skip;
854 1.3 yamt uint64_t memindex = 0;
855 1.1 yamt
856 1.1 yamt /*
857 1.1 yamt * Leaf node
858 1.1 yamt */
859 1.1 yamt
860 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
861 1.1 yamt if (scan) {
862 1.1 yamt scan->bm_bighint = 0;
863 1.1 yamt scan->u.bmu_bitmap = 0;
864 1.1 yamt }
865 1.1 yamt return(memindex);
866 1.1 yamt }
867 1.1 yamt
868 1.1 yamt /*
869 1.1 yamt * Meta node. If allocating the entire object we can special
870 1.1 yamt * case it. However, we need to figure out how much memory
871 1.1 yamt * is required to manage 'count' blocks, so we continue on anyway.
872 1.1 yamt */
873 1.1 yamt
874 1.1 yamt if (scan) {
875 1.1 yamt scan->bm_bighint = 0;
876 1.1 yamt scan->u.bmu_avail = 0;
877 1.1 yamt }
878 1.1 yamt
879 1.1 yamt radix /= BLIST_META_RADIX;
880 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
881 1.1 yamt
882 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
883 1.1 yamt if (count >= radix) {
884 1.1 yamt /*
885 1.1 yamt * Allocate the entire object
886 1.1 yamt */
887 1.1 yamt memindex = i + blst_radix_init(
888 1.1 yamt ((scan) ? &scan[i] : NULL),
889 1.1 yamt radix,
890 1.1 yamt next_skip - 1,
891 1.1 yamt radix
892 1.1 yamt );
893 1.1 yamt count -= radix;
894 1.1 yamt } else if (count > 0) {
895 1.1 yamt /*
896 1.1 yamt * Allocate a partial object
897 1.1 yamt */
898 1.1 yamt memindex = i + blst_radix_init(
899 1.1 yamt ((scan) ? &scan[i] : NULL),
900 1.1 yamt radix,
901 1.1 yamt next_skip - 1,
902 1.1 yamt count
903 1.1 yamt );
904 1.1 yamt count = 0;
905 1.1 yamt } else {
906 1.1 yamt /*
907 1.1 yamt * Add terminator and break out
908 1.1 yamt */
909 1.1 yamt if (scan)
910 1.3 yamt scan[i].bm_bighint = (uint64_t)-1;
911 1.1 yamt break;
912 1.1 yamt }
913 1.1 yamt }
914 1.1 yamt if (memindex < i)
915 1.1 yamt memindex = i;
916 1.1 yamt return(memindex);
917 1.1 yamt }
918 1.1 yamt
919 1.1 yamt #ifdef BLIST_DEBUG
920 1.1 yamt
921 1.1 yamt static void
922 1.3 yamt blst_radix_print(blmeta_t *scan, uint64_t blk, uint64_t radix, int skip, int tab)
923 1.1 yamt {
924 1.1 yamt int i;
925 1.1 yamt int next_skip;
926 1.1 yamt int lastState = 0;
927 1.1 yamt
928 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
929 1.1 yamt printf(
930 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64
931 1.3 yamt "): bitmap %016" PRIx64 " big=%" PRIu64 "\n",
932 1.1 yamt tab, tab, "",
933 1.3 yamt blk, radix,
934 1.3 yamt scan->u.bmu_bitmap,
935 1.3 yamt scan->bm_bighint
936 1.1 yamt );
937 1.1 yamt return;
938 1.1 yamt }
939 1.1 yamt
940 1.1 yamt if (scan->u.bmu_avail == 0) {
941 1.1 yamt printf(
942 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
943 1.3 yamt tab, tab, "", blk, radix
944 1.1 yamt );
945 1.1 yamt return;
946 1.1 yamt }
947 1.1 yamt if (scan->u.bmu_avail == radix) {
948 1.1 yamt printf(
949 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 ") ALL FREE\n",
950 1.3 yamt tab, tab, "", blk, radix
951 1.1 yamt );
952 1.1 yamt return;
953 1.1 yamt }
954 1.1 yamt
955 1.1 yamt printf(
956 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
957 1.3 yamt PRIu64 ") big=%" PRIu64 " {\n",
958 1.1 yamt tab, tab, "",
959 1.3 yamt blk, radix, scan->u.bmu_avail, radix, scan->bm_bighint
960 1.1 yamt );
961 1.1 yamt
962 1.1 yamt radix /= BLIST_META_RADIX;
963 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
964 1.1 yamt tab += 4;
965 1.1 yamt
966 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
967 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1) {
968 1.1 yamt printf(
969 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 "): Terminator\n",
970 1.1 yamt tab, tab, "",
971 1.3 yamt blk, radix
972 1.1 yamt );
973 1.1 yamt lastState = 0;
974 1.1 yamt break;
975 1.1 yamt }
976 1.1 yamt blst_radix_print(
977 1.1 yamt &scan[i],
978 1.1 yamt blk,
979 1.1 yamt radix,
980 1.1 yamt next_skip - 1,
981 1.1 yamt tab
982 1.1 yamt );
983 1.1 yamt blk += radix;
984 1.1 yamt }
985 1.1 yamt tab -= 4;
986 1.1 yamt
987 1.1 yamt printf(
988 1.1 yamt "%*.*s}\n",
989 1.1 yamt tab, tab, ""
990 1.1 yamt );
991 1.1 yamt }
992 1.1 yamt
993 1.1 yamt #endif
994 1.1 yamt
995 1.1 yamt #ifdef BLIST_DEBUG
996 1.1 yamt
997 1.1 yamt int
998 1.1 yamt main(int ac, char **av)
999 1.1 yamt {
1000 1.3 yamt uint64_t size = 1024;
1001 1.1 yamt int i;
1002 1.1 yamt blist_t bl;
1003 1.1 yamt
1004 1.1 yamt for (i = 1; i < ac; ++i) {
1005 1.1 yamt const char *ptr = av[i];
1006 1.1 yamt if (*ptr != '-') {
1007 1.1 yamt size = strtol(ptr, NULL, 0);
1008 1.1 yamt continue;
1009 1.1 yamt }
1010 1.1 yamt ptr += 2;
1011 1.1 yamt fprintf(stderr, "Bad option: %s\n", ptr - 2);
1012 1.1 yamt exit(1);
1013 1.1 yamt }
1014 1.1 yamt bl = blist_create(size);
1015 1.1 yamt blist_free(bl, 0, size);
1016 1.1 yamt
1017 1.1 yamt for (;;) {
1018 1.1 yamt char buf[1024];
1019 1.3 yamt uint64_t da = 0;
1020 1.3 yamt uint64_t count = 0;
1021 1.1 yamt
1022 1.1 yamt
1023 1.3 yamt printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
1024 1.3 yamt bl->bl_free, size, bl->bl_radix);
1025 1.1 yamt fflush(stdout);
1026 1.1 yamt if (fgets(buf, sizeof(buf), stdin) == NULL)
1027 1.1 yamt break;
1028 1.1 yamt switch(buf[0]) {
1029 1.1 yamt case 'r':
1030 1.3 yamt if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1031 1.1 yamt blist_resize(&bl, count, 1);
1032 1.1 yamt } else {
1033 1.1 yamt printf("?\n");
1034 1.1 yamt }
1035 1.1 yamt case 'p':
1036 1.1 yamt blist_print(bl);
1037 1.1 yamt break;
1038 1.1 yamt case 'a':
1039 1.3 yamt if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1040 1.3 yamt uint64_t blk = blist_alloc(bl, count);
1041 1.3 yamt printf(" R=%016" PRIx64 "\n", blk);
1042 1.1 yamt } else {
1043 1.1 yamt printf("?\n");
1044 1.1 yamt }
1045 1.1 yamt break;
1046 1.1 yamt case 'f':
1047 1.3 yamt if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1048 1.3 yamt &da, &count) == 2) {
1049 1.1 yamt blist_free(bl, da, count);
1050 1.1 yamt } else {
1051 1.1 yamt printf("?\n");
1052 1.1 yamt }
1053 1.1 yamt break;
1054 1.1 yamt case 'l':
1055 1.3 yamt if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1056 1.3 yamt &da, &count) == 2) {
1057 1.1 yamt printf(" n=%d\n",
1058 1.1 yamt blist_fill(bl, da, count));
1059 1.1 yamt } else {
1060 1.1 yamt printf("?\n");
1061 1.1 yamt }
1062 1.1 yamt break;
1063 1.1 yamt case '?':
1064 1.1 yamt case 'h':
1065 1.1 yamt puts(
1066 1.1 yamt "p -print\n"
1067 1.1 yamt "a %d -allocate\n"
1068 1.1 yamt "f %x %d -free\n"
1069 1.1 yamt "l %x %d -fill\n"
1070 1.1 yamt "r %d -resize\n"
1071 1.1 yamt "h/? -help"
1072 1.1 yamt );
1073 1.1 yamt break;
1074 1.1 yamt default:
1075 1.1 yamt printf("?\n");
1076 1.1 yamt break;
1077 1.1 yamt }
1078 1.1 yamt }
1079 1.1 yamt return(0);
1080 1.1 yamt }
1081 1.1 yamt
1082 1.1 yamt void
1083 1.1 yamt panic(const char *ctl, ...)
1084 1.1 yamt {
1085 1.1 yamt va_list va;
1086 1.1 yamt
1087 1.1 yamt va_start(va, ctl);
1088 1.1 yamt vfprintf(stderr, ctl, va);
1089 1.1 yamt fprintf(stderr, "\n");
1090 1.1 yamt va_end(va);
1091 1.1 yamt exit(1);
1092 1.1 yamt }
1093 1.1 yamt
1094 1.1 yamt #endif
1095 1.1 yamt
1096