subr_blist.c revision 1.4 1 1.4 yamt /* $NetBSD: subr_blist.c,v 1.4 2005/04/06 11:36:37 yamt Exp $ */
2 1.2 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 1.1 yamt * Redistribution and use in source and binary forms, with or without
6 1.1 yamt * modification, are permitted provided that the following conditions
7 1.1 yamt * are met:
8 1.1 yamt * 1. Redistributions of source code must retain the above copyright
9 1.1 yamt * notice, this list of conditions and the following disclaimer.
10 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer in the
12 1.1 yamt * documentation and/or other materials provided with the distribution.
13 1.1 yamt * 4. Neither the name of the University nor the names of its contributors
14 1.1 yamt * may be used to endorse or promote products derived from this software
15 1.1 yamt * without specific prior written permission.
16 1.1 yamt *
17 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 1.1 yamt * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 1.1 yamt * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 1.1 yamt * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 1.1 yamt * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 1.1 yamt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 1.1 yamt * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 1.1 yamt * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 1.1 yamt */
29 1.1 yamt /*
30 1.1 yamt * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
31 1.1 yamt *
32 1.1 yamt * This module implements a general bitmap allocator/deallocator. The
33 1.1 yamt * allocator eats around 2 bits per 'block'. The module does not
34 1.1 yamt * try to interpret the meaning of a 'block' other then to return
35 1.3 yamt * BLIST_NONE on an allocation failure.
36 1.1 yamt *
37 1.1 yamt * A radix tree is used to maintain the bitmap. Two radix constants are
38 1.1 yamt * involved: One for the bitmaps contained in the leaf nodes (typically
39 1.1 yamt * 32), and one for the meta nodes (typically 16). Both meta and leaf
40 1.1 yamt * nodes have a hint field. This field gives us a hint as to the largest
41 1.1 yamt * free contiguous range of blocks under the node. It may contain a
42 1.1 yamt * value that is too high, but will never contain a value that is too
43 1.1 yamt * low. When the radix tree is searched, allocation failures in subtrees
44 1.1 yamt * update the hint.
45 1.1 yamt *
46 1.1 yamt * The radix tree also implements two collapsed states for meta nodes:
47 1.1 yamt * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
48 1.1 yamt * in either of these two states, all information contained underneath
49 1.1 yamt * the node is considered stale. These states are used to optimize
50 1.1 yamt * allocation and freeing operations.
51 1.1 yamt *
52 1.1 yamt * The hinting greatly increases code efficiency for allocations while
53 1.1 yamt * the general radix structure optimizes both allocations and frees. The
54 1.1 yamt * radix tree should be able to operate well no matter how much
55 1.1 yamt * fragmentation there is and no matter how large a bitmap is used.
56 1.1 yamt *
57 1.1 yamt * Unlike the rlist code, the blist code wires all necessary memory at
58 1.1 yamt * creation time. Neither allocations nor frees require interaction with
59 1.1 yamt * the memory subsystem. In contrast, the rlist code may allocate memory
60 1.1 yamt * on an rlist_free() call. The non-blocking features of the blist code
61 1.1 yamt * are used to great advantage in the swap code (vm/nswap_pager.c). The
62 1.1 yamt * rlist code uses a little less overall memory then the blist code (but
63 1.1 yamt * due to swap interleaving not all that much less), but the blist code
64 1.1 yamt * scales much, much better.
65 1.1 yamt *
66 1.1 yamt * LAYOUT: The radix tree is layed out recursively using a
67 1.1 yamt * linear array. Each meta node is immediately followed (layed out
68 1.1 yamt * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
69 1.1 yamt * is a recursive structure but one that can be easily scanned through
70 1.1 yamt * a very simple 'skip' calculation. In order to support large radixes,
71 1.1 yamt * portions of the tree may reside outside our memory allocation. We
72 1.1 yamt * handle this with an early-termination optimization (when bighint is
73 1.1 yamt * set to -1) on the scan. The memory allocation is only large enough
74 1.1 yamt * to cover the number of blocks requested at creation time even if it
75 1.1 yamt * must be encompassed in larger root-node radix.
76 1.1 yamt *
77 1.1 yamt * NOTE: the allocator cannot currently allocate more then
78 1.1 yamt * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
79 1.1 yamt * large' if you try. This is an area that could use improvement. The
80 1.1 yamt * radix is large enough that this restriction does not effect the swap
81 1.1 yamt * system, though. Currently only the allocation code is effected by
82 1.1 yamt * this algorithmic unfeature. The freeing code can handle arbitrary
83 1.1 yamt * ranges.
84 1.1 yamt *
85 1.1 yamt * This code can be compiled stand-alone for debugging.
86 1.1 yamt */
87 1.1 yamt
88 1.1 yamt #include <sys/cdefs.h>
89 1.4 yamt __KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.4 2005/04/06 11:36:37 yamt Exp $");
90 1.2 yamt #if 0
91 1.1 yamt __FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92 1.2 yamt #endif
93 1.1 yamt
94 1.1 yamt #ifdef _KERNEL
95 1.1 yamt
96 1.1 yamt #include <sys/param.h>
97 1.1 yamt #include <sys/systm.h>
98 1.1 yamt #include <sys/lock.h>
99 1.1 yamt #include <sys/kernel.h>
100 1.1 yamt #include <sys/blist.h>
101 1.1 yamt #include <sys/malloc.h>
102 1.1 yamt #include <sys/proc.h>
103 1.1 yamt
104 1.1 yamt #else
105 1.1 yamt
106 1.1 yamt #ifndef BLIST_NO_DEBUG
107 1.1 yamt #define BLIST_DEBUG
108 1.1 yamt #endif
109 1.1 yamt
110 1.1 yamt #include <sys/types.h>
111 1.1 yamt #include <stdio.h>
112 1.1 yamt #include <string.h>
113 1.1 yamt #include <stdlib.h>
114 1.1 yamt #include <stdarg.h>
115 1.3 yamt #include <inttypes.h>
116 1.1 yamt
117 1.1 yamt #define malloc(a,b,c) calloc(a, 1)
118 1.1 yamt #define free(a,b) free(a)
119 1.1 yamt
120 1.3 yamt #include "../sys/blist.h"
121 1.1 yamt
122 1.1 yamt void panic(const char *ctl, ...);
123 1.1 yamt
124 1.1 yamt #endif
125 1.1 yamt
126 1.1 yamt /*
127 1.4 yamt * blmeta and bl_bitmap_t MUST be a power of 2 in size.
128 1.4 yamt */
129 1.4 yamt
130 1.4 yamt typedef struct blmeta {
131 1.4 yamt union {
132 1.4 yamt uint64_t bmu_avail; /* space available under us */
133 1.4 yamt uint64_t bmu_bitmap; /* bitmap if we are a leaf */
134 1.4 yamt } u;
135 1.4 yamt uint64_t bm_bighint; /* biggest contiguous block hint*/
136 1.4 yamt } blmeta_t;
137 1.4 yamt
138 1.4 yamt struct blist {
139 1.4 yamt uint64_t bl_blocks; /* area of coverage */
140 1.4 yamt uint64_t bl_radix; /* coverage radix */
141 1.4 yamt uint64_t bl_skip; /* starting skip */
142 1.4 yamt uint64_t bl_free; /* number of free blocks */
143 1.4 yamt blmeta_t *bl_root; /* root of radix tree */
144 1.4 yamt uint64_t bl_rootblks; /* blks allocated for tree */
145 1.4 yamt };
146 1.4 yamt
147 1.4 yamt #define BLIST_META_RADIX 16
148 1.4 yamt
149 1.4 yamt /*
150 1.1 yamt * static support functions
151 1.1 yamt */
152 1.1 yamt
153 1.3 yamt static uint64_t blst_leaf_alloc(blmeta_t *scan, uint64_t blk, int count);
154 1.3 yamt static uint64_t blst_meta_alloc(blmeta_t *scan, uint64_t blk,
155 1.3 yamt uint64_t count, uint64_t radix, int skip);
156 1.3 yamt static void blst_leaf_free(blmeta_t *scan, uint64_t relblk, int count);
157 1.3 yamt static void blst_meta_free(blmeta_t *scan, uint64_t freeBlk, uint64_t count,
158 1.3 yamt uint64_t radix, int skip, uint64_t blk);
159 1.3 yamt static void blst_copy(blmeta_t *scan, uint64_t blk, uint64_t radix,
160 1.3 yamt uint64_t skip, blist_t dest, uint64_t count);
161 1.3 yamt static int blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count);
162 1.3 yamt static int blst_meta_fill(blmeta_t *scan, uint64_t allocBlk, uint64_t count,
163 1.3 yamt uint64_t radix, int skip, uint64_t blk);
164 1.3 yamt static uint64_t blst_radix_init(blmeta_t *scan, uint64_t radix,
165 1.3 yamt int skip, uint64_t count);
166 1.1 yamt #ifndef _KERNEL
167 1.3 yamt static void blst_radix_print(blmeta_t *scan, uint64_t blk,
168 1.3 yamt uint64_t radix, int skip, int tab);
169 1.1 yamt #endif
170 1.1 yamt
171 1.1 yamt #ifdef _KERNEL
172 1.3 yamt static MALLOC_DEFINE(M_BLIST, "blist", "Bitmap allocator");
173 1.1 yamt #endif
174 1.1 yamt
175 1.1 yamt /*
176 1.1 yamt * blist_create() - create a blist capable of handling up to the specified
177 1.1 yamt * number of blocks
178 1.1 yamt *
179 1.1 yamt * blocks must be greater then 0
180 1.1 yamt *
181 1.1 yamt * The smallest blist consists of a single leaf node capable of
182 1.1 yamt * managing BLIST_BMAP_RADIX blocks.
183 1.1 yamt */
184 1.1 yamt
185 1.1 yamt blist_t
186 1.3 yamt blist_create(uint64_t blocks)
187 1.1 yamt {
188 1.1 yamt blist_t bl;
189 1.1 yamt int radix;
190 1.1 yamt int skip = 0;
191 1.1 yamt
192 1.1 yamt /*
193 1.1 yamt * Calculate radix and skip field used for scanning.
194 1.1 yamt */
195 1.1 yamt radix = BLIST_BMAP_RADIX;
196 1.1 yamt
197 1.1 yamt while (radix < blocks) {
198 1.1 yamt radix *= BLIST_META_RADIX;
199 1.1 yamt skip = (skip + 1) * BLIST_META_RADIX;
200 1.1 yamt }
201 1.1 yamt
202 1.3 yamt bl = malloc(sizeof(struct blist), M_BLIST, M_WAITOK | M_ZERO);
203 1.1 yamt
204 1.1 yamt bl->bl_blocks = blocks;
205 1.1 yamt bl->bl_radix = radix;
206 1.1 yamt bl->bl_skip = skip;
207 1.1 yamt bl->bl_rootblks = 1 +
208 1.1 yamt blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
209 1.3 yamt bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_BLIST, M_WAITOK);
210 1.1 yamt
211 1.1 yamt #if defined(BLIST_DEBUG)
212 1.1 yamt printf(
213 1.3 yamt "BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
214 1.3 yamt ", requiring %" PRIu64 "K of ram\n",
215 1.3 yamt bl->bl_blocks,
216 1.3 yamt bl->bl_blocks * 4 / 1024,
217 1.3 yamt (bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
218 1.1 yamt );
219 1.3 yamt printf("BLIST raw radix tree contains %" PRIu64 " records\n",
220 1.3 yamt bl->bl_rootblks);
221 1.1 yamt #endif
222 1.1 yamt blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
223 1.1 yamt
224 1.1 yamt return(bl);
225 1.1 yamt }
226 1.1 yamt
227 1.1 yamt void
228 1.1 yamt blist_destroy(blist_t bl)
229 1.1 yamt {
230 1.3 yamt free(bl->bl_root, M_BLIST);
231 1.3 yamt free(bl, M_BLIST);
232 1.1 yamt }
233 1.1 yamt
234 1.1 yamt /*
235 1.1 yamt * blist_alloc() - reserve space in the block bitmap. Return the base
236 1.3 yamt * of a contiguous region or BLIST_NONE if space could
237 1.1 yamt * not be allocated.
238 1.1 yamt */
239 1.1 yamt
240 1.3 yamt uint64_t
241 1.3 yamt blist_alloc(blist_t bl, uint64_t count)
242 1.1 yamt {
243 1.3 yamt uint64_t blk = BLIST_NONE;
244 1.1 yamt
245 1.1 yamt if (bl) {
246 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
247 1.1 yamt blk = blst_leaf_alloc(bl->bl_root, 0, count);
248 1.1 yamt else
249 1.1 yamt blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
250 1.3 yamt if (blk != BLIST_NONE)
251 1.1 yamt bl->bl_free -= count;
252 1.1 yamt }
253 1.1 yamt return(blk);
254 1.1 yamt }
255 1.1 yamt
256 1.1 yamt /*
257 1.1 yamt * blist_free() - free up space in the block bitmap. Return the base
258 1.1 yamt * of a contiguous region. Panic if an inconsistancy is
259 1.1 yamt * found.
260 1.1 yamt */
261 1.1 yamt
262 1.1 yamt void
263 1.3 yamt blist_free(blist_t bl, uint64_t blkno, uint64_t count)
264 1.1 yamt {
265 1.1 yamt if (bl) {
266 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
267 1.1 yamt blst_leaf_free(bl->bl_root, blkno, count);
268 1.1 yamt else
269 1.1 yamt blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
270 1.1 yamt bl->bl_free += count;
271 1.1 yamt }
272 1.1 yamt }
273 1.1 yamt
274 1.1 yamt /*
275 1.1 yamt * blist_fill() - mark a region in the block bitmap as off-limits
276 1.1 yamt * to the allocator (i.e. allocate it), ignoring any
277 1.1 yamt * existing allocations. Return the number of blocks
278 1.1 yamt * actually filled that were free before the call.
279 1.1 yamt */
280 1.1 yamt
281 1.1 yamt int
282 1.3 yamt blist_fill(blist_t bl, uint64_t blkno, uint64_t count)
283 1.1 yamt {
284 1.1 yamt int filled;
285 1.1 yamt
286 1.1 yamt if (bl) {
287 1.1 yamt if (bl->bl_radix == BLIST_BMAP_RADIX)
288 1.1 yamt filled = blst_leaf_fill(bl->bl_root, blkno, count);
289 1.1 yamt else
290 1.1 yamt filled = blst_meta_fill(bl->bl_root, blkno, count,
291 1.1 yamt bl->bl_radix, bl->bl_skip, 0);
292 1.1 yamt bl->bl_free -= filled;
293 1.1 yamt return filled;
294 1.1 yamt } else
295 1.1 yamt return 0;
296 1.1 yamt }
297 1.1 yamt
298 1.1 yamt /*
299 1.1 yamt * blist_resize() - resize an existing radix tree to handle the
300 1.1 yamt * specified number of blocks. This will reallocate
301 1.1 yamt * the tree and transfer the previous bitmap to the new
302 1.1 yamt * one. When extending the tree you can specify whether
303 1.1 yamt * the new blocks are to left allocated or freed.
304 1.1 yamt */
305 1.1 yamt
306 1.1 yamt void
307 1.3 yamt blist_resize(blist_t *pbl, uint64_t count, int freenew)
308 1.1 yamt {
309 1.1 yamt blist_t newbl = blist_create(count);
310 1.1 yamt blist_t save = *pbl;
311 1.1 yamt
312 1.1 yamt *pbl = newbl;
313 1.1 yamt if (count > save->bl_blocks)
314 1.1 yamt count = save->bl_blocks;
315 1.1 yamt blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
316 1.1 yamt
317 1.1 yamt /*
318 1.1 yamt * If resizing upwards, should we free the new space or not?
319 1.1 yamt */
320 1.1 yamt if (freenew && count < newbl->bl_blocks) {
321 1.1 yamt blist_free(newbl, count, newbl->bl_blocks - count);
322 1.1 yamt }
323 1.1 yamt blist_destroy(save);
324 1.1 yamt }
325 1.1 yamt
326 1.1 yamt #ifdef BLIST_DEBUG
327 1.1 yamt
328 1.1 yamt /*
329 1.1 yamt * blist_print() - dump radix tree
330 1.1 yamt */
331 1.1 yamt
332 1.1 yamt void
333 1.1 yamt blist_print(blist_t bl)
334 1.1 yamt {
335 1.1 yamt printf("BLIST {\n");
336 1.1 yamt blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
337 1.1 yamt printf("}\n");
338 1.1 yamt }
339 1.1 yamt
340 1.1 yamt #endif
341 1.1 yamt
342 1.1 yamt /************************************************************************
343 1.1 yamt * ALLOCATION SUPPORT FUNCTIONS *
344 1.1 yamt ************************************************************************
345 1.1 yamt *
346 1.1 yamt * These support functions do all the actual work. They may seem
347 1.1 yamt * rather longish, but that's because I've commented them up. The
348 1.1 yamt * actual code is straight forward.
349 1.1 yamt *
350 1.1 yamt */
351 1.1 yamt
352 1.1 yamt /*
353 1.1 yamt * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
354 1.1 yamt *
355 1.1 yamt * This is the core of the allocator and is optimized for the 1 block
356 1.1 yamt * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
357 1.1 yamt * somewhat slower. The 1 block allocation case is log2 and extremely
358 1.1 yamt * quick.
359 1.1 yamt */
360 1.1 yamt
361 1.3 yamt static uint64_t
362 1.1 yamt blst_leaf_alloc(
363 1.1 yamt blmeta_t *scan,
364 1.3 yamt uint64_t blk,
365 1.1 yamt int count
366 1.1 yamt ) {
367 1.3 yamt uint64_t orig = scan->u.bmu_bitmap;
368 1.1 yamt
369 1.1 yamt if (orig == 0) {
370 1.1 yamt /*
371 1.1 yamt * Optimize bitmap all-allocated case. Also, count = 1
372 1.1 yamt * case assumes at least 1 bit is free in the bitmap, so
373 1.1 yamt * we have to take care of this case here.
374 1.1 yamt */
375 1.1 yamt scan->bm_bighint = 0;
376 1.3 yamt return(BLIST_NONE);
377 1.1 yamt }
378 1.1 yamt if (count == 1) {
379 1.1 yamt /*
380 1.1 yamt * Optimized code to allocate one bit out of the bitmap
381 1.1 yamt */
382 1.3 yamt uint64_t mask;
383 1.1 yamt int j = BLIST_BMAP_RADIX/2;
384 1.1 yamt int r = 0;
385 1.1 yamt
386 1.3 yamt mask = (uint64_t)-1 >> (BLIST_BMAP_RADIX/2);
387 1.1 yamt
388 1.1 yamt while (j) {
389 1.1 yamt if ((orig & mask) == 0) {
390 1.1 yamt r += j;
391 1.1 yamt orig >>= j;
392 1.1 yamt }
393 1.1 yamt j >>= 1;
394 1.1 yamt mask >>= j;
395 1.1 yamt }
396 1.3 yamt scan->u.bmu_bitmap &= ~((uint64_t)1 << r);
397 1.1 yamt return(blk + r);
398 1.1 yamt }
399 1.1 yamt if (count <= BLIST_BMAP_RADIX) {
400 1.1 yamt /*
401 1.1 yamt * non-optimized code to allocate N bits out of the bitmap.
402 1.1 yamt * The more bits, the faster the code runs. It will run
403 1.1 yamt * the slowest allocating 2 bits, but since there aren't any
404 1.1 yamt * memory ops in the core loop (or shouldn't be, anyway),
405 1.1 yamt * you probably won't notice the difference.
406 1.1 yamt */
407 1.1 yamt int j;
408 1.1 yamt int n = BLIST_BMAP_RADIX - count;
409 1.3 yamt uint64_t mask;
410 1.1 yamt
411 1.3 yamt mask = (uint64_t)-1 >> n;
412 1.1 yamt
413 1.1 yamt for (j = 0; j <= n; ++j) {
414 1.1 yamt if ((orig & mask) == mask) {
415 1.1 yamt scan->u.bmu_bitmap &= ~mask;
416 1.1 yamt return(blk + j);
417 1.1 yamt }
418 1.1 yamt mask = (mask << 1);
419 1.1 yamt }
420 1.1 yamt }
421 1.1 yamt /*
422 1.1 yamt * We couldn't allocate count in this subtree, update bighint.
423 1.1 yamt */
424 1.1 yamt scan->bm_bighint = count - 1;
425 1.3 yamt return(BLIST_NONE);
426 1.1 yamt }
427 1.1 yamt
428 1.1 yamt /*
429 1.1 yamt * blist_meta_alloc() - allocate at a meta in the radix tree.
430 1.1 yamt *
431 1.1 yamt * Attempt to allocate at a meta node. If we can't, we update
432 1.1 yamt * bighint and return a failure. Updating bighint optimize future
433 1.1 yamt * calls that hit this node. We have to check for our collapse cases
434 1.1 yamt * and we have a few optimizations strewn in as well.
435 1.1 yamt */
436 1.1 yamt
437 1.3 yamt static uint64_t
438 1.1 yamt blst_meta_alloc(
439 1.1 yamt blmeta_t *scan,
440 1.3 yamt uint64_t blk,
441 1.3 yamt uint64_t count,
442 1.3 yamt uint64_t radix,
443 1.1 yamt int skip
444 1.1 yamt ) {
445 1.1 yamt int i;
446 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
447 1.1 yamt
448 1.1 yamt if (scan->u.bmu_avail == 0) {
449 1.1 yamt /*
450 1.1 yamt * ALL-ALLOCATED special case
451 1.1 yamt */
452 1.1 yamt scan->bm_bighint = count;
453 1.3 yamt return(BLIST_NONE);
454 1.1 yamt }
455 1.1 yamt
456 1.1 yamt if (scan->u.bmu_avail == radix) {
457 1.1 yamt radix /= BLIST_META_RADIX;
458 1.1 yamt
459 1.1 yamt /*
460 1.1 yamt * ALL-FREE special case, initialize uninitialize
461 1.1 yamt * sublevel.
462 1.1 yamt */
463 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
464 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
465 1.1 yamt break;
466 1.1 yamt if (next_skip == 1) {
467 1.3 yamt scan[i].u.bmu_bitmap = (uint64_t)-1;
468 1.1 yamt scan[i].bm_bighint = BLIST_BMAP_RADIX;
469 1.1 yamt } else {
470 1.1 yamt scan[i].bm_bighint = radix;
471 1.1 yamt scan[i].u.bmu_avail = radix;
472 1.1 yamt }
473 1.1 yamt }
474 1.1 yamt } else {
475 1.1 yamt radix /= BLIST_META_RADIX;
476 1.1 yamt }
477 1.1 yamt
478 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
479 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1) {
480 1.3 yamt /*
481 1.3 yamt * Terminator
482 1.3 yamt */
483 1.3 yamt break;
484 1.3 yamt } else if (count <= scan[i].bm_bighint) {
485 1.1 yamt /*
486 1.1 yamt * count fits in object
487 1.1 yamt */
488 1.3 yamt uint64_t r;
489 1.1 yamt if (next_skip == 1) {
490 1.1 yamt r = blst_leaf_alloc(&scan[i], blk, count);
491 1.1 yamt } else {
492 1.1 yamt r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
493 1.1 yamt }
494 1.3 yamt if (r != BLIST_NONE) {
495 1.1 yamt scan->u.bmu_avail -= count;
496 1.1 yamt if (scan->bm_bighint > scan->u.bmu_avail)
497 1.1 yamt scan->bm_bighint = scan->u.bmu_avail;
498 1.1 yamt return(r);
499 1.1 yamt }
500 1.1 yamt } else if (count > radix) {
501 1.1 yamt /*
502 1.1 yamt * count does not fit in object even if it were
503 1.1 yamt * complete free.
504 1.1 yamt */
505 1.1 yamt panic("blist_meta_alloc: allocation too large");
506 1.1 yamt }
507 1.1 yamt blk += radix;
508 1.1 yamt }
509 1.1 yamt
510 1.1 yamt /*
511 1.1 yamt * We couldn't allocate count in this subtree, update bighint.
512 1.1 yamt */
513 1.1 yamt if (scan->bm_bighint >= count)
514 1.1 yamt scan->bm_bighint = count - 1;
515 1.3 yamt return(BLIST_NONE);
516 1.1 yamt }
517 1.1 yamt
518 1.1 yamt /*
519 1.1 yamt * BLST_LEAF_FREE() - free allocated block from leaf bitmap
520 1.1 yamt *
521 1.1 yamt */
522 1.1 yamt
523 1.1 yamt static void
524 1.1 yamt blst_leaf_free(
525 1.1 yamt blmeta_t *scan,
526 1.3 yamt uint64_t blk,
527 1.1 yamt int count
528 1.1 yamt ) {
529 1.1 yamt /*
530 1.1 yamt * free some data in this bitmap
531 1.1 yamt *
532 1.1 yamt * e.g.
533 1.1 yamt * 0000111111111110000
534 1.1 yamt * \_________/\__/
535 1.1 yamt * v n
536 1.1 yamt */
537 1.1 yamt int n = blk & (BLIST_BMAP_RADIX - 1);
538 1.3 yamt uint64_t mask;
539 1.1 yamt
540 1.3 yamt mask = ((uint64_t)-1 << n) &
541 1.3 yamt ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
542 1.1 yamt
543 1.1 yamt if (scan->u.bmu_bitmap & mask)
544 1.1 yamt panic("blst_radix_free: freeing free block");
545 1.1 yamt scan->u.bmu_bitmap |= mask;
546 1.1 yamt
547 1.1 yamt /*
548 1.1 yamt * We could probably do a better job here. We are required to make
549 1.1 yamt * bighint at least as large as the biggest contiguous block of
550 1.1 yamt * data. If we just shoehorn it, a little extra overhead will
551 1.1 yamt * be incured on the next allocation (but only that one typically).
552 1.1 yamt */
553 1.1 yamt scan->bm_bighint = BLIST_BMAP_RADIX;
554 1.1 yamt }
555 1.1 yamt
556 1.1 yamt /*
557 1.1 yamt * BLST_META_FREE() - free allocated blocks from radix tree meta info
558 1.1 yamt *
559 1.1 yamt * This support routine frees a range of blocks from the bitmap.
560 1.1 yamt * The range must be entirely enclosed by this radix node. If a
561 1.1 yamt * meta node, we break the range down recursively to free blocks
562 1.1 yamt * in subnodes (which means that this code can free an arbitrary
563 1.1 yamt * range whereas the allocation code cannot allocate an arbitrary
564 1.1 yamt * range).
565 1.1 yamt */
566 1.1 yamt
567 1.1 yamt static void
568 1.1 yamt blst_meta_free(
569 1.1 yamt blmeta_t *scan,
570 1.3 yamt uint64_t freeBlk,
571 1.3 yamt uint64_t count,
572 1.3 yamt uint64_t radix,
573 1.1 yamt int skip,
574 1.3 yamt uint64_t blk
575 1.1 yamt ) {
576 1.1 yamt int i;
577 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
578 1.1 yamt
579 1.1 yamt #if 0
580 1.3 yamt printf("FREE (%" PRIx64 ",%" PRIu64
581 1.3 yamt ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
582 1.3 yamt freeBlk, count,
583 1.3 yamt blk, radix
584 1.1 yamt );
585 1.1 yamt #endif
586 1.1 yamt
587 1.1 yamt if (scan->u.bmu_avail == 0) {
588 1.1 yamt /*
589 1.1 yamt * ALL-ALLOCATED special case, with possible
590 1.1 yamt * shortcut to ALL-FREE special case.
591 1.1 yamt */
592 1.1 yamt scan->u.bmu_avail = count;
593 1.1 yamt scan->bm_bighint = count;
594 1.1 yamt
595 1.1 yamt if (count != radix) {
596 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
597 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
598 1.1 yamt break;
599 1.1 yamt scan[i].bm_bighint = 0;
600 1.1 yamt if (next_skip == 1) {
601 1.1 yamt scan[i].u.bmu_bitmap = 0;
602 1.1 yamt } else {
603 1.1 yamt scan[i].u.bmu_avail = 0;
604 1.1 yamt }
605 1.1 yamt }
606 1.1 yamt /* fall through */
607 1.1 yamt }
608 1.1 yamt } else {
609 1.1 yamt scan->u.bmu_avail += count;
610 1.1 yamt /* scan->bm_bighint = radix; */
611 1.1 yamt }
612 1.1 yamt
613 1.1 yamt /*
614 1.1 yamt * ALL-FREE special case.
615 1.1 yamt */
616 1.1 yamt
617 1.1 yamt if (scan->u.bmu_avail == radix)
618 1.1 yamt return;
619 1.1 yamt if (scan->u.bmu_avail > radix)
620 1.3 yamt panic("blst_meta_free: freeing already free blocks (%"
621 1.3 yamt PRIu64 ") %" PRIu64 "/%" PRIu64,
622 1.3 yamt count, scan->u.bmu_avail, radix);
623 1.1 yamt
624 1.1 yamt /*
625 1.1 yamt * Break the free down into its components
626 1.1 yamt */
627 1.1 yamt
628 1.1 yamt radix /= BLIST_META_RADIX;
629 1.1 yamt
630 1.1 yamt i = (freeBlk - blk) / radix;
631 1.1 yamt blk += i * radix;
632 1.1 yamt i = i * next_skip + 1;
633 1.1 yamt
634 1.1 yamt while (i <= skip && blk < freeBlk + count) {
635 1.3 yamt uint64_t v;
636 1.1 yamt
637 1.1 yamt v = blk + radix - freeBlk;
638 1.1 yamt if (v > count)
639 1.1 yamt v = count;
640 1.1 yamt
641 1.3 yamt if (scan->bm_bighint == (uint64_t)-1)
642 1.1 yamt panic("blst_meta_free: freeing unexpected range");
643 1.1 yamt
644 1.1 yamt if (next_skip == 1) {
645 1.1 yamt blst_leaf_free(&scan[i], freeBlk, v);
646 1.1 yamt } else {
647 1.1 yamt blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
648 1.1 yamt }
649 1.1 yamt if (scan->bm_bighint < scan[i].bm_bighint)
650 1.1 yamt scan->bm_bighint = scan[i].bm_bighint;
651 1.1 yamt count -= v;
652 1.1 yamt freeBlk += v;
653 1.1 yamt blk += radix;
654 1.1 yamt i += next_skip;
655 1.1 yamt }
656 1.1 yamt }
657 1.1 yamt
658 1.1 yamt /*
659 1.1 yamt * BLIST_RADIX_COPY() - copy one radix tree to another
660 1.1 yamt *
661 1.1 yamt * Locates free space in the source tree and frees it in the destination
662 1.1 yamt * tree. The space may not already be free in the destination.
663 1.1 yamt */
664 1.1 yamt
665 1.1 yamt static void blst_copy(
666 1.1 yamt blmeta_t *scan,
667 1.3 yamt uint64_t blk,
668 1.3 yamt uint64_t radix,
669 1.3 yamt uint64_t skip,
670 1.1 yamt blist_t dest,
671 1.3 yamt uint64_t count
672 1.1 yamt ) {
673 1.1 yamt int next_skip;
674 1.1 yamt int i;
675 1.1 yamt
676 1.1 yamt /*
677 1.1 yamt * Leaf node
678 1.1 yamt */
679 1.1 yamt
680 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
681 1.3 yamt uint64_t v = scan->u.bmu_bitmap;
682 1.1 yamt
683 1.3 yamt if (v == (uint64_t)-1) {
684 1.1 yamt blist_free(dest, blk, count);
685 1.1 yamt } else if (v != 0) {
686 1.1 yamt int i;
687 1.1 yamt
688 1.1 yamt for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
689 1.1 yamt if (v & (1 << i))
690 1.1 yamt blist_free(dest, blk + i, 1);
691 1.1 yamt }
692 1.1 yamt }
693 1.1 yamt return;
694 1.1 yamt }
695 1.1 yamt
696 1.1 yamt /*
697 1.1 yamt * Meta node
698 1.1 yamt */
699 1.1 yamt
700 1.1 yamt if (scan->u.bmu_avail == 0) {
701 1.1 yamt /*
702 1.1 yamt * Source all allocated, leave dest allocated
703 1.1 yamt */
704 1.1 yamt return;
705 1.1 yamt }
706 1.1 yamt if (scan->u.bmu_avail == radix) {
707 1.1 yamt /*
708 1.1 yamt * Source all free, free entire dest
709 1.1 yamt */
710 1.1 yamt if (count < radix)
711 1.1 yamt blist_free(dest, blk, count);
712 1.1 yamt else
713 1.1 yamt blist_free(dest, blk, radix);
714 1.1 yamt return;
715 1.1 yamt }
716 1.1 yamt
717 1.1 yamt
718 1.1 yamt radix /= BLIST_META_RADIX;
719 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
720 1.1 yamt
721 1.1 yamt for (i = 1; count && i <= skip; i += next_skip) {
722 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
723 1.1 yamt break;
724 1.1 yamt
725 1.1 yamt if (count >= radix) {
726 1.1 yamt blst_copy(
727 1.1 yamt &scan[i],
728 1.1 yamt blk,
729 1.1 yamt radix,
730 1.1 yamt next_skip - 1,
731 1.1 yamt dest,
732 1.1 yamt radix
733 1.1 yamt );
734 1.1 yamt count -= radix;
735 1.1 yamt } else {
736 1.1 yamt if (count) {
737 1.1 yamt blst_copy(
738 1.1 yamt &scan[i],
739 1.1 yamt blk,
740 1.1 yamt radix,
741 1.1 yamt next_skip - 1,
742 1.1 yamt dest,
743 1.1 yamt count
744 1.1 yamt );
745 1.1 yamt }
746 1.1 yamt count = 0;
747 1.1 yamt }
748 1.1 yamt blk += radix;
749 1.1 yamt }
750 1.1 yamt }
751 1.1 yamt
752 1.1 yamt /*
753 1.1 yamt * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
754 1.1 yamt *
755 1.1 yamt * This routine allocates all blocks in the specified range
756 1.1 yamt * regardless of any existing allocations in that range. Returns
757 1.1 yamt * the number of blocks allocated by the call.
758 1.1 yamt */
759 1.1 yamt
760 1.1 yamt static int
761 1.3 yamt blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count)
762 1.1 yamt {
763 1.1 yamt int n = blk & (BLIST_BMAP_RADIX - 1);
764 1.1 yamt int nblks;
765 1.3 yamt uint64_t mask, bitmap;
766 1.1 yamt
767 1.3 yamt mask = ((uint64_t)-1 << n) &
768 1.3 yamt ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
769 1.1 yamt
770 1.1 yamt /* Count the number of blocks we're about to allocate */
771 1.1 yamt bitmap = scan->u.bmu_bitmap & mask;
772 1.1 yamt for (nblks = 0; bitmap != 0; nblks++)
773 1.1 yamt bitmap &= bitmap - 1;
774 1.1 yamt
775 1.1 yamt scan->u.bmu_bitmap &= ~mask;
776 1.1 yamt return nblks;
777 1.1 yamt }
778 1.1 yamt
779 1.1 yamt /*
780 1.1 yamt * BLIST_META_FILL() - allocate specific blocks at a meta node
781 1.1 yamt *
782 1.1 yamt * This routine allocates the specified range of blocks,
783 1.1 yamt * regardless of any existing allocations in the range. The
784 1.1 yamt * range must be within the extent of this node. Returns the
785 1.1 yamt * number of blocks allocated by the call.
786 1.1 yamt */
787 1.1 yamt static int
788 1.1 yamt blst_meta_fill(
789 1.1 yamt blmeta_t *scan,
790 1.3 yamt uint64_t allocBlk,
791 1.3 yamt uint64_t count,
792 1.3 yamt uint64_t radix,
793 1.1 yamt int skip,
794 1.3 yamt uint64_t blk
795 1.1 yamt ) {
796 1.1 yamt int i;
797 1.1 yamt int next_skip = ((u_int)skip / BLIST_META_RADIX);
798 1.1 yamt int nblks = 0;
799 1.1 yamt
800 1.1 yamt if (count == radix || scan->u.bmu_avail == 0) {
801 1.1 yamt /*
802 1.1 yamt * ALL-ALLOCATED special case
803 1.1 yamt */
804 1.1 yamt nblks = scan->u.bmu_avail;
805 1.1 yamt scan->u.bmu_avail = 0;
806 1.1 yamt scan->bm_bighint = count;
807 1.1 yamt return nblks;
808 1.1 yamt }
809 1.1 yamt
810 1.1 yamt if (scan->u.bmu_avail == radix) {
811 1.1 yamt radix /= BLIST_META_RADIX;
812 1.1 yamt
813 1.1 yamt /*
814 1.1 yamt * ALL-FREE special case, initialize sublevel
815 1.1 yamt */
816 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
817 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1)
818 1.1 yamt break;
819 1.1 yamt if (next_skip == 1) {
820 1.3 yamt scan[i].u.bmu_bitmap = (uint64_t)-1;
821 1.1 yamt scan[i].bm_bighint = BLIST_BMAP_RADIX;
822 1.1 yamt } else {
823 1.1 yamt scan[i].bm_bighint = radix;
824 1.1 yamt scan[i].u.bmu_avail = radix;
825 1.1 yamt }
826 1.1 yamt }
827 1.1 yamt } else {
828 1.1 yamt radix /= BLIST_META_RADIX;
829 1.1 yamt }
830 1.1 yamt
831 1.1 yamt if (count > radix)
832 1.1 yamt panic("blist_meta_fill: allocation too large");
833 1.1 yamt
834 1.1 yamt i = (allocBlk - blk) / radix;
835 1.1 yamt blk += i * radix;
836 1.1 yamt i = i * next_skip + 1;
837 1.1 yamt
838 1.1 yamt while (i <= skip && blk < allocBlk + count) {
839 1.3 yamt uint64_t v;
840 1.1 yamt
841 1.1 yamt v = blk + radix - allocBlk;
842 1.1 yamt if (v > count)
843 1.1 yamt v = count;
844 1.1 yamt
845 1.3 yamt if (scan->bm_bighint == (uint64_t)-1)
846 1.1 yamt panic("blst_meta_fill: filling unexpected range");
847 1.1 yamt
848 1.1 yamt if (next_skip == 1) {
849 1.1 yamt nblks += blst_leaf_fill(&scan[i], allocBlk, v);
850 1.1 yamt } else {
851 1.1 yamt nblks += blst_meta_fill(&scan[i], allocBlk, v,
852 1.1 yamt radix, next_skip - 1, blk);
853 1.1 yamt }
854 1.1 yamt count -= v;
855 1.1 yamt allocBlk += v;
856 1.1 yamt blk += radix;
857 1.1 yamt i += next_skip;
858 1.1 yamt }
859 1.1 yamt scan->u.bmu_avail -= nblks;
860 1.1 yamt return nblks;
861 1.1 yamt }
862 1.1 yamt
863 1.1 yamt /*
864 1.1 yamt * BLST_RADIX_INIT() - initialize radix tree
865 1.1 yamt *
866 1.1 yamt * Initialize our meta structures and bitmaps and calculate the exact
867 1.1 yamt * amount of space required to manage 'count' blocks - this space may
868 1.1 yamt * be considerably less then the calculated radix due to the large
869 1.1 yamt * RADIX values we use.
870 1.1 yamt */
871 1.1 yamt
872 1.3 yamt static uint64_t
873 1.3 yamt blst_radix_init(blmeta_t *scan, uint64_t radix, int skip, uint64_t count)
874 1.1 yamt {
875 1.1 yamt int i;
876 1.1 yamt int next_skip;
877 1.3 yamt uint64_t memindex = 0;
878 1.1 yamt
879 1.1 yamt /*
880 1.1 yamt * Leaf node
881 1.1 yamt */
882 1.1 yamt
883 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
884 1.1 yamt if (scan) {
885 1.1 yamt scan->bm_bighint = 0;
886 1.1 yamt scan->u.bmu_bitmap = 0;
887 1.1 yamt }
888 1.1 yamt return(memindex);
889 1.1 yamt }
890 1.1 yamt
891 1.1 yamt /*
892 1.1 yamt * Meta node. If allocating the entire object we can special
893 1.1 yamt * case it. However, we need to figure out how much memory
894 1.1 yamt * is required to manage 'count' blocks, so we continue on anyway.
895 1.1 yamt */
896 1.1 yamt
897 1.1 yamt if (scan) {
898 1.1 yamt scan->bm_bighint = 0;
899 1.1 yamt scan->u.bmu_avail = 0;
900 1.1 yamt }
901 1.1 yamt
902 1.1 yamt radix /= BLIST_META_RADIX;
903 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
904 1.1 yamt
905 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
906 1.1 yamt if (count >= radix) {
907 1.1 yamt /*
908 1.1 yamt * Allocate the entire object
909 1.1 yamt */
910 1.1 yamt memindex = i + blst_radix_init(
911 1.1 yamt ((scan) ? &scan[i] : NULL),
912 1.1 yamt radix,
913 1.1 yamt next_skip - 1,
914 1.1 yamt radix
915 1.1 yamt );
916 1.1 yamt count -= radix;
917 1.1 yamt } else if (count > 0) {
918 1.1 yamt /*
919 1.1 yamt * Allocate a partial object
920 1.1 yamt */
921 1.1 yamt memindex = i + blst_radix_init(
922 1.1 yamt ((scan) ? &scan[i] : NULL),
923 1.1 yamt radix,
924 1.1 yamt next_skip - 1,
925 1.1 yamt count
926 1.1 yamt );
927 1.1 yamt count = 0;
928 1.1 yamt } else {
929 1.1 yamt /*
930 1.1 yamt * Add terminator and break out
931 1.1 yamt */
932 1.1 yamt if (scan)
933 1.3 yamt scan[i].bm_bighint = (uint64_t)-1;
934 1.1 yamt break;
935 1.1 yamt }
936 1.1 yamt }
937 1.1 yamt if (memindex < i)
938 1.1 yamt memindex = i;
939 1.1 yamt return(memindex);
940 1.1 yamt }
941 1.1 yamt
942 1.1 yamt #ifdef BLIST_DEBUG
943 1.1 yamt
944 1.1 yamt static void
945 1.3 yamt blst_radix_print(blmeta_t *scan, uint64_t blk, uint64_t radix, int skip, int tab)
946 1.1 yamt {
947 1.1 yamt int i;
948 1.1 yamt int next_skip;
949 1.1 yamt int lastState = 0;
950 1.1 yamt
951 1.1 yamt if (radix == BLIST_BMAP_RADIX) {
952 1.1 yamt printf(
953 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64
954 1.3 yamt "): bitmap %016" PRIx64 " big=%" PRIu64 "\n",
955 1.1 yamt tab, tab, "",
956 1.3 yamt blk, radix,
957 1.3 yamt scan->u.bmu_bitmap,
958 1.3 yamt scan->bm_bighint
959 1.1 yamt );
960 1.1 yamt return;
961 1.1 yamt }
962 1.1 yamt
963 1.1 yamt if (scan->u.bmu_avail == 0) {
964 1.1 yamt printf(
965 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
966 1.3 yamt tab, tab, "", blk, radix
967 1.1 yamt );
968 1.1 yamt return;
969 1.1 yamt }
970 1.1 yamt if (scan->u.bmu_avail == radix) {
971 1.1 yamt printf(
972 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 ") ALL FREE\n",
973 1.3 yamt tab, tab, "", blk, radix
974 1.1 yamt );
975 1.1 yamt return;
976 1.1 yamt }
977 1.1 yamt
978 1.1 yamt printf(
979 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
980 1.3 yamt PRIu64 ") big=%" PRIu64 " {\n",
981 1.1 yamt tab, tab, "",
982 1.3 yamt blk, radix, scan->u.bmu_avail, radix, scan->bm_bighint
983 1.1 yamt );
984 1.1 yamt
985 1.1 yamt radix /= BLIST_META_RADIX;
986 1.1 yamt next_skip = ((u_int)skip / BLIST_META_RADIX);
987 1.1 yamt tab += 4;
988 1.1 yamt
989 1.1 yamt for (i = 1; i <= skip; i += next_skip) {
990 1.3 yamt if (scan[i].bm_bighint == (uint64_t)-1) {
991 1.1 yamt printf(
992 1.3 yamt "%*.*s(%016" PRIx64 ",%" PRIu64 "): Terminator\n",
993 1.1 yamt tab, tab, "",
994 1.3 yamt blk, radix
995 1.1 yamt );
996 1.1 yamt lastState = 0;
997 1.1 yamt break;
998 1.1 yamt }
999 1.1 yamt blst_radix_print(
1000 1.1 yamt &scan[i],
1001 1.1 yamt blk,
1002 1.1 yamt radix,
1003 1.1 yamt next_skip - 1,
1004 1.1 yamt tab
1005 1.1 yamt );
1006 1.1 yamt blk += radix;
1007 1.1 yamt }
1008 1.1 yamt tab -= 4;
1009 1.1 yamt
1010 1.1 yamt printf(
1011 1.1 yamt "%*.*s}\n",
1012 1.1 yamt tab, tab, ""
1013 1.1 yamt );
1014 1.1 yamt }
1015 1.1 yamt
1016 1.1 yamt #endif
1017 1.1 yamt
1018 1.1 yamt #ifdef BLIST_DEBUG
1019 1.1 yamt
1020 1.1 yamt int
1021 1.1 yamt main(int ac, char **av)
1022 1.1 yamt {
1023 1.3 yamt uint64_t size = 1024;
1024 1.1 yamt int i;
1025 1.1 yamt blist_t bl;
1026 1.1 yamt
1027 1.1 yamt for (i = 1; i < ac; ++i) {
1028 1.1 yamt const char *ptr = av[i];
1029 1.1 yamt if (*ptr != '-') {
1030 1.1 yamt size = strtol(ptr, NULL, 0);
1031 1.1 yamt continue;
1032 1.1 yamt }
1033 1.1 yamt ptr += 2;
1034 1.1 yamt fprintf(stderr, "Bad option: %s\n", ptr - 2);
1035 1.1 yamt exit(1);
1036 1.1 yamt }
1037 1.1 yamt bl = blist_create(size);
1038 1.1 yamt blist_free(bl, 0, size);
1039 1.1 yamt
1040 1.1 yamt for (;;) {
1041 1.1 yamt char buf[1024];
1042 1.3 yamt uint64_t da = 0;
1043 1.3 yamt uint64_t count = 0;
1044 1.1 yamt
1045 1.1 yamt
1046 1.3 yamt printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
1047 1.3 yamt bl->bl_free, size, bl->bl_radix);
1048 1.1 yamt fflush(stdout);
1049 1.1 yamt if (fgets(buf, sizeof(buf), stdin) == NULL)
1050 1.1 yamt break;
1051 1.1 yamt switch(buf[0]) {
1052 1.1 yamt case 'r':
1053 1.3 yamt if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1054 1.1 yamt blist_resize(&bl, count, 1);
1055 1.1 yamt } else {
1056 1.1 yamt printf("?\n");
1057 1.1 yamt }
1058 1.1 yamt case 'p':
1059 1.1 yamt blist_print(bl);
1060 1.1 yamt break;
1061 1.1 yamt case 'a':
1062 1.3 yamt if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1063 1.3 yamt uint64_t blk = blist_alloc(bl, count);
1064 1.3 yamt printf(" R=%016" PRIx64 "\n", blk);
1065 1.1 yamt } else {
1066 1.1 yamt printf("?\n");
1067 1.1 yamt }
1068 1.1 yamt break;
1069 1.1 yamt case 'f':
1070 1.3 yamt if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1071 1.3 yamt &da, &count) == 2) {
1072 1.1 yamt blist_free(bl, da, count);
1073 1.1 yamt } else {
1074 1.1 yamt printf("?\n");
1075 1.1 yamt }
1076 1.1 yamt break;
1077 1.1 yamt case 'l':
1078 1.3 yamt if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1079 1.3 yamt &da, &count) == 2) {
1080 1.1 yamt printf(" n=%d\n",
1081 1.1 yamt blist_fill(bl, da, count));
1082 1.1 yamt } else {
1083 1.1 yamt printf("?\n");
1084 1.1 yamt }
1085 1.1 yamt break;
1086 1.1 yamt case '?':
1087 1.1 yamt case 'h':
1088 1.1 yamt puts(
1089 1.1 yamt "p -print\n"
1090 1.1 yamt "a %d -allocate\n"
1091 1.1 yamt "f %x %d -free\n"
1092 1.1 yamt "l %x %d -fill\n"
1093 1.1 yamt "r %d -resize\n"
1094 1.1 yamt "h/? -help"
1095 1.1 yamt );
1096 1.1 yamt break;
1097 1.1 yamt default:
1098 1.1 yamt printf("?\n");
1099 1.1 yamt break;
1100 1.1 yamt }
1101 1.1 yamt }
1102 1.1 yamt return(0);
1103 1.1 yamt }
1104 1.1 yamt
1105 1.1 yamt void
1106 1.1 yamt panic(const char *ctl, ...)
1107 1.1 yamt {
1108 1.1 yamt va_list va;
1109 1.1 yamt
1110 1.1 yamt va_start(va, ctl);
1111 1.1 yamt vfprintf(stderr, ctl, va);
1112 1.1 yamt fprintf(stderr, "\n");
1113 1.1 yamt va_end(va);
1114 1.1 yamt exit(1);
1115 1.1 yamt }
1116 1.1 yamt
1117 1.1 yamt #endif
1118 1.1 yamt
1119