subr_blist.c revision 1.2 1 /* $NetBSD: subr_blist.c,v 1.2 2005/04/06 11:33:54 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29 /*
30 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
31 *
32 * This module implements a general bitmap allocator/deallocator. The
33 * allocator eats around 2 bits per 'block'. The module does not
34 * try to interpret the meaning of a 'block' other then to return
35 * SWAPBLK_NONE on an allocation failure.
36 *
37 * A radix tree is used to maintain the bitmap. Two radix constants are
38 * involved: One for the bitmaps contained in the leaf nodes (typically
39 * 32), and one for the meta nodes (typically 16). Both meta and leaf
40 * nodes have a hint field. This field gives us a hint as to the largest
41 * free contiguous range of blocks under the node. It may contain a
42 * value that is too high, but will never contain a value that is too
43 * low. When the radix tree is searched, allocation failures in subtrees
44 * update the hint.
45 *
46 * The radix tree also implements two collapsed states for meta nodes:
47 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
48 * in either of these two states, all information contained underneath
49 * the node is considered stale. These states are used to optimize
50 * allocation and freeing operations.
51 *
52 * The hinting greatly increases code efficiency for allocations while
53 * the general radix structure optimizes both allocations and frees. The
54 * radix tree should be able to operate well no matter how much
55 * fragmentation there is and no matter how large a bitmap is used.
56 *
57 * Unlike the rlist code, the blist code wires all necessary memory at
58 * creation time. Neither allocations nor frees require interaction with
59 * the memory subsystem. In contrast, the rlist code may allocate memory
60 * on an rlist_free() call. The non-blocking features of the blist code
61 * are used to great advantage in the swap code (vm/nswap_pager.c). The
62 * rlist code uses a little less overall memory then the blist code (but
63 * due to swap interleaving not all that much less), but the blist code
64 * scales much, much better.
65 *
66 * LAYOUT: The radix tree is layed out recursively using a
67 * linear array. Each meta node is immediately followed (layed out
68 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
69 * is a recursive structure but one that can be easily scanned through
70 * a very simple 'skip' calculation. In order to support large radixes,
71 * portions of the tree may reside outside our memory allocation. We
72 * handle this with an early-termination optimization (when bighint is
73 * set to -1) on the scan. The memory allocation is only large enough
74 * to cover the number of blocks requested at creation time even if it
75 * must be encompassed in larger root-node radix.
76 *
77 * NOTE: the allocator cannot currently allocate more then
78 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
79 * large' if you try. This is an area that could use improvement. The
80 * radix is large enough that this restriction does not effect the swap
81 * system, though. Currently only the allocation code is effected by
82 * this algorithmic unfeature. The freeing code can handle arbitrary
83 * ranges.
84 *
85 * This code can be compiled stand-alone for debugging.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.2 2005/04/06 11:33:54 yamt Exp $");
90 #if 0
91 __FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92 #endif
93
94 #ifdef _KERNEL
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/lock.h>
99 #include <sys/kernel.h>
100 #include <sys/blist.h>
101 #include <sys/malloc.h>
102 #include <sys/proc.h>
103
104 #else
105
106 #ifndef BLIST_NO_DEBUG
107 #define BLIST_DEBUG
108 #endif
109
110 #define SWAPBLK_NONE ((daddr_t)-1)
111
112 #include <sys/types.h>
113 #include <stdio.h>
114 #include <string.h>
115 #include <stdlib.h>
116 #include <stdarg.h>
117
118 #define malloc(a,b,c) calloc(a, 1)
119 #define free(a,b) free(a)
120
121 typedef unsigned int u_daddr_t;
122
123 #include <sys/blist.h>
124
125 void panic(const char *ctl, ...);
126
127 #endif
128
129 /*
130 * static support functions
131 */
132
133 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
134 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
135 daddr_t count, daddr_t radix, int skip);
136 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
137 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
138 daddr_t radix, int skip, daddr_t blk);
139 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
140 daddr_t skip, blist_t dest, daddr_t count);
141 static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
142 static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
143 daddr_t radix, int skip, daddr_t blk);
144 static daddr_t blst_radix_init(blmeta_t *scan, daddr_t radix,
145 int skip, daddr_t count);
146 #ifndef _KERNEL
147 static void blst_radix_print(blmeta_t *scan, daddr_t blk,
148 daddr_t radix, int skip, int tab);
149 #endif
150
151 #ifdef _KERNEL
152 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
153 #endif
154
155 /*
156 * blist_create() - create a blist capable of handling up to the specified
157 * number of blocks
158 *
159 * blocks must be greater then 0
160 *
161 * The smallest blist consists of a single leaf node capable of
162 * managing BLIST_BMAP_RADIX blocks.
163 */
164
165 blist_t
166 blist_create(daddr_t blocks)
167 {
168 blist_t bl;
169 int radix;
170 int skip = 0;
171
172 /*
173 * Calculate radix and skip field used for scanning.
174 */
175 radix = BLIST_BMAP_RADIX;
176
177 while (radix < blocks) {
178 radix *= BLIST_META_RADIX;
179 skip = (skip + 1) * BLIST_META_RADIX;
180 }
181
182 bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK | M_ZERO);
183
184 bl->bl_blocks = blocks;
185 bl->bl_radix = radix;
186 bl->bl_skip = skip;
187 bl->bl_rootblks = 1 +
188 blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
189 bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
190
191 #if defined(BLIST_DEBUG)
192 printf(
193 "BLIST representing %lld blocks (%lld MB of swap)"
194 ", requiring %lldK of ram\n",
195 (long long)bl->bl_blocks,
196 (long long)bl->bl_blocks * 4 / 1024,
197 (long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
198 );
199 printf("BLIST raw radix tree contains %lld records\n",
200 (long long)bl->bl_rootblks);
201 #endif
202 blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
203
204 return(bl);
205 }
206
207 void
208 blist_destroy(blist_t bl)
209 {
210 free(bl->bl_root, M_SWAP);
211 free(bl, M_SWAP);
212 }
213
214 /*
215 * blist_alloc() - reserve space in the block bitmap. Return the base
216 * of a contiguous region or SWAPBLK_NONE if space could
217 * not be allocated.
218 */
219
220 daddr_t
221 blist_alloc(blist_t bl, daddr_t count)
222 {
223 daddr_t blk = SWAPBLK_NONE;
224
225 if (bl) {
226 if (bl->bl_radix == BLIST_BMAP_RADIX)
227 blk = blst_leaf_alloc(bl->bl_root, 0, count);
228 else
229 blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
230 if (blk != SWAPBLK_NONE)
231 bl->bl_free -= count;
232 }
233 return(blk);
234 }
235
236 /*
237 * blist_free() - free up space in the block bitmap. Return the base
238 * of a contiguous region. Panic if an inconsistancy is
239 * found.
240 */
241
242 void
243 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
244 {
245 if (bl) {
246 if (bl->bl_radix == BLIST_BMAP_RADIX)
247 blst_leaf_free(bl->bl_root, blkno, count);
248 else
249 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
250 bl->bl_free += count;
251 }
252 }
253
254 /*
255 * blist_fill() - mark a region in the block bitmap as off-limits
256 * to the allocator (i.e. allocate it), ignoring any
257 * existing allocations. Return the number of blocks
258 * actually filled that were free before the call.
259 */
260
261 int
262 blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
263 {
264 int filled;
265
266 if (bl) {
267 if (bl->bl_radix == BLIST_BMAP_RADIX)
268 filled = blst_leaf_fill(bl->bl_root, blkno, count);
269 else
270 filled = blst_meta_fill(bl->bl_root, blkno, count,
271 bl->bl_radix, bl->bl_skip, 0);
272 bl->bl_free -= filled;
273 return filled;
274 } else
275 return 0;
276 }
277
278 /*
279 * blist_resize() - resize an existing radix tree to handle the
280 * specified number of blocks. This will reallocate
281 * the tree and transfer the previous bitmap to the new
282 * one. When extending the tree you can specify whether
283 * the new blocks are to left allocated or freed.
284 */
285
286 void
287 blist_resize(blist_t *pbl, daddr_t count, int freenew)
288 {
289 blist_t newbl = blist_create(count);
290 blist_t save = *pbl;
291
292 *pbl = newbl;
293 if (count > save->bl_blocks)
294 count = save->bl_blocks;
295 blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
296
297 /*
298 * If resizing upwards, should we free the new space or not?
299 */
300 if (freenew && count < newbl->bl_blocks) {
301 blist_free(newbl, count, newbl->bl_blocks - count);
302 }
303 blist_destroy(save);
304 }
305
306 #ifdef BLIST_DEBUG
307
308 /*
309 * blist_print() - dump radix tree
310 */
311
312 void
313 blist_print(blist_t bl)
314 {
315 printf("BLIST {\n");
316 blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
317 printf("}\n");
318 }
319
320 #endif
321
322 /************************************************************************
323 * ALLOCATION SUPPORT FUNCTIONS *
324 ************************************************************************
325 *
326 * These support functions do all the actual work. They may seem
327 * rather longish, but that's because I've commented them up. The
328 * actual code is straight forward.
329 *
330 */
331
332 /*
333 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
334 *
335 * This is the core of the allocator and is optimized for the 1 block
336 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
337 * somewhat slower. The 1 block allocation case is log2 and extremely
338 * quick.
339 */
340
341 static daddr_t
342 blst_leaf_alloc(
343 blmeta_t *scan,
344 daddr_t blk,
345 int count
346 ) {
347 u_daddr_t orig = scan->u.bmu_bitmap;
348
349 if (orig == 0) {
350 /*
351 * Optimize bitmap all-allocated case. Also, count = 1
352 * case assumes at least 1 bit is free in the bitmap, so
353 * we have to take care of this case here.
354 */
355 scan->bm_bighint = 0;
356 return(SWAPBLK_NONE);
357 }
358 if (count == 1) {
359 /*
360 * Optimized code to allocate one bit out of the bitmap
361 */
362 u_daddr_t mask;
363 int j = BLIST_BMAP_RADIX/2;
364 int r = 0;
365
366 mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
367
368 while (j) {
369 if ((orig & mask) == 0) {
370 r += j;
371 orig >>= j;
372 }
373 j >>= 1;
374 mask >>= j;
375 }
376 scan->u.bmu_bitmap &= ~(1 << r);
377 return(blk + r);
378 }
379 if (count <= BLIST_BMAP_RADIX) {
380 /*
381 * non-optimized code to allocate N bits out of the bitmap.
382 * The more bits, the faster the code runs. It will run
383 * the slowest allocating 2 bits, but since there aren't any
384 * memory ops in the core loop (or shouldn't be, anyway),
385 * you probably won't notice the difference.
386 */
387 int j;
388 int n = BLIST_BMAP_RADIX - count;
389 u_daddr_t mask;
390
391 mask = (u_daddr_t)-1 >> n;
392
393 for (j = 0; j <= n; ++j) {
394 if ((orig & mask) == mask) {
395 scan->u.bmu_bitmap &= ~mask;
396 return(blk + j);
397 }
398 mask = (mask << 1);
399 }
400 }
401 /*
402 * We couldn't allocate count in this subtree, update bighint.
403 */
404 scan->bm_bighint = count - 1;
405 return(SWAPBLK_NONE);
406 }
407
408 /*
409 * blist_meta_alloc() - allocate at a meta in the radix tree.
410 *
411 * Attempt to allocate at a meta node. If we can't, we update
412 * bighint and return a failure. Updating bighint optimize future
413 * calls that hit this node. We have to check for our collapse cases
414 * and we have a few optimizations strewn in as well.
415 */
416
417 static daddr_t
418 blst_meta_alloc(
419 blmeta_t *scan,
420 daddr_t blk,
421 daddr_t count,
422 daddr_t radix,
423 int skip
424 ) {
425 int i;
426 int next_skip = ((u_int)skip / BLIST_META_RADIX);
427
428 if (scan->u.bmu_avail == 0) {
429 /*
430 * ALL-ALLOCATED special case
431 */
432 scan->bm_bighint = count;
433 return(SWAPBLK_NONE);
434 }
435
436 if (scan->u.bmu_avail == radix) {
437 radix /= BLIST_META_RADIX;
438
439 /*
440 * ALL-FREE special case, initialize uninitialize
441 * sublevel.
442 */
443 for (i = 1; i <= skip; i += next_skip) {
444 if (scan[i].bm_bighint == (daddr_t)-1)
445 break;
446 if (next_skip == 1) {
447 scan[i].u.bmu_bitmap = (u_daddr_t)-1;
448 scan[i].bm_bighint = BLIST_BMAP_RADIX;
449 } else {
450 scan[i].bm_bighint = radix;
451 scan[i].u.bmu_avail = radix;
452 }
453 }
454 } else {
455 radix /= BLIST_META_RADIX;
456 }
457
458 for (i = 1; i <= skip; i += next_skip) {
459 if (count <= scan[i].bm_bighint) {
460 /*
461 * count fits in object
462 */
463 daddr_t r;
464 if (next_skip == 1) {
465 r = blst_leaf_alloc(&scan[i], blk, count);
466 } else {
467 r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
468 }
469 if (r != SWAPBLK_NONE) {
470 scan->u.bmu_avail -= count;
471 if (scan->bm_bighint > scan->u.bmu_avail)
472 scan->bm_bighint = scan->u.bmu_avail;
473 return(r);
474 }
475 } else if (scan[i].bm_bighint == (daddr_t)-1) {
476 /*
477 * Terminator
478 */
479 break;
480 } else if (count > radix) {
481 /*
482 * count does not fit in object even if it were
483 * complete free.
484 */
485 panic("blist_meta_alloc: allocation too large");
486 }
487 blk += radix;
488 }
489
490 /*
491 * We couldn't allocate count in this subtree, update bighint.
492 */
493 if (scan->bm_bighint >= count)
494 scan->bm_bighint = count - 1;
495 return(SWAPBLK_NONE);
496 }
497
498 /*
499 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
500 *
501 */
502
503 static void
504 blst_leaf_free(
505 blmeta_t *scan,
506 daddr_t blk,
507 int count
508 ) {
509 /*
510 * free some data in this bitmap
511 *
512 * e.g.
513 * 0000111111111110000
514 * \_________/\__/
515 * v n
516 */
517 int n = blk & (BLIST_BMAP_RADIX - 1);
518 u_daddr_t mask;
519
520 mask = ((u_daddr_t)-1 << n) &
521 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
522
523 if (scan->u.bmu_bitmap & mask)
524 panic("blst_radix_free: freeing free block");
525 scan->u.bmu_bitmap |= mask;
526
527 /*
528 * We could probably do a better job here. We are required to make
529 * bighint at least as large as the biggest contiguous block of
530 * data. If we just shoehorn it, a little extra overhead will
531 * be incured on the next allocation (but only that one typically).
532 */
533 scan->bm_bighint = BLIST_BMAP_RADIX;
534 }
535
536 /*
537 * BLST_META_FREE() - free allocated blocks from radix tree meta info
538 *
539 * This support routine frees a range of blocks from the bitmap.
540 * The range must be entirely enclosed by this radix node. If a
541 * meta node, we break the range down recursively to free blocks
542 * in subnodes (which means that this code can free an arbitrary
543 * range whereas the allocation code cannot allocate an arbitrary
544 * range).
545 */
546
547 static void
548 blst_meta_free(
549 blmeta_t *scan,
550 daddr_t freeBlk,
551 daddr_t count,
552 daddr_t radix,
553 int skip,
554 daddr_t blk
555 ) {
556 int i;
557 int next_skip = ((u_int)skip / BLIST_META_RADIX);
558
559 #if 0
560 printf("FREE (%llx,%lld) FROM (%llx,%lld)\n",
561 (long long)freeBlk, (long long)count,
562 (long long)blk, (long long)radix
563 );
564 #endif
565
566 if (scan->u.bmu_avail == 0) {
567 /*
568 * ALL-ALLOCATED special case, with possible
569 * shortcut to ALL-FREE special case.
570 */
571 scan->u.bmu_avail = count;
572 scan->bm_bighint = count;
573
574 if (count != radix) {
575 for (i = 1; i <= skip; i += next_skip) {
576 if (scan[i].bm_bighint == (daddr_t)-1)
577 break;
578 scan[i].bm_bighint = 0;
579 if (next_skip == 1) {
580 scan[i].u.bmu_bitmap = 0;
581 } else {
582 scan[i].u.bmu_avail = 0;
583 }
584 }
585 /* fall through */
586 }
587 } else {
588 scan->u.bmu_avail += count;
589 /* scan->bm_bighint = radix; */
590 }
591
592 /*
593 * ALL-FREE special case.
594 */
595
596 if (scan->u.bmu_avail == radix)
597 return;
598 if (scan->u.bmu_avail > radix)
599 panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
600 (long long)count, (long long)scan->u.bmu_avail,
601 (long long)radix);
602
603 /*
604 * Break the free down into its components
605 */
606
607 radix /= BLIST_META_RADIX;
608
609 i = (freeBlk - blk) / radix;
610 blk += i * radix;
611 i = i * next_skip + 1;
612
613 while (i <= skip && blk < freeBlk + count) {
614 daddr_t v;
615
616 v = blk + radix - freeBlk;
617 if (v > count)
618 v = count;
619
620 if (scan->bm_bighint == (daddr_t)-1)
621 panic("blst_meta_free: freeing unexpected range");
622
623 if (next_skip == 1) {
624 blst_leaf_free(&scan[i], freeBlk, v);
625 } else {
626 blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
627 }
628 if (scan->bm_bighint < scan[i].bm_bighint)
629 scan->bm_bighint = scan[i].bm_bighint;
630 count -= v;
631 freeBlk += v;
632 blk += radix;
633 i += next_skip;
634 }
635 }
636
637 /*
638 * BLIST_RADIX_COPY() - copy one radix tree to another
639 *
640 * Locates free space in the source tree and frees it in the destination
641 * tree. The space may not already be free in the destination.
642 */
643
644 static void blst_copy(
645 blmeta_t *scan,
646 daddr_t blk,
647 daddr_t radix,
648 daddr_t skip,
649 blist_t dest,
650 daddr_t count
651 ) {
652 int next_skip;
653 int i;
654
655 /*
656 * Leaf node
657 */
658
659 if (radix == BLIST_BMAP_RADIX) {
660 u_daddr_t v = scan->u.bmu_bitmap;
661
662 if (v == (u_daddr_t)-1) {
663 blist_free(dest, blk, count);
664 } else if (v != 0) {
665 int i;
666
667 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
668 if (v & (1 << i))
669 blist_free(dest, blk + i, 1);
670 }
671 }
672 return;
673 }
674
675 /*
676 * Meta node
677 */
678
679 if (scan->u.bmu_avail == 0) {
680 /*
681 * Source all allocated, leave dest allocated
682 */
683 return;
684 }
685 if (scan->u.bmu_avail == radix) {
686 /*
687 * Source all free, free entire dest
688 */
689 if (count < radix)
690 blist_free(dest, blk, count);
691 else
692 blist_free(dest, blk, radix);
693 return;
694 }
695
696
697 radix /= BLIST_META_RADIX;
698 next_skip = ((u_int)skip / BLIST_META_RADIX);
699
700 for (i = 1; count && i <= skip; i += next_skip) {
701 if (scan[i].bm_bighint == (daddr_t)-1)
702 break;
703
704 if (count >= radix) {
705 blst_copy(
706 &scan[i],
707 blk,
708 radix,
709 next_skip - 1,
710 dest,
711 radix
712 );
713 count -= radix;
714 } else {
715 if (count) {
716 blst_copy(
717 &scan[i],
718 blk,
719 radix,
720 next_skip - 1,
721 dest,
722 count
723 );
724 }
725 count = 0;
726 }
727 blk += radix;
728 }
729 }
730
731 /*
732 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
733 *
734 * This routine allocates all blocks in the specified range
735 * regardless of any existing allocations in that range. Returns
736 * the number of blocks allocated by the call.
737 */
738
739 static int
740 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
741 {
742 int n = blk & (BLIST_BMAP_RADIX - 1);
743 int nblks;
744 u_daddr_t mask, bitmap;
745
746 mask = ((u_daddr_t)-1 << n) &
747 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
748
749 /* Count the number of blocks we're about to allocate */
750 bitmap = scan->u.bmu_bitmap & mask;
751 for (nblks = 0; bitmap != 0; nblks++)
752 bitmap &= bitmap - 1;
753
754 scan->u.bmu_bitmap &= ~mask;
755 return nblks;
756 }
757
758 /*
759 * BLIST_META_FILL() - allocate specific blocks at a meta node
760 *
761 * This routine allocates the specified range of blocks,
762 * regardless of any existing allocations in the range. The
763 * range must be within the extent of this node. Returns the
764 * number of blocks allocated by the call.
765 */
766 static int
767 blst_meta_fill(
768 blmeta_t *scan,
769 daddr_t allocBlk,
770 daddr_t count,
771 daddr_t radix,
772 int skip,
773 daddr_t blk
774 ) {
775 int i;
776 int next_skip = ((u_int)skip / BLIST_META_RADIX);
777 int nblks = 0;
778
779 if (count == radix || scan->u.bmu_avail == 0) {
780 /*
781 * ALL-ALLOCATED special case
782 */
783 nblks = scan->u.bmu_avail;
784 scan->u.bmu_avail = 0;
785 scan->bm_bighint = count;
786 return nblks;
787 }
788
789 if (scan->u.bmu_avail == radix) {
790 radix /= BLIST_META_RADIX;
791
792 /*
793 * ALL-FREE special case, initialize sublevel
794 */
795 for (i = 1; i <= skip; i += next_skip) {
796 if (scan[i].bm_bighint == (daddr_t)-1)
797 break;
798 if (next_skip == 1) {
799 scan[i].u.bmu_bitmap = (u_daddr_t)-1;
800 scan[i].bm_bighint = BLIST_BMAP_RADIX;
801 } else {
802 scan[i].bm_bighint = radix;
803 scan[i].u.bmu_avail = radix;
804 }
805 }
806 } else {
807 radix /= BLIST_META_RADIX;
808 }
809
810 if (count > radix)
811 panic("blist_meta_fill: allocation too large");
812
813 i = (allocBlk - blk) / radix;
814 blk += i * radix;
815 i = i * next_skip + 1;
816
817 while (i <= skip && blk < allocBlk + count) {
818 daddr_t v;
819
820 v = blk + radix - allocBlk;
821 if (v > count)
822 v = count;
823
824 if (scan->bm_bighint == (daddr_t)-1)
825 panic("blst_meta_fill: filling unexpected range");
826
827 if (next_skip == 1) {
828 nblks += blst_leaf_fill(&scan[i], allocBlk, v);
829 } else {
830 nblks += blst_meta_fill(&scan[i], allocBlk, v,
831 radix, next_skip - 1, blk);
832 }
833 count -= v;
834 allocBlk += v;
835 blk += radix;
836 i += next_skip;
837 }
838 scan->u.bmu_avail -= nblks;
839 return nblks;
840 }
841
842 /*
843 * BLST_RADIX_INIT() - initialize radix tree
844 *
845 * Initialize our meta structures and bitmaps and calculate the exact
846 * amount of space required to manage 'count' blocks - this space may
847 * be considerably less then the calculated radix due to the large
848 * RADIX values we use.
849 */
850
851 static daddr_t
852 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
853 {
854 int i;
855 int next_skip;
856 daddr_t memindex = 0;
857
858 /*
859 * Leaf node
860 */
861
862 if (radix == BLIST_BMAP_RADIX) {
863 if (scan) {
864 scan->bm_bighint = 0;
865 scan->u.bmu_bitmap = 0;
866 }
867 return(memindex);
868 }
869
870 /*
871 * Meta node. If allocating the entire object we can special
872 * case it. However, we need to figure out how much memory
873 * is required to manage 'count' blocks, so we continue on anyway.
874 */
875
876 if (scan) {
877 scan->bm_bighint = 0;
878 scan->u.bmu_avail = 0;
879 }
880
881 radix /= BLIST_META_RADIX;
882 next_skip = ((u_int)skip / BLIST_META_RADIX);
883
884 for (i = 1; i <= skip; i += next_skip) {
885 if (count >= radix) {
886 /*
887 * Allocate the entire object
888 */
889 memindex = i + blst_radix_init(
890 ((scan) ? &scan[i] : NULL),
891 radix,
892 next_skip - 1,
893 radix
894 );
895 count -= radix;
896 } else if (count > 0) {
897 /*
898 * Allocate a partial object
899 */
900 memindex = i + blst_radix_init(
901 ((scan) ? &scan[i] : NULL),
902 radix,
903 next_skip - 1,
904 count
905 );
906 count = 0;
907 } else {
908 /*
909 * Add terminator and break out
910 */
911 if (scan)
912 scan[i].bm_bighint = (daddr_t)-1;
913 break;
914 }
915 }
916 if (memindex < i)
917 memindex = i;
918 return(memindex);
919 }
920
921 #ifdef BLIST_DEBUG
922
923 static void
924 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
925 {
926 int i;
927 int next_skip;
928 int lastState = 0;
929
930 if (radix == BLIST_BMAP_RADIX) {
931 printf(
932 "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
933 tab, tab, "",
934 (long long)blk, (long long)radix,
935 (long long)scan->u.bmu_bitmap,
936 (long long)scan->bm_bighint
937 );
938 return;
939 }
940
941 if (scan->u.bmu_avail == 0) {
942 printf(
943 "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
944 tab, tab, "",
945 (long long)blk,
946 (long long)radix
947 );
948 return;
949 }
950 if (scan->u.bmu_avail == radix) {
951 printf(
952 "%*.*s(%08llx,%lld) ALL FREE\n",
953 tab, tab, "",
954 (long long)blk,
955 (long long)radix
956 );
957 return;
958 }
959
960 printf(
961 "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
962 tab, tab, "",
963 (long long)blk, (long long)radix,
964 (long long)scan->u.bmu_avail,
965 (long long)radix,
966 (long long)scan->bm_bighint
967 );
968
969 radix /= BLIST_META_RADIX;
970 next_skip = ((u_int)skip / BLIST_META_RADIX);
971 tab += 4;
972
973 for (i = 1; i <= skip; i += next_skip) {
974 if (scan[i].bm_bighint == (daddr_t)-1) {
975 printf(
976 "%*.*s(%08llx,%lld): Terminator\n",
977 tab, tab, "",
978 (long long)blk, (long long)radix
979 );
980 lastState = 0;
981 break;
982 }
983 blst_radix_print(
984 &scan[i],
985 blk,
986 radix,
987 next_skip - 1,
988 tab
989 );
990 blk += radix;
991 }
992 tab -= 4;
993
994 printf(
995 "%*.*s}\n",
996 tab, tab, ""
997 );
998 }
999
1000 #endif
1001
1002 #ifdef BLIST_DEBUG
1003
1004 int
1005 main(int ac, char **av)
1006 {
1007 int size = 1024;
1008 int i;
1009 blist_t bl;
1010
1011 for (i = 1; i < ac; ++i) {
1012 const char *ptr = av[i];
1013 if (*ptr != '-') {
1014 size = strtol(ptr, NULL, 0);
1015 continue;
1016 }
1017 ptr += 2;
1018 fprintf(stderr, "Bad option: %s\n", ptr - 2);
1019 exit(1);
1020 }
1021 bl = blist_create(size);
1022 blist_free(bl, 0, size);
1023
1024 for (;;) {
1025 char buf[1024];
1026 daddr_t da = 0;
1027 daddr_t count = 0;
1028
1029
1030 printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1031 (long long)size, (long long)bl->bl_radix);
1032 fflush(stdout);
1033 if (fgets(buf, sizeof(buf), stdin) == NULL)
1034 break;
1035 switch(buf[0]) {
1036 case 'r':
1037 if (sscanf(buf + 1, "%lld", &count) == 1) {
1038 blist_resize(&bl, count, 1);
1039 } else {
1040 printf("?\n");
1041 }
1042 case 'p':
1043 blist_print(bl);
1044 break;
1045 case 'a':
1046 if (sscanf(buf + 1, "%lld", &count) == 1) {
1047 daddr_t blk = blist_alloc(bl, count);
1048 printf(" R=%08llx\n", (long long)blk);
1049 } else {
1050 printf("?\n");
1051 }
1052 break;
1053 case 'f':
1054 if (sscanf(buf + 1, "%llx %lld",
1055 (long long *)&da, (long long *)&count) == 2) {
1056 blist_free(bl, da, count);
1057 } else {
1058 printf("?\n");
1059 }
1060 break;
1061 case 'l':
1062 if (sscanf(buf + 1, "%llx %lld",
1063 (long long *)&da, (long long *)&count) == 2) {
1064 printf(" n=%d\n",
1065 blist_fill(bl, da, count));
1066 } else {
1067 printf("?\n");
1068 }
1069 break;
1070 case '?':
1071 case 'h':
1072 puts(
1073 "p -print\n"
1074 "a %d -allocate\n"
1075 "f %x %d -free\n"
1076 "l %x %d -fill\n"
1077 "r %d -resize\n"
1078 "h/? -help"
1079 );
1080 break;
1081 default:
1082 printf("?\n");
1083 break;
1084 }
1085 }
1086 return(0);
1087 }
1088
1089 void
1090 panic(const char *ctl, ...)
1091 {
1092 va_list va;
1093
1094 va_start(va, ctl);
1095 vfprintf(stderr, ctl, va);
1096 fprintf(stderr, "\n");
1097 va_end(va);
1098 exit(1);
1099 }
1100
1101 #endif
1102
1103