subr_blist.c revision 1.3 1 /* $NetBSD: subr_blist.c,v 1.3 2005/04/06 11:35:54 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29 /*
30 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
31 *
32 * This module implements a general bitmap allocator/deallocator. The
33 * allocator eats around 2 bits per 'block'. The module does not
34 * try to interpret the meaning of a 'block' other then to return
35 * BLIST_NONE on an allocation failure.
36 *
37 * A radix tree is used to maintain the bitmap. Two radix constants are
38 * involved: One for the bitmaps contained in the leaf nodes (typically
39 * 32), and one for the meta nodes (typically 16). Both meta and leaf
40 * nodes have a hint field. This field gives us a hint as to the largest
41 * free contiguous range of blocks under the node. It may contain a
42 * value that is too high, but will never contain a value that is too
43 * low. When the radix tree is searched, allocation failures in subtrees
44 * update the hint.
45 *
46 * The radix tree also implements two collapsed states for meta nodes:
47 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
48 * in either of these two states, all information contained underneath
49 * the node is considered stale. These states are used to optimize
50 * allocation and freeing operations.
51 *
52 * The hinting greatly increases code efficiency for allocations while
53 * the general radix structure optimizes both allocations and frees. The
54 * radix tree should be able to operate well no matter how much
55 * fragmentation there is and no matter how large a bitmap is used.
56 *
57 * Unlike the rlist code, the blist code wires all necessary memory at
58 * creation time. Neither allocations nor frees require interaction with
59 * the memory subsystem. In contrast, the rlist code may allocate memory
60 * on an rlist_free() call. The non-blocking features of the blist code
61 * are used to great advantage in the swap code (vm/nswap_pager.c). The
62 * rlist code uses a little less overall memory then the blist code (but
63 * due to swap interleaving not all that much less), but the blist code
64 * scales much, much better.
65 *
66 * LAYOUT: The radix tree is layed out recursively using a
67 * linear array. Each meta node is immediately followed (layed out
68 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
69 * is a recursive structure but one that can be easily scanned through
70 * a very simple 'skip' calculation. In order to support large radixes,
71 * portions of the tree may reside outside our memory allocation. We
72 * handle this with an early-termination optimization (when bighint is
73 * set to -1) on the scan. The memory allocation is only large enough
74 * to cover the number of blocks requested at creation time even if it
75 * must be encompassed in larger root-node radix.
76 *
77 * NOTE: the allocator cannot currently allocate more then
78 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
79 * large' if you try. This is an area that could use improvement. The
80 * radix is large enough that this restriction does not effect the swap
81 * system, though. Currently only the allocation code is effected by
82 * this algorithmic unfeature. The freeing code can handle arbitrary
83 * ranges.
84 *
85 * This code can be compiled stand-alone for debugging.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.3 2005/04/06 11:35:54 yamt Exp $");
90 #if 0
91 __FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92 #endif
93
94 #ifdef _KERNEL
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/lock.h>
99 #include <sys/kernel.h>
100 #include <sys/blist.h>
101 #include <sys/malloc.h>
102 #include <sys/proc.h>
103
104 #else
105
106 #ifndef BLIST_NO_DEBUG
107 #define BLIST_DEBUG
108 #endif
109
110 #include <sys/types.h>
111 #include <stdio.h>
112 #include <string.h>
113 #include <stdlib.h>
114 #include <stdarg.h>
115 #include <inttypes.h>
116
117 #define malloc(a,b,c) calloc(a, 1)
118 #define free(a,b) free(a)
119
120 #include "../sys/blist.h"
121
122 void panic(const char *ctl, ...);
123
124 #endif
125
126 /*
127 * static support functions
128 */
129
130 static uint64_t blst_leaf_alloc(blmeta_t *scan, uint64_t blk, int count);
131 static uint64_t blst_meta_alloc(blmeta_t *scan, uint64_t blk,
132 uint64_t count, uint64_t radix, int skip);
133 static void blst_leaf_free(blmeta_t *scan, uint64_t relblk, int count);
134 static void blst_meta_free(blmeta_t *scan, uint64_t freeBlk, uint64_t count,
135 uint64_t radix, int skip, uint64_t blk);
136 static void blst_copy(blmeta_t *scan, uint64_t blk, uint64_t radix,
137 uint64_t skip, blist_t dest, uint64_t count);
138 static int blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count);
139 static int blst_meta_fill(blmeta_t *scan, uint64_t allocBlk, uint64_t count,
140 uint64_t radix, int skip, uint64_t blk);
141 static uint64_t blst_radix_init(blmeta_t *scan, uint64_t radix,
142 int skip, uint64_t count);
143 #ifndef _KERNEL
144 static void blst_radix_print(blmeta_t *scan, uint64_t blk,
145 uint64_t radix, int skip, int tab);
146 #endif
147
148 #ifdef _KERNEL
149 static MALLOC_DEFINE(M_BLIST, "blist", "Bitmap allocator");
150 #endif
151
152 /*
153 * blist_create() - create a blist capable of handling up to the specified
154 * number of blocks
155 *
156 * blocks must be greater then 0
157 *
158 * The smallest blist consists of a single leaf node capable of
159 * managing BLIST_BMAP_RADIX blocks.
160 */
161
162 blist_t
163 blist_create(uint64_t blocks)
164 {
165 blist_t bl;
166 int radix;
167 int skip = 0;
168
169 /*
170 * Calculate radix and skip field used for scanning.
171 */
172 radix = BLIST_BMAP_RADIX;
173
174 while (radix < blocks) {
175 radix *= BLIST_META_RADIX;
176 skip = (skip + 1) * BLIST_META_RADIX;
177 }
178
179 bl = malloc(sizeof(struct blist), M_BLIST, M_WAITOK | M_ZERO);
180
181 bl->bl_blocks = blocks;
182 bl->bl_radix = radix;
183 bl->bl_skip = skip;
184 bl->bl_rootblks = 1 +
185 blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
186 bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_BLIST, M_WAITOK);
187
188 #if defined(BLIST_DEBUG)
189 printf(
190 "BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
191 ", requiring %" PRIu64 "K of ram\n",
192 bl->bl_blocks,
193 bl->bl_blocks * 4 / 1024,
194 (bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
195 );
196 printf("BLIST raw radix tree contains %" PRIu64 " records\n",
197 bl->bl_rootblks);
198 #endif
199 blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
200
201 return(bl);
202 }
203
204 void
205 blist_destroy(blist_t bl)
206 {
207 free(bl->bl_root, M_BLIST);
208 free(bl, M_BLIST);
209 }
210
211 /*
212 * blist_alloc() - reserve space in the block bitmap. Return the base
213 * of a contiguous region or BLIST_NONE if space could
214 * not be allocated.
215 */
216
217 uint64_t
218 blist_alloc(blist_t bl, uint64_t count)
219 {
220 uint64_t blk = BLIST_NONE;
221
222 if (bl) {
223 if (bl->bl_radix == BLIST_BMAP_RADIX)
224 blk = blst_leaf_alloc(bl->bl_root, 0, count);
225 else
226 blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
227 if (blk != BLIST_NONE)
228 bl->bl_free -= count;
229 }
230 return(blk);
231 }
232
233 /*
234 * blist_free() - free up space in the block bitmap. Return the base
235 * of a contiguous region. Panic if an inconsistancy is
236 * found.
237 */
238
239 void
240 blist_free(blist_t bl, uint64_t blkno, uint64_t count)
241 {
242 if (bl) {
243 if (bl->bl_radix == BLIST_BMAP_RADIX)
244 blst_leaf_free(bl->bl_root, blkno, count);
245 else
246 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
247 bl->bl_free += count;
248 }
249 }
250
251 /*
252 * blist_fill() - mark a region in the block bitmap as off-limits
253 * to the allocator (i.e. allocate it), ignoring any
254 * existing allocations. Return the number of blocks
255 * actually filled that were free before the call.
256 */
257
258 int
259 blist_fill(blist_t bl, uint64_t blkno, uint64_t count)
260 {
261 int filled;
262
263 if (bl) {
264 if (bl->bl_radix == BLIST_BMAP_RADIX)
265 filled = blst_leaf_fill(bl->bl_root, blkno, count);
266 else
267 filled = blst_meta_fill(bl->bl_root, blkno, count,
268 bl->bl_radix, bl->bl_skip, 0);
269 bl->bl_free -= filled;
270 return filled;
271 } else
272 return 0;
273 }
274
275 /*
276 * blist_resize() - resize an existing radix tree to handle the
277 * specified number of blocks. This will reallocate
278 * the tree and transfer the previous bitmap to the new
279 * one. When extending the tree you can specify whether
280 * the new blocks are to left allocated or freed.
281 */
282
283 void
284 blist_resize(blist_t *pbl, uint64_t count, int freenew)
285 {
286 blist_t newbl = blist_create(count);
287 blist_t save = *pbl;
288
289 *pbl = newbl;
290 if (count > save->bl_blocks)
291 count = save->bl_blocks;
292 blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
293
294 /*
295 * If resizing upwards, should we free the new space or not?
296 */
297 if (freenew && count < newbl->bl_blocks) {
298 blist_free(newbl, count, newbl->bl_blocks - count);
299 }
300 blist_destroy(save);
301 }
302
303 #ifdef BLIST_DEBUG
304
305 /*
306 * blist_print() - dump radix tree
307 */
308
309 void
310 blist_print(blist_t bl)
311 {
312 printf("BLIST {\n");
313 blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
314 printf("}\n");
315 }
316
317 #endif
318
319 /************************************************************************
320 * ALLOCATION SUPPORT FUNCTIONS *
321 ************************************************************************
322 *
323 * These support functions do all the actual work. They may seem
324 * rather longish, but that's because I've commented them up. The
325 * actual code is straight forward.
326 *
327 */
328
329 /*
330 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
331 *
332 * This is the core of the allocator and is optimized for the 1 block
333 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
334 * somewhat slower. The 1 block allocation case is log2 and extremely
335 * quick.
336 */
337
338 static uint64_t
339 blst_leaf_alloc(
340 blmeta_t *scan,
341 uint64_t blk,
342 int count
343 ) {
344 uint64_t orig = scan->u.bmu_bitmap;
345
346 if (orig == 0) {
347 /*
348 * Optimize bitmap all-allocated case. Also, count = 1
349 * case assumes at least 1 bit is free in the bitmap, so
350 * we have to take care of this case here.
351 */
352 scan->bm_bighint = 0;
353 return(BLIST_NONE);
354 }
355 if (count == 1) {
356 /*
357 * Optimized code to allocate one bit out of the bitmap
358 */
359 uint64_t mask;
360 int j = BLIST_BMAP_RADIX/2;
361 int r = 0;
362
363 mask = (uint64_t)-1 >> (BLIST_BMAP_RADIX/2);
364
365 while (j) {
366 if ((orig & mask) == 0) {
367 r += j;
368 orig >>= j;
369 }
370 j >>= 1;
371 mask >>= j;
372 }
373 scan->u.bmu_bitmap &= ~((uint64_t)1 << r);
374 return(blk + r);
375 }
376 if (count <= BLIST_BMAP_RADIX) {
377 /*
378 * non-optimized code to allocate N bits out of the bitmap.
379 * The more bits, the faster the code runs. It will run
380 * the slowest allocating 2 bits, but since there aren't any
381 * memory ops in the core loop (or shouldn't be, anyway),
382 * you probably won't notice the difference.
383 */
384 int j;
385 int n = BLIST_BMAP_RADIX - count;
386 uint64_t mask;
387
388 mask = (uint64_t)-1 >> n;
389
390 for (j = 0; j <= n; ++j) {
391 if ((orig & mask) == mask) {
392 scan->u.bmu_bitmap &= ~mask;
393 return(blk + j);
394 }
395 mask = (mask << 1);
396 }
397 }
398 /*
399 * We couldn't allocate count in this subtree, update bighint.
400 */
401 scan->bm_bighint = count - 1;
402 return(BLIST_NONE);
403 }
404
405 /*
406 * blist_meta_alloc() - allocate at a meta in the radix tree.
407 *
408 * Attempt to allocate at a meta node. If we can't, we update
409 * bighint and return a failure. Updating bighint optimize future
410 * calls that hit this node. We have to check for our collapse cases
411 * and we have a few optimizations strewn in as well.
412 */
413
414 static uint64_t
415 blst_meta_alloc(
416 blmeta_t *scan,
417 uint64_t blk,
418 uint64_t count,
419 uint64_t radix,
420 int skip
421 ) {
422 int i;
423 int next_skip = ((u_int)skip / BLIST_META_RADIX);
424
425 if (scan->u.bmu_avail == 0) {
426 /*
427 * ALL-ALLOCATED special case
428 */
429 scan->bm_bighint = count;
430 return(BLIST_NONE);
431 }
432
433 if (scan->u.bmu_avail == radix) {
434 radix /= BLIST_META_RADIX;
435
436 /*
437 * ALL-FREE special case, initialize uninitialize
438 * sublevel.
439 */
440 for (i = 1; i <= skip; i += next_skip) {
441 if (scan[i].bm_bighint == (uint64_t)-1)
442 break;
443 if (next_skip == 1) {
444 scan[i].u.bmu_bitmap = (uint64_t)-1;
445 scan[i].bm_bighint = BLIST_BMAP_RADIX;
446 } else {
447 scan[i].bm_bighint = radix;
448 scan[i].u.bmu_avail = radix;
449 }
450 }
451 } else {
452 radix /= BLIST_META_RADIX;
453 }
454
455 for (i = 1; i <= skip; i += next_skip) {
456 if (scan[i].bm_bighint == (uint64_t)-1) {
457 /*
458 * Terminator
459 */
460 break;
461 } else if (count <= scan[i].bm_bighint) {
462 /*
463 * count fits in object
464 */
465 uint64_t r;
466 if (next_skip == 1) {
467 r = blst_leaf_alloc(&scan[i], blk, count);
468 } else {
469 r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
470 }
471 if (r != BLIST_NONE) {
472 scan->u.bmu_avail -= count;
473 if (scan->bm_bighint > scan->u.bmu_avail)
474 scan->bm_bighint = scan->u.bmu_avail;
475 return(r);
476 }
477 } else if (count > radix) {
478 /*
479 * count does not fit in object even if it were
480 * complete free.
481 */
482 panic("blist_meta_alloc: allocation too large");
483 }
484 blk += radix;
485 }
486
487 /*
488 * We couldn't allocate count in this subtree, update bighint.
489 */
490 if (scan->bm_bighint >= count)
491 scan->bm_bighint = count - 1;
492 return(BLIST_NONE);
493 }
494
495 /*
496 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
497 *
498 */
499
500 static void
501 blst_leaf_free(
502 blmeta_t *scan,
503 uint64_t blk,
504 int count
505 ) {
506 /*
507 * free some data in this bitmap
508 *
509 * e.g.
510 * 0000111111111110000
511 * \_________/\__/
512 * v n
513 */
514 int n = blk & (BLIST_BMAP_RADIX - 1);
515 uint64_t mask;
516
517 mask = ((uint64_t)-1 << n) &
518 ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
519
520 if (scan->u.bmu_bitmap & mask)
521 panic("blst_radix_free: freeing free block");
522 scan->u.bmu_bitmap |= mask;
523
524 /*
525 * We could probably do a better job here. We are required to make
526 * bighint at least as large as the biggest contiguous block of
527 * data. If we just shoehorn it, a little extra overhead will
528 * be incured on the next allocation (but only that one typically).
529 */
530 scan->bm_bighint = BLIST_BMAP_RADIX;
531 }
532
533 /*
534 * BLST_META_FREE() - free allocated blocks from radix tree meta info
535 *
536 * This support routine frees a range of blocks from the bitmap.
537 * The range must be entirely enclosed by this radix node. If a
538 * meta node, we break the range down recursively to free blocks
539 * in subnodes (which means that this code can free an arbitrary
540 * range whereas the allocation code cannot allocate an arbitrary
541 * range).
542 */
543
544 static void
545 blst_meta_free(
546 blmeta_t *scan,
547 uint64_t freeBlk,
548 uint64_t count,
549 uint64_t radix,
550 int skip,
551 uint64_t blk
552 ) {
553 int i;
554 int next_skip = ((u_int)skip / BLIST_META_RADIX);
555
556 #if 0
557 printf("FREE (%" PRIx64 ",%" PRIu64
558 ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
559 freeBlk, count,
560 blk, radix
561 );
562 #endif
563
564 if (scan->u.bmu_avail == 0) {
565 /*
566 * ALL-ALLOCATED special case, with possible
567 * shortcut to ALL-FREE special case.
568 */
569 scan->u.bmu_avail = count;
570 scan->bm_bighint = count;
571
572 if (count != radix) {
573 for (i = 1; i <= skip; i += next_skip) {
574 if (scan[i].bm_bighint == (uint64_t)-1)
575 break;
576 scan[i].bm_bighint = 0;
577 if (next_skip == 1) {
578 scan[i].u.bmu_bitmap = 0;
579 } else {
580 scan[i].u.bmu_avail = 0;
581 }
582 }
583 /* fall through */
584 }
585 } else {
586 scan->u.bmu_avail += count;
587 /* scan->bm_bighint = radix; */
588 }
589
590 /*
591 * ALL-FREE special case.
592 */
593
594 if (scan->u.bmu_avail == radix)
595 return;
596 if (scan->u.bmu_avail > radix)
597 panic("blst_meta_free: freeing already free blocks (%"
598 PRIu64 ") %" PRIu64 "/%" PRIu64,
599 count, scan->u.bmu_avail, radix);
600
601 /*
602 * Break the free down into its components
603 */
604
605 radix /= BLIST_META_RADIX;
606
607 i = (freeBlk - blk) / radix;
608 blk += i * radix;
609 i = i * next_skip + 1;
610
611 while (i <= skip && blk < freeBlk + count) {
612 uint64_t v;
613
614 v = blk + radix - freeBlk;
615 if (v > count)
616 v = count;
617
618 if (scan->bm_bighint == (uint64_t)-1)
619 panic("blst_meta_free: freeing unexpected range");
620
621 if (next_skip == 1) {
622 blst_leaf_free(&scan[i], freeBlk, v);
623 } else {
624 blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
625 }
626 if (scan->bm_bighint < scan[i].bm_bighint)
627 scan->bm_bighint = scan[i].bm_bighint;
628 count -= v;
629 freeBlk += v;
630 blk += radix;
631 i += next_skip;
632 }
633 }
634
635 /*
636 * BLIST_RADIX_COPY() - copy one radix tree to another
637 *
638 * Locates free space in the source tree and frees it in the destination
639 * tree. The space may not already be free in the destination.
640 */
641
642 static void blst_copy(
643 blmeta_t *scan,
644 uint64_t blk,
645 uint64_t radix,
646 uint64_t skip,
647 blist_t dest,
648 uint64_t count
649 ) {
650 int next_skip;
651 int i;
652
653 /*
654 * Leaf node
655 */
656
657 if (radix == BLIST_BMAP_RADIX) {
658 uint64_t v = scan->u.bmu_bitmap;
659
660 if (v == (uint64_t)-1) {
661 blist_free(dest, blk, count);
662 } else if (v != 0) {
663 int i;
664
665 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
666 if (v & (1 << i))
667 blist_free(dest, blk + i, 1);
668 }
669 }
670 return;
671 }
672
673 /*
674 * Meta node
675 */
676
677 if (scan->u.bmu_avail == 0) {
678 /*
679 * Source all allocated, leave dest allocated
680 */
681 return;
682 }
683 if (scan->u.bmu_avail == radix) {
684 /*
685 * Source all free, free entire dest
686 */
687 if (count < radix)
688 blist_free(dest, blk, count);
689 else
690 blist_free(dest, blk, radix);
691 return;
692 }
693
694
695 radix /= BLIST_META_RADIX;
696 next_skip = ((u_int)skip / BLIST_META_RADIX);
697
698 for (i = 1; count && i <= skip; i += next_skip) {
699 if (scan[i].bm_bighint == (uint64_t)-1)
700 break;
701
702 if (count >= radix) {
703 blst_copy(
704 &scan[i],
705 blk,
706 radix,
707 next_skip - 1,
708 dest,
709 radix
710 );
711 count -= radix;
712 } else {
713 if (count) {
714 blst_copy(
715 &scan[i],
716 blk,
717 radix,
718 next_skip - 1,
719 dest,
720 count
721 );
722 }
723 count = 0;
724 }
725 blk += radix;
726 }
727 }
728
729 /*
730 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
731 *
732 * This routine allocates all blocks in the specified range
733 * regardless of any existing allocations in that range. Returns
734 * the number of blocks allocated by the call.
735 */
736
737 static int
738 blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count)
739 {
740 int n = blk & (BLIST_BMAP_RADIX - 1);
741 int nblks;
742 uint64_t mask, bitmap;
743
744 mask = ((uint64_t)-1 << n) &
745 ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
746
747 /* Count the number of blocks we're about to allocate */
748 bitmap = scan->u.bmu_bitmap & mask;
749 for (nblks = 0; bitmap != 0; nblks++)
750 bitmap &= bitmap - 1;
751
752 scan->u.bmu_bitmap &= ~mask;
753 return nblks;
754 }
755
756 /*
757 * BLIST_META_FILL() - allocate specific blocks at a meta node
758 *
759 * This routine allocates the specified range of blocks,
760 * regardless of any existing allocations in the range. The
761 * range must be within the extent of this node. Returns the
762 * number of blocks allocated by the call.
763 */
764 static int
765 blst_meta_fill(
766 blmeta_t *scan,
767 uint64_t allocBlk,
768 uint64_t count,
769 uint64_t radix,
770 int skip,
771 uint64_t blk
772 ) {
773 int i;
774 int next_skip = ((u_int)skip / BLIST_META_RADIX);
775 int nblks = 0;
776
777 if (count == radix || scan->u.bmu_avail == 0) {
778 /*
779 * ALL-ALLOCATED special case
780 */
781 nblks = scan->u.bmu_avail;
782 scan->u.bmu_avail = 0;
783 scan->bm_bighint = count;
784 return nblks;
785 }
786
787 if (scan->u.bmu_avail == radix) {
788 radix /= BLIST_META_RADIX;
789
790 /*
791 * ALL-FREE special case, initialize sublevel
792 */
793 for (i = 1; i <= skip; i += next_skip) {
794 if (scan[i].bm_bighint == (uint64_t)-1)
795 break;
796 if (next_skip == 1) {
797 scan[i].u.bmu_bitmap = (uint64_t)-1;
798 scan[i].bm_bighint = BLIST_BMAP_RADIX;
799 } else {
800 scan[i].bm_bighint = radix;
801 scan[i].u.bmu_avail = radix;
802 }
803 }
804 } else {
805 radix /= BLIST_META_RADIX;
806 }
807
808 if (count > radix)
809 panic("blist_meta_fill: allocation too large");
810
811 i = (allocBlk - blk) / radix;
812 blk += i * radix;
813 i = i * next_skip + 1;
814
815 while (i <= skip && blk < allocBlk + count) {
816 uint64_t v;
817
818 v = blk + radix - allocBlk;
819 if (v > count)
820 v = count;
821
822 if (scan->bm_bighint == (uint64_t)-1)
823 panic("blst_meta_fill: filling unexpected range");
824
825 if (next_skip == 1) {
826 nblks += blst_leaf_fill(&scan[i], allocBlk, v);
827 } else {
828 nblks += blst_meta_fill(&scan[i], allocBlk, v,
829 radix, next_skip - 1, blk);
830 }
831 count -= v;
832 allocBlk += v;
833 blk += radix;
834 i += next_skip;
835 }
836 scan->u.bmu_avail -= nblks;
837 return nblks;
838 }
839
840 /*
841 * BLST_RADIX_INIT() - initialize radix tree
842 *
843 * Initialize our meta structures and bitmaps and calculate the exact
844 * amount of space required to manage 'count' blocks - this space may
845 * be considerably less then the calculated radix due to the large
846 * RADIX values we use.
847 */
848
849 static uint64_t
850 blst_radix_init(blmeta_t *scan, uint64_t radix, int skip, uint64_t count)
851 {
852 int i;
853 int next_skip;
854 uint64_t memindex = 0;
855
856 /*
857 * Leaf node
858 */
859
860 if (radix == BLIST_BMAP_RADIX) {
861 if (scan) {
862 scan->bm_bighint = 0;
863 scan->u.bmu_bitmap = 0;
864 }
865 return(memindex);
866 }
867
868 /*
869 * Meta node. If allocating the entire object we can special
870 * case it. However, we need to figure out how much memory
871 * is required to manage 'count' blocks, so we continue on anyway.
872 */
873
874 if (scan) {
875 scan->bm_bighint = 0;
876 scan->u.bmu_avail = 0;
877 }
878
879 radix /= BLIST_META_RADIX;
880 next_skip = ((u_int)skip / BLIST_META_RADIX);
881
882 for (i = 1; i <= skip; i += next_skip) {
883 if (count >= radix) {
884 /*
885 * Allocate the entire object
886 */
887 memindex = i + blst_radix_init(
888 ((scan) ? &scan[i] : NULL),
889 radix,
890 next_skip - 1,
891 radix
892 );
893 count -= radix;
894 } else if (count > 0) {
895 /*
896 * Allocate a partial object
897 */
898 memindex = i + blst_radix_init(
899 ((scan) ? &scan[i] : NULL),
900 radix,
901 next_skip - 1,
902 count
903 );
904 count = 0;
905 } else {
906 /*
907 * Add terminator and break out
908 */
909 if (scan)
910 scan[i].bm_bighint = (uint64_t)-1;
911 break;
912 }
913 }
914 if (memindex < i)
915 memindex = i;
916 return(memindex);
917 }
918
919 #ifdef BLIST_DEBUG
920
921 static void
922 blst_radix_print(blmeta_t *scan, uint64_t blk, uint64_t radix, int skip, int tab)
923 {
924 int i;
925 int next_skip;
926 int lastState = 0;
927
928 if (radix == BLIST_BMAP_RADIX) {
929 printf(
930 "%*.*s(%016" PRIx64 ",%" PRIu64
931 "): bitmap %016" PRIx64 " big=%" PRIu64 "\n",
932 tab, tab, "",
933 blk, radix,
934 scan->u.bmu_bitmap,
935 scan->bm_bighint
936 );
937 return;
938 }
939
940 if (scan->u.bmu_avail == 0) {
941 printf(
942 "%*.*s(%016" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
943 tab, tab, "", blk, radix
944 );
945 return;
946 }
947 if (scan->u.bmu_avail == radix) {
948 printf(
949 "%*.*s(%016" PRIx64 ",%" PRIu64 ") ALL FREE\n",
950 tab, tab, "", blk, radix
951 );
952 return;
953 }
954
955 printf(
956 "%*.*s(%016" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
957 PRIu64 ") big=%" PRIu64 " {\n",
958 tab, tab, "",
959 blk, radix, scan->u.bmu_avail, radix, scan->bm_bighint
960 );
961
962 radix /= BLIST_META_RADIX;
963 next_skip = ((u_int)skip / BLIST_META_RADIX);
964 tab += 4;
965
966 for (i = 1; i <= skip; i += next_skip) {
967 if (scan[i].bm_bighint == (uint64_t)-1) {
968 printf(
969 "%*.*s(%016" PRIx64 ",%" PRIu64 "): Terminator\n",
970 tab, tab, "",
971 blk, radix
972 );
973 lastState = 0;
974 break;
975 }
976 blst_radix_print(
977 &scan[i],
978 blk,
979 radix,
980 next_skip - 1,
981 tab
982 );
983 blk += radix;
984 }
985 tab -= 4;
986
987 printf(
988 "%*.*s}\n",
989 tab, tab, ""
990 );
991 }
992
993 #endif
994
995 #ifdef BLIST_DEBUG
996
997 int
998 main(int ac, char **av)
999 {
1000 uint64_t size = 1024;
1001 int i;
1002 blist_t bl;
1003
1004 for (i = 1; i < ac; ++i) {
1005 const char *ptr = av[i];
1006 if (*ptr != '-') {
1007 size = strtol(ptr, NULL, 0);
1008 continue;
1009 }
1010 ptr += 2;
1011 fprintf(stderr, "Bad option: %s\n", ptr - 2);
1012 exit(1);
1013 }
1014 bl = blist_create(size);
1015 blist_free(bl, 0, size);
1016
1017 for (;;) {
1018 char buf[1024];
1019 uint64_t da = 0;
1020 uint64_t count = 0;
1021
1022
1023 printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
1024 bl->bl_free, size, bl->bl_radix);
1025 fflush(stdout);
1026 if (fgets(buf, sizeof(buf), stdin) == NULL)
1027 break;
1028 switch(buf[0]) {
1029 case 'r':
1030 if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1031 blist_resize(&bl, count, 1);
1032 } else {
1033 printf("?\n");
1034 }
1035 case 'p':
1036 blist_print(bl);
1037 break;
1038 case 'a':
1039 if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1040 uint64_t blk = blist_alloc(bl, count);
1041 printf(" R=%016" PRIx64 "\n", blk);
1042 } else {
1043 printf("?\n");
1044 }
1045 break;
1046 case 'f':
1047 if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1048 &da, &count) == 2) {
1049 blist_free(bl, da, count);
1050 } else {
1051 printf("?\n");
1052 }
1053 break;
1054 case 'l':
1055 if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1056 &da, &count) == 2) {
1057 printf(" n=%d\n",
1058 blist_fill(bl, da, count));
1059 } else {
1060 printf("?\n");
1061 }
1062 break;
1063 case '?':
1064 case 'h':
1065 puts(
1066 "p -print\n"
1067 "a %d -allocate\n"
1068 "f %x %d -free\n"
1069 "l %x %d -fill\n"
1070 "r %d -resize\n"
1071 "h/? -help"
1072 );
1073 break;
1074 default:
1075 printf("?\n");
1076 break;
1077 }
1078 }
1079 return(0);
1080 }
1081
1082 void
1083 panic(const char *ctl, ...)
1084 {
1085 va_list va;
1086
1087 va_start(va, ctl);
1088 vfprintf(stderr, ctl, va);
1089 fprintf(stderr, "\n");
1090 va_end(va);
1091 exit(1);
1092 }
1093
1094 #endif
1095
1096