subr_blist.c revision 1.4 1 /* $NetBSD: subr_blist.c,v 1.4 2005/04/06 11:36:37 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
18 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
23 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29 /*
30 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
31 *
32 * This module implements a general bitmap allocator/deallocator. The
33 * allocator eats around 2 bits per 'block'. The module does not
34 * try to interpret the meaning of a 'block' other then to return
35 * BLIST_NONE on an allocation failure.
36 *
37 * A radix tree is used to maintain the bitmap. Two radix constants are
38 * involved: One for the bitmaps contained in the leaf nodes (typically
39 * 32), and one for the meta nodes (typically 16). Both meta and leaf
40 * nodes have a hint field. This field gives us a hint as to the largest
41 * free contiguous range of blocks under the node. It may contain a
42 * value that is too high, but will never contain a value that is too
43 * low. When the radix tree is searched, allocation failures in subtrees
44 * update the hint.
45 *
46 * The radix tree also implements two collapsed states for meta nodes:
47 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
48 * in either of these two states, all information contained underneath
49 * the node is considered stale. These states are used to optimize
50 * allocation and freeing operations.
51 *
52 * The hinting greatly increases code efficiency for allocations while
53 * the general radix structure optimizes both allocations and frees. The
54 * radix tree should be able to operate well no matter how much
55 * fragmentation there is and no matter how large a bitmap is used.
56 *
57 * Unlike the rlist code, the blist code wires all necessary memory at
58 * creation time. Neither allocations nor frees require interaction with
59 * the memory subsystem. In contrast, the rlist code may allocate memory
60 * on an rlist_free() call. The non-blocking features of the blist code
61 * are used to great advantage in the swap code (vm/nswap_pager.c). The
62 * rlist code uses a little less overall memory then the blist code (but
63 * due to swap interleaving not all that much less), but the blist code
64 * scales much, much better.
65 *
66 * LAYOUT: The radix tree is layed out recursively using a
67 * linear array. Each meta node is immediately followed (layed out
68 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
69 * is a recursive structure but one that can be easily scanned through
70 * a very simple 'skip' calculation. In order to support large radixes,
71 * portions of the tree may reside outside our memory allocation. We
72 * handle this with an early-termination optimization (when bighint is
73 * set to -1) on the scan. The memory allocation is only large enough
74 * to cover the number of blocks requested at creation time even if it
75 * must be encompassed in larger root-node radix.
76 *
77 * NOTE: the allocator cannot currently allocate more then
78 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
79 * large' if you try. This is an area that could use improvement. The
80 * radix is large enough that this restriction does not effect the swap
81 * system, though. Currently only the allocation code is effected by
82 * this algorithmic unfeature. The freeing code can handle arbitrary
83 * ranges.
84 *
85 * This code can be compiled stand-alone for debugging.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.4 2005/04/06 11:36:37 yamt Exp $");
90 #if 0
91 __FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
92 #endif
93
94 #ifdef _KERNEL
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/lock.h>
99 #include <sys/kernel.h>
100 #include <sys/blist.h>
101 #include <sys/malloc.h>
102 #include <sys/proc.h>
103
104 #else
105
106 #ifndef BLIST_NO_DEBUG
107 #define BLIST_DEBUG
108 #endif
109
110 #include <sys/types.h>
111 #include <stdio.h>
112 #include <string.h>
113 #include <stdlib.h>
114 #include <stdarg.h>
115 #include <inttypes.h>
116
117 #define malloc(a,b,c) calloc(a, 1)
118 #define free(a,b) free(a)
119
120 #include "../sys/blist.h"
121
122 void panic(const char *ctl, ...);
123
124 #endif
125
126 /*
127 * blmeta and bl_bitmap_t MUST be a power of 2 in size.
128 */
129
130 typedef struct blmeta {
131 union {
132 uint64_t bmu_avail; /* space available under us */
133 uint64_t bmu_bitmap; /* bitmap if we are a leaf */
134 } u;
135 uint64_t bm_bighint; /* biggest contiguous block hint*/
136 } blmeta_t;
137
138 struct blist {
139 uint64_t bl_blocks; /* area of coverage */
140 uint64_t bl_radix; /* coverage radix */
141 uint64_t bl_skip; /* starting skip */
142 uint64_t bl_free; /* number of free blocks */
143 blmeta_t *bl_root; /* root of radix tree */
144 uint64_t bl_rootblks; /* blks allocated for tree */
145 };
146
147 #define BLIST_META_RADIX 16
148
149 /*
150 * static support functions
151 */
152
153 static uint64_t blst_leaf_alloc(blmeta_t *scan, uint64_t blk, int count);
154 static uint64_t blst_meta_alloc(blmeta_t *scan, uint64_t blk,
155 uint64_t count, uint64_t radix, int skip);
156 static void blst_leaf_free(blmeta_t *scan, uint64_t relblk, int count);
157 static void blst_meta_free(blmeta_t *scan, uint64_t freeBlk, uint64_t count,
158 uint64_t radix, int skip, uint64_t blk);
159 static void blst_copy(blmeta_t *scan, uint64_t blk, uint64_t radix,
160 uint64_t skip, blist_t dest, uint64_t count);
161 static int blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count);
162 static int blst_meta_fill(blmeta_t *scan, uint64_t allocBlk, uint64_t count,
163 uint64_t radix, int skip, uint64_t blk);
164 static uint64_t blst_radix_init(blmeta_t *scan, uint64_t radix,
165 int skip, uint64_t count);
166 #ifndef _KERNEL
167 static void blst_radix_print(blmeta_t *scan, uint64_t blk,
168 uint64_t radix, int skip, int tab);
169 #endif
170
171 #ifdef _KERNEL
172 static MALLOC_DEFINE(M_BLIST, "blist", "Bitmap allocator");
173 #endif
174
175 /*
176 * blist_create() - create a blist capable of handling up to the specified
177 * number of blocks
178 *
179 * blocks must be greater then 0
180 *
181 * The smallest blist consists of a single leaf node capable of
182 * managing BLIST_BMAP_RADIX blocks.
183 */
184
185 blist_t
186 blist_create(uint64_t blocks)
187 {
188 blist_t bl;
189 int radix;
190 int skip = 0;
191
192 /*
193 * Calculate radix and skip field used for scanning.
194 */
195 radix = BLIST_BMAP_RADIX;
196
197 while (radix < blocks) {
198 radix *= BLIST_META_RADIX;
199 skip = (skip + 1) * BLIST_META_RADIX;
200 }
201
202 bl = malloc(sizeof(struct blist), M_BLIST, M_WAITOK | M_ZERO);
203
204 bl->bl_blocks = blocks;
205 bl->bl_radix = radix;
206 bl->bl_skip = skip;
207 bl->bl_rootblks = 1 +
208 blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
209 bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_BLIST, M_WAITOK);
210
211 #if defined(BLIST_DEBUG)
212 printf(
213 "BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
214 ", requiring %" PRIu64 "K of ram\n",
215 bl->bl_blocks,
216 bl->bl_blocks * 4 / 1024,
217 (bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
218 );
219 printf("BLIST raw radix tree contains %" PRIu64 " records\n",
220 bl->bl_rootblks);
221 #endif
222 blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
223
224 return(bl);
225 }
226
227 void
228 blist_destroy(blist_t bl)
229 {
230 free(bl->bl_root, M_BLIST);
231 free(bl, M_BLIST);
232 }
233
234 /*
235 * blist_alloc() - reserve space in the block bitmap. Return the base
236 * of a contiguous region or BLIST_NONE if space could
237 * not be allocated.
238 */
239
240 uint64_t
241 blist_alloc(blist_t bl, uint64_t count)
242 {
243 uint64_t blk = BLIST_NONE;
244
245 if (bl) {
246 if (bl->bl_radix == BLIST_BMAP_RADIX)
247 blk = blst_leaf_alloc(bl->bl_root, 0, count);
248 else
249 blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
250 if (blk != BLIST_NONE)
251 bl->bl_free -= count;
252 }
253 return(blk);
254 }
255
256 /*
257 * blist_free() - free up space in the block bitmap. Return the base
258 * of a contiguous region. Panic if an inconsistancy is
259 * found.
260 */
261
262 void
263 blist_free(blist_t bl, uint64_t blkno, uint64_t count)
264 {
265 if (bl) {
266 if (bl->bl_radix == BLIST_BMAP_RADIX)
267 blst_leaf_free(bl->bl_root, blkno, count);
268 else
269 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
270 bl->bl_free += count;
271 }
272 }
273
274 /*
275 * blist_fill() - mark a region in the block bitmap as off-limits
276 * to the allocator (i.e. allocate it), ignoring any
277 * existing allocations. Return the number of blocks
278 * actually filled that were free before the call.
279 */
280
281 int
282 blist_fill(blist_t bl, uint64_t blkno, uint64_t count)
283 {
284 int filled;
285
286 if (bl) {
287 if (bl->bl_radix == BLIST_BMAP_RADIX)
288 filled = blst_leaf_fill(bl->bl_root, blkno, count);
289 else
290 filled = blst_meta_fill(bl->bl_root, blkno, count,
291 bl->bl_radix, bl->bl_skip, 0);
292 bl->bl_free -= filled;
293 return filled;
294 } else
295 return 0;
296 }
297
298 /*
299 * blist_resize() - resize an existing radix tree to handle the
300 * specified number of blocks. This will reallocate
301 * the tree and transfer the previous bitmap to the new
302 * one. When extending the tree you can specify whether
303 * the new blocks are to left allocated or freed.
304 */
305
306 void
307 blist_resize(blist_t *pbl, uint64_t count, int freenew)
308 {
309 blist_t newbl = blist_create(count);
310 blist_t save = *pbl;
311
312 *pbl = newbl;
313 if (count > save->bl_blocks)
314 count = save->bl_blocks;
315 blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
316
317 /*
318 * If resizing upwards, should we free the new space or not?
319 */
320 if (freenew && count < newbl->bl_blocks) {
321 blist_free(newbl, count, newbl->bl_blocks - count);
322 }
323 blist_destroy(save);
324 }
325
326 #ifdef BLIST_DEBUG
327
328 /*
329 * blist_print() - dump radix tree
330 */
331
332 void
333 blist_print(blist_t bl)
334 {
335 printf("BLIST {\n");
336 blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
337 printf("}\n");
338 }
339
340 #endif
341
342 /************************************************************************
343 * ALLOCATION SUPPORT FUNCTIONS *
344 ************************************************************************
345 *
346 * These support functions do all the actual work. They may seem
347 * rather longish, but that's because I've commented them up. The
348 * actual code is straight forward.
349 *
350 */
351
352 /*
353 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
354 *
355 * This is the core of the allocator and is optimized for the 1 block
356 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
357 * somewhat slower. The 1 block allocation case is log2 and extremely
358 * quick.
359 */
360
361 static uint64_t
362 blst_leaf_alloc(
363 blmeta_t *scan,
364 uint64_t blk,
365 int count
366 ) {
367 uint64_t orig = scan->u.bmu_bitmap;
368
369 if (orig == 0) {
370 /*
371 * Optimize bitmap all-allocated case. Also, count = 1
372 * case assumes at least 1 bit is free in the bitmap, so
373 * we have to take care of this case here.
374 */
375 scan->bm_bighint = 0;
376 return(BLIST_NONE);
377 }
378 if (count == 1) {
379 /*
380 * Optimized code to allocate one bit out of the bitmap
381 */
382 uint64_t mask;
383 int j = BLIST_BMAP_RADIX/2;
384 int r = 0;
385
386 mask = (uint64_t)-1 >> (BLIST_BMAP_RADIX/2);
387
388 while (j) {
389 if ((orig & mask) == 0) {
390 r += j;
391 orig >>= j;
392 }
393 j >>= 1;
394 mask >>= j;
395 }
396 scan->u.bmu_bitmap &= ~((uint64_t)1 << r);
397 return(blk + r);
398 }
399 if (count <= BLIST_BMAP_RADIX) {
400 /*
401 * non-optimized code to allocate N bits out of the bitmap.
402 * The more bits, the faster the code runs. It will run
403 * the slowest allocating 2 bits, but since there aren't any
404 * memory ops in the core loop (or shouldn't be, anyway),
405 * you probably won't notice the difference.
406 */
407 int j;
408 int n = BLIST_BMAP_RADIX - count;
409 uint64_t mask;
410
411 mask = (uint64_t)-1 >> n;
412
413 for (j = 0; j <= n; ++j) {
414 if ((orig & mask) == mask) {
415 scan->u.bmu_bitmap &= ~mask;
416 return(blk + j);
417 }
418 mask = (mask << 1);
419 }
420 }
421 /*
422 * We couldn't allocate count in this subtree, update bighint.
423 */
424 scan->bm_bighint = count - 1;
425 return(BLIST_NONE);
426 }
427
428 /*
429 * blist_meta_alloc() - allocate at a meta in the radix tree.
430 *
431 * Attempt to allocate at a meta node. If we can't, we update
432 * bighint and return a failure. Updating bighint optimize future
433 * calls that hit this node. We have to check for our collapse cases
434 * and we have a few optimizations strewn in as well.
435 */
436
437 static uint64_t
438 blst_meta_alloc(
439 blmeta_t *scan,
440 uint64_t blk,
441 uint64_t count,
442 uint64_t radix,
443 int skip
444 ) {
445 int i;
446 int next_skip = ((u_int)skip / BLIST_META_RADIX);
447
448 if (scan->u.bmu_avail == 0) {
449 /*
450 * ALL-ALLOCATED special case
451 */
452 scan->bm_bighint = count;
453 return(BLIST_NONE);
454 }
455
456 if (scan->u.bmu_avail == radix) {
457 radix /= BLIST_META_RADIX;
458
459 /*
460 * ALL-FREE special case, initialize uninitialize
461 * sublevel.
462 */
463 for (i = 1; i <= skip; i += next_skip) {
464 if (scan[i].bm_bighint == (uint64_t)-1)
465 break;
466 if (next_skip == 1) {
467 scan[i].u.bmu_bitmap = (uint64_t)-1;
468 scan[i].bm_bighint = BLIST_BMAP_RADIX;
469 } else {
470 scan[i].bm_bighint = radix;
471 scan[i].u.bmu_avail = radix;
472 }
473 }
474 } else {
475 radix /= BLIST_META_RADIX;
476 }
477
478 for (i = 1; i <= skip; i += next_skip) {
479 if (scan[i].bm_bighint == (uint64_t)-1) {
480 /*
481 * Terminator
482 */
483 break;
484 } else if (count <= scan[i].bm_bighint) {
485 /*
486 * count fits in object
487 */
488 uint64_t r;
489 if (next_skip == 1) {
490 r = blst_leaf_alloc(&scan[i], blk, count);
491 } else {
492 r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
493 }
494 if (r != BLIST_NONE) {
495 scan->u.bmu_avail -= count;
496 if (scan->bm_bighint > scan->u.bmu_avail)
497 scan->bm_bighint = scan->u.bmu_avail;
498 return(r);
499 }
500 } else if (count > radix) {
501 /*
502 * count does not fit in object even if it were
503 * complete free.
504 */
505 panic("blist_meta_alloc: allocation too large");
506 }
507 blk += radix;
508 }
509
510 /*
511 * We couldn't allocate count in this subtree, update bighint.
512 */
513 if (scan->bm_bighint >= count)
514 scan->bm_bighint = count - 1;
515 return(BLIST_NONE);
516 }
517
518 /*
519 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
520 *
521 */
522
523 static void
524 blst_leaf_free(
525 blmeta_t *scan,
526 uint64_t blk,
527 int count
528 ) {
529 /*
530 * free some data in this bitmap
531 *
532 * e.g.
533 * 0000111111111110000
534 * \_________/\__/
535 * v n
536 */
537 int n = blk & (BLIST_BMAP_RADIX - 1);
538 uint64_t mask;
539
540 mask = ((uint64_t)-1 << n) &
541 ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
542
543 if (scan->u.bmu_bitmap & mask)
544 panic("blst_radix_free: freeing free block");
545 scan->u.bmu_bitmap |= mask;
546
547 /*
548 * We could probably do a better job here. We are required to make
549 * bighint at least as large as the biggest contiguous block of
550 * data. If we just shoehorn it, a little extra overhead will
551 * be incured on the next allocation (but only that one typically).
552 */
553 scan->bm_bighint = BLIST_BMAP_RADIX;
554 }
555
556 /*
557 * BLST_META_FREE() - free allocated blocks from radix tree meta info
558 *
559 * This support routine frees a range of blocks from the bitmap.
560 * The range must be entirely enclosed by this radix node. If a
561 * meta node, we break the range down recursively to free blocks
562 * in subnodes (which means that this code can free an arbitrary
563 * range whereas the allocation code cannot allocate an arbitrary
564 * range).
565 */
566
567 static void
568 blst_meta_free(
569 blmeta_t *scan,
570 uint64_t freeBlk,
571 uint64_t count,
572 uint64_t radix,
573 int skip,
574 uint64_t blk
575 ) {
576 int i;
577 int next_skip = ((u_int)skip / BLIST_META_RADIX);
578
579 #if 0
580 printf("FREE (%" PRIx64 ",%" PRIu64
581 ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
582 freeBlk, count,
583 blk, radix
584 );
585 #endif
586
587 if (scan->u.bmu_avail == 0) {
588 /*
589 * ALL-ALLOCATED special case, with possible
590 * shortcut to ALL-FREE special case.
591 */
592 scan->u.bmu_avail = count;
593 scan->bm_bighint = count;
594
595 if (count != radix) {
596 for (i = 1; i <= skip; i += next_skip) {
597 if (scan[i].bm_bighint == (uint64_t)-1)
598 break;
599 scan[i].bm_bighint = 0;
600 if (next_skip == 1) {
601 scan[i].u.bmu_bitmap = 0;
602 } else {
603 scan[i].u.bmu_avail = 0;
604 }
605 }
606 /* fall through */
607 }
608 } else {
609 scan->u.bmu_avail += count;
610 /* scan->bm_bighint = radix; */
611 }
612
613 /*
614 * ALL-FREE special case.
615 */
616
617 if (scan->u.bmu_avail == radix)
618 return;
619 if (scan->u.bmu_avail > radix)
620 panic("blst_meta_free: freeing already free blocks (%"
621 PRIu64 ") %" PRIu64 "/%" PRIu64,
622 count, scan->u.bmu_avail, radix);
623
624 /*
625 * Break the free down into its components
626 */
627
628 radix /= BLIST_META_RADIX;
629
630 i = (freeBlk - blk) / radix;
631 blk += i * radix;
632 i = i * next_skip + 1;
633
634 while (i <= skip && blk < freeBlk + count) {
635 uint64_t v;
636
637 v = blk + radix - freeBlk;
638 if (v > count)
639 v = count;
640
641 if (scan->bm_bighint == (uint64_t)-1)
642 panic("blst_meta_free: freeing unexpected range");
643
644 if (next_skip == 1) {
645 blst_leaf_free(&scan[i], freeBlk, v);
646 } else {
647 blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
648 }
649 if (scan->bm_bighint < scan[i].bm_bighint)
650 scan->bm_bighint = scan[i].bm_bighint;
651 count -= v;
652 freeBlk += v;
653 blk += radix;
654 i += next_skip;
655 }
656 }
657
658 /*
659 * BLIST_RADIX_COPY() - copy one radix tree to another
660 *
661 * Locates free space in the source tree and frees it in the destination
662 * tree. The space may not already be free in the destination.
663 */
664
665 static void blst_copy(
666 blmeta_t *scan,
667 uint64_t blk,
668 uint64_t radix,
669 uint64_t skip,
670 blist_t dest,
671 uint64_t count
672 ) {
673 int next_skip;
674 int i;
675
676 /*
677 * Leaf node
678 */
679
680 if (radix == BLIST_BMAP_RADIX) {
681 uint64_t v = scan->u.bmu_bitmap;
682
683 if (v == (uint64_t)-1) {
684 blist_free(dest, blk, count);
685 } else if (v != 0) {
686 int i;
687
688 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
689 if (v & (1 << i))
690 blist_free(dest, blk + i, 1);
691 }
692 }
693 return;
694 }
695
696 /*
697 * Meta node
698 */
699
700 if (scan->u.bmu_avail == 0) {
701 /*
702 * Source all allocated, leave dest allocated
703 */
704 return;
705 }
706 if (scan->u.bmu_avail == radix) {
707 /*
708 * Source all free, free entire dest
709 */
710 if (count < radix)
711 blist_free(dest, blk, count);
712 else
713 blist_free(dest, blk, radix);
714 return;
715 }
716
717
718 radix /= BLIST_META_RADIX;
719 next_skip = ((u_int)skip / BLIST_META_RADIX);
720
721 for (i = 1; count && i <= skip; i += next_skip) {
722 if (scan[i].bm_bighint == (uint64_t)-1)
723 break;
724
725 if (count >= radix) {
726 blst_copy(
727 &scan[i],
728 blk,
729 radix,
730 next_skip - 1,
731 dest,
732 radix
733 );
734 count -= radix;
735 } else {
736 if (count) {
737 blst_copy(
738 &scan[i],
739 blk,
740 radix,
741 next_skip - 1,
742 dest,
743 count
744 );
745 }
746 count = 0;
747 }
748 blk += radix;
749 }
750 }
751
752 /*
753 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
754 *
755 * This routine allocates all blocks in the specified range
756 * regardless of any existing allocations in that range. Returns
757 * the number of blocks allocated by the call.
758 */
759
760 static int
761 blst_leaf_fill(blmeta_t *scan, uint64_t blk, int count)
762 {
763 int n = blk & (BLIST_BMAP_RADIX - 1);
764 int nblks;
765 uint64_t mask, bitmap;
766
767 mask = ((uint64_t)-1 << n) &
768 ((uint64_t)-1 >> (BLIST_BMAP_RADIX - count - n));
769
770 /* Count the number of blocks we're about to allocate */
771 bitmap = scan->u.bmu_bitmap & mask;
772 for (nblks = 0; bitmap != 0; nblks++)
773 bitmap &= bitmap - 1;
774
775 scan->u.bmu_bitmap &= ~mask;
776 return nblks;
777 }
778
779 /*
780 * BLIST_META_FILL() - allocate specific blocks at a meta node
781 *
782 * This routine allocates the specified range of blocks,
783 * regardless of any existing allocations in the range. The
784 * range must be within the extent of this node. Returns the
785 * number of blocks allocated by the call.
786 */
787 static int
788 blst_meta_fill(
789 blmeta_t *scan,
790 uint64_t allocBlk,
791 uint64_t count,
792 uint64_t radix,
793 int skip,
794 uint64_t blk
795 ) {
796 int i;
797 int next_skip = ((u_int)skip / BLIST_META_RADIX);
798 int nblks = 0;
799
800 if (count == radix || scan->u.bmu_avail == 0) {
801 /*
802 * ALL-ALLOCATED special case
803 */
804 nblks = scan->u.bmu_avail;
805 scan->u.bmu_avail = 0;
806 scan->bm_bighint = count;
807 return nblks;
808 }
809
810 if (scan->u.bmu_avail == radix) {
811 radix /= BLIST_META_RADIX;
812
813 /*
814 * ALL-FREE special case, initialize sublevel
815 */
816 for (i = 1; i <= skip; i += next_skip) {
817 if (scan[i].bm_bighint == (uint64_t)-1)
818 break;
819 if (next_skip == 1) {
820 scan[i].u.bmu_bitmap = (uint64_t)-1;
821 scan[i].bm_bighint = BLIST_BMAP_RADIX;
822 } else {
823 scan[i].bm_bighint = radix;
824 scan[i].u.bmu_avail = radix;
825 }
826 }
827 } else {
828 radix /= BLIST_META_RADIX;
829 }
830
831 if (count > radix)
832 panic("blist_meta_fill: allocation too large");
833
834 i = (allocBlk - blk) / radix;
835 blk += i * radix;
836 i = i * next_skip + 1;
837
838 while (i <= skip && blk < allocBlk + count) {
839 uint64_t v;
840
841 v = blk + radix - allocBlk;
842 if (v > count)
843 v = count;
844
845 if (scan->bm_bighint == (uint64_t)-1)
846 panic("blst_meta_fill: filling unexpected range");
847
848 if (next_skip == 1) {
849 nblks += blst_leaf_fill(&scan[i], allocBlk, v);
850 } else {
851 nblks += blst_meta_fill(&scan[i], allocBlk, v,
852 radix, next_skip - 1, blk);
853 }
854 count -= v;
855 allocBlk += v;
856 blk += radix;
857 i += next_skip;
858 }
859 scan->u.bmu_avail -= nblks;
860 return nblks;
861 }
862
863 /*
864 * BLST_RADIX_INIT() - initialize radix tree
865 *
866 * Initialize our meta structures and bitmaps and calculate the exact
867 * amount of space required to manage 'count' blocks - this space may
868 * be considerably less then the calculated radix due to the large
869 * RADIX values we use.
870 */
871
872 static uint64_t
873 blst_radix_init(blmeta_t *scan, uint64_t radix, int skip, uint64_t count)
874 {
875 int i;
876 int next_skip;
877 uint64_t memindex = 0;
878
879 /*
880 * Leaf node
881 */
882
883 if (radix == BLIST_BMAP_RADIX) {
884 if (scan) {
885 scan->bm_bighint = 0;
886 scan->u.bmu_bitmap = 0;
887 }
888 return(memindex);
889 }
890
891 /*
892 * Meta node. If allocating the entire object we can special
893 * case it. However, we need to figure out how much memory
894 * is required to manage 'count' blocks, so we continue on anyway.
895 */
896
897 if (scan) {
898 scan->bm_bighint = 0;
899 scan->u.bmu_avail = 0;
900 }
901
902 radix /= BLIST_META_RADIX;
903 next_skip = ((u_int)skip / BLIST_META_RADIX);
904
905 for (i = 1; i <= skip; i += next_skip) {
906 if (count >= radix) {
907 /*
908 * Allocate the entire object
909 */
910 memindex = i + blst_radix_init(
911 ((scan) ? &scan[i] : NULL),
912 radix,
913 next_skip - 1,
914 radix
915 );
916 count -= radix;
917 } else if (count > 0) {
918 /*
919 * Allocate a partial object
920 */
921 memindex = i + blst_radix_init(
922 ((scan) ? &scan[i] : NULL),
923 radix,
924 next_skip - 1,
925 count
926 );
927 count = 0;
928 } else {
929 /*
930 * Add terminator and break out
931 */
932 if (scan)
933 scan[i].bm_bighint = (uint64_t)-1;
934 break;
935 }
936 }
937 if (memindex < i)
938 memindex = i;
939 return(memindex);
940 }
941
942 #ifdef BLIST_DEBUG
943
944 static void
945 blst_radix_print(blmeta_t *scan, uint64_t blk, uint64_t radix, int skip, int tab)
946 {
947 int i;
948 int next_skip;
949 int lastState = 0;
950
951 if (radix == BLIST_BMAP_RADIX) {
952 printf(
953 "%*.*s(%016" PRIx64 ",%" PRIu64
954 "): bitmap %016" PRIx64 " big=%" PRIu64 "\n",
955 tab, tab, "",
956 blk, radix,
957 scan->u.bmu_bitmap,
958 scan->bm_bighint
959 );
960 return;
961 }
962
963 if (scan->u.bmu_avail == 0) {
964 printf(
965 "%*.*s(%016" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
966 tab, tab, "", blk, radix
967 );
968 return;
969 }
970 if (scan->u.bmu_avail == radix) {
971 printf(
972 "%*.*s(%016" PRIx64 ",%" PRIu64 ") ALL FREE\n",
973 tab, tab, "", blk, radix
974 );
975 return;
976 }
977
978 printf(
979 "%*.*s(%016" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
980 PRIu64 ") big=%" PRIu64 " {\n",
981 tab, tab, "",
982 blk, radix, scan->u.bmu_avail, radix, scan->bm_bighint
983 );
984
985 radix /= BLIST_META_RADIX;
986 next_skip = ((u_int)skip / BLIST_META_RADIX);
987 tab += 4;
988
989 for (i = 1; i <= skip; i += next_skip) {
990 if (scan[i].bm_bighint == (uint64_t)-1) {
991 printf(
992 "%*.*s(%016" PRIx64 ",%" PRIu64 "): Terminator\n",
993 tab, tab, "",
994 blk, radix
995 );
996 lastState = 0;
997 break;
998 }
999 blst_radix_print(
1000 &scan[i],
1001 blk,
1002 radix,
1003 next_skip - 1,
1004 tab
1005 );
1006 blk += radix;
1007 }
1008 tab -= 4;
1009
1010 printf(
1011 "%*.*s}\n",
1012 tab, tab, ""
1013 );
1014 }
1015
1016 #endif
1017
1018 #ifdef BLIST_DEBUG
1019
1020 int
1021 main(int ac, char **av)
1022 {
1023 uint64_t size = 1024;
1024 int i;
1025 blist_t bl;
1026
1027 for (i = 1; i < ac; ++i) {
1028 const char *ptr = av[i];
1029 if (*ptr != '-') {
1030 size = strtol(ptr, NULL, 0);
1031 continue;
1032 }
1033 ptr += 2;
1034 fprintf(stderr, "Bad option: %s\n", ptr - 2);
1035 exit(1);
1036 }
1037 bl = blist_create(size);
1038 blist_free(bl, 0, size);
1039
1040 for (;;) {
1041 char buf[1024];
1042 uint64_t da = 0;
1043 uint64_t count = 0;
1044
1045
1046 printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
1047 bl->bl_free, size, bl->bl_radix);
1048 fflush(stdout);
1049 if (fgets(buf, sizeof(buf), stdin) == NULL)
1050 break;
1051 switch(buf[0]) {
1052 case 'r':
1053 if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1054 blist_resize(&bl, count, 1);
1055 } else {
1056 printf("?\n");
1057 }
1058 case 'p':
1059 blist_print(bl);
1060 break;
1061 case 'a':
1062 if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
1063 uint64_t blk = blist_alloc(bl, count);
1064 printf(" R=%016" PRIx64 "\n", blk);
1065 } else {
1066 printf("?\n");
1067 }
1068 break;
1069 case 'f':
1070 if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1071 &da, &count) == 2) {
1072 blist_free(bl, da, count);
1073 } else {
1074 printf("?\n");
1075 }
1076 break;
1077 case 'l':
1078 if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
1079 &da, &count) == 2) {
1080 printf(" n=%d\n",
1081 blist_fill(bl, da, count));
1082 } else {
1083 printf("?\n");
1084 }
1085 break;
1086 case '?':
1087 case 'h':
1088 puts(
1089 "p -print\n"
1090 "a %d -allocate\n"
1091 "f %x %d -free\n"
1092 "l %x %d -fill\n"
1093 "r %d -resize\n"
1094 "h/? -help"
1095 );
1096 break;
1097 default:
1098 printf("?\n");
1099 break;
1100 }
1101 }
1102 return(0);
1103 }
1104
1105 void
1106 panic(const char *ctl, ...)
1107 {
1108 va_list va;
1109
1110 va_start(va, ctl);
1111 vfprintf(stderr, ctl, va);
1112 fprintf(stderr, "\n");
1113 va_end(va);
1114 exit(1);
1115 }
1116
1117 #endif
1118
1119