subr_copy.c revision 1.18 1 1.18 riastrad /* $NetBSD: subr_copy.c,v 1.18 2023/04/11 10:22:04 riastradh Exp $ */
2 1.1 pooka
3 1.1 pooka /*-
4 1.9 thorpej * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008, 2019
5 1.9 thorpej * The NetBSD Foundation, Inc.
6 1.1 pooka * All rights reserved.
7 1.1 pooka *
8 1.1 pooka * This code is derived from software contributed to The NetBSD Foundation
9 1.1 pooka * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.1 pooka * NASA Ames Research Center.
11 1.1 pooka *
12 1.1 pooka * Redistribution and use in source and binary forms, with or without
13 1.1 pooka * modification, are permitted provided that the following conditions
14 1.1 pooka * are met:
15 1.1 pooka * 1. Redistributions of source code must retain the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer.
17 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 pooka * notice, this list of conditions and the following disclaimer in the
19 1.1 pooka * documentation and/or other materials provided with the distribution.
20 1.1 pooka *
21 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.1 pooka * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 pooka * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 pooka * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.1 pooka * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 pooka * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 pooka * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 pooka * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 pooka * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 pooka * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 pooka * POSSIBILITY OF SUCH DAMAGE.
32 1.1 pooka */
33 1.1 pooka
34 1.1 pooka /*
35 1.1 pooka * Copyright (c) 1982, 1986, 1991, 1993
36 1.1 pooka * The Regents of the University of California. All rights reserved.
37 1.1 pooka * (c) UNIX System Laboratories, Inc.
38 1.1 pooka * All or some portions of this file are derived from material licensed
39 1.1 pooka * to the University of California by American Telephone and Telegraph
40 1.1 pooka * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.1 pooka * the permission of UNIX System Laboratories, Inc.
42 1.1 pooka *
43 1.1 pooka * Copyright (c) 1992, 1993
44 1.1 pooka * The Regents of the University of California. All rights reserved.
45 1.1 pooka *
46 1.1 pooka * This software was developed by the Computer Systems Engineering group
47 1.1 pooka * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
48 1.1 pooka * contributed to Berkeley.
49 1.1 pooka *
50 1.1 pooka * All advertising materials mentioning features or use of this software
51 1.1 pooka * must display the following acknowledgement:
52 1.1 pooka * This product includes software developed by the University of
53 1.1 pooka * California, Lawrence Berkeley Laboratory.
54 1.1 pooka *
55 1.1 pooka * Redistribution and use in source and binary forms, with or without
56 1.1 pooka * modification, are permitted provided that the following conditions
57 1.1 pooka * are met:
58 1.1 pooka * 1. Redistributions of source code must retain the above copyright
59 1.1 pooka * notice, this list of conditions and the following disclaimer.
60 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
61 1.1 pooka * notice, this list of conditions and the following disclaimer in the
62 1.1 pooka * documentation and/or other materials provided with the distribution.
63 1.1 pooka * 3. Neither the name of the University nor the names of its contributors
64 1.1 pooka * may be used to endorse or promote products derived from this software
65 1.1 pooka * without specific prior written permission.
66 1.1 pooka *
67 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 1.1 pooka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 1.1 pooka * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 1.1 pooka * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 1.1 pooka * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 1.1 pooka * SUCH DAMAGE.
78 1.1 pooka *
79 1.1 pooka * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
80 1.1 pooka */
81 1.1 pooka
82 1.1 pooka #include <sys/cdefs.h>
83 1.18 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_copy.c,v 1.18 2023/04/11 10:22:04 riastradh Exp $");
84 1.9 thorpej
85 1.9 thorpej #define __UFETCHSTORE_PRIVATE
86 1.9 thorpej #define __UCAS_PRIVATE
87 1.1 pooka
88 1.1 pooka #include <sys/param.h>
89 1.1 pooka #include <sys/fcntl.h>
90 1.1 pooka #include <sys/proc.h>
91 1.1 pooka #include <sys/systm.h>
92 1.1 pooka
93 1.1 pooka #include <uvm/uvm_extern.h>
94 1.1 pooka
95 1.1 pooka void
96 1.1 pooka uio_setup_sysspace(struct uio *uio)
97 1.1 pooka {
98 1.1 pooka
99 1.1 pooka uio->uio_vmspace = vmspace_kernel();
100 1.1 pooka }
101 1.1 pooka
102 1.1 pooka int
103 1.1 pooka uiomove(void *buf, size_t n, struct uio *uio)
104 1.1 pooka {
105 1.1 pooka struct vmspace *vm = uio->uio_vmspace;
106 1.1 pooka struct iovec *iov;
107 1.1 pooka size_t cnt;
108 1.1 pooka int error = 0;
109 1.1 pooka char *cp = buf;
110 1.1 pooka
111 1.1 pooka ASSERT_SLEEPABLE();
112 1.1 pooka
113 1.6 riastrad KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE);
114 1.1 pooka while (n > 0 && uio->uio_resid) {
115 1.18 riastrad KASSERT(uio->uio_iovcnt > 0);
116 1.1 pooka iov = uio->uio_iov;
117 1.1 pooka cnt = iov->iov_len;
118 1.1 pooka if (cnt == 0) {
119 1.18 riastrad KASSERT(uio->uio_iovcnt > 1);
120 1.1 pooka uio->uio_iov++;
121 1.1 pooka uio->uio_iovcnt--;
122 1.1 pooka continue;
123 1.1 pooka }
124 1.1 pooka if (cnt > n)
125 1.1 pooka cnt = n;
126 1.1 pooka if (!VMSPACE_IS_KERNEL_P(vm)) {
127 1.13 ad preempt_point();
128 1.1 pooka }
129 1.1 pooka
130 1.1 pooka if (uio->uio_rw == UIO_READ) {
131 1.1 pooka error = copyout_vmspace(vm, cp, iov->iov_base,
132 1.1 pooka cnt);
133 1.1 pooka } else {
134 1.1 pooka error = copyin_vmspace(vm, iov->iov_base, cp,
135 1.1 pooka cnt);
136 1.1 pooka }
137 1.1 pooka if (error) {
138 1.1 pooka break;
139 1.1 pooka }
140 1.1 pooka iov->iov_base = (char *)iov->iov_base + cnt;
141 1.1 pooka iov->iov_len -= cnt;
142 1.1 pooka uio->uio_resid -= cnt;
143 1.1 pooka uio->uio_offset += cnt;
144 1.1 pooka cp += cnt;
145 1.1 pooka KDASSERT(cnt <= n);
146 1.1 pooka n -= cnt;
147 1.1 pooka }
148 1.1 pooka
149 1.1 pooka return (error);
150 1.1 pooka }
151 1.1 pooka
152 1.1 pooka /*
153 1.1 pooka * Wrapper for uiomove() that validates the arguments against a known-good
154 1.1 pooka * kernel buffer.
155 1.1 pooka */
156 1.1 pooka int
157 1.1 pooka uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
158 1.1 pooka {
159 1.1 pooka size_t offset;
160 1.1 pooka
161 1.1 pooka if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
162 1.1 pooka (offset = uio->uio_offset) != uio->uio_offset)
163 1.1 pooka return (EINVAL);
164 1.1 pooka if (offset >= buflen)
165 1.1 pooka return (0);
166 1.1 pooka return (uiomove((char *)buf + offset, buflen - offset, uio));
167 1.1 pooka }
168 1.1 pooka
169 1.1 pooka /*
170 1.1 pooka * Give next character to user as result of read.
171 1.1 pooka */
172 1.1 pooka int
173 1.1 pooka ureadc(int c, struct uio *uio)
174 1.1 pooka {
175 1.1 pooka struct iovec *iov;
176 1.1 pooka
177 1.1 pooka if (uio->uio_resid <= 0)
178 1.1 pooka panic("ureadc: non-positive resid");
179 1.1 pooka again:
180 1.1 pooka if (uio->uio_iovcnt <= 0)
181 1.1 pooka panic("ureadc: non-positive iovcnt");
182 1.1 pooka iov = uio->uio_iov;
183 1.1 pooka if (iov->iov_len <= 0) {
184 1.1 pooka uio->uio_iovcnt--;
185 1.1 pooka uio->uio_iov++;
186 1.1 pooka goto again;
187 1.1 pooka }
188 1.1 pooka if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
189 1.9 thorpej int error;
190 1.9 thorpej if ((error = ustore_char(iov->iov_base, c)) != 0)
191 1.9 thorpej return (error);
192 1.1 pooka } else {
193 1.1 pooka *(char *)iov->iov_base = c;
194 1.1 pooka }
195 1.1 pooka iov->iov_base = (char *)iov->iov_base + 1;
196 1.1 pooka iov->iov_len--;
197 1.1 pooka uio->uio_resid--;
198 1.1 pooka uio->uio_offset++;
199 1.1 pooka return (0);
200 1.1 pooka }
201 1.1 pooka
202 1.1 pooka /*
203 1.1 pooka * Like copyin(), but operates on an arbitrary vmspace.
204 1.1 pooka */
205 1.1 pooka int
206 1.1 pooka copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
207 1.1 pooka {
208 1.1 pooka struct iovec iov;
209 1.1 pooka struct uio uio;
210 1.1 pooka int error;
211 1.1 pooka
212 1.1 pooka if (len == 0)
213 1.1 pooka return (0);
214 1.1 pooka
215 1.3 riastrad if (VMSPACE_IS_KERNEL_P(vm)) {
216 1.3 riastrad return kcopy(uaddr, kaddr, len);
217 1.3 riastrad }
218 1.2 riastrad if (__predict_true(vm == curproc->p_vmspace)) {
219 1.2 riastrad return copyin(uaddr, kaddr, len);
220 1.2 riastrad }
221 1.1 pooka
222 1.1 pooka iov.iov_base = kaddr;
223 1.1 pooka iov.iov_len = len;
224 1.1 pooka uio.uio_iov = &iov;
225 1.1 pooka uio.uio_iovcnt = 1;
226 1.1 pooka uio.uio_offset = (off_t)(uintptr_t)uaddr;
227 1.1 pooka uio.uio_resid = len;
228 1.1 pooka uio.uio_rw = UIO_READ;
229 1.1 pooka UIO_SETUP_SYSSPACE(&uio);
230 1.7 christos error = uvm_io(&vm->vm_map, &uio, 0);
231 1.1 pooka
232 1.1 pooka return (error);
233 1.1 pooka }
234 1.1 pooka
235 1.1 pooka /*
236 1.1 pooka * Like copyout(), but operates on an arbitrary vmspace.
237 1.1 pooka */
238 1.1 pooka int
239 1.1 pooka copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
240 1.1 pooka {
241 1.1 pooka struct iovec iov;
242 1.1 pooka struct uio uio;
243 1.1 pooka int error;
244 1.1 pooka
245 1.1 pooka if (len == 0)
246 1.1 pooka return (0);
247 1.1 pooka
248 1.3 riastrad if (VMSPACE_IS_KERNEL_P(vm)) {
249 1.3 riastrad return kcopy(kaddr, uaddr, len);
250 1.3 riastrad }
251 1.2 riastrad if (__predict_true(vm == curproc->p_vmspace)) {
252 1.2 riastrad return copyout(kaddr, uaddr, len);
253 1.2 riastrad }
254 1.1 pooka
255 1.1 pooka iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
256 1.1 pooka iov.iov_len = len;
257 1.1 pooka uio.uio_iov = &iov;
258 1.1 pooka uio.uio_iovcnt = 1;
259 1.1 pooka uio.uio_offset = (off_t)(uintptr_t)uaddr;
260 1.1 pooka uio.uio_resid = len;
261 1.1 pooka uio.uio_rw = UIO_WRITE;
262 1.1 pooka UIO_SETUP_SYSSPACE(&uio);
263 1.7 christos error = uvm_io(&vm->vm_map, &uio, 0);
264 1.1 pooka
265 1.1 pooka return (error);
266 1.1 pooka }
267 1.1 pooka
268 1.1 pooka /*
269 1.1 pooka * Like copyin(), but operates on an arbitrary process.
270 1.1 pooka */
271 1.1 pooka int
272 1.1 pooka copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
273 1.1 pooka {
274 1.1 pooka struct vmspace *vm;
275 1.1 pooka int error;
276 1.1 pooka
277 1.1 pooka error = proc_vmspace_getref(p, &vm);
278 1.1 pooka if (error) {
279 1.1 pooka return error;
280 1.1 pooka }
281 1.1 pooka error = copyin_vmspace(vm, uaddr, kaddr, len);
282 1.1 pooka uvmspace_free(vm);
283 1.1 pooka
284 1.1 pooka return error;
285 1.1 pooka }
286 1.1 pooka
287 1.1 pooka /*
288 1.1 pooka * Like copyout(), but operates on an arbitrary process.
289 1.1 pooka */
290 1.1 pooka int
291 1.1 pooka copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
292 1.1 pooka {
293 1.1 pooka struct vmspace *vm;
294 1.1 pooka int error;
295 1.1 pooka
296 1.1 pooka error = proc_vmspace_getref(p, &vm);
297 1.1 pooka if (error) {
298 1.1 pooka return error;
299 1.1 pooka }
300 1.1 pooka error = copyout_vmspace(vm, kaddr, uaddr, len);
301 1.1 pooka uvmspace_free(vm);
302 1.1 pooka
303 1.1 pooka return error;
304 1.1 pooka }
305 1.1 pooka
306 1.1 pooka /*
307 1.8 chs * Like copyin(), but operates on an arbitrary pid.
308 1.8 chs */
309 1.8 chs int
310 1.8 chs copyin_pid(pid_t pid, const void *uaddr, void *kaddr, size_t len)
311 1.8 chs {
312 1.8 chs struct proc *p;
313 1.8 chs struct vmspace *vm;
314 1.8 chs int error;
315 1.8 chs
316 1.14 ad mutex_enter(&proc_lock);
317 1.8 chs p = proc_find(pid);
318 1.8 chs if (p == NULL) {
319 1.14 ad mutex_exit(&proc_lock);
320 1.8 chs return ESRCH;
321 1.8 chs }
322 1.8 chs mutex_enter(p->p_lock);
323 1.12 chs error = proc_vmspace_getref(p, &vm);
324 1.8 chs mutex_exit(p->p_lock);
325 1.14 ad mutex_exit(&proc_lock);
326 1.8 chs
327 1.12 chs if (error == 0) {
328 1.12 chs error = copyin_vmspace(vm, uaddr, kaddr, len);
329 1.12 chs uvmspace_free(vm);
330 1.12 chs }
331 1.8 chs return error;
332 1.8 chs }
333 1.8 chs
334 1.8 chs /*
335 1.1 pooka * Like copyin(), except it operates on kernel addresses when the FKIOCTL
336 1.1 pooka * flag is passed in `ioctlflags' from the ioctl call.
337 1.1 pooka */
338 1.1 pooka int
339 1.1 pooka ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
340 1.1 pooka {
341 1.1 pooka if (ioctlflags & FKIOCTL)
342 1.1 pooka return kcopy(src, dst, len);
343 1.1 pooka return copyin(src, dst, len);
344 1.1 pooka }
345 1.1 pooka
346 1.1 pooka /*
347 1.1 pooka * Like copyout(), except it operates on kernel addresses when the FKIOCTL
348 1.1 pooka * flag is passed in `ioctlflags' from the ioctl call.
349 1.1 pooka */
350 1.1 pooka int
351 1.1 pooka ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
352 1.1 pooka {
353 1.1 pooka if (ioctlflags & FKIOCTL)
354 1.1 pooka return kcopy(src, dst, len);
355 1.1 pooka return copyout(src, dst, len);
356 1.1 pooka }
357 1.9 thorpej
358 1.9 thorpej /*
359 1.9 thorpej * User-space CAS / fetch / store
360 1.9 thorpej */
361 1.9 thorpej
362 1.9 thorpej #ifdef __NO_STRICT_ALIGNMENT
363 1.9 thorpej #define CHECK_ALIGNMENT(x) __nothing
364 1.9 thorpej #else /* ! __NO_STRICT_ALIGNMENT */
365 1.9 thorpej static bool
366 1.9 thorpej ufetchstore_aligned(uintptr_t uaddr, size_t size)
367 1.9 thorpej {
368 1.9 thorpej return (uaddr & (size - 1)) == 0;
369 1.9 thorpej }
370 1.9 thorpej
371 1.9 thorpej #define CHECK_ALIGNMENT() \
372 1.9 thorpej do { \
373 1.9 thorpej if (!ufetchstore_aligned((uintptr_t)uaddr, sizeof(*uaddr))) \
374 1.9 thorpej return EFAULT; \
375 1.9 thorpej } while (/*CONSTCOND*/0)
376 1.9 thorpej #endif /* __NO_STRICT_ALIGNMENT */
377 1.9 thorpej
378 1.10 thorpej /*
379 1.10 thorpej * __HAVE_UCAS_FULL platforms provide _ucas_32() and _ucas_64() themselves.
380 1.10 thorpej * _RUMPKERNEL also provides it's own _ucas_32() and _ucas_64().
381 1.10 thorpej *
382 1.10 thorpej * In all other cases, we provide generic implementations that work on
383 1.10 thorpej * all platforms.
384 1.10 thorpej */
385 1.10 thorpej
386 1.10 thorpej #if !defined(__HAVE_UCAS_FULL) && !defined(_RUMPKERNEL)
387 1.9 thorpej #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
388 1.9 thorpej #include <sys/atomic.h>
389 1.9 thorpej #include <sys/cpu.h>
390 1.9 thorpej #include <sys/once.h>
391 1.9 thorpej #include <sys/mutex.h>
392 1.9 thorpej #include <sys/ipi.h>
393 1.9 thorpej
394 1.9 thorpej static int ucas_critical_splcookie;
395 1.9 thorpej static volatile u_int ucas_critical_pausing_cpus;
396 1.9 thorpej static u_int ucas_critical_ipi;
397 1.9 thorpej static ONCE_DECL(ucas_critical_init_once)
398 1.9 thorpej
399 1.9 thorpej static void
400 1.9 thorpej ucas_critical_cpu_gate(void *arg __unused)
401 1.9 thorpej {
402 1.9 thorpej int count = SPINLOCK_BACKOFF_MIN;
403 1.9 thorpej
404 1.15 riastrad KASSERT(atomic_load_relaxed(&ucas_critical_pausing_cpus) > 0);
405 1.15 riastrad
406 1.15 riastrad /*
407 1.15 riastrad * Notify ucas_critical_wait that we have stopped. Using
408 1.15 riastrad * store-release ensures all our memory operations up to the
409 1.15 riastrad * IPI happen before the ucas -- no buffered stores on our end
410 1.15 riastrad * can clobber it later on, for instance.
411 1.15 riastrad *
412 1.15 riastrad * Matches atomic_load_acquire in ucas_critical_wait -- turns
413 1.15 riastrad * the following atomic_dec_uint into a store-release.
414 1.15 riastrad */
415 1.16 riastrad membar_release();
416 1.9 thorpej atomic_dec_uint(&ucas_critical_pausing_cpus);
417 1.15 riastrad
418 1.15 riastrad /*
419 1.15 riastrad * Wait for ucas_critical_exit to reopen the gate and let us
420 1.15 riastrad * proceed. Using a load-acquire ensures the ucas happens
421 1.15 riastrad * before any of our memory operations when we return from the
422 1.15 riastrad * IPI and proceed -- we won't observe any stale cached value
423 1.15 riastrad * that the ucas overwrote, for instance.
424 1.15 riastrad *
425 1.15 riastrad * Matches atomic_store_release in ucas_critical_exit.
426 1.15 riastrad */
427 1.15 riastrad while (atomic_load_acquire(&ucas_critical_pausing_cpus) != (u_int)-1) {
428 1.9 thorpej SPINLOCK_BACKOFF(count);
429 1.9 thorpej }
430 1.9 thorpej }
431 1.9 thorpej
432 1.9 thorpej static int
433 1.9 thorpej ucas_critical_init(void)
434 1.9 thorpej {
435 1.15 riastrad
436 1.9 thorpej ucas_critical_ipi = ipi_register(ucas_critical_cpu_gate, NULL);
437 1.9 thorpej return 0;
438 1.9 thorpej }
439 1.9 thorpej
440 1.9 thorpej static void
441 1.9 thorpej ucas_critical_wait(void)
442 1.9 thorpej {
443 1.9 thorpej int count = SPINLOCK_BACKOFF_MIN;
444 1.9 thorpej
445 1.15 riastrad /*
446 1.15 riastrad * Wait for all CPUs to stop at the gate. Using a load-acquire
447 1.15 riastrad * ensures all memory operations before they stop at the gate
448 1.15 riastrad * happen before the ucas -- no buffered stores in other CPUs
449 1.15 riastrad * can clobber it later on, for instance.
450 1.15 riastrad *
451 1.16 riastrad * Matches membar_release/atomic_dec_uint (store-release) in
452 1.15 riastrad * ucas_critical_cpu_gate.
453 1.15 riastrad */
454 1.15 riastrad while (atomic_load_acquire(&ucas_critical_pausing_cpus) > 0) {
455 1.9 thorpej SPINLOCK_BACKOFF(count);
456 1.9 thorpej }
457 1.9 thorpej }
458 1.9 thorpej #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
459 1.9 thorpej
460 1.9 thorpej static inline void
461 1.9 thorpej ucas_critical_enter(lwp_t * const l)
462 1.9 thorpej {
463 1.9 thorpej
464 1.9 thorpej #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
465 1.9 thorpej if (ncpu > 1) {
466 1.9 thorpej RUN_ONCE(&ucas_critical_init_once, ucas_critical_init);
467 1.9 thorpej
468 1.9 thorpej /*
469 1.9 thorpej * Acquire the mutex first, then go to splhigh() and
470 1.9 thorpej * broadcast the IPI to lock all of the other CPUs
471 1.9 thorpej * behind the gate.
472 1.9 thorpej *
473 1.9 thorpej * N.B. Going to splhigh() implicitly disables preemption,
474 1.9 thorpej * so there's no need to do it explicitly.
475 1.9 thorpej */
476 1.9 thorpej mutex_enter(&cpu_lock);
477 1.9 thorpej ucas_critical_splcookie = splhigh();
478 1.9 thorpej ucas_critical_pausing_cpus = ncpu - 1;
479 1.9 thorpej ipi_trigger_broadcast(ucas_critical_ipi, true);
480 1.9 thorpej ucas_critical_wait();
481 1.9 thorpej return;
482 1.9 thorpej }
483 1.9 thorpej #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
484 1.9 thorpej
485 1.9 thorpej KPREEMPT_DISABLE(l);
486 1.9 thorpej }
487 1.9 thorpej
488 1.9 thorpej static inline void
489 1.9 thorpej ucas_critical_exit(lwp_t * const l)
490 1.9 thorpej {
491 1.9 thorpej
492 1.9 thorpej #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
493 1.9 thorpej if (ncpu > 1) {
494 1.15 riastrad /*
495 1.15 riastrad * Open the gate and notify all CPUs in
496 1.15 riastrad * ucas_critical_cpu_gate that they can now proceed.
497 1.15 riastrad * Using a store-release ensures the ucas happens
498 1.15 riastrad * before any memory operations they issue after the
499 1.15 riastrad * IPI -- they won't observe any stale cache of the
500 1.15 riastrad * target word, for instance.
501 1.15 riastrad *
502 1.15 riastrad * Matches atomic_load_acquire in ucas_critical_cpu_gate.
503 1.15 riastrad */
504 1.15 riastrad atomic_store_release(&ucas_critical_pausing_cpus, (u_int)-1);
505 1.9 thorpej splx(ucas_critical_splcookie);
506 1.9 thorpej mutex_exit(&cpu_lock);
507 1.9 thorpej return;
508 1.9 thorpej }
509 1.9 thorpej #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
510 1.9 thorpej
511 1.9 thorpej KPREEMPT_ENABLE(l);
512 1.9 thorpej }
513 1.9 thorpej
514 1.9 thorpej int
515 1.9 thorpej _ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
516 1.9 thorpej {
517 1.9 thorpej lwp_t * const l = curlwp;
518 1.9 thorpej uint32_t *uva = ((void *)(uintptr_t)uaddr);
519 1.9 thorpej int error;
520 1.9 thorpej
521 1.9 thorpej /*
522 1.9 thorpej * Wire the user address down to avoid taking a page fault during
523 1.9 thorpej * the critical section.
524 1.9 thorpej */
525 1.9 thorpej error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
526 1.9 thorpej VM_PROT_READ | VM_PROT_WRITE);
527 1.9 thorpej if (error)
528 1.9 thorpej return error;
529 1.9 thorpej
530 1.9 thorpej ucas_critical_enter(l);
531 1.9 thorpej error = _ufetch_32(uva, ret);
532 1.9 thorpej if (error == 0 && *ret == old) {
533 1.9 thorpej error = _ustore_32(uva, new);
534 1.9 thorpej }
535 1.9 thorpej ucas_critical_exit(l);
536 1.9 thorpej
537 1.9 thorpej uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
538 1.9 thorpej
539 1.9 thorpej return error;
540 1.9 thorpej }
541 1.9 thorpej
542 1.9 thorpej #ifdef _LP64
543 1.9 thorpej int
544 1.9 thorpej _ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
545 1.9 thorpej {
546 1.9 thorpej lwp_t * const l = curlwp;
547 1.9 thorpej uint64_t *uva = ((void *)(uintptr_t)uaddr);
548 1.9 thorpej int error;
549 1.9 thorpej
550 1.9 thorpej /*
551 1.9 thorpej * Wire the user address down to avoid taking a page fault during
552 1.9 thorpej * the critical section.
553 1.9 thorpej */
554 1.9 thorpej error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
555 1.9 thorpej VM_PROT_READ | VM_PROT_WRITE);
556 1.9 thorpej if (error)
557 1.9 thorpej return error;
558 1.9 thorpej
559 1.9 thorpej ucas_critical_enter(l);
560 1.9 thorpej error = _ufetch_64(uva, ret);
561 1.9 thorpej if (error == 0 && *ret == old) {
562 1.9 thorpej error = _ustore_64(uva, new);
563 1.9 thorpej }
564 1.9 thorpej ucas_critical_exit(l);
565 1.9 thorpej
566 1.9 thorpej uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
567 1.9 thorpej
568 1.9 thorpej return error;
569 1.9 thorpej }
570 1.9 thorpej #endif /* _LP64 */
571 1.10 thorpej #endif /* ! __HAVE_UCAS_FULL && ! _RUMPKERNEL */
572 1.9 thorpej
573 1.9 thorpej int
574 1.9 thorpej ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
575 1.9 thorpej {
576 1.9 thorpej
577 1.9 thorpej ASSERT_SLEEPABLE();
578 1.9 thorpej CHECK_ALIGNMENT();
579 1.11 thorpej #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
580 1.11 thorpej !defined(_RUMPKERNEL)
581 1.9 thorpej if (ncpu > 1) {
582 1.9 thorpej return _ucas_32_mp(uaddr, old, new, ret);
583 1.9 thorpej }
584 1.9 thorpej #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
585 1.9 thorpej return _ucas_32(uaddr, old, new, ret);
586 1.9 thorpej }
587 1.9 thorpej
588 1.9 thorpej #ifdef _LP64
589 1.9 thorpej int
590 1.9 thorpej ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
591 1.9 thorpej {
592 1.9 thorpej
593 1.9 thorpej ASSERT_SLEEPABLE();
594 1.9 thorpej CHECK_ALIGNMENT();
595 1.11 thorpej #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
596 1.11 thorpej !defined(_RUMPKERNEL)
597 1.9 thorpej if (ncpu > 1) {
598 1.9 thorpej return _ucas_64_mp(uaddr, old, new, ret);
599 1.9 thorpej }
600 1.9 thorpej #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
601 1.9 thorpej return _ucas_64(uaddr, old, new, ret);
602 1.9 thorpej }
603 1.9 thorpej #endif /* _LP64 */
604 1.9 thorpej
605 1.9 thorpej __strong_alias(ucas_int,ucas_32);
606 1.9 thorpej #ifdef _LP64
607 1.9 thorpej __strong_alias(ucas_ptr,ucas_64);
608 1.9 thorpej #else
609 1.9 thorpej __strong_alias(ucas_ptr,ucas_32);
610 1.9 thorpej #endif /* _LP64 */
611 1.9 thorpej
612 1.9 thorpej int
613 1.9 thorpej ufetch_8(const uint8_t *uaddr, uint8_t *valp)
614 1.9 thorpej {
615 1.9 thorpej
616 1.9 thorpej ASSERT_SLEEPABLE();
617 1.9 thorpej CHECK_ALIGNMENT();
618 1.9 thorpej return _ufetch_8(uaddr, valp);
619 1.9 thorpej }
620 1.9 thorpej
621 1.9 thorpej int
622 1.9 thorpej ufetch_16(const uint16_t *uaddr, uint16_t *valp)
623 1.9 thorpej {
624 1.9 thorpej
625 1.9 thorpej ASSERT_SLEEPABLE();
626 1.9 thorpej CHECK_ALIGNMENT();
627 1.9 thorpej return _ufetch_16(uaddr, valp);
628 1.9 thorpej }
629 1.9 thorpej
630 1.9 thorpej int
631 1.9 thorpej ufetch_32(const uint32_t *uaddr, uint32_t *valp)
632 1.9 thorpej {
633 1.9 thorpej
634 1.9 thorpej ASSERT_SLEEPABLE();
635 1.9 thorpej CHECK_ALIGNMENT();
636 1.9 thorpej return _ufetch_32(uaddr, valp);
637 1.9 thorpej }
638 1.9 thorpej
639 1.9 thorpej #ifdef _LP64
640 1.9 thorpej int
641 1.9 thorpej ufetch_64(const uint64_t *uaddr, uint64_t *valp)
642 1.9 thorpej {
643 1.9 thorpej
644 1.9 thorpej ASSERT_SLEEPABLE();
645 1.9 thorpej CHECK_ALIGNMENT();
646 1.9 thorpej return _ufetch_64(uaddr, valp);
647 1.9 thorpej }
648 1.9 thorpej #endif /* _LP64 */
649 1.9 thorpej
650 1.9 thorpej __strong_alias(ufetch_char,ufetch_8);
651 1.9 thorpej __strong_alias(ufetch_short,ufetch_16);
652 1.9 thorpej __strong_alias(ufetch_int,ufetch_32);
653 1.9 thorpej #ifdef _LP64
654 1.9 thorpej __strong_alias(ufetch_long,ufetch_64);
655 1.9 thorpej __strong_alias(ufetch_ptr,ufetch_64);
656 1.9 thorpej #else
657 1.9 thorpej __strong_alias(ufetch_long,ufetch_32);
658 1.9 thorpej __strong_alias(ufetch_ptr,ufetch_32);
659 1.9 thorpej #endif /* _LP64 */
660 1.9 thorpej
661 1.9 thorpej int
662 1.9 thorpej ustore_8(uint8_t *uaddr, uint8_t val)
663 1.9 thorpej {
664 1.9 thorpej
665 1.9 thorpej ASSERT_SLEEPABLE();
666 1.9 thorpej CHECK_ALIGNMENT();
667 1.9 thorpej return _ustore_8(uaddr, val);
668 1.9 thorpej }
669 1.9 thorpej
670 1.9 thorpej int
671 1.9 thorpej ustore_16(uint16_t *uaddr, uint16_t val)
672 1.9 thorpej {
673 1.9 thorpej
674 1.9 thorpej ASSERT_SLEEPABLE();
675 1.9 thorpej CHECK_ALIGNMENT();
676 1.9 thorpej return _ustore_16(uaddr, val);
677 1.9 thorpej }
678 1.9 thorpej
679 1.9 thorpej int
680 1.9 thorpej ustore_32(uint32_t *uaddr, uint32_t val)
681 1.9 thorpej {
682 1.9 thorpej
683 1.9 thorpej ASSERT_SLEEPABLE();
684 1.9 thorpej CHECK_ALIGNMENT();
685 1.9 thorpej return _ustore_32(uaddr, val);
686 1.9 thorpej }
687 1.9 thorpej
688 1.9 thorpej #ifdef _LP64
689 1.9 thorpej int
690 1.9 thorpej ustore_64(uint64_t *uaddr, uint64_t val)
691 1.9 thorpej {
692 1.9 thorpej
693 1.9 thorpej ASSERT_SLEEPABLE();
694 1.9 thorpej CHECK_ALIGNMENT();
695 1.9 thorpej return _ustore_64(uaddr, val);
696 1.9 thorpej }
697 1.9 thorpej #endif /* _LP64 */
698 1.9 thorpej
699 1.9 thorpej __strong_alias(ustore_char,ustore_8);
700 1.9 thorpej __strong_alias(ustore_short,ustore_16);
701 1.9 thorpej __strong_alias(ustore_int,ustore_32);
702 1.9 thorpej #ifdef _LP64
703 1.9 thorpej __strong_alias(ustore_long,ustore_64);
704 1.9 thorpej __strong_alias(ustore_ptr,ustore_64);
705 1.9 thorpej #else
706 1.9 thorpej __strong_alias(ustore_long,ustore_32);
707 1.9 thorpej __strong_alias(ustore_ptr,ustore_32);
708 1.9 thorpej #endif /* _LP64 */
709