Home | History | Annotate | Line # | Download | only in kern
subr_copy.c revision 1.11.6.1
      1 /*	$NetBSD: subr_copy.c,v 1.11.6.1 2020/02/29 20:21:03 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008, 2019
      5  *	The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (c) 1982, 1986, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Copyright (c) 1992, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  *
     46  * This software was developed by the Computer Systems Engineering group
     47  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     48  * contributed to Berkeley.
     49  *
     50  * All advertising materials mentioning features or use of this software
     51  * must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Lawrence Berkeley Laboratory.
     54  *
     55  * Redistribution and use in source and binary forms, with or without
     56  * modification, are permitted provided that the following conditions
     57  * are met:
     58  * 1. Redistributions of source code must retain the above copyright
     59  *    notice, this list of conditions and the following disclaimer.
     60  * 2. Redistributions in binary form must reproduce the above copyright
     61  *    notice, this list of conditions and the following disclaimer in the
     62  *    documentation and/or other materials provided with the distribution.
     63  * 3. Neither the name of the University nor the names of its contributors
     64  *    may be used to endorse or promote products derived from this software
     65  *    without specific prior written permission.
     66  *
     67  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     70  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     71  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     72  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     73  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     74  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     75  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     76  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     77  * SUCH DAMAGE.
     78  *
     79  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: subr_copy.c,v 1.11.6.1 2020/02/29 20:21:03 ad Exp $");
     84 
     85 #define	__UFETCHSTORE_PRIVATE
     86 #define	__UCAS_PRIVATE
     87 
     88 #include <sys/param.h>
     89 #include <sys/fcntl.h>
     90 #include <sys/proc.h>
     91 #include <sys/systm.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 void
     96 uio_setup_sysspace(struct uio *uio)
     97 {
     98 
     99 	uio->uio_vmspace = vmspace_kernel();
    100 }
    101 
    102 int
    103 uiomove(void *buf, size_t n, struct uio *uio)
    104 {
    105 	struct vmspace *vm = uio->uio_vmspace;
    106 	struct iovec *iov;
    107 	size_t cnt;
    108 	int error = 0;
    109 	char *cp = buf;
    110 
    111 	ASSERT_SLEEPABLE();
    112 
    113 	KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE);
    114 	while (n > 0 && uio->uio_resid) {
    115 		iov = uio->uio_iov;
    116 		cnt = iov->iov_len;
    117 		if (cnt == 0) {
    118 			KASSERT(uio->uio_iovcnt > 0);
    119 			uio->uio_iov++;
    120 			uio->uio_iovcnt--;
    121 			continue;
    122 		}
    123 		if (cnt > n)
    124 			cnt = n;
    125 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    126 			if (curcpu()->ci_schedstate.spc_flags &
    127 			    SPCF_SHOULDYIELD)
    128 				preempt();
    129 		}
    130 
    131 		if (uio->uio_rw == UIO_READ) {
    132 			error = copyout_vmspace(vm, cp, iov->iov_base,
    133 			    cnt);
    134 		} else {
    135 			error = copyin_vmspace(vm, iov->iov_base, cp,
    136 			    cnt);
    137 		}
    138 		if (error) {
    139 			break;
    140 		}
    141 		iov->iov_base = (char *)iov->iov_base + cnt;
    142 		iov->iov_len -= cnt;
    143 		uio->uio_resid -= cnt;
    144 		uio->uio_offset += cnt;
    145 		cp += cnt;
    146 		KDASSERT(cnt <= n);
    147 		n -= cnt;
    148 	}
    149 
    150 	return (error);
    151 }
    152 
    153 /*
    154  * Wrapper for uiomove() that validates the arguments against a known-good
    155  * kernel buffer.
    156  */
    157 int
    158 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    159 {
    160 	size_t offset;
    161 
    162 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    163 	    (offset = uio->uio_offset) != uio->uio_offset)
    164 		return (EINVAL);
    165 	if (offset >= buflen)
    166 		return (0);
    167 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    168 }
    169 
    170 /*
    171  * Give next character to user as result of read.
    172  */
    173 int
    174 ureadc(int c, struct uio *uio)
    175 {
    176 	struct iovec *iov;
    177 
    178 	if (uio->uio_resid <= 0)
    179 		panic("ureadc: non-positive resid");
    180 again:
    181 	if (uio->uio_iovcnt <= 0)
    182 		panic("ureadc: non-positive iovcnt");
    183 	iov = uio->uio_iov;
    184 	if (iov->iov_len <= 0) {
    185 		uio->uio_iovcnt--;
    186 		uio->uio_iov++;
    187 		goto again;
    188 	}
    189 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    190 		int error;
    191 		if ((error = ustore_char(iov->iov_base, c)) != 0)
    192 			return (error);
    193 	} else {
    194 		*(char *)iov->iov_base = c;
    195 	}
    196 	iov->iov_base = (char *)iov->iov_base + 1;
    197 	iov->iov_len--;
    198 	uio->uio_resid--;
    199 	uio->uio_offset++;
    200 	return (0);
    201 }
    202 
    203 /*
    204  * Like copyin(), but operates on an arbitrary vmspace.
    205  */
    206 int
    207 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    208 {
    209 	struct iovec iov;
    210 	struct uio uio;
    211 	int error;
    212 
    213 	if (len == 0)
    214 		return (0);
    215 
    216 	if (VMSPACE_IS_KERNEL_P(vm)) {
    217 		return kcopy(uaddr, kaddr, len);
    218 	}
    219 	if (__predict_true(vm == curproc->p_vmspace)) {
    220 		return copyin(uaddr, kaddr, len);
    221 	}
    222 
    223 	iov.iov_base = kaddr;
    224 	iov.iov_len = len;
    225 	uio.uio_iov = &iov;
    226 	uio.uio_iovcnt = 1;
    227 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    228 	uio.uio_resid = len;
    229 	uio.uio_rw = UIO_READ;
    230 	UIO_SETUP_SYSSPACE(&uio);
    231 	error = uvm_io(&vm->vm_map, &uio, 0);
    232 
    233 	return (error);
    234 }
    235 
    236 /*
    237  * Like copyout(), but operates on an arbitrary vmspace.
    238  */
    239 int
    240 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    241 {
    242 	struct iovec iov;
    243 	struct uio uio;
    244 	int error;
    245 
    246 	if (len == 0)
    247 		return (0);
    248 
    249 	if (VMSPACE_IS_KERNEL_P(vm)) {
    250 		return kcopy(kaddr, uaddr, len);
    251 	}
    252 	if (__predict_true(vm == curproc->p_vmspace)) {
    253 		return copyout(kaddr, uaddr, len);
    254 	}
    255 
    256 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    257 	iov.iov_len = len;
    258 	uio.uio_iov = &iov;
    259 	uio.uio_iovcnt = 1;
    260 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    261 	uio.uio_resid = len;
    262 	uio.uio_rw = UIO_WRITE;
    263 	UIO_SETUP_SYSSPACE(&uio);
    264 	error = uvm_io(&vm->vm_map, &uio, 0);
    265 
    266 	return (error);
    267 }
    268 
    269 /*
    270  * Like copyin(), but operates on an arbitrary process.
    271  */
    272 int
    273 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    274 {
    275 	struct vmspace *vm;
    276 	int error;
    277 
    278 	error = proc_vmspace_getref(p, &vm);
    279 	if (error) {
    280 		return error;
    281 	}
    282 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    283 	uvmspace_free(vm);
    284 
    285 	return error;
    286 }
    287 
    288 /*
    289  * Like copyout(), but operates on an arbitrary process.
    290  */
    291 int
    292 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    293 {
    294 	struct vmspace *vm;
    295 	int error;
    296 
    297 	error = proc_vmspace_getref(p, &vm);
    298 	if (error) {
    299 		return error;
    300 	}
    301 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    302 	uvmspace_free(vm);
    303 
    304 	return error;
    305 }
    306 
    307 /*
    308  * Like copyin(), but operates on an arbitrary pid.
    309  */
    310 int
    311 copyin_pid(pid_t pid, const void *uaddr, void *kaddr, size_t len)
    312 {
    313 	struct proc *p;
    314 	struct vmspace *vm;
    315 	int error;
    316 
    317 	mutex_enter(proc_lock);
    318 	p = proc_find(pid);
    319 	if (p == NULL) {
    320 		mutex_exit(proc_lock);
    321 		return ESRCH;
    322 	}
    323 	mutex_enter(p->p_lock);
    324 	error = proc_vmspace_getref(p, &vm);
    325 	mutex_exit(p->p_lock);
    326 	mutex_exit(proc_lock);
    327 
    328 	if (error == 0) {
    329 		error = copyin_vmspace(vm, uaddr, kaddr, len);
    330 		uvmspace_free(vm);
    331 	}
    332 	return error;
    333 }
    334 
    335 /*
    336  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    337  * flag is passed in `ioctlflags' from the ioctl call.
    338  */
    339 int
    340 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    341 {
    342 	if (ioctlflags & FKIOCTL)
    343 		return kcopy(src, dst, len);
    344 	return copyin(src, dst, len);
    345 }
    346 
    347 /*
    348  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    349  * flag is passed in `ioctlflags' from the ioctl call.
    350  */
    351 int
    352 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    353 {
    354 	if (ioctlflags & FKIOCTL)
    355 		return kcopy(src, dst, len);
    356 	return copyout(src, dst, len);
    357 }
    358 
    359 /*
    360  * User-space CAS / fetch / store
    361  */
    362 
    363 #ifdef __NO_STRICT_ALIGNMENT
    364 #define	CHECK_ALIGNMENT(x)	__nothing
    365 #else /* ! __NO_STRICT_ALIGNMENT */
    366 static bool
    367 ufetchstore_aligned(uintptr_t uaddr, size_t size)
    368 {
    369 	return (uaddr & (size - 1)) == 0;
    370 }
    371 
    372 #define	CHECK_ALIGNMENT()						\
    373 do {									\
    374 	if (!ufetchstore_aligned((uintptr_t)uaddr, sizeof(*uaddr)))	\
    375 		return EFAULT;						\
    376 } while (/*CONSTCOND*/0)
    377 #endif /* __NO_STRICT_ALIGNMENT */
    378 
    379 /*
    380  * __HAVE_UCAS_FULL platforms provide _ucas_32() and _ucas_64() themselves.
    381  * _RUMPKERNEL also provides it's own _ucas_32() and _ucas_64().
    382  *
    383  * In all other cases, we provide generic implementations that work on
    384  * all platforms.
    385  */
    386 
    387 #if !defined(__HAVE_UCAS_FULL) && !defined(_RUMPKERNEL)
    388 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    389 #include <sys/atomic.h>
    390 #include <sys/cpu.h>
    391 #include <sys/once.h>
    392 #include <sys/mutex.h>
    393 #include <sys/ipi.h>
    394 
    395 static int ucas_critical_splcookie;
    396 static volatile u_int ucas_critical_pausing_cpus;
    397 static u_int ucas_critical_ipi;
    398 static ONCE_DECL(ucas_critical_init_once)
    399 
    400 static void
    401 ucas_critical_cpu_gate(void *arg __unused)
    402 {
    403 	int count = SPINLOCK_BACKOFF_MIN;
    404 
    405 	KASSERT(ucas_critical_pausing_cpus > 0);
    406 	atomic_dec_uint(&ucas_critical_pausing_cpus);
    407 	while (ucas_critical_pausing_cpus != (u_int)-1) {
    408 		SPINLOCK_BACKOFF(count);
    409 	}
    410 }
    411 
    412 static int
    413 ucas_critical_init(void)
    414 {
    415 	ucas_critical_ipi = ipi_register(ucas_critical_cpu_gate, NULL);
    416 	return 0;
    417 }
    418 
    419 static void
    420 ucas_critical_wait(void)
    421 {
    422 	int count = SPINLOCK_BACKOFF_MIN;
    423 
    424 	while (ucas_critical_pausing_cpus > 0) {
    425 		SPINLOCK_BACKOFF(count);
    426 	}
    427 }
    428 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    429 
    430 static inline void
    431 ucas_critical_enter(lwp_t * const l)
    432 {
    433 
    434 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    435 	if (ncpu > 1) {
    436 		RUN_ONCE(&ucas_critical_init_once, ucas_critical_init);
    437 
    438 		/*
    439 		 * Acquire the mutex first, then go to splhigh() and
    440 		 * broadcast the IPI to lock all of the other CPUs
    441 		 * behind the gate.
    442 		 *
    443 		 * N.B. Going to splhigh() implicitly disables preemption,
    444 		 * so there's no need to do it explicitly.
    445 		 */
    446 		mutex_enter(&cpu_lock);
    447 		ucas_critical_splcookie = splhigh();
    448 		ucas_critical_pausing_cpus = ncpu - 1;
    449 		membar_enter();
    450 
    451 		ipi_trigger_broadcast(ucas_critical_ipi, true);
    452 		ucas_critical_wait();
    453 		return;
    454 	}
    455 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    456 
    457 	KPREEMPT_DISABLE(l);
    458 }
    459 
    460 static inline void
    461 ucas_critical_exit(lwp_t * const l)
    462 {
    463 
    464 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    465 	if (ncpu > 1) {
    466 		membar_exit();
    467 		ucas_critical_pausing_cpus = (u_int)-1;
    468 		splx(ucas_critical_splcookie);
    469 		mutex_exit(&cpu_lock);
    470 		return;
    471 	}
    472 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    473 
    474 	KPREEMPT_ENABLE(l);
    475 }
    476 
    477 int
    478 _ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
    479 {
    480 	lwp_t * const l = curlwp;
    481 	uint32_t *uva = ((void *)(uintptr_t)uaddr);
    482 	int error;
    483 
    484 	/*
    485 	 * Wire the user address down to avoid taking a page fault during
    486 	 * the critical section.
    487 	 */
    488 	error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
    489 			   VM_PROT_READ | VM_PROT_WRITE);
    490 	if (error)
    491 		return error;
    492 
    493 	ucas_critical_enter(l);
    494 	error = _ufetch_32(uva, ret);
    495 	if (error == 0 && *ret == old) {
    496 		error = _ustore_32(uva, new);
    497 	}
    498 	ucas_critical_exit(l);
    499 
    500 	uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
    501 
    502 	return error;
    503 }
    504 
    505 #ifdef _LP64
    506 int
    507 _ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
    508 {
    509 	lwp_t * const l = curlwp;
    510 	uint64_t *uva = ((void *)(uintptr_t)uaddr);
    511 	int error;
    512 
    513 	/*
    514 	 * Wire the user address down to avoid taking a page fault during
    515 	 * the critical section.
    516 	 */
    517 	error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
    518 			   VM_PROT_READ | VM_PROT_WRITE);
    519 	if (error)
    520 		return error;
    521 
    522 	ucas_critical_enter(l);
    523 	error = _ufetch_64(uva, ret);
    524 	if (error == 0 && *ret == old) {
    525 		error = _ustore_64(uva, new);
    526 	}
    527 	ucas_critical_exit(l);
    528 
    529 	uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
    530 
    531 	return error;
    532 }
    533 #endif /* _LP64 */
    534 #endif /* ! __HAVE_UCAS_FULL && ! _RUMPKERNEL */
    535 
    536 int
    537 ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
    538 {
    539 
    540 	ASSERT_SLEEPABLE();
    541 	CHECK_ALIGNMENT();
    542 #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
    543     !defined(_RUMPKERNEL)
    544 	if (ncpu > 1) {
    545 		return _ucas_32_mp(uaddr, old, new, ret);
    546 	}
    547 #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
    548 	return _ucas_32(uaddr, old, new, ret);
    549 }
    550 
    551 #ifdef _LP64
    552 int
    553 ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
    554 {
    555 
    556 	ASSERT_SLEEPABLE();
    557 	CHECK_ALIGNMENT();
    558 #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
    559     !defined(_RUMPKERNEL)
    560 	if (ncpu > 1) {
    561 		return _ucas_64_mp(uaddr, old, new, ret);
    562 	}
    563 #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
    564 	return _ucas_64(uaddr, old, new, ret);
    565 }
    566 #endif /* _LP64 */
    567 
    568 __strong_alias(ucas_int,ucas_32);
    569 #ifdef _LP64
    570 __strong_alias(ucas_ptr,ucas_64);
    571 #else
    572 __strong_alias(ucas_ptr,ucas_32);
    573 #endif /* _LP64 */
    574 
    575 int
    576 ufetch_8(const uint8_t *uaddr, uint8_t *valp)
    577 {
    578 
    579 	ASSERT_SLEEPABLE();
    580 	CHECK_ALIGNMENT();
    581 	return _ufetch_8(uaddr, valp);
    582 }
    583 
    584 int
    585 ufetch_16(const uint16_t *uaddr, uint16_t *valp)
    586 {
    587 
    588 	ASSERT_SLEEPABLE();
    589 	CHECK_ALIGNMENT();
    590 	return _ufetch_16(uaddr, valp);
    591 }
    592 
    593 int
    594 ufetch_32(const uint32_t *uaddr, uint32_t *valp)
    595 {
    596 
    597 	ASSERT_SLEEPABLE();
    598 	CHECK_ALIGNMENT();
    599 	return _ufetch_32(uaddr, valp);
    600 }
    601 
    602 #ifdef _LP64
    603 int
    604 ufetch_64(const uint64_t *uaddr, uint64_t *valp)
    605 {
    606 
    607 	ASSERT_SLEEPABLE();
    608 	CHECK_ALIGNMENT();
    609 	return _ufetch_64(uaddr, valp);
    610 }
    611 #endif /* _LP64 */
    612 
    613 __strong_alias(ufetch_char,ufetch_8);
    614 __strong_alias(ufetch_short,ufetch_16);
    615 __strong_alias(ufetch_int,ufetch_32);
    616 #ifdef _LP64
    617 __strong_alias(ufetch_long,ufetch_64);
    618 __strong_alias(ufetch_ptr,ufetch_64);
    619 #else
    620 __strong_alias(ufetch_long,ufetch_32);
    621 __strong_alias(ufetch_ptr,ufetch_32);
    622 #endif /* _LP64 */
    623 
    624 int
    625 ustore_8(uint8_t *uaddr, uint8_t val)
    626 {
    627 
    628 	ASSERT_SLEEPABLE();
    629 	CHECK_ALIGNMENT();
    630 	return _ustore_8(uaddr, val);
    631 }
    632 
    633 int
    634 ustore_16(uint16_t *uaddr, uint16_t val)
    635 {
    636 
    637 	ASSERT_SLEEPABLE();
    638 	CHECK_ALIGNMENT();
    639 	return _ustore_16(uaddr, val);
    640 }
    641 
    642 int
    643 ustore_32(uint32_t *uaddr, uint32_t val)
    644 {
    645 
    646 	ASSERT_SLEEPABLE();
    647 	CHECK_ALIGNMENT();
    648 	return _ustore_32(uaddr, val);
    649 }
    650 
    651 #ifdef _LP64
    652 int
    653 ustore_64(uint64_t *uaddr, uint64_t val)
    654 {
    655 
    656 	ASSERT_SLEEPABLE();
    657 	CHECK_ALIGNMENT();
    658 	return _ustore_64(uaddr, val);
    659 }
    660 #endif /* _LP64 */
    661 
    662 __strong_alias(ustore_char,ustore_8);
    663 __strong_alias(ustore_short,ustore_16);
    664 __strong_alias(ustore_int,ustore_32);
    665 #ifdef _LP64
    666 __strong_alias(ustore_long,ustore_64);
    667 __strong_alias(ustore_ptr,ustore_64);
    668 #else
    669 __strong_alias(ustore_long,ustore_32);
    670 __strong_alias(ustore_ptr,ustore_32);
    671 #endif /* _LP64 */
    672