Home | History | Annotate | Line # | Download | only in kern
subr_copy.c revision 1.17
      1 /*	$NetBSD: subr_copy.c,v 1.17 2023/02/24 11:02:27 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008, 2019
      5  *	The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (c) 1982, 1986, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Copyright (c) 1992, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  *
     46  * This software was developed by the Computer Systems Engineering group
     47  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     48  * contributed to Berkeley.
     49  *
     50  * All advertising materials mentioning features or use of this software
     51  * must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Lawrence Berkeley Laboratory.
     54  *
     55  * Redistribution and use in source and binary forms, with or without
     56  * modification, are permitted provided that the following conditions
     57  * are met:
     58  * 1. Redistributions of source code must retain the above copyright
     59  *    notice, this list of conditions and the following disclaimer.
     60  * 2. Redistributions in binary form must reproduce the above copyright
     61  *    notice, this list of conditions and the following disclaimer in the
     62  *    documentation and/or other materials provided with the distribution.
     63  * 3. Neither the name of the University nor the names of its contributors
     64  *    may be used to endorse or promote products derived from this software
     65  *    without specific prior written permission.
     66  *
     67  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     70  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     71  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     72  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     73  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     74  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     75  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     76  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     77  * SUCH DAMAGE.
     78  *
     79  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: subr_copy.c,v 1.17 2023/02/24 11:02:27 riastradh Exp $");
     84 
     85 #define	__UFETCHSTORE_PRIVATE
     86 #define	__UCAS_PRIVATE
     87 
     88 #include <sys/param.h>
     89 #include <sys/fcntl.h>
     90 #include <sys/proc.h>
     91 #include <sys/systm.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 void
     96 uio_setup_sysspace(struct uio *uio)
     97 {
     98 
     99 	uio->uio_vmspace = vmspace_kernel();
    100 }
    101 
    102 int
    103 uiomove(void *buf, size_t n, struct uio *uio)
    104 {
    105 	struct vmspace *vm = uio->uio_vmspace;
    106 	struct iovec *iov;
    107 	size_t cnt;
    108 	int error = 0;
    109 	char *cp = buf;
    110 
    111 	ASSERT_SLEEPABLE();
    112 
    113 	KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE);
    114 	while (n > 0 && uio->uio_resid) {
    115 		iov = uio->uio_iov;
    116 		cnt = iov->iov_len;
    117 		if (cnt == 0) {
    118 			KASSERT(uio->uio_iovcnt > 0);
    119 			uio->uio_iov++;
    120 			uio->uio_iovcnt--;
    121 			continue;
    122 		}
    123 		if (cnt > n)
    124 			cnt = n;
    125 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    126 			preempt_point();
    127 		}
    128 
    129 		if (uio->uio_rw == UIO_READ) {
    130 			error = copyout_vmspace(vm, cp, iov->iov_base,
    131 			    cnt);
    132 		} else {
    133 			error = copyin_vmspace(vm, iov->iov_base, cp,
    134 			    cnt);
    135 		}
    136 		if (error) {
    137 			break;
    138 		}
    139 		iov->iov_base = (char *)iov->iov_base + cnt;
    140 		iov->iov_len -= cnt;
    141 		uio->uio_resid -= cnt;
    142 		uio->uio_offset += cnt;
    143 		cp += cnt;
    144 		KDASSERT(cnt <= n);
    145 		n -= cnt;
    146 	}
    147 
    148 	return (error);
    149 }
    150 
    151 /*
    152  * Wrapper for uiomove() that validates the arguments against a known-good
    153  * kernel buffer.
    154  */
    155 int
    156 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    157 {
    158 	size_t offset;
    159 
    160 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    161 	    (offset = uio->uio_offset) != uio->uio_offset)
    162 		return (EINVAL);
    163 	if (offset >= buflen)
    164 		return (0);
    165 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    166 }
    167 
    168 /*
    169  * Give next character to user as result of read.
    170  */
    171 int
    172 ureadc(int c, struct uio *uio)
    173 {
    174 	struct iovec *iov;
    175 
    176 	if (uio->uio_resid <= 0)
    177 		panic("ureadc: non-positive resid");
    178 again:
    179 	if (uio->uio_iovcnt <= 0)
    180 		panic("ureadc: non-positive iovcnt");
    181 	iov = uio->uio_iov;
    182 	if (iov->iov_len <= 0) {
    183 		uio->uio_iovcnt--;
    184 		uio->uio_iov++;
    185 		goto again;
    186 	}
    187 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    188 		int error;
    189 		if ((error = ustore_char(iov->iov_base, c)) != 0)
    190 			return (error);
    191 	} else {
    192 		*(char *)iov->iov_base = c;
    193 	}
    194 	iov->iov_base = (char *)iov->iov_base + 1;
    195 	iov->iov_len--;
    196 	uio->uio_resid--;
    197 	uio->uio_offset++;
    198 	return (0);
    199 }
    200 
    201 /*
    202  * Like copyin(), but operates on an arbitrary vmspace.
    203  */
    204 int
    205 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    206 {
    207 	struct iovec iov;
    208 	struct uio uio;
    209 	int error;
    210 
    211 	if (len == 0)
    212 		return (0);
    213 
    214 	if (VMSPACE_IS_KERNEL_P(vm)) {
    215 		return kcopy(uaddr, kaddr, len);
    216 	}
    217 	if (__predict_true(vm == curproc->p_vmspace)) {
    218 		return copyin(uaddr, kaddr, len);
    219 	}
    220 
    221 	iov.iov_base = kaddr;
    222 	iov.iov_len = len;
    223 	uio.uio_iov = &iov;
    224 	uio.uio_iovcnt = 1;
    225 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    226 	uio.uio_resid = len;
    227 	uio.uio_rw = UIO_READ;
    228 	UIO_SETUP_SYSSPACE(&uio);
    229 	error = uvm_io(&vm->vm_map, &uio, 0);
    230 
    231 	return (error);
    232 }
    233 
    234 /*
    235  * Like copyout(), but operates on an arbitrary vmspace.
    236  */
    237 int
    238 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    239 {
    240 	struct iovec iov;
    241 	struct uio uio;
    242 	int error;
    243 
    244 	if (len == 0)
    245 		return (0);
    246 
    247 	if (VMSPACE_IS_KERNEL_P(vm)) {
    248 		return kcopy(kaddr, uaddr, len);
    249 	}
    250 	if (__predict_true(vm == curproc->p_vmspace)) {
    251 		return copyout(kaddr, uaddr, len);
    252 	}
    253 
    254 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    255 	iov.iov_len = len;
    256 	uio.uio_iov = &iov;
    257 	uio.uio_iovcnt = 1;
    258 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    259 	uio.uio_resid = len;
    260 	uio.uio_rw = UIO_WRITE;
    261 	UIO_SETUP_SYSSPACE(&uio);
    262 	error = uvm_io(&vm->vm_map, &uio, 0);
    263 
    264 	return (error);
    265 }
    266 
    267 /*
    268  * Like copyin(), but operates on an arbitrary process.
    269  */
    270 int
    271 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    272 {
    273 	struct vmspace *vm;
    274 	int error;
    275 
    276 	error = proc_vmspace_getref(p, &vm);
    277 	if (error) {
    278 		return error;
    279 	}
    280 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    281 	uvmspace_free(vm);
    282 
    283 	return error;
    284 }
    285 
    286 /*
    287  * Like copyout(), but operates on an arbitrary process.
    288  */
    289 int
    290 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    291 {
    292 	struct vmspace *vm;
    293 	int error;
    294 
    295 	error = proc_vmspace_getref(p, &vm);
    296 	if (error) {
    297 		return error;
    298 	}
    299 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    300 	uvmspace_free(vm);
    301 
    302 	return error;
    303 }
    304 
    305 /*
    306  * Like copyin(), but operates on an arbitrary pid.
    307  */
    308 int
    309 copyin_pid(pid_t pid, const void *uaddr, void *kaddr, size_t len)
    310 {
    311 	struct proc *p;
    312 	struct vmspace *vm;
    313 	int error;
    314 
    315 	mutex_enter(&proc_lock);
    316 	p = proc_find(pid);
    317 	if (p == NULL) {
    318 		mutex_exit(&proc_lock);
    319 		return ESRCH;
    320 	}
    321 	mutex_enter(p->p_lock);
    322 	error = proc_vmspace_getref(p, &vm);
    323 	mutex_exit(p->p_lock);
    324 	mutex_exit(&proc_lock);
    325 
    326 	if (error == 0) {
    327 		error = copyin_vmspace(vm, uaddr, kaddr, len);
    328 		uvmspace_free(vm);
    329 	}
    330 	return error;
    331 }
    332 
    333 /*
    334  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    335  * flag is passed in `ioctlflags' from the ioctl call.
    336  */
    337 int
    338 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    339 {
    340 	if (ioctlflags & FKIOCTL)
    341 		return kcopy(src, dst, len);
    342 	return copyin(src, dst, len);
    343 }
    344 
    345 /*
    346  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    347  * flag is passed in `ioctlflags' from the ioctl call.
    348  */
    349 int
    350 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    351 {
    352 	if (ioctlflags & FKIOCTL)
    353 		return kcopy(src, dst, len);
    354 	return copyout(src, dst, len);
    355 }
    356 
    357 /*
    358  * User-space CAS / fetch / store
    359  */
    360 
    361 #ifdef __NO_STRICT_ALIGNMENT
    362 #define	CHECK_ALIGNMENT(x)	__nothing
    363 #else /* ! __NO_STRICT_ALIGNMENT */
    364 static bool
    365 ufetchstore_aligned(uintptr_t uaddr, size_t size)
    366 {
    367 	return (uaddr & (size - 1)) == 0;
    368 }
    369 
    370 #define	CHECK_ALIGNMENT()						\
    371 do {									\
    372 	if (!ufetchstore_aligned((uintptr_t)uaddr, sizeof(*uaddr)))	\
    373 		return EFAULT;						\
    374 } while (/*CONSTCOND*/0)
    375 #endif /* __NO_STRICT_ALIGNMENT */
    376 
    377 /*
    378  * __HAVE_UCAS_FULL platforms provide _ucas_32() and _ucas_64() themselves.
    379  * _RUMPKERNEL also provides it's own _ucas_32() and _ucas_64().
    380  *
    381  * In all other cases, we provide generic implementations that work on
    382  * all platforms.
    383  */
    384 
    385 #if !defined(__HAVE_UCAS_FULL) && !defined(_RUMPKERNEL)
    386 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    387 #include <sys/atomic.h>
    388 #include <sys/cpu.h>
    389 #include <sys/once.h>
    390 #include <sys/mutex.h>
    391 #include <sys/ipi.h>
    392 
    393 static int ucas_critical_splcookie;
    394 static volatile u_int ucas_critical_pausing_cpus;
    395 static u_int ucas_critical_ipi;
    396 static ONCE_DECL(ucas_critical_init_once)
    397 
    398 static void
    399 ucas_critical_cpu_gate(void *arg __unused)
    400 {
    401 	int count = SPINLOCK_BACKOFF_MIN;
    402 
    403 	KASSERT(atomic_load_relaxed(&ucas_critical_pausing_cpus) > 0);
    404 
    405 	/*
    406 	 * Notify ucas_critical_wait that we have stopped.  Using
    407 	 * store-release ensures all our memory operations up to the
    408 	 * IPI happen before the ucas -- no buffered stores on our end
    409 	 * can clobber it later on, for instance.
    410 	 *
    411 	 * Matches atomic_load_acquire in ucas_critical_wait -- turns
    412 	 * the following atomic_dec_uint into a store-release.
    413 	 */
    414 	membar_release();
    415 	atomic_dec_uint(&ucas_critical_pausing_cpus);
    416 
    417 	/*
    418 	 * Wait for ucas_critical_exit to reopen the gate and let us
    419 	 * proceed.  Using a load-acquire ensures the ucas happens
    420 	 * before any of our memory operations when we return from the
    421 	 * IPI and proceed -- we won't observe any stale cached value
    422 	 * that the ucas overwrote, for instance.
    423 	 *
    424 	 * Matches atomic_store_release in ucas_critical_exit.
    425 	 */
    426 	while (atomic_load_acquire(&ucas_critical_pausing_cpus) != (u_int)-1) {
    427 		SPINLOCK_BACKOFF(count);
    428 	}
    429 }
    430 
    431 static int
    432 ucas_critical_init(void)
    433 {
    434 
    435 	ucas_critical_ipi = ipi_register(ucas_critical_cpu_gate, NULL);
    436 	return 0;
    437 }
    438 
    439 static void
    440 ucas_critical_wait(void)
    441 {
    442 	int count = SPINLOCK_BACKOFF_MIN;
    443 
    444 	/*
    445 	 * Wait for all CPUs to stop at the gate.  Using a load-acquire
    446 	 * ensures all memory operations before they stop at the gate
    447 	 * happen before the ucas -- no buffered stores in other CPUs
    448 	 * can clobber it later on, for instance.
    449 	 *
    450 	 * Matches membar_release/atomic_dec_uint (store-release) in
    451 	 * ucas_critical_cpu_gate.
    452 	 */
    453 	while (atomic_load_acquire(&ucas_critical_pausing_cpus) > 0) {
    454 		SPINLOCK_BACKOFF(count);
    455 	}
    456 }
    457 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    458 
    459 static inline void
    460 ucas_critical_enter(lwp_t * const l)
    461 {
    462 
    463 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    464 	if (ncpu > 1) {
    465 		RUN_ONCE(&ucas_critical_init_once, ucas_critical_init);
    466 
    467 		/*
    468 		 * Acquire the mutex first, then go to splhigh() and
    469 		 * broadcast the IPI to lock all of the other CPUs
    470 		 * behind the gate.
    471 		 *
    472 		 * N.B. Going to splhigh() implicitly disables preemption,
    473 		 * so there's no need to do it explicitly.
    474 		 */
    475 		mutex_enter(&cpu_lock);
    476 		ucas_critical_splcookie = splhigh();
    477 		ucas_critical_pausing_cpus = ncpu - 1;
    478 		ipi_trigger_broadcast(ucas_critical_ipi, true);
    479 		ucas_critical_wait();
    480 		return;
    481 	}
    482 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    483 
    484 	KPREEMPT_DISABLE(l);
    485 }
    486 
    487 static inline void
    488 ucas_critical_exit(lwp_t * const l)
    489 {
    490 
    491 #if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
    492 	if (ncpu > 1) {
    493 		/*
    494 		 * Open the gate and notify all CPUs in
    495 		 * ucas_critical_cpu_gate that they can now proceed.
    496 		 * Using a store-release ensures the ucas happens
    497 		 * before any memory operations they issue after the
    498 		 * IPI -- they won't observe any stale cache of the
    499 		 * target word, for instance.
    500 		 *
    501 		 * Matches atomic_load_acquire in ucas_critical_cpu_gate.
    502 		 */
    503 		atomic_store_release(&ucas_critical_pausing_cpus, (u_int)-1);
    504 		splx(ucas_critical_splcookie);
    505 		mutex_exit(&cpu_lock);
    506 		return;
    507 	}
    508 #endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
    509 
    510 	KPREEMPT_ENABLE(l);
    511 }
    512 
    513 int
    514 _ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
    515 {
    516 	lwp_t * const l = curlwp;
    517 	uint32_t *uva = ((void *)(uintptr_t)uaddr);
    518 	int error;
    519 
    520 	/*
    521 	 * Wire the user address down to avoid taking a page fault during
    522 	 * the critical section.
    523 	 */
    524 	error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
    525 			   VM_PROT_READ | VM_PROT_WRITE);
    526 	if (error)
    527 		return error;
    528 
    529 	ucas_critical_enter(l);
    530 	error = _ufetch_32(uva, ret);
    531 	if (error == 0 && *ret == old) {
    532 		error = _ustore_32(uva, new);
    533 	}
    534 	ucas_critical_exit(l);
    535 
    536 	uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
    537 
    538 	return error;
    539 }
    540 
    541 #ifdef _LP64
    542 int
    543 _ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
    544 {
    545 	lwp_t * const l = curlwp;
    546 	uint64_t *uva = ((void *)(uintptr_t)uaddr);
    547 	int error;
    548 
    549 	/*
    550 	 * Wire the user address down to avoid taking a page fault during
    551 	 * the critical section.
    552 	 */
    553 	error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
    554 			   VM_PROT_READ | VM_PROT_WRITE);
    555 	if (error)
    556 		return error;
    557 
    558 	ucas_critical_enter(l);
    559 	error = _ufetch_64(uva, ret);
    560 	if (error == 0 && *ret == old) {
    561 		error = _ustore_64(uva, new);
    562 	}
    563 	ucas_critical_exit(l);
    564 
    565 	uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
    566 
    567 	return error;
    568 }
    569 #endif /* _LP64 */
    570 #endif /* ! __HAVE_UCAS_FULL && ! _RUMPKERNEL */
    571 
    572 int
    573 ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
    574 {
    575 
    576 	ASSERT_SLEEPABLE();
    577 	CHECK_ALIGNMENT();
    578 #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
    579     !defined(_RUMPKERNEL)
    580 	if (ncpu > 1) {
    581 		return _ucas_32_mp(uaddr, old, new, ret);
    582 	}
    583 #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
    584 	return _ucas_32(uaddr, old, new, ret);
    585 }
    586 
    587 #ifdef _LP64
    588 int
    589 ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
    590 {
    591 
    592 	ASSERT_SLEEPABLE();
    593 	CHECK_ALIGNMENT();
    594 #if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
    595     !defined(_RUMPKERNEL)
    596 	if (ncpu > 1) {
    597 		return _ucas_64_mp(uaddr, old, new, ret);
    598 	}
    599 #endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
    600 	return _ucas_64(uaddr, old, new, ret);
    601 }
    602 #endif /* _LP64 */
    603 
    604 __strong_alias(ucas_int,ucas_32);
    605 #ifdef _LP64
    606 __strong_alias(ucas_ptr,ucas_64);
    607 #else
    608 __strong_alias(ucas_ptr,ucas_32);
    609 #endif /* _LP64 */
    610 
    611 int
    612 ufetch_8(const uint8_t *uaddr, uint8_t *valp)
    613 {
    614 
    615 	ASSERT_SLEEPABLE();
    616 	CHECK_ALIGNMENT();
    617 	return _ufetch_8(uaddr, valp);
    618 }
    619 
    620 int
    621 ufetch_16(const uint16_t *uaddr, uint16_t *valp)
    622 {
    623 
    624 	ASSERT_SLEEPABLE();
    625 	CHECK_ALIGNMENT();
    626 	return _ufetch_16(uaddr, valp);
    627 }
    628 
    629 int
    630 ufetch_32(const uint32_t *uaddr, uint32_t *valp)
    631 {
    632 
    633 	ASSERT_SLEEPABLE();
    634 	CHECK_ALIGNMENT();
    635 	return _ufetch_32(uaddr, valp);
    636 }
    637 
    638 #ifdef _LP64
    639 int
    640 ufetch_64(const uint64_t *uaddr, uint64_t *valp)
    641 {
    642 
    643 	ASSERT_SLEEPABLE();
    644 	CHECK_ALIGNMENT();
    645 	return _ufetch_64(uaddr, valp);
    646 }
    647 #endif /* _LP64 */
    648 
    649 __strong_alias(ufetch_char,ufetch_8);
    650 __strong_alias(ufetch_short,ufetch_16);
    651 __strong_alias(ufetch_int,ufetch_32);
    652 #ifdef _LP64
    653 __strong_alias(ufetch_long,ufetch_64);
    654 __strong_alias(ufetch_ptr,ufetch_64);
    655 #else
    656 __strong_alias(ufetch_long,ufetch_32);
    657 __strong_alias(ufetch_ptr,ufetch_32);
    658 #endif /* _LP64 */
    659 
    660 int
    661 ustore_8(uint8_t *uaddr, uint8_t val)
    662 {
    663 
    664 	ASSERT_SLEEPABLE();
    665 	CHECK_ALIGNMENT();
    666 	return _ustore_8(uaddr, val);
    667 }
    668 
    669 int
    670 ustore_16(uint16_t *uaddr, uint16_t val)
    671 {
    672 
    673 	ASSERT_SLEEPABLE();
    674 	CHECK_ALIGNMENT();
    675 	return _ustore_16(uaddr, val);
    676 }
    677 
    678 int
    679 ustore_32(uint32_t *uaddr, uint32_t val)
    680 {
    681 
    682 	ASSERT_SLEEPABLE();
    683 	CHECK_ALIGNMENT();
    684 	return _ustore_32(uaddr, val);
    685 }
    686 
    687 #ifdef _LP64
    688 int
    689 ustore_64(uint64_t *uaddr, uint64_t val)
    690 {
    691 
    692 	ASSERT_SLEEPABLE();
    693 	CHECK_ALIGNMENT();
    694 	return _ustore_64(uaddr, val);
    695 }
    696 #endif /* _LP64 */
    697 
    698 __strong_alias(ustore_char,ustore_8);
    699 __strong_alias(ustore_short,ustore_16);
    700 __strong_alias(ustore_int,ustore_32);
    701 #ifdef _LP64
    702 __strong_alias(ustore_long,ustore_64);
    703 __strong_alias(ustore_ptr,ustore_64);
    704 #else
    705 __strong_alias(ustore_long,ustore_32);
    706 __strong_alias(ustore_ptr,ustore_32);
    707 #endif /* _LP64 */
    708