subr_cprng.c revision 1.31 1 /* $NetBSD: subr_cprng.c,v 1.31 2019/09/02 20:09:30 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Thor Lancelot Simon and Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: subr_cprng.c,v 1.31 2019/09/02 20:09:30 riastradh Exp $");
34
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/condvar.h>
38 #include <sys/cprng.h>
39 #include <sys/errno.h>
40 #include <sys/event.h> /* XXX struct knote */
41 #include <sys/fcntl.h> /* XXX FNONBLOCK */
42 #include <sys/kernel.h>
43 #include <sys/kmem.h>
44 #include <sys/lwp.h>
45 #include <sys/once.h>
46 #include <sys/percpu.h>
47 #include <sys/poll.h> /* XXX POLLIN/POLLOUT/&c. */
48 #include <sys/select.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/rndsink.h>
52 #if DIAGNOSTIC
53 #include <sys/rngtest.h>
54 #endif
55
56 #include <crypto/nist_hash_drbg/nist_hash_drbg.h>
57
58 #if defined(__HAVE_CPU_COUNTER)
59 #include <machine/cpu_counter.h>
60 #endif
61
62 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
63 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
64
65 static void cprng_strong_generate(struct cprng_strong *, void *, size_t);
66 static void cprng_strong_reseed(struct cprng_strong *);
67 static void cprng_strong_reseed_from(struct cprng_strong *, const void *,
68 size_t, bool);
69 #if DIAGNOSTIC
70 static void cprng_strong_rngtest(struct cprng_strong *);
71 #endif
72
73 static rndsink_callback_t cprng_strong_rndsink_callback;
74
75 void
76 cprng_init(void)
77 {
78 static struct sysctllog *random_sysctllog;
79
80 if (nist_hash_drbg_initialize() != 0)
81 panic("NIST Hash_DRBG failed self-test");
82
83 sysctl_createv(&random_sysctllog, 0, NULL, NULL,
84 CTLFLAG_PERMANENT,
85 CTLTYPE_INT, "urandom",
86 SYSCTL_DESCR("Random integer value"),
87 sysctl_kern_urnd, 0, NULL, 0,
88 CTL_KERN, KERN_URND, CTL_EOL);
89 sysctl_createv(&random_sysctllog, 0, NULL, NULL,
90 CTLFLAG_PERMANENT,
91 CTLTYPE_INT, "arandom",
92 SYSCTL_DESCR("n bytes of random data"),
93 sysctl_kern_arnd, 0, NULL, 0,
94 CTL_KERN, KERN_ARND, CTL_EOL);
95 }
96
97 static inline uint32_t
98 cprng_counter(void)
99 {
100 struct timeval tv;
101
102 #if defined(__HAVE_CPU_COUNTER)
103 if (cpu_hascounter())
104 return cpu_counter32();
105 #endif
106 if (__predict_false(cold)) {
107 static int ctr;
108 /* microtime unsafe if clock not running yet */
109 return ctr++;
110 }
111 getmicrotime(&tv);
112 return (tv.tv_sec * 1000000 + tv.tv_usec);
113 }
114
115 struct cprng_strong {
116 char cs_name[16];
117 int cs_flags;
118 kmutex_t cs_lock;
119 percpu_t *cs_percpu;
120 kcondvar_t cs_cv;
121 struct selinfo cs_selq;
122 struct rndsink *cs_rndsink;
123 bool cs_ready;
124 NIST_HASH_DRBG cs_drbg;
125
126 /* XXX Kludge for /dev/random `information-theoretic' properties. */
127 unsigned int cs_remaining;
128 };
129
130 struct cprng_strong *
131 cprng_strong_create(const char *name, int ipl, int flags)
132 {
133 const uint32_t cc = cprng_counter();
134 struct cprng_strong *const cprng = kmem_alloc(sizeof(*cprng),
135 KM_SLEEP);
136
137 /*
138 * rndsink_request takes a spin lock at IPL_VM, so we can be no
139 * higher than that.
140 */
141 KASSERT(ipl != IPL_SCHED && ipl != IPL_HIGH);
142
143 /* Initialize the easy fields. */
144 memset(cprng->cs_name, 0, sizeof(cprng->cs_name));
145 (void)strlcpy(cprng->cs_name, name, sizeof(cprng->cs_name));
146 cprng->cs_flags = flags;
147 mutex_init(&cprng->cs_lock, MUTEX_DEFAULT, ipl);
148 cv_init(&cprng->cs_cv, cprng->cs_name);
149 selinit(&cprng->cs_selq);
150 cprng->cs_rndsink = rndsink_create(NIST_HASH_DRBG_MIN_SEEDLEN_BYTES,
151 &cprng_strong_rndsink_callback, cprng);
152
153 /* Get some initial entropy. Record whether it is full entropy. */
154 uint8_t seed[NIST_HASH_DRBG_MIN_SEEDLEN_BYTES];
155 mutex_enter(&cprng->cs_lock);
156 cprng->cs_ready = rndsink_request(cprng->cs_rndsink, seed,
157 sizeof(seed));
158 if (nist_hash_drbg_instantiate(&cprng->cs_drbg, seed, sizeof(seed),
159 &cc, sizeof(cc), cprng->cs_name, sizeof(cprng->cs_name)))
160 /* XXX Fix nist_hash_drbg API so this can't happen. */
161 panic("cprng %s: NIST Hash_DRBG instantiation failed",
162 cprng->cs_name);
163 explicit_memset(seed, 0, sizeof(seed));
164
165 if (ISSET(flags, CPRNG_HARD))
166 cprng->cs_remaining = NIST_HASH_DRBG_MIN_SEEDLEN_BYTES;
167 else
168 cprng->cs_remaining = 0;
169
170 if (!cprng->cs_ready && !ISSET(flags, CPRNG_INIT_ANY))
171 printf("cprng %s: creating with partial entropy\n",
172 cprng->cs_name);
173 mutex_exit(&cprng->cs_lock);
174
175 return cprng;
176 }
177
178 void
179 cprng_strong_destroy(struct cprng_strong *cprng)
180 {
181
182 /*
183 * Destroy the rndsink first to prevent calls to the callback.
184 */
185 rndsink_destroy(cprng->cs_rndsink);
186
187 KASSERT(!cv_has_waiters(&cprng->cs_cv));
188 #if 0
189 KASSERT(!select_has_waiters(&cprng->cs_selq)) /* XXX ? */
190 #endif
191
192 nist_hash_drbg_destroy(&cprng->cs_drbg);
193 seldestroy(&cprng->cs_selq);
194 cv_destroy(&cprng->cs_cv);
195 mutex_destroy(&cprng->cs_lock);
196
197 explicit_memset(cprng, 0, sizeof(*cprng)); /* paranoia */
198 kmem_free(cprng, sizeof(*cprng));
199 }
200
201 /*
202 * Generate some data from cprng. Block or return zero bytes,
203 * depending on flags & FNONBLOCK, if cprng was created without
204 * CPRNG_REKEY_ANY.
205 */
206 size_t
207 cprng_strong(struct cprng_strong *cprng, void *buffer, size_t bytes, int flags)
208 {
209 size_t result;
210
211 /* Caller must loop for more than CPRNG_MAX_LEN bytes. */
212 bytes = MIN(bytes, CPRNG_MAX_LEN);
213
214 mutex_enter(&cprng->cs_lock);
215
216 if (ISSET(cprng->cs_flags, CPRNG_REKEY_ANY)) {
217 if (!cprng->cs_ready)
218 cprng_strong_reseed(cprng);
219 } else {
220 while (!cprng->cs_ready) {
221 if (ISSET(flags, FNONBLOCK) ||
222 !ISSET(cprng->cs_flags, CPRNG_USE_CV) ||
223 cv_wait_sig(&cprng->cs_cv, &cprng->cs_lock)) {
224 result = 0;
225 goto out;
226 }
227 }
228 }
229
230 /*
231 * Debit the entropy if requested.
232 *
233 * XXX Kludge for /dev/random `information-theoretic' properties.
234 */
235 if (__predict_false(ISSET(cprng->cs_flags, CPRNG_HARD))) {
236 KASSERT(0 < cprng->cs_remaining);
237 KASSERT(cprng->cs_remaining <=
238 NIST_HASH_DRBG_MIN_SEEDLEN_BYTES);
239 if (bytes < cprng->cs_remaining) {
240 cprng->cs_remaining -= bytes;
241 } else {
242 bytes = cprng->cs_remaining;
243 cprng->cs_remaining = NIST_HASH_DRBG_MIN_SEEDLEN_BYTES;
244 cprng->cs_ready = false;
245 rndsink_schedule(cprng->cs_rndsink);
246 }
247 KASSERT(bytes <= NIST_HASH_DRBG_MIN_SEEDLEN_BYTES);
248 KASSERT(0 < cprng->cs_remaining);
249 KASSERT(cprng->cs_remaining <=
250 NIST_HASH_DRBG_MIN_SEEDLEN_BYTES);
251 }
252
253 cprng_strong_generate(cprng, buffer, bytes);
254 result = bytes;
255
256 out: mutex_exit(&cprng->cs_lock);
257 return result;
258 }
259
260 static void
261 filt_cprng_detach(struct knote *kn)
262 {
263 struct cprng_strong *const cprng = kn->kn_hook;
264
265 mutex_enter(&cprng->cs_lock);
266 SLIST_REMOVE(&cprng->cs_selq.sel_klist, kn, knote, kn_selnext);
267 mutex_exit(&cprng->cs_lock);
268 }
269
270 static int
271 filt_cprng_read_event(struct knote *kn, long hint)
272 {
273 struct cprng_strong *const cprng = kn->kn_hook;
274 int ret;
275
276 if (hint == NOTE_SUBMIT)
277 KASSERT(mutex_owned(&cprng->cs_lock));
278 else
279 mutex_enter(&cprng->cs_lock);
280 if (cprng->cs_ready) {
281 kn->kn_data = CPRNG_MAX_LEN; /* XXX Too large? */
282 ret = 1;
283 } else {
284 ret = 0;
285 }
286 if (hint == NOTE_SUBMIT)
287 KASSERT(mutex_owned(&cprng->cs_lock));
288 else
289 mutex_exit(&cprng->cs_lock);
290
291 return ret;
292 }
293
294 static int
295 filt_cprng_write_event(struct knote *kn, long hint)
296 {
297 struct cprng_strong *const cprng = kn->kn_hook;
298
299 if (hint == NOTE_SUBMIT)
300 KASSERT(mutex_owned(&cprng->cs_lock));
301 else
302 mutex_enter(&cprng->cs_lock);
303
304 kn->kn_data = 0;
305
306 if (hint == NOTE_SUBMIT)
307 KASSERT(mutex_owned(&cprng->cs_lock));
308 else
309 mutex_exit(&cprng->cs_lock);
310
311 return 0;
312 }
313
314 static const struct filterops cprng_read_filtops = {
315 .f_isfd = 1,
316 .f_attach = NULL,
317 .f_detach = filt_cprng_detach,
318 .f_event = filt_cprng_read_event,
319 };
320
321 static const struct filterops cprng_write_filtops = {
322 .f_isfd = 1,
323 .f_attach = NULL,
324 .f_detach = filt_cprng_detach,
325 .f_event = filt_cprng_write_event,
326 };
327
328 int
329 cprng_strong_kqfilter(struct cprng_strong *cprng, struct knote *kn)
330 {
331
332 switch (kn->kn_filter) {
333 case EVFILT_READ:
334 kn->kn_fop = &cprng_read_filtops;
335 break;
336 case EVFILT_WRITE:
337 kn->kn_fop = &cprng_write_filtops;
338 break;
339 default:
340 return EINVAL;
341 }
342
343 kn->kn_hook = cprng;
344 mutex_enter(&cprng->cs_lock);
345 SLIST_INSERT_HEAD(&cprng->cs_selq.sel_klist, kn, kn_selnext);
346 mutex_exit(&cprng->cs_lock);
347 return 0;
348 }
349
350 int
351 cprng_strong_poll(struct cprng_strong *cprng, int events)
352 {
353 int revents;
354
355 if (!ISSET(events, (POLLIN | POLLRDNORM)))
356 return 0;
357
358 mutex_enter(&cprng->cs_lock);
359 if (cprng->cs_ready) {
360 revents = (events & (POLLIN | POLLRDNORM));
361 } else {
362 selrecord(curlwp, &cprng->cs_selq);
363 revents = 0;
364 }
365 mutex_exit(&cprng->cs_lock);
366
367 return revents;
368 }
369
370 /*
371 * XXX Move nist_hash_drbg_reseed_advised_p and
372 * nist_hash_drbg_reseed_needed_p into the nist_hash_drbg API and make
373 * the NIST_HASH_DRBG structure opaque.
374 */
375 static bool
376 nist_hash_drbg_reseed_advised_p(NIST_HASH_DRBG *drbg)
377 {
378
379 return (drbg->reseed_counter > (NIST_HASH_DRBG_RESEED_INTERVAL / 2));
380 }
381
382 static bool
383 nist_hash_drbg_reseed_needed_p(NIST_HASH_DRBG *drbg)
384 {
385
386 return (drbg->reseed_counter >= NIST_HASH_DRBG_RESEED_INTERVAL);
387 }
388
389 /*
390 * Generate some data from the underlying generator.
391 */
392 static void
393 cprng_strong_generate(struct cprng_strong *cprng, void *buffer, size_t bytes)
394 {
395 const uint32_t cc = cprng_counter();
396
397 KASSERT(bytes <= CPRNG_MAX_LEN);
398 KASSERT(mutex_owned(&cprng->cs_lock));
399
400 /*
401 * Generate some data from the NIST Hash_DRBG. Caller
402 * guarantees reseed if we're not ready, and if we exhaust the
403 * generator, we mark ourselves not ready. Consequently, this
404 * call to the Hash_DRBG should not fail.
405 */
406 if (__predict_false(nist_hash_drbg_generate(&cprng->cs_drbg, buffer,
407 bytes, &cc, sizeof(cc))))
408 panic("cprng %s: NIST Hash_DRBG failed", cprng->cs_name);
409
410 /*
411 * If we've been seeing a lot of use, ask for some fresh
412 * entropy soon.
413 */
414 if (__predict_false(nist_hash_drbg_reseed_advised_p(&cprng->cs_drbg)))
415 rndsink_schedule(cprng->cs_rndsink);
416
417 /*
418 * If we just exhausted the generator, inform the next user
419 * that we need a reseed.
420 */
421 if (__predict_false(nist_hash_drbg_reseed_needed_p(&cprng->cs_drbg))) {
422 cprng->cs_ready = false;
423 rndsink_schedule(cprng->cs_rndsink); /* paranoia */
424 }
425 }
426
427 /*
428 * Reseed with whatever we can get from the system entropy pool right now.
429 */
430 static void
431 cprng_strong_reseed(struct cprng_strong *cprng)
432 {
433 uint8_t seed[NIST_HASH_DRBG_MIN_SEEDLEN_BYTES];
434
435 KASSERT(mutex_owned(&cprng->cs_lock));
436
437 const bool full_entropy = rndsink_request(cprng->cs_rndsink, seed,
438 sizeof(seed));
439 cprng_strong_reseed_from(cprng, seed, sizeof(seed), full_entropy);
440 explicit_memset(seed, 0, sizeof(seed));
441 }
442
443 /*
444 * Reseed with the given seed. If we now have full entropy, notify waiters.
445 */
446 static void
447 cprng_strong_reseed_from(struct cprng_strong *cprng,
448 const void *seed, size_t bytes, bool full_entropy)
449 {
450 const uint32_t cc = cprng_counter();
451
452 KASSERT(bytes == NIST_HASH_DRBG_MIN_SEEDLEN_BYTES);
453 KASSERT(mutex_owned(&cprng->cs_lock));
454
455 /*
456 * Notify anyone interested in the partiality of entropy in our
457 * seed -- anyone waiting for full entropy, or any system
458 * operators interested in knowing when the entropy pool is
459 * running on fumes.
460 */
461 if (full_entropy) {
462 if (!cprng->cs_ready) {
463 cprng->cs_ready = true;
464 cv_broadcast(&cprng->cs_cv);
465 selnotify(&cprng->cs_selq, (POLLIN | POLLRDNORM),
466 NOTE_SUBMIT);
467 }
468 } else {
469 /*
470 * XXX Is there is any harm in reseeding with partial
471 * entropy when we had full entropy before? If so,
472 * remove the conditional on this message.
473 */
474 if (!cprng->cs_ready &&
475 !ISSET(cprng->cs_flags, CPRNG_REKEY_ANY))
476 printf("cprng %s: reseeding with partial entropy\n",
477 cprng->cs_name);
478 }
479
480 if (nist_hash_drbg_reseed(&cprng->cs_drbg, seed, bytes, &cc,
481 sizeof(cc)))
482 /* XXX Fix nist_hash_drbg API so this can't happen. */
483 panic("cprng %s: NIST Hash_DRBG reseed failed",
484 cprng->cs_name);
485
486 #if DIAGNOSTIC
487 cprng_strong_rngtest(cprng);
488 #endif
489 }
490
491 #if DIAGNOSTIC
492 /*
493 * Generate some output and apply a statistical RNG test to it.
494 */
495 static void
496 cprng_strong_rngtest(struct cprng_strong *cprng)
497 {
498
499 KASSERT(mutex_owned(&cprng->cs_lock));
500
501 /* XXX Switch to a pool cache instead? */
502 rngtest_t *const rt = kmem_intr_alloc(sizeof(*rt), KM_NOSLEEP);
503 if (rt == NULL)
504 /* XXX Warn? */
505 return;
506
507 (void)strlcpy(rt->rt_name, cprng->cs_name, sizeof(rt->rt_name));
508
509 if (nist_hash_drbg_generate(&cprng->cs_drbg, rt->rt_b,
510 sizeof(rt->rt_b), NULL, 0))
511 panic("cprng %s: NIST Hash_DRBG failed after reseed",
512 cprng->cs_name);
513
514 if (rngtest(rt)) {
515 printf("cprng %s: failed statistical RNG test\n",
516 cprng->cs_name);
517 /* XXX Not clear that this does any good... */
518 cprng->cs_ready = false;
519 rndsink_schedule(cprng->cs_rndsink);
520 }
521
522 explicit_memset(rt, 0, sizeof(*rt)); /* paranoia */
523 kmem_intr_free(rt, sizeof(*rt));
524 }
525 #endif
526
527 /*
528 * Feed entropy from an rndsink request into the CPRNG for which the
529 * request was issued.
530 */
531 static void
532 cprng_strong_rndsink_callback(void *context, const void *seed, size_t bytes)
533 {
534 struct cprng_strong *const cprng = context;
535
536 mutex_enter(&cprng->cs_lock);
537 /* Assume that rndsinks provide only full-entropy output. */
538 cprng_strong_reseed_from(cprng, seed, bytes, true);
539 mutex_exit(&cprng->cs_lock);
540 }
541
542 static cprng_strong_t *sysctl_prng;
543
544 static int
545 makeprng(void)
546 {
547
548 /* can't create in cprng_init(), too early */
549 sysctl_prng = cprng_strong_create("sysctl", IPL_NONE,
550 CPRNG_INIT_ANY|CPRNG_REKEY_ANY);
551 return 0;
552 }
553
554 /*
555 * sysctl helper routine for kern.urandom node. Picks a random number
556 * for you.
557 */
558 static int
559 sysctl_kern_urnd(SYSCTLFN_ARGS)
560 {
561 static ONCE_DECL(control);
562 int v, rv;
563
564 RUN_ONCE(&control, makeprng);
565 rv = cprng_strong(sysctl_prng, &v, sizeof(v), 0);
566 if (rv == sizeof(v)) {
567 struct sysctlnode node = *rnode;
568 node.sysctl_data = &v;
569 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
570 }
571 else
572 return (EIO); /*XXX*/
573 }
574
575 /*
576 * sysctl helper routine for kern.arandom node. Fills the supplied
577 * structure with random data for you.
578 *
579 * This node was originally declared as type "int" but its implementation
580 * in OpenBSD, whence it came, would happily return up to 8K of data if
581 * requested. Evidently this was used to key RC4 in userspace.
582 *
583 * In NetBSD, the libc stack-smash-protection code reads 64 bytes
584 * from here at every program startup. So though it would be nice
585 * to make this node return only 32 or 64 bits, we can't. Too bad!
586 */
587 static int
588 sysctl_kern_arnd(SYSCTLFN_ARGS)
589 {
590 int error;
591 void *v;
592 struct sysctlnode node = *rnode;
593
594 switch (*oldlenp) {
595 case 0:
596 return 0;
597 default:
598 if (*oldlenp > 256) {
599 return E2BIG;
600 }
601 v = kmem_alloc(*oldlenp, KM_SLEEP);
602 cprng_fast(v, *oldlenp);
603 node.sysctl_data = v;
604 node.sysctl_size = *oldlenp;
605 error = sysctl_lookup(SYSCTLFN_CALL(&node));
606 kmem_free(v, *oldlenp);
607 return error;
608 }
609 }
610