Home | History | Annotate | Line # | Download | only in kern
subr_cpu.c revision 1.5
      1  1.5  ad /*	$NetBSD: subr_cpu.c,v 1.5 2020/01/05 20:27:43 ad Exp $	*/
      2  1.1  ad 
      3  1.1  ad /*-
      4  1.1  ad  * Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc.
      5  1.1  ad  * All rights reserved.
      6  1.1  ad  *
      7  1.1  ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  ad  * by Andrew Doran.
      9  1.1  ad  *
     10  1.1  ad  * Redistribution and use in source and binary forms, with or without
     11  1.1  ad  * modification, are permitted provided that the following conditions
     12  1.1  ad  * are met:
     13  1.1  ad  * 1. Redistributions of source code must retain the above copyright
     14  1.1  ad  *    notice, this list of conditions and the following disclaimer.
     15  1.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  ad  *    documentation and/or other materials provided with the distribution.
     18  1.1  ad  *
     19  1.1  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  ad  */
     31  1.1  ad 
     32  1.1  ad /*-
     33  1.1  ad  * Copyright (c)2007 YAMAMOTO Takashi,
     34  1.1  ad  * All rights reserved.
     35  1.1  ad  *
     36  1.1  ad  * Redistribution and use in source and binary forms, with or without
     37  1.1  ad  * modification, are permitted provided that the following conditions
     38  1.1  ad  * are met:
     39  1.1  ad  * 1. Redistributions of source code must retain the above copyright
     40  1.1  ad  *    notice, this list of conditions and the following disclaimer.
     41  1.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     42  1.1  ad  *    notice, this list of conditions and the following disclaimer in the
     43  1.1  ad  *    documentation and/or other materials provided with the distribution.
     44  1.1  ad  *
     45  1.1  ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  1.1  ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  1.1  ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  1.1  ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  1.1  ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  1.1  ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  1.1  ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  1.1  ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  1.1  ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  1.1  ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  1.1  ad  * SUCH DAMAGE.
     56  1.1  ad  */
     57  1.1  ad 
     58  1.1  ad /*
     59  1.1  ad  * CPU related routines shared with rump.
     60  1.1  ad  */
     61  1.1  ad 
     62  1.1  ad #include <sys/cdefs.h>
     63  1.5  ad __KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.5 2020/01/05 20:27:43 ad Exp $");
     64  1.1  ad 
     65  1.1  ad #include <sys/param.h>
     66  1.1  ad #include <sys/systm.h>
     67  1.1  ad #include <sys/sched.h>
     68  1.1  ad #include <sys/conf.h>
     69  1.1  ad #include <sys/cpu.h>
     70  1.1  ad #include <sys/proc.h>
     71  1.1  ad #include <sys/kernel.h>
     72  1.1  ad #include <sys/kmem.h>
     73  1.1  ad 
     74  1.5  ad static void	cpu_topology_fake1(struct cpu_info *);
     75  1.5  ad 
     76  1.1  ad kmutex_t	cpu_lock		__cacheline_aligned;
     77  1.1  ad int		ncpu			__read_mostly;
     78  1.1  ad int		ncpuonline		__read_mostly;
     79  1.1  ad bool		mp_online		__read_mostly;
     80  1.1  ad static bool	cpu_topology_present	__read_mostly;
     81  1.1  ad int64_t		cpu_counts[CPU_COUNT_MAX];
     82  1.1  ad 
     83  1.1  ad /* An array of CPUs.  There are ncpu entries. */
     84  1.1  ad struct cpu_info **cpu_infos		__read_mostly;
     85  1.1  ad 
     86  1.1  ad /* Note: set on mi_cpu_attach() and idle_loop(). */
     87  1.1  ad kcpuset_t *	kcpuset_attached	__read_mostly	= NULL;
     88  1.1  ad kcpuset_t *	kcpuset_running		__read_mostly	= NULL;
     89  1.1  ad 
     90  1.1  ad static char cpu_model[128];
     91  1.1  ad 
     92  1.1  ad /*
     93  1.1  ad  * mi_cpu_init: early initialisation of MI CPU related structures.
     94  1.1  ad  *
     95  1.1  ad  * Note: may not block and memory allocator is not yet available.
     96  1.1  ad  */
     97  1.1  ad void
     98  1.1  ad mi_cpu_init(void)
     99  1.1  ad {
    100  1.4  ad 	struct cpu_info *ci;
    101  1.1  ad 
    102  1.1  ad 	mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    103  1.1  ad 
    104  1.1  ad 	kcpuset_create(&kcpuset_attached, true);
    105  1.1  ad 	kcpuset_create(&kcpuset_running, true);
    106  1.1  ad 	kcpuset_set(kcpuset_running, 0);
    107  1.4  ad 
    108  1.4  ad 	ci = curcpu();
    109  1.5  ad 	cpu_topology_fake1(ci);
    110  1.1  ad }
    111  1.1  ad 
    112  1.1  ad int
    113  1.1  ad cpu_setmodel(const char *fmt, ...)
    114  1.1  ad {
    115  1.1  ad 	int len;
    116  1.1  ad 	va_list ap;
    117  1.1  ad 
    118  1.1  ad 	va_start(ap, fmt);
    119  1.1  ad 	len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
    120  1.1  ad 	va_end(ap);
    121  1.1  ad 	return len;
    122  1.1  ad }
    123  1.1  ad 
    124  1.1  ad const char *
    125  1.1  ad cpu_getmodel(void)
    126  1.1  ad {
    127  1.1  ad 	return cpu_model;
    128  1.1  ad }
    129  1.1  ad 
    130  1.1  ad bool
    131  1.1  ad cpu_softintr_p(void)
    132  1.1  ad {
    133  1.1  ad 
    134  1.1  ad 	return (curlwp->l_pflag & LP_INTR) != 0;
    135  1.1  ad }
    136  1.1  ad 
    137  1.1  ad /*
    138  1.1  ad  * Collect CPU topology information as each CPU is attached.  This can be
    139  1.1  ad  * called early during boot, so we need to be careful what we do.
    140  1.1  ad  */
    141  1.1  ad void
    142  1.1  ad cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
    143  1.1  ad     u_int smt_id, u_int numa_id)
    144  1.1  ad {
    145  1.1  ad 	enum cpu_rel rel;
    146  1.1  ad 
    147  1.1  ad 	cpu_topology_present = true;
    148  1.1  ad 	ci->ci_package_id = package_id;
    149  1.1  ad 	ci->ci_core_id = core_id;
    150  1.1  ad 	ci->ci_smt_id = smt_id;
    151  1.1  ad 	ci->ci_numa_id = numa_id;
    152  1.1  ad 	for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    153  1.1  ad 		ci->ci_sibling[rel] = ci;
    154  1.1  ad 		ci->ci_nsibling[rel] = 1;
    155  1.1  ad 	}
    156  1.1  ad }
    157  1.1  ad 
    158  1.1  ad /*
    159  1.1  ad  * Link a CPU into the given circular list.
    160  1.1  ad  */
    161  1.1  ad static void
    162  1.1  ad cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
    163  1.1  ad {
    164  1.1  ad 	struct cpu_info *ci3;
    165  1.1  ad 
    166  1.1  ad 	/* Walk to the end of the existing circular list and append. */
    167  1.1  ad 	for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
    168  1.1  ad 		ci3->ci_nsibling[rel]++;
    169  1.1  ad 		if (ci3->ci_sibling[rel] == ci2) {
    170  1.1  ad 			break;
    171  1.1  ad 		}
    172  1.1  ad 	}
    173  1.1  ad 	ci->ci_sibling[rel] = ci2;
    174  1.1  ad 	ci3->ci_sibling[rel] = ci;
    175  1.1  ad 	ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
    176  1.1  ad }
    177  1.1  ad 
    178  1.1  ad /*
    179  1.1  ad  * Print out the topology lists.
    180  1.1  ad  */
    181  1.1  ad static void
    182  1.1  ad cpu_topology_dump(void)
    183  1.1  ad {
    184  1.1  ad #if DEBUG
    185  1.1  ad 	CPU_INFO_ITERATOR cii;
    186  1.1  ad 	struct cpu_info *ci, *ci2;
    187  1.1  ad 	const char *names[] = { "core", "package", "peer", "smt" };
    188  1.1  ad 	enum cpu_rel rel;
    189  1.1  ad 	int i;
    190  1.1  ad 
    191  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    192  1.1  ad 		for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    193  1.1  ad 			printf("%s has %d %s siblings:", cpu_name(ci),
    194  1.1  ad 			    ci->ci_nsibling[rel], names[rel]);
    195  1.1  ad 			ci2 = ci->ci_sibling[rel];
    196  1.1  ad 			i = 0;
    197  1.1  ad 			do {
    198  1.1  ad 				printf(" %s", cpu_name(ci2));
    199  1.1  ad 				ci2 = ci2->ci_sibling[rel];
    200  1.1  ad 			} while (++i < 64 && ci2 != ci->ci_sibling[rel]);
    201  1.1  ad 			if (i == 64) {
    202  1.1  ad 				printf(" GAVE UP");
    203  1.1  ad 			}
    204  1.1  ad 			printf("\n");
    205  1.1  ad 		}
    206  1.1  ad 	}
    207  1.1  ad #endif	/* DEBUG */
    208  1.1  ad }
    209  1.1  ad 
    210  1.1  ad /*
    211  1.1  ad  * Fake up topology info if we have none, or if what we got was bogus.
    212  1.5  ad  * Used early in boot, and by cpu_topology_fake().
    213  1.5  ad  */
    214  1.5  ad static void
    215  1.5  ad cpu_topology_fake1(struct cpu_info *ci)
    216  1.5  ad {
    217  1.5  ad 	enum cpu_rel rel;
    218  1.5  ad 
    219  1.5  ad 	for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    220  1.5  ad 		ci->ci_sibling[rel] = ci;
    221  1.5  ad 		ci->ci_nsibling[rel] = 1;
    222  1.5  ad 	}
    223  1.5  ad 	if (!cpu_topology_present) {
    224  1.5  ad 		ci->ci_package_id = cpu_index(ci);
    225  1.5  ad 	}
    226  1.5  ad 	ci->ci_smt_primary = ci;
    227  1.5  ad 	ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
    228  1.5  ad 	cpu_topology_dump();
    229  1.5  ad }
    230  1.5  ad 
    231  1.5  ad /*
    232  1.5  ad  * Fake up topology info if we have none, or if what we got was bogus.
    233  1.1  ad  * Don't override ci_package_id, etc, if cpu_topology_present is set.
    234  1.1  ad  * MD code also uses these.
    235  1.1  ad  */
    236  1.1  ad static void
    237  1.1  ad cpu_topology_fake(void)
    238  1.1  ad {
    239  1.1  ad 	CPU_INFO_ITERATOR cii;
    240  1.1  ad 	struct cpu_info *ci;
    241  1.1  ad 
    242  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    243  1.5  ad 		cpu_topology_fake1(ci);
    244  1.1  ad 	}
    245  1.1  ad 	cpu_topology_dump();
    246  1.1  ad }
    247  1.1  ad 
    248  1.1  ad /*
    249  1.1  ad  * Fix up basic CPU topology info.  Right now that means attach each CPU to
    250  1.1  ad  * circular lists of its siblings in the same core, and in the same package.
    251  1.1  ad  */
    252  1.1  ad void
    253  1.1  ad cpu_topology_init(void)
    254  1.1  ad {
    255  1.1  ad 	CPU_INFO_ITERATOR cii, cii2;
    256  1.1  ad 	struct cpu_info *ci, *ci2, *ci3;
    257  1.1  ad 	u_int ncore, npackage, npeer, minsmt;
    258  1.1  ad 	bool symmetric;
    259  1.1  ad 
    260  1.1  ad 	if (!cpu_topology_present) {
    261  1.1  ad 		cpu_topology_fake();
    262  1.1  ad 		return;
    263  1.1  ad 	}
    264  1.1  ad 
    265  1.1  ad 	/* Find siblings in same core and package. */
    266  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    267  1.1  ad 		for (CPU_INFO_FOREACH(cii2, ci2)) {
    268  1.1  ad 			/* Avoid bad things happening. */
    269  1.1  ad 			if (ci2->ci_package_id == ci->ci_package_id &&
    270  1.1  ad 			    ci2->ci_core_id == ci->ci_core_id &&
    271  1.1  ad 			    ci2->ci_smt_id == ci->ci_smt_id &&
    272  1.1  ad 			    ci2 != ci) {
    273  1.1  ad 			    	printf("cpu_topology_init: info bogus, "
    274  1.1  ad 			    	    "faking it\n");
    275  1.1  ad 			    	cpu_topology_fake();
    276  1.1  ad 			    	return;
    277  1.1  ad 			}
    278  1.1  ad 			if (ci2 == ci ||
    279  1.1  ad 			    ci2->ci_package_id != ci->ci_package_id) {
    280  1.1  ad 				continue;
    281  1.1  ad 			}
    282  1.1  ad 			/* Find CPUs in the same core. */
    283  1.1  ad 			if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
    284  1.1  ad 			    ci->ci_core_id == ci2->ci_core_id) {
    285  1.1  ad 			    	cpu_topology_link(ci, ci2, CPUREL_CORE);
    286  1.1  ad 			}
    287  1.1  ad 			/* Find CPUs in the same package. */
    288  1.1  ad 			if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
    289  1.1  ad 			    	cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
    290  1.1  ad 			}
    291  1.1  ad 			if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
    292  1.1  ad 			    ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
    293  1.1  ad 				break;
    294  1.1  ad 			}
    295  1.1  ad 		}
    296  1.1  ad 	}
    297  1.1  ad 
    298  1.1  ad 	/* Find peers in other packages, and peer SMTs in same package. */
    299  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    300  1.1  ad 		if (ci->ci_nsibling[CPUREL_PEER] <= 1) {
    301  1.1  ad 			for (CPU_INFO_FOREACH(cii2, ci2)) {
    302  1.1  ad 				if (ci != ci2 &&
    303  1.1  ad 				    ci->ci_package_id != ci2->ci_package_id &&
    304  1.1  ad 				    ci->ci_core_id == ci2->ci_core_id &&
    305  1.1  ad 				    ci->ci_smt_id == ci2->ci_smt_id) {
    306  1.1  ad 					cpu_topology_link(ci, ci2,
    307  1.1  ad 					    CPUREL_PEER);
    308  1.1  ad 					break;
    309  1.1  ad 				}
    310  1.1  ad 			}
    311  1.1  ad 		}
    312  1.1  ad 		if (ci->ci_nsibling[CPUREL_SMT] <= 1) {
    313  1.1  ad 			for (CPU_INFO_FOREACH(cii2, ci2)) {
    314  1.1  ad 				if (ci != ci2 &&
    315  1.1  ad 				    ci->ci_package_id == ci2->ci_package_id &&
    316  1.1  ad 				    ci->ci_core_id != ci2->ci_core_id &&
    317  1.1  ad 				    ci->ci_smt_id == ci2->ci_smt_id) {
    318  1.1  ad 					cpu_topology_link(ci, ci2,
    319  1.1  ad 					    CPUREL_SMT);
    320  1.1  ad 					break;
    321  1.1  ad 				}
    322  1.1  ad 			}
    323  1.1  ad 		}
    324  1.1  ad 	}
    325  1.1  ad 
    326  1.1  ad 	/* Determine whether the topology is bogus/symmetric. */
    327  1.1  ad 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE];
    328  1.1  ad 	ncore = curcpu()->ci_nsibling[CPUREL_CORE];
    329  1.1  ad 	npeer = curcpu()->ci_nsibling[CPUREL_PEER];
    330  1.1  ad 	symmetric = true;
    331  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    332  1.1  ad 		if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] ||
    333  1.1  ad 		    ncore != ci->ci_nsibling[CPUREL_CORE] ||
    334  1.1  ad 		    npeer != ci->ci_nsibling[CPUREL_PEER]) {
    335  1.1  ad 			symmetric = false;
    336  1.1  ad 		}
    337  1.1  ad 	}
    338  1.1  ad 	cpu_topology_dump();
    339  1.1  ad 	if (symmetric == false) {
    340  1.1  ad 		printf("cpu_topology_init: not symmetric, faking it\n");
    341  1.1  ad 		cpu_topology_fake();
    342  1.1  ad 		return;
    343  1.1  ad 	}
    344  1.1  ad 
    345  1.1  ad 	/* Identify SMT primary in each core. */
    346  1.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    347  1.1  ad 		ci2 = ci3 = ci;
    348  1.1  ad 		minsmt = ci->ci_smt_id;
    349  1.1  ad 		do {
    350  1.1  ad 			if (ci2->ci_smt_id < minsmt) {
    351  1.1  ad 				ci3 = ci2;
    352  1.1  ad 				minsmt = ci2->ci_smt_id;
    353  1.1  ad 			}
    354  1.1  ad 			ci2 = ci2->ci_sibling[CPUREL_CORE];
    355  1.1  ad 		} while (ci2 != ci);
    356  1.1  ad 
    357  1.1  ad 		/*
    358  1.1  ad 		 * Mark the SMT primary, and walk back over the list
    359  1.1  ad 		 * pointing secondaries to the primary.
    360  1.1  ad 		 */
    361  1.1  ad 		ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
    362  1.1  ad 		ci2 = ci;
    363  1.1  ad 		do {
    364  1.1  ad 			ci2->ci_smt_primary = ci3;
    365  1.1  ad 			ci2 = ci2->ci_sibling[CPUREL_CORE];
    366  1.1  ad 		} while (ci2 != ci);
    367  1.1  ad 	}
    368  1.1  ad }
    369  1.1  ad 
    370  1.1  ad /*
    371  1.1  ad  * Adjust one count, for a counter that's NOT updated from interrupt
    372  1.1  ad  * context.  Hardly worth making an inline due to preemption stuff.
    373  1.1  ad  */
    374  1.1  ad void
    375  1.1  ad cpu_count(enum cpu_count idx, int64_t delta)
    376  1.1  ad {
    377  1.1  ad 	lwp_t *l = curlwp;
    378  1.1  ad 	KPREEMPT_DISABLE(l);
    379  1.1  ad 	l->l_cpu->ci_counts[idx] += delta;
    380  1.1  ad 	KPREEMPT_ENABLE(l);
    381  1.1  ad }
    382  1.1  ad 
    383  1.1  ad /*
    384  1.1  ad  * Fetch fresh sum total for all counts.  Expensive - don't call often.
    385  1.1  ad  */
    386  1.1  ad void
    387  1.1  ad cpu_count_sync_all(void)
    388  1.1  ad {
    389  1.1  ad 	CPU_INFO_ITERATOR cii;
    390  1.1  ad 	struct cpu_info *ci;
    391  1.1  ad 	int64_t sum[CPU_COUNT_MAX], *ptr;
    392  1.1  ad 	enum cpu_count i;
    393  1.1  ad 	int s;
    394  1.1  ad 
    395  1.1  ad 	KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
    396  1.1  ad 
    397  1.1  ad 	if (__predict_true(mp_online)) {
    398  1.1  ad 		memset(sum, 0, sizeof(sum));
    399  1.1  ad 		/*
    400  1.1  ad 		 * We want this to be reasonably quick, so any value we get
    401  1.1  ad 		 * isn't totally out of whack, so don't let the current LWP
    402  1.1  ad 		 * get preempted.
    403  1.1  ad 		 */
    404  1.1  ad 		s = splvm();
    405  1.1  ad 		curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++;
    406  1.1  ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    407  1.1  ad 			ptr = ci->ci_counts;
    408  1.1  ad 			for (i = 0; i < CPU_COUNT_MAX; i += 8) {
    409  1.1  ad 				sum[i+0] += ptr[i+0];
    410  1.1  ad 				sum[i+1] += ptr[i+1];
    411  1.1  ad 				sum[i+2] += ptr[i+2];
    412  1.1  ad 				sum[i+3] += ptr[i+3];
    413  1.1  ad 				sum[i+4] += ptr[i+4];
    414  1.1  ad 				sum[i+5] += ptr[i+5];
    415  1.1  ad 				sum[i+6] += ptr[i+6];
    416  1.1  ad 				sum[i+7] += ptr[i+7];
    417  1.1  ad 			}
    418  1.1  ad 			KASSERT(i == CPU_COUNT_MAX);
    419  1.1  ad 		}
    420  1.1  ad 		memcpy(cpu_counts, sum, sizeof(cpu_counts));
    421  1.1  ad 		splx(s);
    422  1.1  ad 	} else {
    423  1.1  ad 		memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
    424  1.1  ad 	}
    425  1.1  ad }
    426  1.1  ad 
    427  1.1  ad /*
    428  1.1  ad  * Fetch a fresh sum total for one single count.  Expensive - don't call often.
    429  1.1  ad  */
    430  1.1  ad int64_t
    431  1.1  ad cpu_count_sync(enum cpu_count count)
    432  1.1  ad {
    433  1.1  ad 	CPU_INFO_ITERATOR cii;
    434  1.1  ad 	struct cpu_info *ci;
    435  1.1  ad 	int64_t sum;
    436  1.1  ad 	int s;
    437  1.1  ad 
    438  1.1  ad 	if (__predict_true(mp_online)) {
    439  1.1  ad 		s = splvm();
    440  1.1  ad 		curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++;
    441  1.1  ad 		sum = 0;
    442  1.1  ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    443  1.1  ad 			sum += ci->ci_counts[count];
    444  1.1  ad 		}
    445  1.1  ad 		splx(s);
    446  1.1  ad 	} else {
    447  1.1  ad 		/* XXX Early boot, iterator might not be available. */
    448  1.1  ad 		sum = curcpu()->ci_counts[count];
    449  1.1  ad 	}
    450  1.1  ad 	return cpu_counts[count] = sum;
    451  1.1  ad }
    452