Home | History | Annotate | Line # | Download | only in kern
subr_cpu.c revision 1.1
      1 /*	$NetBSD: subr_cpu.c,v 1.1 2019/12/20 21:20:09 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c)2007 YAMAMOTO Takashi,
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  */
     57 
     58 /*
     59  * CPU related routines shared with rump.
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.1 2019/12/20 21:20:09 ad Exp $");
     64 
     65 #include <sys/param.h>
     66 #include <sys/systm.h>
     67 #include <sys/sched.h>
     68 #include <sys/conf.h>
     69 #include <sys/cpu.h>
     70 #include <sys/proc.h>
     71 #include <sys/kernel.h>
     72 #include <sys/kmem.h>
     73 
     74 kmutex_t	cpu_lock		__cacheline_aligned;
     75 int		ncpu			__read_mostly;
     76 int		ncpuonline		__read_mostly;
     77 bool		mp_online		__read_mostly;
     78 static bool	cpu_topology_present	__read_mostly;
     79 int64_t		cpu_counts[CPU_COUNT_MAX];
     80 
     81 /* An array of CPUs.  There are ncpu entries. */
     82 struct cpu_info **cpu_infos		__read_mostly;
     83 
     84 /* Note: set on mi_cpu_attach() and idle_loop(). */
     85 kcpuset_t *	kcpuset_attached	__read_mostly	= NULL;
     86 kcpuset_t *	kcpuset_running		__read_mostly	= NULL;
     87 
     88 int (*compat_cpuctl_ioctl)(struct lwp *, u_long, void *) = (void *)enosys;
     89 
     90 static char cpu_model[128];
     91 
     92 /*
     93  * mi_cpu_init: early initialisation of MI CPU related structures.
     94  *
     95  * Note: may not block and memory allocator is not yet available.
     96  */
     97 void
     98 mi_cpu_init(void)
     99 {
    100 
    101 	mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    102 
    103 	kcpuset_create(&kcpuset_attached, true);
    104 	kcpuset_create(&kcpuset_running, true);
    105 	kcpuset_set(kcpuset_running, 0);
    106 }
    107 
    108 int
    109 cpu_setmodel(const char *fmt, ...)
    110 {
    111 	int len;
    112 	va_list ap;
    113 
    114 	va_start(ap, fmt);
    115 	len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
    116 	va_end(ap);
    117 	return len;
    118 }
    119 
    120 const char *
    121 cpu_getmodel(void)
    122 {
    123 	return cpu_model;
    124 }
    125 
    126 bool
    127 cpu_softintr_p(void)
    128 {
    129 
    130 	return (curlwp->l_pflag & LP_INTR) != 0;
    131 }
    132 
    133 /*
    134  * Collect CPU topology information as each CPU is attached.  This can be
    135  * called early during boot, so we need to be careful what we do.
    136  */
    137 void
    138 cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
    139     u_int smt_id, u_int numa_id)
    140 {
    141 	enum cpu_rel rel;
    142 
    143 	cpu_topology_present = true;
    144 	ci->ci_package_id = package_id;
    145 	ci->ci_core_id = core_id;
    146 	ci->ci_smt_id = smt_id;
    147 	ci->ci_numa_id = numa_id;
    148 	for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    149 		ci->ci_sibling[rel] = ci;
    150 		ci->ci_nsibling[rel] = 1;
    151 	}
    152 }
    153 
    154 /*
    155  * Link a CPU into the given circular list.
    156  */
    157 static void
    158 cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
    159 {
    160 	struct cpu_info *ci3;
    161 
    162 	/* Walk to the end of the existing circular list and append. */
    163 	for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
    164 		ci3->ci_nsibling[rel]++;
    165 		if (ci3->ci_sibling[rel] == ci2) {
    166 			break;
    167 		}
    168 	}
    169 	ci->ci_sibling[rel] = ci2;
    170 	ci3->ci_sibling[rel] = ci;
    171 	ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
    172 }
    173 
    174 /*
    175  * Print out the topology lists.
    176  */
    177 static void
    178 cpu_topology_dump(void)
    179 {
    180 #if DEBUG
    181 	CPU_INFO_ITERATOR cii;
    182 	struct cpu_info *ci, *ci2;
    183 	const char *names[] = { "core", "package", "peer", "smt" };
    184 	enum cpu_rel rel;
    185 	int i;
    186 
    187 	for (CPU_INFO_FOREACH(cii, ci)) {
    188 		for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    189 			printf("%s has %d %s siblings:", cpu_name(ci),
    190 			    ci->ci_nsibling[rel], names[rel]);
    191 			ci2 = ci->ci_sibling[rel];
    192 			i = 0;
    193 			do {
    194 				printf(" %s", cpu_name(ci2));
    195 				ci2 = ci2->ci_sibling[rel];
    196 			} while (++i < 64 && ci2 != ci->ci_sibling[rel]);
    197 			if (i == 64) {
    198 				printf(" GAVE UP");
    199 			}
    200 			printf("\n");
    201 		}
    202 	}
    203 #endif	/* DEBUG */
    204 }
    205 
    206 /*
    207  * Fake up topology info if we have none, or if what we got was bogus.
    208  * Don't override ci_package_id, etc, if cpu_topology_present is set.
    209  * MD code also uses these.
    210  */
    211 static void
    212 cpu_topology_fake(void)
    213 {
    214 	CPU_INFO_ITERATOR cii;
    215 	struct cpu_info *ci;
    216 	enum cpu_rel rel;
    217 
    218 	for (CPU_INFO_FOREACH(cii, ci)) {
    219 		for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
    220 			ci->ci_sibling[rel] = ci;
    221 			ci->ci_nsibling[rel] = 1;
    222 		}
    223 		if (!cpu_topology_present) {
    224 			ci->ci_package_id = cpu_index(ci);
    225 		}
    226 		ci->ci_smt_primary = ci;
    227 		ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
    228 	}
    229 	cpu_topology_dump();
    230 }
    231 
    232 /*
    233  * Fix up basic CPU topology info.  Right now that means attach each CPU to
    234  * circular lists of its siblings in the same core, and in the same package.
    235  */
    236 void
    237 cpu_topology_init(void)
    238 {
    239 	CPU_INFO_ITERATOR cii, cii2;
    240 	struct cpu_info *ci, *ci2, *ci3;
    241 	u_int ncore, npackage, npeer, minsmt;
    242 	bool symmetric;
    243 
    244 	if (!cpu_topology_present) {
    245 		cpu_topology_fake();
    246 		return;
    247 	}
    248 
    249 	/* Find siblings in same core and package. */
    250 	for (CPU_INFO_FOREACH(cii, ci)) {
    251 		for (CPU_INFO_FOREACH(cii2, ci2)) {
    252 			/* Avoid bad things happening. */
    253 			if (ci2->ci_package_id == ci->ci_package_id &&
    254 			    ci2->ci_core_id == ci->ci_core_id &&
    255 			    ci2->ci_smt_id == ci->ci_smt_id &&
    256 			    ci2 != ci) {
    257 			    	printf("cpu_topology_init: info bogus, "
    258 			    	    "faking it\n");
    259 			    	cpu_topology_fake();
    260 			    	return;
    261 			}
    262 			if (ci2 == ci ||
    263 			    ci2->ci_package_id != ci->ci_package_id) {
    264 				continue;
    265 			}
    266 			/* Find CPUs in the same core. */
    267 			if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
    268 			    ci->ci_core_id == ci2->ci_core_id) {
    269 			    	cpu_topology_link(ci, ci2, CPUREL_CORE);
    270 			}
    271 			/* Find CPUs in the same package. */
    272 			if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
    273 			    	cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
    274 			}
    275 			if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
    276 			    ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
    277 				break;
    278 			}
    279 		}
    280 	}
    281 
    282 	/* Find peers in other packages, and peer SMTs in same package. */
    283 	for (CPU_INFO_FOREACH(cii, ci)) {
    284 		if (ci->ci_nsibling[CPUREL_PEER] <= 1) {
    285 			for (CPU_INFO_FOREACH(cii2, ci2)) {
    286 				if (ci != ci2 &&
    287 				    ci->ci_package_id != ci2->ci_package_id &&
    288 				    ci->ci_core_id == ci2->ci_core_id &&
    289 				    ci->ci_smt_id == ci2->ci_smt_id) {
    290 					cpu_topology_link(ci, ci2,
    291 					    CPUREL_PEER);
    292 					break;
    293 				}
    294 			}
    295 		}
    296 		if (ci->ci_nsibling[CPUREL_SMT] <= 1) {
    297 			for (CPU_INFO_FOREACH(cii2, ci2)) {
    298 				if (ci != ci2 &&
    299 				    ci->ci_package_id == ci2->ci_package_id &&
    300 				    ci->ci_core_id != ci2->ci_core_id &&
    301 				    ci->ci_smt_id == ci2->ci_smt_id) {
    302 					cpu_topology_link(ci, ci2,
    303 					    CPUREL_SMT);
    304 					break;
    305 				}
    306 			}
    307 		}
    308 	}
    309 
    310 	/* Determine whether the topology is bogus/symmetric. */
    311 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE];
    312 	ncore = curcpu()->ci_nsibling[CPUREL_CORE];
    313 	npeer = curcpu()->ci_nsibling[CPUREL_PEER];
    314 	symmetric = true;
    315 	for (CPU_INFO_FOREACH(cii, ci)) {
    316 		if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] ||
    317 		    ncore != ci->ci_nsibling[CPUREL_CORE] ||
    318 		    npeer != ci->ci_nsibling[CPUREL_PEER]) {
    319 			symmetric = false;
    320 		}
    321 	}
    322 	cpu_topology_dump();
    323 	if (symmetric == false) {
    324 		printf("cpu_topology_init: not symmetric, faking it\n");
    325 		cpu_topology_fake();
    326 		return;
    327 	}
    328 
    329 	/* Identify SMT primary in each core. */
    330 	for (CPU_INFO_FOREACH(cii, ci)) {
    331 		ci2 = ci3 = ci;
    332 		minsmt = ci->ci_smt_id;
    333 		do {
    334 			if (ci2->ci_smt_id < minsmt) {
    335 				ci3 = ci2;
    336 				minsmt = ci2->ci_smt_id;
    337 			}
    338 			ci2 = ci2->ci_sibling[CPUREL_CORE];
    339 		} while (ci2 != ci);
    340 
    341 		/*
    342 		 * Mark the SMT primary, and walk back over the list
    343 		 * pointing secondaries to the primary.
    344 		 */
    345 		ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
    346 		ci2 = ci;
    347 		do {
    348 			ci2->ci_smt_primary = ci3;
    349 			ci2 = ci2->ci_sibling[CPUREL_CORE];
    350 		} while (ci2 != ci);
    351 	}
    352 }
    353 
    354 /*
    355  * Print basic topology info.
    356  */
    357 void
    358 cpu_topology_print(struct cpu_info *ci)
    359 {
    360 
    361 	aprint_normal_dev(ci->ci_dev, "numa %u, package %u, core %u, smt %u\n",
    362 	    ci->ci_numa_id, ci->ci_package_id, ci->ci_core_id, ci->ci_smt_id);
    363 }
    364 
    365 /*
    366  * Adjust one count, for a counter that's NOT updated from interrupt
    367  * context.  Hardly worth making an inline due to preemption stuff.
    368  */
    369 void
    370 cpu_count(enum cpu_count idx, int64_t delta)
    371 {
    372 	lwp_t *l = curlwp;
    373 	KPREEMPT_DISABLE(l);
    374 	l->l_cpu->ci_counts[idx] += delta;
    375 	KPREEMPT_ENABLE(l);
    376 }
    377 
    378 /*
    379  * Fetch fresh sum total for all counts.  Expensive - don't call often.
    380  */
    381 void
    382 cpu_count_sync_all(void)
    383 {
    384 	CPU_INFO_ITERATOR cii;
    385 	struct cpu_info *ci;
    386 	int64_t sum[CPU_COUNT_MAX], *ptr;
    387 	enum cpu_count i;
    388 	int s;
    389 
    390 	KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
    391 
    392 	if (__predict_true(mp_online)) {
    393 		memset(sum, 0, sizeof(sum));
    394 		/*
    395 		 * We want this to be reasonably quick, so any value we get
    396 		 * isn't totally out of whack, so don't let the current LWP
    397 		 * get preempted.
    398 		 */
    399 		s = splvm();
    400 		curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++;
    401 		for (CPU_INFO_FOREACH(cii, ci)) {
    402 			ptr = ci->ci_counts;
    403 			for (i = 0; i < CPU_COUNT_MAX; i += 8) {
    404 				sum[i+0] += ptr[i+0];
    405 				sum[i+1] += ptr[i+1];
    406 				sum[i+2] += ptr[i+2];
    407 				sum[i+3] += ptr[i+3];
    408 				sum[i+4] += ptr[i+4];
    409 				sum[i+5] += ptr[i+5];
    410 				sum[i+6] += ptr[i+6];
    411 				sum[i+7] += ptr[i+7];
    412 			}
    413 			KASSERT(i == CPU_COUNT_MAX);
    414 		}
    415 		memcpy(cpu_counts, sum, sizeof(cpu_counts));
    416 		splx(s);
    417 	} else {
    418 		memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
    419 	}
    420 }
    421 
    422 /*
    423  * Fetch a fresh sum total for one single count.  Expensive - don't call often.
    424  */
    425 int64_t
    426 cpu_count_sync(enum cpu_count count)
    427 {
    428 	CPU_INFO_ITERATOR cii;
    429 	struct cpu_info *ci;
    430 	int64_t sum;
    431 	int s;
    432 
    433 	if (__predict_true(mp_online)) {
    434 		s = splvm();
    435 		curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++;
    436 		sum = 0;
    437 		for (CPU_INFO_FOREACH(cii, ci)) {
    438 			sum += ci->ci_counts[count];
    439 		}
    440 		splx(s);
    441 	} else {
    442 		/* XXX Early boot, iterator might not be available. */
    443 		sum = curcpu()->ci_counts[count];
    444 	}
    445 	return cpu_counts[count] = sum;
    446 }
    447