subr_cpufreq.c revision 1.1 1 1.1 jruoho /* $NetBSD: subr_cpufreq.c,v 1.1 2011/09/28 10:55:48 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * This code is derived from software contributed to The NetBSD Foundation
8 1.1 jruoho * by Jukka Ruohonen.
9 1.1 jruoho *
10 1.1 jruoho * Redistribution and use in source and binary forms, with or without
11 1.1 jruoho * modification, are permitted provided that the following conditions
12 1.1 jruoho * are met:
13 1.1 jruoho *
14 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
15 1.1 jruoho * notice, this list of conditions and the following disclaimer.
16 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
18 1.1 jruoho * documentation and/or other materials provided with the distribution.
19 1.1 jruoho *
20 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 jruoho * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 jruoho * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 jruoho * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 jruoho * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 jruoho * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 jruoho * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 jruoho * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 jruoho * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 jruoho * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 jruoho * POSSIBILITY OF SUCH DAMAGE.
31 1.1 jruoho */
32 1.1 jruoho #include <sys/cdefs.h>
33 1.1 jruoho __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.1 2011/09/28 10:55:48 jruoho Exp $");
34 1.1 jruoho
35 1.1 jruoho #include <sys/param.h>
36 1.1 jruoho #include <sys/cpu.h>
37 1.1 jruoho #include <sys/cpufreq.h>
38 1.1 jruoho #include <sys/kmem.h>
39 1.1 jruoho #include <sys/mutex.h>
40 1.1 jruoho #include <sys/once.h>
41 1.1 jruoho #include <sys/time.h>
42 1.1 jruoho #include <sys/xcall.h>
43 1.1 jruoho
44 1.1 jruoho static int cpufreq_init(void);
45 1.1 jruoho static int cpufreq_latency(void);
46 1.1 jruoho static uint32_t cpufreq_get_max(void);
47 1.1 jruoho static uint32_t cpufreq_get_min(void);
48 1.1 jruoho static uint32_t cpufreq_get_raw(struct cpu_info *);
49 1.1 jruoho static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
50 1.1 jruoho static void cpufreq_set_raw(struct cpu_info *, uint32_t);
51 1.1 jruoho static void cpufreq_set_all_raw(uint32_t);
52 1.1 jruoho
53 1.1 jruoho static kmutex_t cpufreq_lock __cacheline_aligned;
54 1.1 jruoho static struct cpufreq *cf_backend __read_mostly = NULL;
55 1.1 jruoho
56 1.1 jruoho static int
57 1.1 jruoho cpufreq_init(void)
58 1.1 jruoho {
59 1.1 jruoho
60 1.1 jruoho mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
61 1.1 jruoho
62 1.1 jruoho return 0;
63 1.1 jruoho }
64 1.1 jruoho
65 1.1 jruoho int
66 1.1 jruoho cpufreq_register(struct cpufreq *cf)
67 1.1 jruoho {
68 1.1 jruoho static ONCE_DECL(cpufreq_once);
69 1.1 jruoho uint32_t count, i, j, k, m;
70 1.1 jruoho int rv;
71 1.1 jruoho
72 1.1 jruoho rv = RUN_ONCE(&cpufreq_once, cpufreq_init);
73 1.1 jruoho
74 1.1 jruoho KASSERT(rv == 0);
75 1.1 jruoho KASSERT(cf != NULL);
76 1.1 jruoho KASSERT(cf->cf_get_freq != NULL);
77 1.1 jruoho KASSERT(cf->cf_set_freq != NULL);
78 1.1 jruoho KASSERT(cf->cf_state_count > 0);
79 1.1 jruoho KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
80 1.1 jruoho
81 1.1 jruoho mutex_enter(&cpufreq_lock);
82 1.1 jruoho
83 1.1 jruoho if (cf_backend != NULL) {
84 1.1 jruoho mutex_exit(&cpufreq_lock);
85 1.1 jruoho return EALREADY;
86 1.1 jruoho }
87 1.1 jruoho
88 1.1 jruoho mutex_exit(&cpufreq_lock);
89 1.1 jruoho cf_backend = kmem_zalloc(sizeof(*cf), KM_SLEEP);
90 1.1 jruoho
91 1.1 jruoho if (cf_backend == NULL)
92 1.1 jruoho return ENOMEM;
93 1.1 jruoho
94 1.1 jruoho mutex_enter(&cpufreq_lock);
95 1.1 jruoho
96 1.1 jruoho cf_backend->cf_mp = cf->cf_mp;
97 1.1 jruoho cf_backend->cf_cookie = cf->cf_cookie;
98 1.1 jruoho cf_backend->cf_get_freq = cf->cf_get_freq;
99 1.1 jruoho cf_backend->cf_set_freq = cf->cf_set_freq;
100 1.1 jruoho
101 1.1 jruoho (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
102 1.1 jruoho
103 1.1 jruoho /*
104 1.1 jruoho * Sanity check the values and verify descending order.
105 1.1 jruoho */
106 1.1 jruoho for (count = i = 0; i < cf->cf_state_count; i++) {
107 1.1 jruoho
108 1.1 jruoho CTASSERT(CPUFREQ_STATE_ENABLED != 0);
109 1.1 jruoho CTASSERT(CPUFREQ_STATE_DISABLED != 0);
110 1.1 jruoho
111 1.1 jruoho if (cf->cf_state[i].cfs_freq == 0)
112 1.1 jruoho continue;
113 1.1 jruoho
114 1.1 jruoho for (j = k = 0; j < i; j++) {
115 1.1 jruoho
116 1.1 jruoho if (cf->cf_state[i].cfs_freq >=
117 1.1 jruoho cf->cf_state[j].cfs_freq) {
118 1.1 jruoho k = 1;
119 1.1 jruoho break;
120 1.1 jruoho }
121 1.1 jruoho }
122 1.1 jruoho
123 1.1 jruoho if (k != 0)
124 1.1 jruoho continue;
125 1.1 jruoho
126 1.1 jruoho cf_backend->cf_state[i].cfs_index = count;
127 1.1 jruoho cf_backend->cf_state[i].cfs_freq = cf->cf_state[i].cfs_freq;
128 1.1 jruoho cf_backend->cf_state[i].cfs_power = cf->cf_state[i].cfs_power;
129 1.1 jruoho
130 1.1 jruoho count++;
131 1.1 jruoho }
132 1.1 jruoho
133 1.1 jruoho cf_backend->cf_state_count = count;
134 1.1 jruoho
135 1.1 jruoho if (cf_backend->cf_state_count == 0) {
136 1.1 jruoho mutex_exit(&cpufreq_lock);
137 1.1 jruoho cpufreq_deregister();
138 1.1 jruoho return EINVAL;
139 1.1 jruoho }
140 1.1 jruoho
141 1.1 jruoho rv = cpufreq_latency();
142 1.1 jruoho
143 1.1 jruoho if (rv != 0) {
144 1.1 jruoho mutex_exit(&cpufreq_lock);
145 1.1 jruoho cpufreq_deregister();
146 1.1 jruoho return rv;
147 1.1 jruoho }
148 1.1 jruoho
149 1.1 jruoho m = cpufreq_get_max();
150 1.1 jruoho cpufreq_set_all_raw(m);
151 1.1 jruoho mutex_exit(&cpufreq_lock);
152 1.1 jruoho
153 1.1 jruoho return 0;
154 1.1 jruoho }
155 1.1 jruoho
156 1.1 jruoho void
157 1.1 jruoho cpufreq_deregister(void)
158 1.1 jruoho {
159 1.1 jruoho
160 1.1 jruoho mutex_enter(&cpufreq_lock);
161 1.1 jruoho
162 1.1 jruoho if (cf_backend == NULL) {
163 1.1 jruoho mutex_exit(&cpufreq_lock);
164 1.1 jruoho return;
165 1.1 jruoho }
166 1.1 jruoho
167 1.1 jruoho mutex_exit(&cpufreq_lock);
168 1.1 jruoho kmem_free(cf_backend, sizeof(*cf_backend));
169 1.1 jruoho cf_backend = NULL;
170 1.1 jruoho }
171 1.1 jruoho
172 1.1 jruoho static int
173 1.1 jruoho cpufreq_latency(void)
174 1.1 jruoho {
175 1.1 jruoho struct cpufreq *cf = cf_backend;
176 1.1 jruoho struct timespec nta, ntb;
177 1.1 jruoho const uint32_t n = 10;
178 1.1 jruoho uint32_t i, j, l, m;
179 1.1 jruoho uint64_t s;
180 1.1 jruoho
181 1.1 jruoho l = cpufreq_get_min();
182 1.1 jruoho m = cpufreq_get_max();
183 1.1 jruoho
184 1.1 jruoho /*
185 1.1 jruoho * For each state, sample the average transition
186 1.1 jruoho * latency required to set the state for all CPUs.
187 1.1 jruoho */
188 1.1 jruoho for (i = 0; i < cf->cf_state_count; i++) {
189 1.1 jruoho
190 1.1 jruoho for (s = 0, j = 0; j < n; j++) {
191 1.1 jruoho
192 1.1 jruoho /*
193 1.1 jruoho * Attempt to exclude possible
194 1.1 jruoho * caching done by the backend.
195 1.1 jruoho */
196 1.1 jruoho if (i == 0)
197 1.1 jruoho cpufreq_set_all_raw(l);
198 1.1 jruoho else {
199 1.1 jruoho cpufreq_set_all_raw(m);
200 1.1 jruoho }
201 1.1 jruoho
202 1.1 jruoho nta.tv_sec = nta.tv_nsec = 0;
203 1.1 jruoho ntb.tv_sec = ntb.tv_nsec = 0;
204 1.1 jruoho
205 1.1 jruoho nanotime(&nta);
206 1.1 jruoho cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
207 1.1 jruoho nanotime(&ntb);
208 1.1 jruoho timespecsub(&ntb, &nta, &ntb);
209 1.1 jruoho
210 1.1 jruoho if (ntb.tv_sec != 0 ||
211 1.1 jruoho ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
212 1.1 jruoho continue;
213 1.1 jruoho
214 1.1 jruoho if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
215 1.1 jruoho break;
216 1.1 jruoho
217 1.1 jruoho s += ntb.tv_nsec;
218 1.1 jruoho }
219 1.1 jruoho
220 1.1 jruoho /*
221 1.1 jruoho * Consider the backend unsuitable if
222 1.1 jruoho * the transition latency was too high.
223 1.1 jruoho */
224 1.1 jruoho if (s == 0)
225 1.1 jruoho return EMSGSIZE;
226 1.1 jruoho
227 1.1 jruoho cf->cf_state[i].cfs_latency = s / n;
228 1.1 jruoho }
229 1.1 jruoho
230 1.1 jruoho return 0;
231 1.1 jruoho }
232 1.1 jruoho
233 1.1 jruoho void
234 1.1 jruoho cpufreq_suspend(struct cpu_info *ci)
235 1.1 jruoho {
236 1.1 jruoho struct cpufreq *cf;
237 1.1 jruoho uint32_t l, s;
238 1.1 jruoho
239 1.1 jruoho mutex_enter(&cpufreq_lock);
240 1.1 jruoho cf = cf_backend;
241 1.1 jruoho
242 1.1 jruoho if (cf == NULL) {
243 1.1 jruoho mutex_exit(&cpufreq_lock);
244 1.1 jruoho return;
245 1.1 jruoho }
246 1.1 jruoho
247 1.1 jruoho l = cpufreq_get_min();
248 1.1 jruoho s = cpufreq_get_raw(ci);
249 1.1 jruoho
250 1.1 jruoho cpufreq_set_raw(ci, l);
251 1.1 jruoho cf->cf_state_saved = s;
252 1.1 jruoho
253 1.1 jruoho mutex_exit(&cpufreq_lock);
254 1.1 jruoho }
255 1.1 jruoho
256 1.1 jruoho void
257 1.1 jruoho cpufreq_resume(struct cpu_info *ci)
258 1.1 jruoho {
259 1.1 jruoho struct cpufreq *cf;
260 1.1 jruoho
261 1.1 jruoho mutex_enter(&cpufreq_lock);
262 1.1 jruoho cf = cf_backend;
263 1.1 jruoho
264 1.1 jruoho if (cf == NULL || cf->cf_state_saved == 0) {
265 1.1 jruoho mutex_exit(&cpufreq_lock);
266 1.1 jruoho return;
267 1.1 jruoho }
268 1.1 jruoho
269 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state_saved);
270 1.1 jruoho mutex_exit(&cpufreq_lock);
271 1.1 jruoho }
272 1.1 jruoho
273 1.1 jruoho uint32_t
274 1.1 jruoho cpufreq_get(struct cpu_info *ci)
275 1.1 jruoho {
276 1.1 jruoho struct cpufreq *cf;
277 1.1 jruoho uint32_t freq;
278 1.1 jruoho
279 1.1 jruoho mutex_enter(&cpufreq_lock);
280 1.1 jruoho cf = cf_backend;
281 1.1 jruoho
282 1.1 jruoho if (cf == NULL) {
283 1.1 jruoho mutex_exit(&cpufreq_lock);
284 1.1 jruoho return 0;
285 1.1 jruoho }
286 1.1 jruoho
287 1.1 jruoho freq = cpufreq_get_raw(ci);
288 1.1 jruoho mutex_exit(&cpufreq_lock);
289 1.1 jruoho
290 1.1 jruoho return freq;
291 1.1 jruoho }
292 1.1 jruoho
293 1.1 jruoho static uint32_t
294 1.1 jruoho cpufreq_get_max(void)
295 1.1 jruoho {
296 1.1 jruoho struct cpufreq *cf = cf_backend;
297 1.1 jruoho
298 1.1 jruoho KASSERT(cf != NULL);
299 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
300 1.1 jruoho
301 1.1 jruoho return cf->cf_state[0].cfs_freq;
302 1.1 jruoho }
303 1.1 jruoho
304 1.1 jruoho static uint32_t
305 1.1 jruoho cpufreq_get_min(void)
306 1.1 jruoho {
307 1.1 jruoho struct cpufreq *cf = cf_backend;
308 1.1 jruoho
309 1.1 jruoho KASSERT(cf != NULL);
310 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
311 1.1 jruoho
312 1.1 jruoho return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
313 1.1 jruoho }
314 1.1 jruoho
315 1.1 jruoho static uint32_t
316 1.1 jruoho cpufreq_get_raw(struct cpu_info *ci)
317 1.1 jruoho {
318 1.1 jruoho struct cpufreq *cf = cf_backend;
319 1.1 jruoho uint32_t freq = 0;
320 1.1 jruoho uint64_t xc;
321 1.1 jruoho
322 1.1 jruoho KASSERT(cf != NULL);
323 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
324 1.1 jruoho
325 1.1 jruoho xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
326 1.1 jruoho xc_wait(xc);
327 1.1 jruoho
328 1.1 jruoho return freq;
329 1.1 jruoho }
330 1.1 jruoho
331 1.1 jruoho int
332 1.1 jruoho cpufreq_get_backend(struct cpufreq *cf)
333 1.1 jruoho {
334 1.1 jruoho
335 1.1 jruoho mutex_enter(&cpufreq_lock);
336 1.1 jruoho
337 1.1 jruoho if (cf_backend == NULL || cf == NULL) {
338 1.1 jruoho mutex_exit(&cpufreq_lock);
339 1.1 jruoho return ENODEV;
340 1.1 jruoho }
341 1.1 jruoho
342 1.1 jruoho (void)memcpy(cf, cf_backend, sizeof(*cf));
343 1.1 jruoho mutex_exit(&cpufreq_lock);
344 1.1 jruoho
345 1.1 jruoho return 0;
346 1.1 jruoho }
347 1.1 jruoho
348 1.1 jruoho int
349 1.1 jruoho cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
350 1.1 jruoho {
351 1.1 jruoho struct cpufreq *cf;
352 1.1 jruoho
353 1.1 jruoho mutex_enter(&cpufreq_lock);
354 1.1 jruoho cf = cf_backend;
355 1.1 jruoho
356 1.1 jruoho if (cf == NULL || cfs == NULL) {
357 1.1 jruoho mutex_exit(&cpufreq_lock);
358 1.1 jruoho return ENODEV;
359 1.1 jruoho }
360 1.1 jruoho
361 1.1 jruoho cpufreq_get_state_raw(freq, cfs);
362 1.1 jruoho mutex_exit(&cpufreq_lock);
363 1.1 jruoho
364 1.1 jruoho return 0;
365 1.1 jruoho }
366 1.1 jruoho
367 1.1 jruoho int
368 1.1 jruoho cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
369 1.1 jruoho {
370 1.1 jruoho struct cpufreq *cf;
371 1.1 jruoho
372 1.1 jruoho mutex_enter(&cpufreq_lock);
373 1.1 jruoho cf = cf_backend;
374 1.1 jruoho
375 1.1 jruoho if (cf == NULL || cfs == NULL) {
376 1.1 jruoho mutex_exit(&cpufreq_lock);
377 1.1 jruoho return ENODEV;
378 1.1 jruoho }
379 1.1 jruoho
380 1.1 jruoho if (index >= cf->cf_state_count) {
381 1.1 jruoho mutex_exit(&cpu_lock);
382 1.1 jruoho return EINVAL;
383 1.1 jruoho }
384 1.1 jruoho
385 1.1 jruoho (void)memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
386 1.1 jruoho mutex_exit(&cpufreq_lock);
387 1.1 jruoho
388 1.1 jruoho return 0;
389 1.1 jruoho }
390 1.1 jruoho
391 1.1 jruoho static void
392 1.1 jruoho cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
393 1.1 jruoho {
394 1.1 jruoho struct cpufreq *cf = cf_backend;
395 1.1 jruoho uint32_t f, hi, i = 0, lo = 0;
396 1.1 jruoho
397 1.1 jruoho KASSERT(cf != NULL && cfs != NULL);
398 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
399 1.1 jruoho
400 1.1 jruoho hi = cf->cf_state_count;
401 1.1 jruoho
402 1.1 jruoho while (lo < hi) {
403 1.1 jruoho
404 1.1 jruoho i = (lo + hi) >> 1;
405 1.1 jruoho f = cf->cf_state[i].cfs_freq;
406 1.1 jruoho
407 1.1 jruoho if (freq == f)
408 1.1 jruoho break;
409 1.1 jruoho else if (freq > f)
410 1.1 jruoho hi = i;
411 1.1 jruoho else {
412 1.1 jruoho lo = i + 1;
413 1.1 jruoho }
414 1.1 jruoho }
415 1.1 jruoho
416 1.1 jruoho (void)memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
417 1.1 jruoho }
418 1.1 jruoho
419 1.1 jruoho void
420 1.1 jruoho cpufreq_set(struct cpu_info *ci, uint32_t freq)
421 1.1 jruoho {
422 1.1 jruoho struct cpufreq *cf;
423 1.1 jruoho
424 1.1 jruoho mutex_enter(&cpufreq_lock);
425 1.1 jruoho cf = cf_backend;
426 1.1 jruoho
427 1.1 jruoho if (__predict_false(cf == NULL)) {
428 1.1 jruoho mutex_exit(&cpufreq_lock);
429 1.1 jruoho return;
430 1.1 jruoho }
431 1.1 jruoho
432 1.1 jruoho cpufreq_set_raw(ci, freq);
433 1.1 jruoho mutex_exit(&cpufreq_lock);
434 1.1 jruoho }
435 1.1 jruoho
436 1.1 jruoho static void
437 1.1 jruoho cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
438 1.1 jruoho {
439 1.1 jruoho struct cpufreq *cf = cf_backend;
440 1.1 jruoho uint64_t xc;
441 1.1 jruoho
442 1.1 jruoho KASSERT(cf != NULL);
443 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
444 1.1 jruoho
445 1.1 jruoho xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
446 1.1 jruoho xc_wait(xc);
447 1.1 jruoho }
448 1.1 jruoho
449 1.1 jruoho void
450 1.1 jruoho cpufreq_set_all(uint32_t freq)
451 1.1 jruoho {
452 1.1 jruoho struct cpufreq *cf;
453 1.1 jruoho
454 1.1 jruoho mutex_enter(&cpufreq_lock);
455 1.1 jruoho cf = cf_backend;
456 1.1 jruoho
457 1.1 jruoho if (__predict_false(cf == NULL)) {
458 1.1 jruoho mutex_exit(&cpufreq_lock);
459 1.1 jruoho return;
460 1.1 jruoho }
461 1.1 jruoho
462 1.1 jruoho cpufreq_set_all_raw(freq);
463 1.1 jruoho mutex_exit(&cpufreq_lock);
464 1.1 jruoho }
465 1.1 jruoho
466 1.1 jruoho static void
467 1.1 jruoho cpufreq_set_all_raw(uint32_t freq)
468 1.1 jruoho {
469 1.1 jruoho struct cpufreq *cf = cf_backend;
470 1.1 jruoho uint64_t xc;
471 1.1 jruoho
472 1.1 jruoho KASSERT(cf != NULL);
473 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
474 1.1 jruoho
475 1.1 jruoho xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
476 1.1 jruoho xc_wait(xc);
477 1.1 jruoho }
478 1.1 jruoho
479 1.1 jruoho #ifdef notyet
480 1.1 jruoho void
481 1.1 jruoho cpufreq_set_higher(struct cpu_info *ci)
482 1.1 jruoho {
483 1.1 jruoho cpufreq_set_step(ci, -1);
484 1.1 jruoho }
485 1.1 jruoho
486 1.1 jruoho void
487 1.1 jruoho cpufreq_set_lower(struct cpu_info *ci)
488 1.1 jruoho {
489 1.1 jruoho cpufreq_set_step(ci, 1);
490 1.1 jruoho }
491 1.1 jruoho
492 1.1 jruoho static void
493 1.1 jruoho cpufreq_set_step(struct cpu_info *ci, int32_t step)
494 1.1 jruoho {
495 1.1 jruoho struct cpufreq_state cfs;
496 1.1 jruoho struct cpufreq *cf;
497 1.1 jruoho uint32_t freq;
498 1.1 jruoho int32_t index;
499 1.1 jruoho
500 1.1 jruoho mutex_enter(&cpufreq_lock);
501 1.1 jruoho cf = cf_backend;
502 1.1 jruoho
503 1.1 jruoho if (__predict_false(cf == NULL)) {
504 1.1 jruoho mutex_exit(&cpufreq_lock);
505 1.1 jruoho return;
506 1.1 jruoho }
507 1.1 jruoho
508 1.1 jruoho freq = cpufreq_get_raw(ci);
509 1.1 jruoho
510 1.1 jruoho if (__predict_false(freq == 0)) {
511 1.1 jruoho mutex_exit(&cpufreq_lock);
512 1.1 jruoho return;
513 1.1 jruoho }
514 1.1 jruoho
515 1.1 jruoho cpufreq_get_state_raw(freq, &cfs);
516 1.1 jruoho index = cfs.cfs_index + step;
517 1.1 jruoho
518 1.1 jruoho if (index < 0 || index >= (int32_t)cf->cf_state_count) {
519 1.1 jruoho mutex_exit(&cpufreq_lock);
520 1.1 jruoho return;
521 1.1 jruoho }
522 1.1 jruoho
523 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
524 1.1 jruoho mutex_exit(&cpufreq_lock);
525 1.1 jruoho }
526 1.1 jruoho #endif
527