subr_cpufreq.c revision 1.10 1 1.10 riastrad /* $NetBSD: subr_cpufreq.c,v 1.10 2023/04/09 09:18:09 riastradh Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * This code is derived from software contributed to The NetBSD Foundation
8 1.1 jruoho * by Jukka Ruohonen.
9 1.1 jruoho *
10 1.1 jruoho * Redistribution and use in source and binary forms, with or without
11 1.1 jruoho * modification, are permitted provided that the following conditions
12 1.1 jruoho * are met:
13 1.1 jruoho *
14 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
15 1.1 jruoho * notice, this list of conditions and the following disclaimer.
16 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
18 1.1 jruoho * documentation and/or other materials provided with the distribution.
19 1.1 jruoho *
20 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 jruoho * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 jruoho * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 jruoho * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 jruoho * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 jruoho * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 jruoho * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 jruoho * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 jruoho * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 jruoho * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 jruoho * POSSIBILITY OF SUCH DAMAGE.
31 1.1 jruoho */
32 1.1 jruoho #include <sys/cdefs.h>
33 1.10 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.10 2023/04/09 09:18:09 riastradh Exp $");
34 1.1 jruoho
35 1.1 jruoho #include <sys/param.h>
36 1.1 jruoho #include <sys/cpu.h>
37 1.1 jruoho #include <sys/cpufreq.h>
38 1.8 jruoho #include <sys/kernel.h>
39 1.1 jruoho #include <sys/kmem.h>
40 1.1 jruoho #include <sys/mutex.h>
41 1.1 jruoho #include <sys/time.h>
42 1.1 jruoho #include <sys/xcall.h>
43 1.1 jruoho
44 1.1 jruoho static int cpufreq_latency(void);
45 1.1 jruoho static uint32_t cpufreq_get_max(void);
46 1.1 jruoho static uint32_t cpufreq_get_min(void);
47 1.1 jruoho static uint32_t cpufreq_get_raw(struct cpu_info *);
48 1.1 jruoho static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
49 1.1 jruoho static void cpufreq_set_raw(struct cpu_info *, uint32_t);
50 1.1 jruoho static void cpufreq_set_all_raw(uint32_t);
51 1.1 jruoho
52 1.3 jruoho static kmutex_t cpufreq_lock __cacheline_aligned;
53 1.3 jruoho static struct cpufreq *cf_backend __read_mostly = NULL;
54 1.1 jruoho
55 1.2 jruoho void
56 1.1 jruoho cpufreq_init(void)
57 1.1 jruoho {
58 1.1 jruoho
59 1.1 jruoho mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
60 1.3 jruoho cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
61 1.1 jruoho }
62 1.1 jruoho
63 1.1 jruoho int
64 1.1 jruoho cpufreq_register(struct cpufreq *cf)
65 1.1 jruoho {
66 1.8 jruoho uint32_t c, i, j, k, m;
67 1.1 jruoho int rv;
68 1.1 jruoho
69 1.8 jruoho if (cold != 0)
70 1.8 jruoho return EBUSY;
71 1.8 jruoho
72 1.1 jruoho KASSERT(cf != NULL);
73 1.3 jruoho KASSERT(cf_backend != NULL);
74 1.1 jruoho KASSERT(cf->cf_get_freq != NULL);
75 1.1 jruoho KASSERT(cf->cf_set_freq != NULL);
76 1.1 jruoho KASSERT(cf->cf_state_count > 0);
77 1.1 jruoho KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
78 1.1 jruoho
79 1.1 jruoho mutex_enter(&cpufreq_lock);
80 1.1 jruoho
81 1.3 jruoho if (cf_backend->cf_init != false) {
82 1.1 jruoho mutex_exit(&cpufreq_lock);
83 1.1 jruoho return EALREADY;
84 1.1 jruoho }
85 1.1 jruoho
86 1.3 jruoho cf_backend->cf_init = true;
87 1.1 jruoho cf_backend->cf_mp = cf->cf_mp;
88 1.1 jruoho cf_backend->cf_cookie = cf->cf_cookie;
89 1.1 jruoho cf_backend->cf_get_freq = cf->cf_get_freq;
90 1.1 jruoho cf_backend->cf_set_freq = cf->cf_set_freq;
91 1.1 jruoho
92 1.1 jruoho (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
93 1.1 jruoho
94 1.1 jruoho /*
95 1.1 jruoho * Sanity check the values and verify descending order.
96 1.1 jruoho */
97 1.3 jruoho for (c = i = 0; i < cf->cf_state_count; i++) {
98 1.1 jruoho
99 1.1 jruoho CTASSERT(CPUFREQ_STATE_ENABLED != 0);
100 1.1 jruoho CTASSERT(CPUFREQ_STATE_DISABLED != 0);
101 1.1 jruoho
102 1.1 jruoho if (cf->cf_state[i].cfs_freq == 0)
103 1.1 jruoho continue;
104 1.1 jruoho
105 1.3 jruoho if (cf->cf_state[i].cfs_freq > 9999 &&
106 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
107 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
108 1.3 jruoho continue;
109 1.3 jruoho
110 1.1 jruoho for (j = k = 0; j < i; j++) {
111 1.1 jruoho
112 1.1 jruoho if (cf->cf_state[i].cfs_freq >=
113 1.1 jruoho cf->cf_state[j].cfs_freq) {
114 1.1 jruoho k = 1;
115 1.1 jruoho break;
116 1.1 jruoho }
117 1.1 jruoho }
118 1.1 jruoho
119 1.1 jruoho if (k != 0)
120 1.1 jruoho continue;
121 1.1 jruoho
122 1.3 jruoho cf_backend->cf_state[c].cfs_index = c;
123 1.3 jruoho cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
124 1.3 jruoho cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
125 1.1 jruoho
126 1.3 jruoho c++;
127 1.1 jruoho }
128 1.1 jruoho
129 1.3 jruoho cf_backend->cf_state_count = c;
130 1.1 jruoho
131 1.1 jruoho if (cf_backend->cf_state_count == 0) {
132 1.1 jruoho mutex_exit(&cpufreq_lock);
133 1.1 jruoho cpufreq_deregister();
134 1.1 jruoho return EINVAL;
135 1.1 jruoho }
136 1.1 jruoho
137 1.1 jruoho rv = cpufreq_latency();
138 1.1 jruoho
139 1.1 jruoho if (rv != 0) {
140 1.1 jruoho mutex_exit(&cpufreq_lock);
141 1.1 jruoho cpufreq_deregister();
142 1.1 jruoho return rv;
143 1.1 jruoho }
144 1.1 jruoho
145 1.8 jruoho m = cpufreq_get_max();
146 1.8 jruoho cpufreq_set_all_raw(m);
147 1.1 jruoho mutex_exit(&cpufreq_lock);
148 1.1 jruoho
149 1.1 jruoho return 0;
150 1.1 jruoho }
151 1.1 jruoho
152 1.1 jruoho void
153 1.1 jruoho cpufreq_deregister(void)
154 1.1 jruoho {
155 1.1 jruoho
156 1.1 jruoho mutex_enter(&cpufreq_lock);
157 1.3 jruoho memset(cf_backend, 0, sizeof(*cf_backend));
158 1.1 jruoho mutex_exit(&cpufreq_lock);
159 1.1 jruoho }
160 1.1 jruoho
161 1.1 jruoho static int
162 1.1 jruoho cpufreq_latency(void)
163 1.1 jruoho {
164 1.1 jruoho struct cpufreq *cf = cf_backend;
165 1.7 christos struct timespec nta, ntb;
166 1.1 jruoho const uint32_t n = 10;
167 1.1 jruoho uint32_t i, j, l, m;
168 1.1 jruoho uint64_t s;
169 1.1 jruoho
170 1.1 jruoho l = cpufreq_get_min();
171 1.1 jruoho m = cpufreq_get_max();
172 1.1 jruoho
173 1.1 jruoho /*
174 1.1 jruoho * For each state, sample the average transition
175 1.1 jruoho * latency required to set the state for all CPUs.
176 1.1 jruoho */
177 1.1 jruoho for (i = 0; i < cf->cf_state_count; i++) {
178 1.1 jruoho
179 1.1 jruoho for (s = 0, j = 0; j < n; j++) {
180 1.1 jruoho
181 1.1 jruoho /*
182 1.1 jruoho * Attempt to exclude possible
183 1.1 jruoho * caching done by the backend.
184 1.1 jruoho */
185 1.1 jruoho if (i == 0)
186 1.1 jruoho cpufreq_set_all_raw(l);
187 1.1 jruoho else {
188 1.1 jruoho cpufreq_set_all_raw(m);
189 1.1 jruoho }
190 1.1 jruoho
191 1.7 christos nanotime(&nta);
192 1.1 jruoho cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
193 1.7 christos nanotime(&ntb);
194 1.7 christos timespecsub(&ntb, &nta, &ntb);
195 1.1 jruoho
196 1.1 jruoho if (ntb.tv_sec != 0 ||
197 1.7 christos ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
198 1.1 jruoho continue;
199 1.1 jruoho
200 1.1 jruoho if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
201 1.1 jruoho break;
202 1.1 jruoho
203 1.7 christos /* Convert to microseconds to prevent overflow */
204 1.7 christos s += ntb.tv_nsec / 1000;
205 1.1 jruoho }
206 1.1 jruoho
207 1.1 jruoho /*
208 1.1 jruoho * Consider the backend unsuitable if
209 1.1 jruoho * the transition latency was too high.
210 1.1 jruoho */
211 1.1 jruoho if (s == 0)
212 1.1 jruoho return EMSGSIZE;
213 1.1 jruoho
214 1.1 jruoho cf->cf_state[i].cfs_latency = s / n;
215 1.1 jruoho }
216 1.1 jruoho
217 1.1 jruoho return 0;
218 1.1 jruoho }
219 1.1 jruoho
220 1.1 jruoho void
221 1.1 jruoho cpufreq_suspend(struct cpu_info *ci)
222 1.1 jruoho {
223 1.3 jruoho struct cpufreq *cf = cf_backend;
224 1.1 jruoho uint32_t l, s;
225 1.1 jruoho
226 1.1 jruoho mutex_enter(&cpufreq_lock);
227 1.1 jruoho
228 1.3 jruoho if (cf->cf_init != true) {
229 1.1 jruoho mutex_exit(&cpufreq_lock);
230 1.1 jruoho return;
231 1.1 jruoho }
232 1.1 jruoho
233 1.1 jruoho l = cpufreq_get_min();
234 1.1 jruoho s = cpufreq_get_raw(ci);
235 1.1 jruoho
236 1.1 jruoho cpufreq_set_raw(ci, l);
237 1.1 jruoho cf->cf_state_saved = s;
238 1.1 jruoho
239 1.1 jruoho mutex_exit(&cpufreq_lock);
240 1.1 jruoho }
241 1.1 jruoho
242 1.1 jruoho void
243 1.1 jruoho cpufreq_resume(struct cpu_info *ci)
244 1.1 jruoho {
245 1.3 jruoho struct cpufreq *cf = cf_backend;
246 1.1 jruoho
247 1.1 jruoho mutex_enter(&cpufreq_lock);
248 1.1 jruoho
249 1.3 jruoho if (cf->cf_init != true || cf->cf_state_saved == 0) {
250 1.1 jruoho mutex_exit(&cpufreq_lock);
251 1.1 jruoho return;
252 1.1 jruoho }
253 1.1 jruoho
254 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state_saved);
255 1.1 jruoho mutex_exit(&cpufreq_lock);
256 1.1 jruoho }
257 1.1 jruoho
258 1.1 jruoho uint32_t
259 1.1 jruoho cpufreq_get(struct cpu_info *ci)
260 1.1 jruoho {
261 1.3 jruoho struct cpufreq *cf = cf_backend;
262 1.1 jruoho uint32_t freq;
263 1.1 jruoho
264 1.1 jruoho mutex_enter(&cpufreq_lock);
265 1.1 jruoho
266 1.3 jruoho if (cf->cf_init != true) {
267 1.1 jruoho mutex_exit(&cpufreq_lock);
268 1.1 jruoho return 0;
269 1.1 jruoho }
270 1.1 jruoho
271 1.1 jruoho freq = cpufreq_get_raw(ci);
272 1.1 jruoho mutex_exit(&cpufreq_lock);
273 1.1 jruoho
274 1.1 jruoho return freq;
275 1.1 jruoho }
276 1.1 jruoho
277 1.1 jruoho static uint32_t
278 1.1 jruoho cpufreq_get_max(void)
279 1.1 jruoho {
280 1.1 jruoho struct cpufreq *cf = cf_backend;
281 1.1 jruoho
282 1.3 jruoho KASSERT(cf->cf_init != false);
283 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
284 1.1 jruoho
285 1.1 jruoho return cf->cf_state[0].cfs_freq;
286 1.1 jruoho }
287 1.1 jruoho
288 1.1 jruoho static uint32_t
289 1.1 jruoho cpufreq_get_min(void)
290 1.1 jruoho {
291 1.1 jruoho struct cpufreq *cf = cf_backend;
292 1.1 jruoho
293 1.3 jruoho KASSERT(cf->cf_init != false);
294 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
295 1.1 jruoho
296 1.1 jruoho return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
297 1.1 jruoho }
298 1.1 jruoho
299 1.1 jruoho static uint32_t
300 1.1 jruoho cpufreq_get_raw(struct cpu_info *ci)
301 1.1 jruoho {
302 1.1 jruoho struct cpufreq *cf = cf_backend;
303 1.1 jruoho uint32_t freq = 0;
304 1.1 jruoho uint64_t xc;
305 1.1 jruoho
306 1.3 jruoho KASSERT(cf->cf_init != false);
307 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
308 1.1 jruoho
309 1.1 jruoho xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
310 1.1 jruoho xc_wait(xc);
311 1.1 jruoho
312 1.1 jruoho return freq;
313 1.1 jruoho }
314 1.1 jruoho
315 1.1 jruoho int
316 1.3 jruoho cpufreq_get_backend(struct cpufreq *dst)
317 1.1 jruoho {
318 1.3 jruoho struct cpufreq *cf = cf_backend;
319 1.1 jruoho
320 1.1 jruoho mutex_enter(&cpufreq_lock);
321 1.1 jruoho
322 1.3 jruoho if (cf->cf_init != true || dst == NULL) {
323 1.1 jruoho mutex_exit(&cpufreq_lock);
324 1.1 jruoho return ENODEV;
325 1.1 jruoho }
326 1.1 jruoho
327 1.3 jruoho memcpy(dst, cf, sizeof(*cf));
328 1.1 jruoho mutex_exit(&cpufreq_lock);
329 1.1 jruoho
330 1.1 jruoho return 0;
331 1.1 jruoho }
332 1.1 jruoho
333 1.1 jruoho int
334 1.1 jruoho cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
335 1.1 jruoho {
336 1.3 jruoho struct cpufreq *cf = cf_backend;
337 1.1 jruoho
338 1.1 jruoho mutex_enter(&cpufreq_lock);
339 1.1 jruoho
340 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
341 1.1 jruoho mutex_exit(&cpufreq_lock);
342 1.1 jruoho return ENODEV;
343 1.1 jruoho }
344 1.1 jruoho
345 1.1 jruoho cpufreq_get_state_raw(freq, cfs);
346 1.1 jruoho mutex_exit(&cpufreq_lock);
347 1.1 jruoho
348 1.1 jruoho return 0;
349 1.1 jruoho }
350 1.1 jruoho
351 1.1 jruoho int
352 1.1 jruoho cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
353 1.1 jruoho {
354 1.3 jruoho struct cpufreq *cf = cf_backend;
355 1.1 jruoho
356 1.1 jruoho mutex_enter(&cpufreq_lock);
357 1.1 jruoho
358 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
359 1.1 jruoho mutex_exit(&cpufreq_lock);
360 1.1 jruoho return ENODEV;
361 1.1 jruoho }
362 1.1 jruoho
363 1.1 jruoho if (index >= cf->cf_state_count) {
364 1.9 martin mutex_exit(&cpufreq_lock);
365 1.1 jruoho return EINVAL;
366 1.1 jruoho }
367 1.1 jruoho
368 1.3 jruoho memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
369 1.1 jruoho mutex_exit(&cpufreq_lock);
370 1.1 jruoho
371 1.1 jruoho return 0;
372 1.1 jruoho }
373 1.1 jruoho
374 1.1 jruoho static void
375 1.1 jruoho cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
376 1.1 jruoho {
377 1.1 jruoho struct cpufreq *cf = cf_backend;
378 1.1 jruoho uint32_t f, hi, i = 0, lo = 0;
379 1.1 jruoho
380 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
381 1.10 riastrad KASSERT(cf->cf_init != false);
382 1.10 riastrad KASSERT(cfs != NULL);
383 1.1 jruoho
384 1.1 jruoho hi = cf->cf_state_count;
385 1.1 jruoho
386 1.1 jruoho while (lo < hi) {
387 1.1 jruoho
388 1.1 jruoho i = (lo + hi) >> 1;
389 1.1 jruoho f = cf->cf_state[i].cfs_freq;
390 1.1 jruoho
391 1.1 jruoho if (freq == f)
392 1.1 jruoho break;
393 1.1 jruoho else if (freq > f)
394 1.1 jruoho hi = i;
395 1.1 jruoho else {
396 1.1 jruoho lo = i + 1;
397 1.1 jruoho }
398 1.1 jruoho }
399 1.1 jruoho
400 1.3 jruoho memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
401 1.1 jruoho }
402 1.1 jruoho
403 1.1 jruoho void
404 1.1 jruoho cpufreq_set(struct cpu_info *ci, uint32_t freq)
405 1.1 jruoho {
406 1.3 jruoho struct cpufreq *cf = cf_backend;
407 1.1 jruoho
408 1.1 jruoho mutex_enter(&cpufreq_lock);
409 1.1 jruoho
410 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
411 1.1 jruoho mutex_exit(&cpufreq_lock);
412 1.1 jruoho return;
413 1.1 jruoho }
414 1.1 jruoho
415 1.1 jruoho cpufreq_set_raw(ci, freq);
416 1.1 jruoho mutex_exit(&cpufreq_lock);
417 1.1 jruoho }
418 1.1 jruoho
419 1.1 jruoho static void
420 1.1 jruoho cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
421 1.1 jruoho {
422 1.1 jruoho struct cpufreq *cf = cf_backend;
423 1.1 jruoho uint64_t xc;
424 1.1 jruoho
425 1.3 jruoho KASSERT(cf->cf_init != false);
426 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
427 1.1 jruoho
428 1.1 jruoho xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
429 1.1 jruoho xc_wait(xc);
430 1.1 jruoho }
431 1.1 jruoho
432 1.1 jruoho void
433 1.1 jruoho cpufreq_set_all(uint32_t freq)
434 1.1 jruoho {
435 1.3 jruoho struct cpufreq *cf = cf_backend;
436 1.1 jruoho
437 1.1 jruoho mutex_enter(&cpufreq_lock);
438 1.1 jruoho
439 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
440 1.1 jruoho mutex_exit(&cpufreq_lock);
441 1.1 jruoho return;
442 1.1 jruoho }
443 1.1 jruoho
444 1.1 jruoho cpufreq_set_all_raw(freq);
445 1.1 jruoho mutex_exit(&cpufreq_lock);
446 1.1 jruoho }
447 1.1 jruoho
448 1.1 jruoho static void
449 1.1 jruoho cpufreq_set_all_raw(uint32_t freq)
450 1.1 jruoho {
451 1.1 jruoho struct cpufreq *cf = cf_backend;
452 1.1 jruoho uint64_t xc;
453 1.1 jruoho
454 1.3 jruoho KASSERT(cf->cf_init != false);
455 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
456 1.1 jruoho
457 1.1 jruoho xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
458 1.1 jruoho xc_wait(xc);
459 1.1 jruoho }
460 1.1 jruoho
461 1.1 jruoho #ifdef notyet
462 1.1 jruoho void
463 1.1 jruoho cpufreq_set_higher(struct cpu_info *ci)
464 1.1 jruoho {
465 1.1 jruoho cpufreq_set_step(ci, -1);
466 1.1 jruoho }
467 1.1 jruoho
468 1.1 jruoho void
469 1.1 jruoho cpufreq_set_lower(struct cpu_info *ci)
470 1.1 jruoho {
471 1.1 jruoho cpufreq_set_step(ci, 1);
472 1.1 jruoho }
473 1.1 jruoho
474 1.1 jruoho static void
475 1.1 jruoho cpufreq_set_step(struct cpu_info *ci, int32_t step)
476 1.1 jruoho {
477 1.3 jruoho struct cpufreq *cf = cf_backend;
478 1.1 jruoho struct cpufreq_state cfs;
479 1.1 jruoho uint32_t freq;
480 1.1 jruoho int32_t index;
481 1.1 jruoho
482 1.1 jruoho mutex_enter(&cpufreq_lock);
483 1.1 jruoho
484 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
485 1.1 jruoho mutex_exit(&cpufreq_lock);
486 1.1 jruoho return;
487 1.1 jruoho }
488 1.1 jruoho
489 1.1 jruoho freq = cpufreq_get_raw(ci);
490 1.1 jruoho
491 1.1 jruoho if (__predict_false(freq == 0)) {
492 1.1 jruoho mutex_exit(&cpufreq_lock);
493 1.1 jruoho return;
494 1.1 jruoho }
495 1.1 jruoho
496 1.1 jruoho cpufreq_get_state_raw(freq, &cfs);
497 1.1 jruoho index = cfs.cfs_index + step;
498 1.1 jruoho
499 1.1 jruoho if (index < 0 || index >= (int32_t)cf->cf_state_count) {
500 1.1 jruoho mutex_exit(&cpufreq_lock);
501 1.1 jruoho return;
502 1.1 jruoho }
503 1.1 jruoho
504 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
505 1.1 jruoho mutex_exit(&cpufreq_lock);
506 1.1 jruoho }
507 1.1 jruoho #endif
508