subr_cpufreq.c revision 1.3 1 1.3 jruoho /* $NetBSD: subr_cpufreq.c,v 1.3 2011/09/30 04:01:21 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * This code is derived from software contributed to The NetBSD Foundation
8 1.1 jruoho * by Jukka Ruohonen.
9 1.1 jruoho *
10 1.1 jruoho * Redistribution and use in source and binary forms, with or without
11 1.1 jruoho * modification, are permitted provided that the following conditions
12 1.1 jruoho * are met:
13 1.1 jruoho *
14 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
15 1.1 jruoho * notice, this list of conditions and the following disclaimer.
16 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
18 1.1 jruoho * documentation and/or other materials provided with the distribution.
19 1.1 jruoho *
20 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 jruoho * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 jruoho * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 jruoho * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 jruoho * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 jruoho * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 jruoho * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 jruoho * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 jruoho * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 jruoho * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 jruoho * POSSIBILITY OF SUCH DAMAGE.
31 1.1 jruoho */
32 1.1 jruoho #include <sys/cdefs.h>
33 1.3 jruoho __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.3 2011/09/30 04:01:21 jruoho Exp $");
34 1.1 jruoho
35 1.1 jruoho #include <sys/param.h>
36 1.1 jruoho #include <sys/cpu.h>
37 1.1 jruoho #include <sys/cpufreq.h>
38 1.1 jruoho #include <sys/kmem.h>
39 1.1 jruoho #include <sys/mutex.h>
40 1.1 jruoho #include <sys/time.h>
41 1.1 jruoho #include <sys/xcall.h>
42 1.1 jruoho
43 1.1 jruoho static int cpufreq_latency(void);
44 1.1 jruoho static uint32_t cpufreq_get_max(void);
45 1.1 jruoho static uint32_t cpufreq_get_min(void);
46 1.1 jruoho static uint32_t cpufreq_get_raw(struct cpu_info *);
47 1.1 jruoho static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
48 1.1 jruoho static void cpufreq_set_raw(struct cpu_info *, uint32_t);
49 1.1 jruoho static void cpufreq_set_all_raw(uint32_t);
50 1.1 jruoho
51 1.3 jruoho static kmutex_t cpufreq_lock __cacheline_aligned;
52 1.3 jruoho static struct cpufreq *cf_backend __read_mostly = NULL;
53 1.1 jruoho
54 1.2 jruoho void
55 1.1 jruoho cpufreq_init(void)
56 1.1 jruoho {
57 1.1 jruoho
58 1.1 jruoho mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
59 1.3 jruoho cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
60 1.1 jruoho }
61 1.1 jruoho
62 1.1 jruoho int
63 1.1 jruoho cpufreq_register(struct cpufreq *cf)
64 1.1 jruoho {
65 1.3 jruoho uint32_t c, i, j, k, m;
66 1.1 jruoho int rv;
67 1.1 jruoho
68 1.1 jruoho KASSERT(cf != NULL);
69 1.3 jruoho KASSERT(cf_backend != NULL);
70 1.1 jruoho KASSERT(cf->cf_get_freq != NULL);
71 1.1 jruoho KASSERT(cf->cf_set_freq != NULL);
72 1.1 jruoho KASSERT(cf->cf_state_count > 0);
73 1.1 jruoho KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
74 1.1 jruoho
75 1.1 jruoho mutex_enter(&cpufreq_lock);
76 1.1 jruoho
77 1.3 jruoho if (cf_backend->cf_init != false) {
78 1.1 jruoho mutex_exit(&cpufreq_lock);
79 1.1 jruoho return EALREADY;
80 1.1 jruoho }
81 1.1 jruoho
82 1.3 jruoho cf_backend->cf_init = true;
83 1.1 jruoho cf_backend->cf_mp = cf->cf_mp;
84 1.1 jruoho cf_backend->cf_cookie = cf->cf_cookie;
85 1.1 jruoho cf_backend->cf_get_freq = cf->cf_get_freq;
86 1.1 jruoho cf_backend->cf_set_freq = cf->cf_set_freq;
87 1.1 jruoho
88 1.1 jruoho (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
89 1.1 jruoho
90 1.1 jruoho /*
91 1.1 jruoho * Sanity check the values and verify descending order.
92 1.1 jruoho */
93 1.3 jruoho for (c = i = 0; i < cf->cf_state_count; i++) {
94 1.1 jruoho
95 1.1 jruoho CTASSERT(CPUFREQ_STATE_ENABLED != 0);
96 1.1 jruoho CTASSERT(CPUFREQ_STATE_DISABLED != 0);
97 1.1 jruoho
98 1.1 jruoho if (cf->cf_state[i].cfs_freq == 0)
99 1.1 jruoho continue;
100 1.1 jruoho
101 1.3 jruoho if (cf->cf_state[i].cfs_freq > 9999 &&
102 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
103 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
104 1.3 jruoho continue;
105 1.3 jruoho
106 1.1 jruoho for (j = k = 0; j < i; j++) {
107 1.1 jruoho
108 1.1 jruoho if (cf->cf_state[i].cfs_freq >=
109 1.1 jruoho cf->cf_state[j].cfs_freq) {
110 1.1 jruoho k = 1;
111 1.1 jruoho break;
112 1.1 jruoho }
113 1.1 jruoho }
114 1.1 jruoho
115 1.1 jruoho if (k != 0)
116 1.1 jruoho continue;
117 1.1 jruoho
118 1.3 jruoho cf_backend->cf_state[c].cfs_index = c;
119 1.3 jruoho cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
120 1.3 jruoho cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
121 1.1 jruoho
122 1.3 jruoho c++;
123 1.1 jruoho }
124 1.1 jruoho
125 1.3 jruoho cf_backend->cf_state_count = c;
126 1.1 jruoho
127 1.1 jruoho if (cf_backend->cf_state_count == 0) {
128 1.1 jruoho mutex_exit(&cpufreq_lock);
129 1.1 jruoho cpufreq_deregister();
130 1.1 jruoho return EINVAL;
131 1.1 jruoho }
132 1.1 jruoho
133 1.1 jruoho rv = cpufreq_latency();
134 1.1 jruoho
135 1.1 jruoho if (rv != 0) {
136 1.1 jruoho mutex_exit(&cpufreq_lock);
137 1.1 jruoho cpufreq_deregister();
138 1.1 jruoho return rv;
139 1.1 jruoho }
140 1.1 jruoho
141 1.1 jruoho m = cpufreq_get_max();
142 1.1 jruoho cpufreq_set_all_raw(m);
143 1.1 jruoho mutex_exit(&cpufreq_lock);
144 1.1 jruoho
145 1.1 jruoho return 0;
146 1.1 jruoho }
147 1.1 jruoho
148 1.1 jruoho void
149 1.1 jruoho cpufreq_deregister(void)
150 1.1 jruoho {
151 1.1 jruoho
152 1.1 jruoho mutex_enter(&cpufreq_lock);
153 1.3 jruoho memset(cf_backend, 0, sizeof(*cf_backend));
154 1.1 jruoho mutex_exit(&cpufreq_lock);
155 1.1 jruoho }
156 1.1 jruoho
157 1.1 jruoho static int
158 1.1 jruoho cpufreq_latency(void)
159 1.1 jruoho {
160 1.1 jruoho struct cpufreq *cf = cf_backend;
161 1.1 jruoho struct timespec nta, ntb;
162 1.1 jruoho const uint32_t n = 10;
163 1.1 jruoho uint32_t i, j, l, m;
164 1.1 jruoho uint64_t s;
165 1.1 jruoho
166 1.1 jruoho l = cpufreq_get_min();
167 1.1 jruoho m = cpufreq_get_max();
168 1.1 jruoho
169 1.1 jruoho /*
170 1.1 jruoho * For each state, sample the average transition
171 1.1 jruoho * latency required to set the state for all CPUs.
172 1.1 jruoho */
173 1.1 jruoho for (i = 0; i < cf->cf_state_count; i++) {
174 1.1 jruoho
175 1.1 jruoho for (s = 0, j = 0; j < n; j++) {
176 1.1 jruoho
177 1.1 jruoho /*
178 1.1 jruoho * Attempt to exclude possible
179 1.1 jruoho * caching done by the backend.
180 1.1 jruoho */
181 1.1 jruoho if (i == 0)
182 1.1 jruoho cpufreq_set_all_raw(l);
183 1.1 jruoho else {
184 1.1 jruoho cpufreq_set_all_raw(m);
185 1.1 jruoho }
186 1.1 jruoho
187 1.1 jruoho nta.tv_sec = nta.tv_nsec = 0;
188 1.1 jruoho ntb.tv_sec = ntb.tv_nsec = 0;
189 1.1 jruoho
190 1.1 jruoho nanotime(&nta);
191 1.1 jruoho cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
192 1.1 jruoho nanotime(&ntb);
193 1.1 jruoho timespecsub(&ntb, &nta, &ntb);
194 1.1 jruoho
195 1.1 jruoho if (ntb.tv_sec != 0 ||
196 1.1 jruoho ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
197 1.1 jruoho continue;
198 1.1 jruoho
199 1.1 jruoho if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
200 1.1 jruoho break;
201 1.1 jruoho
202 1.1 jruoho s += ntb.tv_nsec;
203 1.1 jruoho }
204 1.1 jruoho
205 1.1 jruoho /*
206 1.1 jruoho * Consider the backend unsuitable if
207 1.1 jruoho * the transition latency was too high.
208 1.1 jruoho */
209 1.1 jruoho if (s == 0)
210 1.1 jruoho return EMSGSIZE;
211 1.1 jruoho
212 1.1 jruoho cf->cf_state[i].cfs_latency = s / n;
213 1.1 jruoho }
214 1.1 jruoho
215 1.1 jruoho return 0;
216 1.1 jruoho }
217 1.1 jruoho
218 1.1 jruoho void
219 1.1 jruoho cpufreq_suspend(struct cpu_info *ci)
220 1.1 jruoho {
221 1.3 jruoho struct cpufreq *cf = cf_backend;
222 1.1 jruoho uint32_t l, s;
223 1.1 jruoho
224 1.1 jruoho mutex_enter(&cpufreq_lock);
225 1.1 jruoho
226 1.3 jruoho if (cf->cf_init != true) {
227 1.1 jruoho mutex_exit(&cpufreq_lock);
228 1.1 jruoho return;
229 1.1 jruoho }
230 1.1 jruoho
231 1.1 jruoho l = cpufreq_get_min();
232 1.1 jruoho s = cpufreq_get_raw(ci);
233 1.1 jruoho
234 1.1 jruoho cpufreq_set_raw(ci, l);
235 1.1 jruoho cf->cf_state_saved = s;
236 1.1 jruoho
237 1.1 jruoho mutex_exit(&cpufreq_lock);
238 1.1 jruoho }
239 1.1 jruoho
240 1.1 jruoho void
241 1.1 jruoho cpufreq_resume(struct cpu_info *ci)
242 1.1 jruoho {
243 1.3 jruoho struct cpufreq *cf = cf_backend;
244 1.1 jruoho
245 1.1 jruoho mutex_enter(&cpufreq_lock);
246 1.1 jruoho
247 1.3 jruoho if (cf->cf_init != true || cf->cf_state_saved == 0) {
248 1.1 jruoho mutex_exit(&cpufreq_lock);
249 1.1 jruoho return;
250 1.1 jruoho }
251 1.1 jruoho
252 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state_saved);
253 1.1 jruoho mutex_exit(&cpufreq_lock);
254 1.1 jruoho }
255 1.1 jruoho
256 1.1 jruoho uint32_t
257 1.1 jruoho cpufreq_get(struct cpu_info *ci)
258 1.1 jruoho {
259 1.3 jruoho struct cpufreq *cf = cf_backend;
260 1.1 jruoho uint32_t freq;
261 1.1 jruoho
262 1.1 jruoho mutex_enter(&cpufreq_lock);
263 1.1 jruoho
264 1.3 jruoho if (cf->cf_init != true) {
265 1.1 jruoho mutex_exit(&cpufreq_lock);
266 1.1 jruoho return 0;
267 1.1 jruoho }
268 1.1 jruoho
269 1.1 jruoho freq = cpufreq_get_raw(ci);
270 1.1 jruoho mutex_exit(&cpufreq_lock);
271 1.1 jruoho
272 1.1 jruoho return freq;
273 1.1 jruoho }
274 1.1 jruoho
275 1.1 jruoho static uint32_t
276 1.1 jruoho cpufreq_get_max(void)
277 1.1 jruoho {
278 1.1 jruoho struct cpufreq *cf = cf_backend;
279 1.1 jruoho
280 1.3 jruoho KASSERT(cf->cf_init != false);
281 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
282 1.1 jruoho
283 1.1 jruoho return cf->cf_state[0].cfs_freq;
284 1.1 jruoho }
285 1.1 jruoho
286 1.1 jruoho static uint32_t
287 1.1 jruoho cpufreq_get_min(void)
288 1.1 jruoho {
289 1.1 jruoho struct cpufreq *cf = cf_backend;
290 1.1 jruoho
291 1.3 jruoho KASSERT(cf->cf_init != false);
292 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
293 1.1 jruoho
294 1.1 jruoho return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
295 1.1 jruoho }
296 1.1 jruoho
297 1.1 jruoho static uint32_t
298 1.1 jruoho cpufreq_get_raw(struct cpu_info *ci)
299 1.1 jruoho {
300 1.1 jruoho struct cpufreq *cf = cf_backend;
301 1.1 jruoho uint32_t freq = 0;
302 1.1 jruoho uint64_t xc;
303 1.1 jruoho
304 1.3 jruoho KASSERT(cf->cf_init != false);
305 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
306 1.1 jruoho
307 1.1 jruoho xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
308 1.1 jruoho xc_wait(xc);
309 1.1 jruoho
310 1.1 jruoho return freq;
311 1.1 jruoho }
312 1.1 jruoho
313 1.1 jruoho int
314 1.3 jruoho cpufreq_get_backend(struct cpufreq *dst)
315 1.1 jruoho {
316 1.3 jruoho struct cpufreq *cf = cf_backend;
317 1.1 jruoho
318 1.1 jruoho mutex_enter(&cpufreq_lock);
319 1.1 jruoho
320 1.3 jruoho if (cf->cf_init != true || dst == NULL) {
321 1.1 jruoho mutex_exit(&cpufreq_lock);
322 1.1 jruoho return ENODEV;
323 1.1 jruoho }
324 1.1 jruoho
325 1.3 jruoho memcpy(dst, cf, sizeof(*cf));
326 1.1 jruoho mutex_exit(&cpufreq_lock);
327 1.1 jruoho
328 1.1 jruoho return 0;
329 1.1 jruoho }
330 1.1 jruoho
331 1.1 jruoho int
332 1.1 jruoho cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
333 1.1 jruoho {
334 1.3 jruoho struct cpufreq *cf = cf_backend;
335 1.1 jruoho
336 1.1 jruoho mutex_enter(&cpufreq_lock);
337 1.1 jruoho
338 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
339 1.1 jruoho mutex_exit(&cpufreq_lock);
340 1.1 jruoho return ENODEV;
341 1.1 jruoho }
342 1.1 jruoho
343 1.1 jruoho cpufreq_get_state_raw(freq, cfs);
344 1.1 jruoho mutex_exit(&cpufreq_lock);
345 1.1 jruoho
346 1.1 jruoho return 0;
347 1.1 jruoho }
348 1.1 jruoho
349 1.1 jruoho int
350 1.1 jruoho cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
351 1.1 jruoho {
352 1.3 jruoho struct cpufreq *cf = cf_backend;
353 1.1 jruoho
354 1.1 jruoho mutex_enter(&cpufreq_lock);
355 1.1 jruoho
356 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
357 1.1 jruoho mutex_exit(&cpufreq_lock);
358 1.1 jruoho return ENODEV;
359 1.1 jruoho }
360 1.1 jruoho
361 1.1 jruoho if (index >= cf->cf_state_count) {
362 1.1 jruoho mutex_exit(&cpu_lock);
363 1.1 jruoho return EINVAL;
364 1.1 jruoho }
365 1.1 jruoho
366 1.3 jruoho memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
367 1.1 jruoho mutex_exit(&cpufreq_lock);
368 1.1 jruoho
369 1.1 jruoho return 0;
370 1.1 jruoho }
371 1.1 jruoho
372 1.1 jruoho static void
373 1.1 jruoho cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
374 1.1 jruoho {
375 1.1 jruoho struct cpufreq *cf = cf_backend;
376 1.1 jruoho uint32_t f, hi, i = 0, lo = 0;
377 1.1 jruoho
378 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
379 1.3 jruoho KASSERT(cf->cf_init != false && cfs != NULL);
380 1.1 jruoho
381 1.1 jruoho hi = cf->cf_state_count;
382 1.1 jruoho
383 1.1 jruoho while (lo < hi) {
384 1.1 jruoho
385 1.1 jruoho i = (lo + hi) >> 1;
386 1.1 jruoho f = cf->cf_state[i].cfs_freq;
387 1.1 jruoho
388 1.1 jruoho if (freq == f)
389 1.1 jruoho break;
390 1.1 jruoho else if (freq > f)
391 1.1 jruoho hi = i;
392 1.1 jruoho else {
393 1.1 jruoho lo = i + 1;
394 1.1 jruoho }
395 1.1 jruoho }
396 1.1 jruoho
397 1.3 jruoho memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
398 1.1 jruoho }
399 1.1 jruoho
400 1.1 jruoho void
401 1.1 jruoho cpufreq_set(struct cpu_info *ci, uint32_t freq)
402 1.1 jruoho {
403 1.3 jruoho struct cpufreq *cf = cf_backend;
404 1.1 jruoho
405 1.1 jruoho mutex_enter(&cpufreq_lock);
406 1.1 jruoho
407 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
408 1.1 jruoho mutex_exit(&cpufreq_lock);
409 1.1 jruoho return;
410 1.1 jruoho }
411 1.1 jruoho
412 1.1 jruoho cpufreq_set_raw(ci, freq);
413 1.1 jruoho mutex_exit(&cpufreq_lock);
414 1.1 jruoho }
415 1.1 jruoho
416 1.1 jruoho static void
417 1.1 jruoho cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
418 1.1 jruoho {
419 1.1 jruoho struct cpufreq *cf = cf_backend;
420 1.1 jruoho uint64_t xc;
421 1.1 jruoho
422 1.3 jruoho KASSERT(cf->cf_init != false);
423 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
424 1.1 jruoho
425 1.1 jruoho xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
426 1.1 jruoho xc_wait(xc);
427 1.1 jruoho }
428 1.1 jruoho
429 1.1 jruoho void
430 1.1 jruoho cpufreq_set_all(uint32_t freq)
431 1.1 jruoho {
432 1.3 jruoho struct cpufreq *cf = cf_backend;
433 1.1 jruoho
434 1.1 jruoho mutex_enter(&cpufreq_lock);
435 1.1 jruoho
436 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
437 1.1 jruoho mutex_exit(&cpufreq_lock);
438 1.1 jruoho return;
439 1.1 jruoho }
440 1.1 jruoho
441 1.1 jruoho cpufreq_set_all_raw(freq);
442 1.1 jruoho mutex_exit(&cpufreq_lock);
443 1.1 jruoho }
444 1.1 jruoho
445 1.1 jruoho static void
446 1.1 jruoho cpufreq_set_all_raw(uint32_t freq)
447 1.1 jruoho {
448 1.1 jruoho struct cpufreq *cf = cf_backend;
449 1.1 jruoho uint64_t xc;
450 1.1 jruoho
451 1.3 jruoho KASSERT(cf->cf_init != false);
452 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
453 1.1 jruoho
454 1.1 jruoho xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
455 1.1 jruoho xc_wait(xc);
456 1.1 jruoho }
457 1.1 jruoho
458 1.1 jruoho #ifdef notyet
459 1.1 jruoho void
460 1.1 jruoho cpufreq_set_higher(struct cpu_info *ci)
461 1.1 jruoho {
462 1.1 jruoho cpufreq_set_step(ci, -1);
463 1.1 jruoho }
464 1.1 jruoho
465 1.1 jruoho void
466 1.1 jruoho cpufreq_set_lower(struct cpu_info *ci)
467 1.1 jruoho {
468 1.1 jruoho cpufreq_set_step(ci, 1);
469 1.1 jruoho }
470 1.1 jruoho
471 1.1 jruoho static void
472 1.1 jruoho cpufreq_set_step(struct cpu_info *ci, int32_t step)
473 1.1 jruoho {
474 1.3 jruoho struct cpufreq *cf = cf_backend;
475 1.1 jruoho struct cpufreq_state cfs;
476 1.1 jruoho uint32_t freq;
477 1.1 jruoho int32_t index;
478 1.1 jruoho
479 1.1 jruoho mutex_enter(&cpufreq_lock);
480 1.1 jruoho cf = cf_backend;
481 1.1 jruoho
482 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
483 1.1 jruoho mutex_exit(&cpufreq_lock);
484 1.1 jruoho return;
485 1.1 jruoho }
486 1.1 jruoho
487 1.1 jruoho freq = cpufreq_get_raw(ci);
488 1.1 jruoho
489 1.1 jruoho if (__predict_false(freq == 0)) {
490 1.1 jruoho mutex_exit(&cpufreq_lock);
491 1.1 jruoho return;
492 1.1 jruoho }
493 1.1 jruoho
494 1.1 jruoho cpufreq_get_state_raw(freq, &cfs);
495 1.1 jruoho index = cfs.cfs_index + step;
496 1.1 jruoho
497 1.1 jruoho if (index < 0 || index >= (int32_t)cf->cf_state_count) {
498 1.1 jruoho mutex_exit(&cpufreq_lock);
499 1.1 jruoho return;
500 1.1 jruoho }
501 1.1 jruoho
502 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
503 1.1 jruoho mutex_exit(&cpufreq_lock);
504 1.1 jruoho }
505 1.1 jruoho #endif
506