subr_cpufreq.c revision 1.7 1 1.6 jruoho /* $NetBSD: subr_cpufreq.c,v 1.7 2011/10/25 18:26:09 christos Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * This code is derived from software contributed to The NetBSD Foundation
8 1.1 jruoho * by Jukka Ruohonen.
9 1.1 jruoho *
10 1.1 jruoho * Redistribution and use in source and binary forms, with or without
11 1.1 jruoho * modification, are permitted provided that the following conditions
12 1.1 jruoho * are met:
13 1.1 jruoho *
14 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
15 1.1 jruoho * notice, this list of conditions and the following disclaimer.
16 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
18 1.1 jruoho * documentation and/or other materials provided with the distribution.
19 1.1 jruoho *
20 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 jruoho * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 jruoho * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 jruoho * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 jruoho * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 jruoho * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 jruoho * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 jruoho * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 jruoho * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 jruoho * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 jruoho * POSSIBILITY OF SUCH DAMAGE.
31 1.1 jruoho */
32 1.1 jruoho #include <sys/cdefs.h>
33 1.6 jruoho __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.7 2011/10/25 18:26:09 christos Exp $");
34 1.1 jruoho
35 1.1 jruoho #include <sys/param.h>
36 1.1 jruoho #include <sys/cpu.h>
37 1.1 jruoho #include <sys/cpufreq.h>
38 1.1 jruoho #include <sys/kmem.h>
39 1.1 jruoho #include <sys/mutex.h>
40 1.1 jruoho #include <sys/time.h>
41 1.1 jruoho #include <sys/xcall.h>
42 1.1 jruoho
43 1.1 jruoho static int cpufreq_latency(void);
44 1.1 jruoho static uint32_t cpufreq_get_max(void);
45 1.1 jruoho static uint32_t cpufreq_get_min(void);
46 1.1 jruoho static uint32_t cpufreq_get_raw(struct cpu_info *);
47 1.1 jruoho static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
48 1.1 jruoho static void cpufreq_set_raw(struct cpu_info *, uint32_t);
49 1.1 jruoho static void cpufreq_set_all_raw(uint32_t);
50 1.1 jruoho
51 1.3 jruoho static kmutex_t cpufreq_lock __cacheline_aligned;
52 1.3 jruoho static struct cpufreq *cf_backend __read_mostly = NULL;
53 1.1 jruoho
54 1.2 jruoho void
55 1.1 jruoho cpufreq_init(void)
56 1.1 jruoho {
57 1.1 jruoho
58 1.1 jruoho mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
59 1.3 jruoho cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
60 1.1 jruoho }
61 1.1 jruoho
62 1.1 jruoho int
63 1.1 jruoho cpufreq_register(struct cpufreq *cf)
64 1.1 jruoho {
65 1.5 jruoho uint32_t c, i, j, k;
66 1.1 jruoho int rv;
67 1.1 jruoho
68 1.1 jruoho KASSERT(cf != NULL);
69 1.3 jruoho KASSERT(cf_backend != NULL);
70 1.1 jruoho KASSERT(cf->cf_get_freq != NULL);
71 1.1 jruoho KASSERT(cf->cf_set_freq != NULL);
72 1.1 jruoho KASSERT(cf->cf_state_count > 0);
73 1.1 jruoho KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
74 1.1 jruoho
75 1.1 jruoho mutex_enter(&cpufreq_lock);
76 1.1 jruoho
77 1.3 jruoho if (cf_backend->cf_init != false) {
78 1.1 jruoho mutex_exit(&cpufreq_lock);
79 1.1 jruoho return EALREADY;
80 1.1 jruoho }
81 1.1 jruoho
82 1.3 jruoho cf_backend->cf_init = true;
83 1.1 jruoho cf_backend->cf_mp = cf->cf_mp;
84 1.1 jruoho cf_backend->cf_cookie = cf->cf_cookie;
85 1.1 jruoho cf_backend->cf_get_freq = cf->cf_get_freq;
86 1.1 jruoho cf_backend->cf_set_freq = cf->cf_set_freq;
87 1.1 jruoho
88 1.1 jruoho (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
89 1.1 jruoho
90 1.1 jruoho /*
91 1.1 jruoho * Sanity check the values and verify descending order.
92 1.1 jruoho */
93 1.3 jruoho for (c = i = 0; i < cf->cf_state_count; i++) {
94 1.1 jruoho
95 1.1 jruoho CTASSERT(CPUFREQ_STATE_ENABLED != 0);
96 1.1 jruoho CTASSERT(CPUFREQ_STATE_DISABLED != 0);
97 1.1 jruoho
98 1.1 jruoho if (cf->cf_state[i].cfs_freq == 0)
99 1.1 jruoho continue;
100 1.1 jruoho
101 1.3 jruoho if (cf->cf_state[i].cfs_freq > 9999 &&
102 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
103 1.3 jruoho cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
104 1.3 jruoho continue;
105 1.3 jruoho
106 1.1 jruoho for (j = k = 0; j < i; j++) {
107 1.1 jruoho
108 1.1 jruoho if (cf->cf_state[i].cfs_freq >=
109 1.1 jruoho cf->cf_state[j].cfs_freq) {
110 1.1 jruoho k = 1;
111 1.1 jruoho break;
112 1.1 jruoho }
113 1.1 jruoho }
114 1.1 jruoho
115 1.1 jruoho if (k != 0)
116 1.1 jruoho continue;
117 1.1 jruoho
118 1.3 jruoho cf_backend->cf_state[c].cfs_index = c;
119 1.3 jruoho cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
120 1.3 jruoho cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
121 1.1 jruoho
122 1.3 jruoho c++;
123 1.1 jruoho }
124 1.1 jruoho
125 1.3 jruoho cf_backend->cf_state_count = c;
126 1.1 jruoho
127 1.1 jruoho if (cf_backend->cf_state_count == 0) {
128 1.1 jruoho mutex_exit(&cpufreq_lock);
129 1.1 jruoho cpufreq_deregister();
130 1.1 jruoho return EINVAL;
131 1.1 jruoho }
132 1.1 jruoho
133 1.1 jruoho rv = cpufreq_latency();
134 1.1 jruoho
135 1.1 jruoho if (rv != 0) {
136 1.1 jruoho mutex_exit(&cpufreq_lock);
137 1.1 jruoho cpufreq_deregister();
138 1.1 jruoho return rv;
139 1.1 jruoho }
140 1.1 jruoho
141 1.1 jruoho mutex_exit(&cpufreq_lock);
142 1.1 jruoho
143 1.1 jruoho return 0;
144 1.1 jruoho }
145 1.1 jruoho
146 1.1 jruoho void
147 1.1 jruoho cpufreq_deregister(void)
148 1.1 jruoho {
149 1.1 jruoho
150 1.1 jruoho mutex_enter(&cpufreq_lock);
151 1.3 jruoho memset(cf_backend, 0, sizeof(*cf_backend));
152 1.1 jruoho mutex_exit(&cpufreq_lock);
153 1.1 jruoho }
154 1.1 jruoho
155 1.1 jruoho static int
156 1.1 jruoho cpufreq_latency(void)
157 1.1 jruoho {
158 1.1 jruoho struct cpufreq *cf = cf_backend;
159 1.7 christos struct timespec nta, ntb;
160 1.1 jruoho const uint32_t n = 10;
161 1.1 jruoho uint32_t i, j, l, m;
162 1.1 jruoho uint64_t s;
163 1.1 jruoho
164 1.1 jruoho l = cpufreq_get_min();
165 1.1 jruoho m = cpufreq_get_max();
166 1.1 jruoho
167 1.1 jruoho /*
168 1.1 jruoho * For each state, sample the average transition
169 1.1 jruoho * latency required to set the state for all CPUs.
170 1.1 jruoho */
171 1.1 jruoho for (i = 0; i < cf->cf_state_count; i++) {
172 1.1 jruoho
173 1.1 jruoho for (s = 0, j = 0; j < n; j++) {
174 1.1 jruoho
175 1.1 jruoho /*
176 1.1 jruoho * Attempt to exclude possible
177 1.1 jruoho * caching done by the backend.
178 1.1 jruoho */
179 1.1 jruoho if (i == 0)
180 1.1 jruoho cpufreq_set_all_raw(l);
181 1.1 jruoho else {
182 1.1 jruoho cpufreq_set_all_raw(m);
183 1.1 jruoho }
184 1.1 jruoho
185 1.7 christos nanotime(&nta);
186 1.1 jruoho cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
187 1.7 christos nanotime(&ntb);
188 1.7 christos timespecsub(&ntb, &nta, &ntb);
189 1.1 jruoho
190 1.1 jruoho if (ntb.tv_sec != 0 ||
191 1.7 christos ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
192 1.1 jruoho continue;
193 1.1 jruoho
194 1.1 jruoho if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
195 1.1 jruoho break;
196 1.1 jruoho
197 1.7 christos /* Convert to microseconds to prevent overflow */
198 1.7 christos s += ntb.tv_nsec / 1000;
199 1.1 jruoho }
200 1.1 jruoho
201 1.1 jruoho /*
202 1.1 jruoho * Consider the backend unsuitable if
203 1.1 jruoho * the transition latency was too high.
204 1.1 jruoho */
205 1.1 jruoho if (s == 0)
206 1.1 jruoho return EMSGSIZE;
207 1.1 jruoho
208 1.1 jruoho cf->cf_state[i].cfs_latency = s / n;
209 1.1 jruoho }
210 1.1 jruoho
211 1.1 jruoho return 0;
212 1.1 jruoho }
213 1.1 jruoho
214 1.1 jruoho void
215 1.1 jruoho cpufreq_suspend(struct cpu_info *ci)
216 1.1 jruoho {
217 1.3 jruoho struct cpufreq *cf = cf_backend;
218 1.1 jruoho uint32_t l, s;
219 1.1 jruoho
220 1.1 jruoho mutex_enter(&cpufreq_lock);
221 1.1 jruoho
222 1.3 jruoho if (cf->cf_init != true) {
223 1.1 jruoho mutex_exit(&cpufreq_lock);
224 1.1 jruoho return;
225 1.1 jruoho }
226 1.1 jruoho
227 1.1 jruoho l = cpufreq_get_min();
228 1.1 jruoho s = cpufreq_get_raw(ci);
229 1.1 jruoho
230 1.1 jruoho cpufreq_set_raw(ci, l);
231 1.1 jruoho cf->cf_state_saved = s;
232 1.1 jruoho
233 1.1 jruoho mutex_exit(&cpufreq_lock);
234 1.1 jruoho }
235 1.1 jruoho
236 1.1 jruoho void
237 1.1 jruoho cpufreq_resume(struct cpu_info *ci)
238 1.1 jruoho {
239 1.3 jruoho struct cpufreq *cf = cf_backend;
240 1.1 jruoho
241 1.1 jruoho mutex_enter(&cpufreq_lock);
242 1.1 jruoho
243 1.3 jruoho if (cf->cf_init != true || cf->cf_state_saved == 0) {
244 1.1 jruoho mutex_exit(&cpufreq_lock);
245 1.1 jruoho return;
246 1.1 jruoho }
247 1.1 jruoho
248 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state_saved);
249 1.1 jruoho mutex_exit(&cpufreq_lock);
250 1.1 jruoho }
251 1.1 jruoho
252 1.1 jruoho uint32_t
253 1.1 jruoho cpufreq_get(struct cpu_info *ci)
254 1.1 jruoho {
255 1.3 jruoho struct cpufreq *cf = cf_backend;
256 1.1 jruoho uint32_t freq;
257 1.1 jruoho
258 1.1 jruoho mutex_enter(&cpufreq_lock);
259 1.1 jruoho
260 1.3 jruoho if (cf->cf_init != true) {
261 1.1 jruoho mutex_exit(&cpufreq_lock);
262 1.1 jruoho return 0;
263 1.1 jruoho }
264 1.1 jruoho
265 1.1 jruoho freq = cpufreq_get_raw(ci);
266 1.1 jruoho mutex_exit(&cpufreq_lock);
267 1.1 jruoho
268 1.1 jruoho return freq;
269 1.1 jruoho }
270 1.1 jruoho
271 1.1 jruoho static uint32_t
272 1.1 jruoho cpufreq_get_max(void)
273 1.1 jruoho {
274 1.1 jruoho struct cpufreq *cf = cf_backend;
275 1.1 jruoho
276 1.3 jruoho KASSERT(cf->cf_init != false);
277 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
278 1.1 jruoho
279 1.1 jruoho return cf->cf_state[0].cfs_freq;
280 1.1 jruoho }
281 1.1 jruoho
282 1.1 jruoho static uint32_t
283 1.1 jruoho cpufreq_get_min(void)
284 1.1 jruoho {
285 1.1 jruoho struct cpufreq *cf = cf_backend;
286 1.1 jruoho
287 1.3 jruoho KASSERT(cf->cf_init != false);
288 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
289 1.1 jruoho
290 1.1 jruoho return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
291 1.1 jruoho }
292 1.1 jruoho
293 1.1 jruoho static uint32_t
294 1.1 jruoho cpufreq_get_raw(struct cpu_info *ci)
295 1.1 jruoho {
296 1.1 jruoho struct cpufreq *cf = cf_backend;
297 1.1 jruoho uint32_t freq = 0;
298 1.1 jruoho uint64_t xc;
299 1.1 jruoho
300 1.3 jruoho KASSERT(cf->cf_init != false);
301 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
302 1.1 jruoho
303 1.1 jruoho xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
304 1.1 jruoho xc_wait(xc);
305 1.1 jruoho
306 1.1 jruoho return freq;
307 1.1 jruoho }
308 1.1 jruoho
309 1.1 jruoho int
310 1.3 jruoho cpufreq_get_backend(struct cpufreq *dst)
311 1.1 jruoho {
312 1.3 jruoho struct cpufreq *cf = cf_backend;
313 1.1 jruoho
314 1.1 jruoho mutex_enter(&cpufreq_lock);
315 1.1 jruoho
316 1.3 jruoho if (cf->cf_init != true || dst == NULL) {
317 1.1 jruoho mutex_exit(&cpufreq_lock);
318 1.1 jruoho return ENODEV;
319 1.1 jruoho }
320 1.1 jruoho
321 1.3 jruoho memcpy(dst, cf, sizeof(*cf));
322 1.1 jruoho mutex_exit(&cpufreq_lock);
323 1.1 jruoho
324 1.1 jruoho return 0;
325 1.1 jruoho }
326 1.1 jruoho
327 1.1 jruoho int
328 1.1 jruoho cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
329 1.1 jruoho {
330 1.3 jruoho struct cpufreq *cf = cf_backend;
331 1.1 jruoho
332 1.1 jruoho mutex_enter(&cpufreq_lock);
333 1.1 jruoho
334 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
335 1.1 jruoho mutex_exit(&cpufreq_lock);
336 1.1 jruoho return ENODEV;
337 1.1 jruoho }
338 1.1 jruoho
339 1.1 jruoho cpufreq_get_state_raw(freq, cfs);
340 1.1 jruoho mutex_exit(&cpufreq_lock);
341 1.1 jruoho
342 1.1 jruoho return 0;
343 1.1 jruoho }
344 1.1 jruoho
345 1.1 jruoho int
346 1.1 jruoho cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
347 1.1 jruoho {
348 1.3 jruoho struct cpufreq *cf = cf_backend;
349 1.1 jruoho
350 1.1 jruoho mutex_enter(&cpufreq_lock);
351 1.1 jruoho
352 1.3 jruoho if (cf->cf_init != true || cfs == NULL) {
353 1.1 jruoho mutex_exit(&cpufreq_lock);
354 1.1 jruoho return ENODEV;
355 1.1 jruoho }
356 1.1 jruoho
357 1.1 jruoho if (index >= cf->cf_state_count) {
358 1.1 jruoho mutex_exit(&cpu_lock);
359 1.1 jruoho return EINVAL;
360 1.1 jruoho }
361 1.1 jruoho
362 1.3 jruoho memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
363 1.1 jruoho mutex_exit(&cpufreq_lock);
364 1.1 jruoho
365 1.1 jruoho return 0;
366 1.1 jruoho }
367 1.1 jruoho
368 1.1 jruoho static void
369 1.1 jruoho cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
370 1.1 jruoho {
371 1.1 jruoho struct cpufreq *cf = cf_backend;
372 1.1 jruoho uint32_t f, hi, i = 0, lo = 0;
373 1.1 jruoho
374 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
375 1.3 jruoho KASSERT(cf->cf_init != false && cfs != NULL);
376 1.1 jruoho
377 1.1 jruoho hi = cf->cf_state_count;
378 1.1 jruoho
379 1.1 jruoho while (lo < hi) {
380 1.1 jruoho
381 1.1 jruoho i = (lo + hi) >> 1;
382 1.1 jruoho f = cf->cf_state[i].cfs_freq;
383 1.1 jruoho
384 1.1 jruoho if (freq == f)
385 1.1 jruoho break;
386 1.1 jruoho else if (freq > f)
387 1.1 jruoho hi = i;
388 1.1 jruoho else {
389 1.1 jruoho lo = i + 1;
390 1.1 jruoho }
391 1.1 jruoho }
392 1.1 jruoho
393 1.3 jruoho memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
394 1.1 jruoho }
395 1.1 jruoho
396 1.1 jruoho void
397 1.1 jruoho cpufreq_set(struct cpu_info *ci, uint32_t freq)
398 1.1 jruoho {
399 1.3 jruoho struct cpufreq *cf = cf_backend;
400 1.1 jruoho
401 1.1 jruoho mutex_enter(&cpufreq_lock);
402 1.1 jruoho
403 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
404 1.1 jruoho mutex_exit(&cpufreq_lock);
405 1.1 jruoho return;
406 1.1 jruoho }
407 1.1 jruoho
408 1.1 jruoho cpufreq_set_raw(ci, freq);
409 1.1 jruoho mutex_exit(&cpufreq_lock);
410 1.1 jruoho }
411 1.1 jruoho
412 1.1 jruoho static void
413 1.1 jruoho cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
414 1.1 jruoho {
415 1.1 jruoho struct cpufreq *cf = cf_backend;
416 1.1 jruoho uint64_t xc;
417 1.1 jruoho
418 1.3 jruoho KASSERT(cf->cf_init != false);
419 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
420 1.1 jruoho
421 1.1 jruoho xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
422 1.1 jruoho xc_wait(xc);
423 1.1 jruoho }
424 1.1 jruoho
425 1.1 jruoho void
426 1.1 jruoho cpufreq_set_all(uint32_t freq)
427 1.1 jruoho {
428 1.3 jruoho struct cpufreq *cf = cf_backend;
429 1.1 jruoho
430 1.1 jruoho mutex_enter(&cpufreq_lock);
431 1.1 jruoho
432 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
433 1.1 jruoho mutex_exit(&cpufreq_lock);
434 1.1 jruoho return;
435 1.1 jruoho }
436 1.1 jruoho
437 1.1 jruoho cpufreq_set_all_raw(freq);
438 1.1 jruoho mutex_exit(&cpufreq_lock);
439 1.1 jruoho }
440 1.1 jruoho
441 1.1 jruoho static void
442 1.1 jruoho cpufreq_set_all_raw(uint32_t freq)
443 1.1 jruoho {
444 1.1 jruoho struct cpufreq *cf = cf_backend;
445 1.1 jruoho uint64_t xc;
446 1.1 jruoho
447 1.3 jruoho KASSERT(cf->cf_init != false);
448 1.1 jruoho KASSERT(mutex_owned(&cpufreq_lock) != 0);
449 1.1 jruoho
450 1.1 jruoho xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
451 1.1 jruoho xc_wait(xc);
452 1.1 jruoho }
453 1.1 jruoho
454 1.1 jruoho #ifdef notyet
455 1.1 jruoho void
456 1.1 jruoho cpufreq_set_higher(struct cpu_info *ci)
457 1.1 jruoho {
458 1.1 jruoho cpufreq_set_step(ci, -1);
459 1.1 jruoho }
460 1.1 jruoho
461 1.1 jruoho void
462 1.1 jruoho cpufreq_set_lower(struct cpu_info *ci)
463 1.1 jruoho {
464 1.1 jruoho cpufreq_set_step(ci, 1);
465 1.1 jruoho }
466 1.1 jruoho
467 1.1 jruoho static void
468 1.1 jruoho cpufreq_set_step(struct cpu_info *ci, int32_t step)
469 1.1 jruoho {
470 1.3 jruoho struct cpufreq *cf = cf_backend;
471 1.1 jruoho struct cpufreq_state cfs;
472 1.1 jruoho uint32_t freq;
473 1.1 jruoho int32_t index;
474 1.1 jruoho
475 1.1 jruoho mutex_enter(&cpufreq_lock);
476 1.1 jruoho
477 1.3 jruoho if (__predict_false(cf->cf_init != true)) {
478 1.1 jruoho mutex_exit(&cpufreq_lock);
479 1.1 jruoho return;
480 1.1 jruoho }
481 1.1 jruoho
482 1.1 jruoho freq = cpufreq_get_raw(ci);
483 1.1 jruoho
484 1.1 jruoho if (__predict_false(freq == 0)) {
485 1.1 jruoho mutex_exit(&cpufreq_lock);
486 1.1 jruoho return;
487 1.1 jruoho }
488 1.1 jruoho
489 1.1 jruoho cpufreq_get_state_raw(freq, &cfs);
490 1.1 jruoho index = cfs.cfs_index + step;
491 1.1 jruoho
492 1.1 jruoho if (index < 0 || index >= (int32_t)cf->cf_state_count) {
493 1.1 jruoho mutex_exit(&cpufreq_lock);
494 1.1 jruoho return;
495 1.1 jruoho }
496 1.1 jruoho
497 1.1 jruoho cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
498 1.1 jruoho mutex_exit(&cpufreq_lock);
499 1.1 jruoho }
500 1.1 jruoho #endif
501