Home | History | Annotate | Line # | Download | only in kern
subr_cpufreq.c revision 1.8.2.1
      1  1.8.2.1      yamt /*	$NetBSD: subr_cpufreq.c,v 1.8.2.1 2014/05/22 11:41:03 yamt Exp $ */
      2      1.1    jruoho 
      3      1.1    jruoho /*-
      4      1.1    jruoho  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      5      1.1    jruoho  * All rights reserved.
      6      1.1    jruoho  *
      7      1.1    jruoho  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1    jruoho  * by Jukka Ruohonen.
      9      1.1    jruoho  *
     10      1.1    jruoho  * Redistribution and use in source and binary forms, with or without
     11      1.1    jruoho  * modification, are permitted provided that the following conditions
     12      1.1    jruoho  * are met:
     13      1.1    jruoho  *
     14      1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     15      1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     16      1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     18      1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     19      1.1    jruoho  *
     20      1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21      1.1    jruoho  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22      1.1    jruoho  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23      1.1    jruoho  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24      1.1    jruoho  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25      1.1    jruoho  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26      1.1    jruoho  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27      1.1    jruoho  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28      1.1    jruoho  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29      1.1    jruoho  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30      1.1    jruoho  * POSSIBILITY OF SUCH DAMAGE.
     31      1.1    jruoho  */
     32      1.1    jruoho #include <sys/cdefs.h>
     33  1.8.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.8.2.1 2014/05/22 11:41:03 yamt Exp $");
     34      1.1    jruoho 
     35      1.1    jruoho #include <sys/param.h>
     36      1.1    jruoho #include <sys/cpu.h>
     37      1.1    jruoho #include <sys/cpufreq.h>
     38      1.8    jruoho #include <sys/kernel.h>
     39      1.1    jruoho #include <sys/kmem.h>
     40      1.1    jruoho #include <sys/mutex.h>
     41      1.1    jruoho #include <sys/time.h>
     42      1.1    jruoho #include <sys/xcall.h>
     43      1.1    jruoho 
     44      1.1    jruoho static int	 cpufreq_latency(void);
     45      1.1    jruoho static uint32_t	 cpufreq_get_max(void);
     46      1.1    jruoho static uint32_t	 cpufreq_get_min(void);
     47      1.1    jruoho static uint32_t	 cpufreq_get_raw(struct cpu_info *);
     48      1.1    jruoho static void	 cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
     49      1.1    jruoho static void	 cpufreq_set_raw(struct cpu_info *, uint32_t);
     50      1.1    jruoho static void	 cpufreq_set_all_raw(uint32_t);
     51      1.1    jruoho 
     52      1.3    jruoho static kmutex_t		cpufreq_lock __cacheline_aligned;
     53      1.3    jruoho static struct cpufreq  *cf_backend __read_mostly = NULL;
     54      1.1    jruoho 
     55      1.2    jruoho void
     56      1.1    jruoho cpufreq_init(void)
     57      1.1    jruoho {
     58      1.1    jruoho 
     59      1.1    jruoho 	mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
     60      1.3    jruoho 	cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
     61      1.1    jruoho }
     62      1.1    jruoho 
     63      1.1    jruoho int
     64      1.1    jruoho cpufreq_register(struct cpufreq *cf)
     65      1.1    jruoho {
     66      1.8    jruoho 	uint32_t c, i, j, k, m;
     67      1.1    jruoho 	int rv;
     68      1.1    jruoho 
     69      1.8    jruoho 	if (cold != 0)
     70      1.8    jruoho 		return EBUSY;
     71      1.8    jruoho 
     72      1.1    jruoho 	KASSERT(cf != NULL);
     73      1.3    jruoho 	KASSERT(cf_backend != NULL);
     74      1.1    jruoho 	KASSERT(cf->cf_get_freq != NULL);
     75      1.1    jruoho 	KASSERT(cf->cf_set_freq != NULL);
     76      1.1    jruoho 	KASSERT(cf->cf_state_count > 0);
     77      1.1    jruoho 	KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
     78      1.1    jruoho 
     79      1.1    jruoho 	mutex_enter(&cpufreq_lock);
     80      1.1    jruoho 
     81      1.3    jruoho 	if (cf_backend->cf_init != false) {
     82      1.1    jruoho 		mutex_exit(&cpufreq_lock);
     83      1.1    jruoho 		return EALREADY;
     84      1.1    jruoho 	}
     85      1.1    jruoho 
     86      1.3    jruoho 	cf_backend->cf_init = true;
     87      1.1    jruoho 	cf_backend->cf_mp = cf->cf_mp;
     88      1.1    jruoho 	cf_backend->cf_cookie = cf->cf_cookie;
     89      1.1    jruoho 	cf_backend->cf_get_freq = cf->cf_get_freq;
     90      1.1    jruoho 	cf_backend->cf_set_freq = cf->cf_set_freq;
     91      1.1    jruoho 
     92      1.1    jruoho 	(void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
     93      1.1    jruoho 
     94      1.1    jruoho 	/*
     95      1.1    jruoho 	 * Sanity check the values and verify descending order.
     96      1.1    jruoho 	 */
     97      1.3    jruoho 	for (c = i = 0; i < cf->cf_state_count; i++) {
     98      1.1    jruoho 
     99      1.1    jruoho 		CTASSERT(CPUFREQ_STATE_ENABLED != 0);
    100      1.1    jruoho 		CTASSERT(CPUFREQ_STATE_DISABLED != 0);
    101      1.1    jruoho 
    102      1.1    jruoho 		if (cf->cf_state[i].cfs_freq == 0)
    103      1.1    jruoho 			continue;
    104      1.1    jruoho 
    105      1.3    jruoho 		if (cf->cf_state[i].cfs_freq > 9999 &&
    106      1.3    jruoho 		    cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
    107      1.3    jruoho 		    cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
    108      1.3    jruoho 			continue;
    109      1.3    jruoho 
    110      1.1    jruoho 		for (j = k = 0; j < i; j++) {
    111      1.1    jruoho 
    112      1.1    jruoho 			if (cf->cf_state[i].cfs_freq >=
    113      1.1    jruoho 			    cf->cf_state[j].cfs_freq) {
    114      1.1    jruoho 				k = 1;
    115      1.1    jruoho 				break;
    116      1.1    jruoho 			}
    117      1.1    jruoho 		}
    118      1.1    jruoho 
    119      1.1    jruoho 		if (k != 0)
    120      1.1    jruoho 			continue;
    121      1.1    jruoho 
    122      1.3    jruoho 		cf_backend->cf_state[c].cfs_index = c;
    123      1.3    jruoho 		cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
    124      1.3    jruoho 		cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
    125      1.1    jruoho 
    126      1.3    jruoho 		c++;
    127      1.1    jruoho 	}
    128      1.1    jruoho 
    129      1.3    jruoho 	cf_backend->cf_state_count = c;
    130      1.1    jruoho 
    131      1.1    jruoho 	if (cf_backend->cf_state_count == 0) {
    132      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    133      1.1    jruoho 		cpufreq_deregister();
    134      1.1    jruoho 		return EINVAL;
    135      1.1    jruoho 	}
    136      1.1    jruoho 
    137      1.1    jruoho 	rv = cpufreq_latency();
    138      1.1    jruoho 
    139      1.1    jruoho 	if (rv != 0) {
    140      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    141      1.1    jruoho 		cpufreq_deregister();
    142      1.1    jruoho 		return rv;
    143      1.1    jruoho 	}
    144      1.1    jruoho 
    145      1.8    jruoho 	m = cpufreq_get_max();
    146      1.8    jruoho 	cpufreq_set_all_raw(m);
    147      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    148      1.1    jruoho 
    149      1.1    jruoho 	return 0;
    150      1.1    jruoho }
    151      1.1    jruoho 
    152      1.1    jruoho void
    153      1.1    jruoho cpufreq_deregister(void)
    154      1.1    jruoho {
    155      1.1    jruoho 
    156      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    157      1.3    jruoho 	memset(cf_backend, 0, sizeof(*cf_backend));
    158      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    159      1.1    jruoho }
    160      1.1    jruoho 
    161      1.1    jruoho static int
    162      1.1    jruoho cpufreq_latency(void)
    163      1.1    jruoho {
    164      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    165      1.7  christos 	struct timespec nta, ntb;
    166      1.1    jruoho 	const uint32_t n = 10;
    167      1.1    jruoho 	uint32_t i, j, l, m;
    168      1.1    jruoho 	uint64_t s;
    169      1.1    jruoho 
    170      1.1    jruoho 	l = cpufreq_get_min();
    171      1.1    jruoho 	m = cpufreq_get_max();
    172      1.1    jruoho 
    173      1.1    jruoho 	/*
    174      1.1    jruoho 	 * For each state, sample the average transition
    175      1.1    jruoho 	 * latency required to set the state for all CPUs.
    176      1.1    jruoho 	 */
    177      1.1    jruoho 	for (i = 0; i < cf->cf_state_count; i++) {
    178      1.1    jruoho 
    179      1.1    jruoho 		for (s = 0, j = 0; j < n; j++) {
    180      1.1    jruoho 
    181      1.1    jruoho 			/*
    182      1.1    jruoho 			 * Attempt to exclude possible
    183      1.1    jruoho 			 * caching done by the backend.
    184      1.1    jruoho 			 */
    185      1.1    jruoho 			if (i == 0)
    186      1.1    jruoho 				cpufreq_set_all_raw(l);
    187      1.1    jruoho 			else {
    188      1.1    jruoho 				cpufreq_set_all_raw(m);
    189      1.1    jruoho 			}
    190      1.1    jruoho 
    191      1.7  christos 			nanotime(&nta);
    192      1.1    jruoho 			cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
    193      1.7  christos 			nanotime(&ntb);
    194      1.7  christos 			timespecsub(&ntb, &nta, &ntb);
    195      1.1    jruoho 
    196      1.1    jruoho 			if (ntb.tv_sec != 0 ||
    197      1.7  christos 			    ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
    198      1.1    jruoho 				continue;
    199      1.1    jruoho 
    200      1.1    jruoho 			if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
    201      1.1    jruoho 				break;
    202      1.1    jruoho 
    203      1.7  christos 			/* Convert to microseconds to prevent overflow */
    204      1.7  christos 			s += ntb.tv_nsec / 1000;
    205      1.1    jruoho 		}
    206      1.1    jruoho 
    207      1.1    jruoho 		/*
    208      1.1    jruoho 		 * Consider the backend unsuitable if
    209      1.1    jruoho 		 * the transition latency was too high.
    210      1.1    jruoho 		 */
    211      1.1    jruoho 		if (s == 0)
    212      1.1    jruoho 			return EMSGSIZE;
    213      1.1    jruoho 
    214      1.1    jruoho 		cf->cf_state[i].cfs_latency = s / n;
    215      1.1    jruoho 	}
    216      1.1    jruoho 
    217      1.1    jruoho 	return 0;
    218      1.1    jruoho }
    219      1.1    jruoho 
    220      1.1    jruoho void
    221      1.1    jruoho cpufreq_suspend(struct cpu_info *ci)
    222      1.1    jruoho {
    223      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    224      1.1    jruoho 	uint32_t l, s;
    225      1.1    jruoho 
    226      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    227      1.1    jruoho 
    228      1.3    jruoho 	if (cf->cf_init != true) {
    229      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    230      1.1    jruoho 		return;
    231      1.1    jruoho 	}
    232      1.1    jruoho 
    233      1.1    jruoho 	l = cpufreq_get_min();
    234      1.1    jruoho 	s = cpufreq_get_raw(ci);
    235      1.1    jruoho 
    236      1.1    jruoho 	cpufreq_set_raw(ci, l);
    237      1.1    jruoho 	cf->cf_state_saved = s;
    238      1.1    jruoho 
    239      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    240      1.1    jruoho }
    241      1.1    jruoho 
    242      1.1    jruoho void
    243      1.1    jruoho cpufreq_resume(struct cpu_info *ci)
    244      1.1    jruoho {
    245      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    246      1.1    jruoho 
    247      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    248      1.1    jruoho 
    249      1.3    jruoho 	if (cf->cf_init != true || cf->cf_state_saved == 0) {
    250      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    251      1.1    jruoho 		return;
    252      1.1    jruoho 	}
    253      1.1    jruoho 
    254      1.1    jruoho 	cpufreq_set_raw(ci, cf->cf_state_saved);
    255      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    256      1.1    jruoho }
    257      1.1    jruoho 
    258      1.1    jruoho uint32_t
    259      1.1    jruoho cpufreq_get(struct cpu_info *ci)
    260      1.1    jruoho {
    261      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    262      1.1    jruoho 	uint32_t freq;
    263      1.1    jruoho 
    264      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    265      1.1    jruoho 
    266      1.3    jruoho 	if (cf->cf_init != true) {
    267      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    268      1.1    jruoho 		return 0;
    269      1.1    jruoho 	}
    270      1.1    jruoho 
    271      1.1    jruoho 	freq = cpufreq_get_raw(ci);
    272      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    273      1.1    jruoho 
    274      1.1    jruoho 	return freq;
    275      1.1    jruoho }
    276      1.1    jruoho 
    277      1.1    jruoho static uint32_t
    278      1.1    jruoho cpufreq_get_max(void)
    279      1.1    jruoho {
    280      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    281      1.1    jruoho 
    282      1.3    jruoho 	KASSERT(cf->cf_init != false);
    283      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    284      1.1    jruoho 
    285      1.1    jruoho 	return cf->cf_state[0].cfs_freq;
    286      1.1    jruoho }
    287      1.1    jruoho 
    288      1.1    jruoho static uint32_t
    289      1.1    jruoho cpufreq_get_min(void)
    290      1.1    jruoho {
    291      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    292      1.1    jruoho 
    293      1.3    jruoho 	KASSERT(cf->cf_init != false);
    294      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    295      1.1    jruoho 
    296      1.1    jruoho 	return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
    297      1.1    jruoho }
    298      1.1    jruoho 
    299      1.1    jruoho static uint32_t
    300      1.1    jruoho cpufreq_get_raw(struct cpu_info *ci)
    301      1.1    jruoho {
    302      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    303      1.1    jruoho 	uint32_t freq = 0;
    304      1.1    jruoho 	uint64_t xc;
    305      1.1    jruoho 
    306      1.3    jruoho 	KASSERT(cf->cf_init != false);
    307      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    308      1.1    jruoho 
    309      1.1    jruoho 	xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
    310      1.1    jruoho 	xc_wait(xc);
    311      1.1    jruoho 
    312      1.1    jruoho 	return freq;
    313      1.1    jruoho }
    314      1.1    jruoho 
    315      1.1    jruoho int
    316      1.3    jruoho cpufreq_get_backend(struct cpufreq *dst)
    317      1.1    jruoho {
    318      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    319      1.1    jruoho 
    320      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    321      1.1    jruoho 
    322      1.3    jruoho 	if (cf->cf_init != true || dst == NULL) {
    323      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    324      1.1    jruoho 		return ENODEV;
    325      1.1    jruoho 	}
    326      1.1    jruoho 
    327      1.3    jruoho 	memcpy(dst, cf, sizeof(*cf));
    328      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    329      1.1    jruoho 
    330      1.1    jruoho 	return 0;
    331      1.1    jruoho }
    332      1.1    jruoho 
    333      1.1    jruoho int
    334      1.1    jruoho cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
    335      1.1    jruoho {
    336      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    337      1.1    jruoho 
    338      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    339      1.1    jruoho 
    340      1.3    jruoho 	if (cf->cf_init != true || cfs == NULL) {
    341      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    342      1.1    jruoho 		return ENODEV;
    343      1.1    jruoho 	}
    344      1.1    jruoho 
    345      1.1    jruoho 	cpufreq_get_state_raw(freq, cfs);
    346      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    347      1.1    jruoho 
    348      1.1    jruoho 	return 0;
    349      1.1    jruoho }
    350      1.1    jruoho 
    351      1.1    jruoho int
    352      1.1    jruoho cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
    353      1.1    jruoho {
    354      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    355      1.1    jruoho 
    356      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    357      1.1    jruoho 
    358      1.3    jruoho 	if (cf->cf_init != true || cfs == NULL) {
    359      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    360      1.1    jruoho 		return ENODEV;
    361      1.1    jruoho 	}
    362      1.1    jruoho 
    363      1.1    jruoho 	if (index >= cf->cf_state_count) {
    364  1.8.2.1      yamt 		mutex_exit(&cpufreq_lock);
    365      1.1    jruoho 		return EINVAL;
    366      1.1    jruoho 	}
    367      1.1    jruoho 
    368      1.3    jruoho 	memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
    369      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    370      1.1    jruoho 
    371      1.1    jruoho 	return 0;
    372      1.1    jruoho }
    373      1.1    jruoho 
    374      1.1    jruoho static void
    375      1.1    jruoho cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
    376      1.1    jruoho {
    377      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    378      1.1    jruoho 	uint32_t f, hi, i = 0, lo = 0;
    379      1.1    jruoho 
    380      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    381      1.3    jruoho 	KASSERT(cf->cf_init != false && cfs != NULL);
    382      1.1    jruoho 
    383      1.1    jruoho 	hi = cf->cf_state_count;
    384      1.1    jruoho 
    385      1.1    jruoho 	while (lo < hi) {
    386      1.1    jruoho 
    387      1.1    jruoho 		i = (lo + hi) >> 1;
    388      1.1    jruoho 		f = cf->cf_state[i].cfs_freq;
    389      1.1    jruoho 
    390      1.1    jruoho 		if (freq == f)
    391      1.1    jruoho 			break;
    392      1.1    jruoho 		else if (freq > f)
    393      1.1    jruoho 			hi = i;
    394      1.1    jruoho 		else {
    395      1.1    jruoho 			lo = i + 1;
    396      1.1    jruoho 		}
    397      1.1    jruoho 	}
    398      1.1    jruoho 
    399      1.3    jruoho 	memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
    400      1.1    jruoho }
    401      1.1    jruoho 
    402      1.1    jruoho void
    403      1.1    jruoho cpufreq_set(struct cpu_info *ci, uint32_t freq)
    404      1.1    jruoho {
    405      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    406      1.1    jruoho 
    407      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    408      1.1    jruoho 
    409      1.3    jruoho 	if (__predict_false(cf->cf_init != true)) {
    410      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    411      1.1    jruoho 		return;
    412      1.1    jruoho 	}
    413      1.1    jruoho 
    414      1.1    jruoho 	cpufreq_set_raw(ci, freq);
    415      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    416      1.1    jruoho }
    417      1.1    jruoho 
    418      1.1    jruoho static void
    419      1.1    jruoho cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
    420      1.1    jruoho {
    421      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    422      1.1    jruoho 	uint64_t xc;
    423      1.1    jruoho 
    424      1.3    jruoho 	KASSERT(cf->cf_init != false);
    425      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    426      1.1    jruoho 
    427      1.1    jruoho 	xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
    428      1.1    jruoho 	xc_wait(xc);
    429      1.1    jruoho }
    430      1.1    jruoho 
    431      1.1    jruoho void
    432      1.1    jruoho cpufreq_set_all(uint32_t freq)
    433      1.1    jruoho {
    434      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    435      1.1    jruoho 
    436      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    437      1.1    jruoho 
    438      1.3    jruoho 	if (__predict_false(cf->cf_init != true)) {
    439      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    440      1.1    jruoho 		return;
    441      1.1    jruoho 	}
    442      1.1    jruoho 
    443      1.1    jruoho 	cpufreq_set_all_raw(freq);
    444      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    445      1.1    jruoho }
    446      1.1    jruoho 
    447      1.1    jruoho static void
    448      1.1    jruoho cpufreq_set_all_raw(uint32_t freq)
    449      1.1    jruoho {
    450      1.1    jruoho 	struct cpufreq *cf = cf_backend;
    451      1.1    jruoho 	uint64_t xc;
    452      1.1    jruoho 
    453      1.3    jruoho 	KASSERT(cf->cf_init != false);
    454      1.1    jruoho 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
    455      1.1    jruoho 
    456      1.1    jruoho 	xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
    457      1.1    jruoho 	xc_wait(xc);
    458      1.1    jruoho }
    459      1.1    jruoho 
    460      1.1    jruoho #ifdef notyet
    461      1.1    jruoho void
    462      1.1    jruoho cpufreq_set_higher(struct cpu_info *ci)
    463      1.1    jruoho {
    464      1.1    jruoho 	cpufreq_set_step(ci, -1);
    465      1.1    jruoho }
    466      1.1    jruoho 
    467      1.1    jruoho void
    468      1.1    jruoho cpufreq_set_lower(struct cpu_info *ci)
    469      1.1    jruoho {
    470      1.1    jruoho 	cpufreq_set_step(ci, 1);
    471      1.1    jruoho }
    472      1.1    jruoho 
    473      1.1    jruoho static void
    474      1.1    jruoho cpufreq_set_step(struct cpu_info *ci, int32_t step)
    475      1.1    jruoho {
    476      1.3    jruoho 	struct cpufreq *cf = cf_backend;
    477      1.1    jruoho 	struct cpufreq_state cfs;
    478      1.1    jruoho 	uint32_t freq;
    479      1.1    jruoho 	int32_t index;
    480      1.1    jruoho 
    481      1.1    jruoho 	mutex_enter(&cpufreq_lock);
    482      1.1    jruoho 
    483      1.3    jruoho 	if (__predict_false(cf->cf_init != true)) {
    484      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    485      1.1    jruoho 		return;
    486      1.1    jruoho 	}
    487      1.1    jruoho 
    488      1.1    jruoho 	freq = cpufreq_get_raw(ci);
    489      1.1    jruoho 
    490      1.1    jruoho 	if (__predict_false(freq == 0)) {
    491      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    492      1.1    jruoho 		return;
    493      1.1    jruoho 	}
    494      1.1    jruoho 
    495      1.1    jruoho 	cpufreq_get_state_raw(freq, &cfs);
    496      1.1    jruoho 	index = cfs.cfs_index + step;
    497      1.1    jruoho 
    498      1.1    jruoho 	if (index < 0 || index >= (int32_t)cf->cf_state_count) {
    499      1.1    jruoho 		mutex_exit(&cpufreq_lock);
    500      1.1    jruoho 		return;
    501      1.1    jruoho 	}
    502      1.1    jruoho 
    503      1.1    jruoho 	cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
    504      1.1    jruoho 	mutex_exit(&cpufreq_lock);
    505      1.1    jruoho }
    506      1.1    jruoho #endif
    507