subr_cpufreq.c revision 1.3 1 /* $NetBSD: subr_cpufreq.c,v 1.3 2011/09/30 04:01:21 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jukka Ruohonen.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.3 2011/09/30 04:01:21 jruoho Exp $");
34
35 #include <sys/param.h>
36 #include <sys/cpu.h>
37 #include <sys/cpufreq.h>
38 #include <sys/kmem.h>
39 #include <sys/mutex.h>
40 #include <sys/time.h>
41 #include <sys/xcall.h>
42
43 static int cpufreq_latency(void);
44 static uint32_t cpufreq_get_max(void);
45 static uint32_t cpufreq_get_min(void);
46 static uint32_t cpufreq_get_raw(struct cpu_info *);
47 static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
48 static void cpufreq_set_raw(struct cpu_info *, uint32_t);
49 static void cpufreq_set_all_raw(uint32_t);
50
51 static kmutex_t cpufreq_lock __cacheline_aligned;
52 static struct cpufreq *cf_backend __read_mostly = NULL;
53
54 void
55 cpufreq_init(void)
56 {
57
58 mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
59 cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
60 }
61
62 int
63 cpufreq_register(struct cpufreq *cf)
64 {
65 uint32_t c, i, j, k, m;
66 int rv;
67
68 KASSERT(cf != NULL);
69 KASSERT(cf_backend != NULL);
70 KASSERT(cf->cf_get_freq != NULL);
71 KASSERT(cf->cf_set_freq != NULL);
72 KASSERT(cf->cf_state_count > 0);
73 KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
74
75 mutex_enter(&cpufreq_lock);
76
77 if (cf_backend->cf_init != false) {
78 mutex_exit(&cpufreq_lock);
79 return EALREADY;
80 }
81
82 cf_backend->cf_init = true;
83 cf_backend->cf_mp = cf->cf_mp;
84 cf_backend->cf_cookie = cf->cf_cookie;
85 cf_backend->cf_get_freq = cf->cf_get_freq;
86 cf_backend->cf_set_freq = cf->cf_set_freq;
87
88 (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
89
90 /*
91 * Sanity check the values and verify descending order.
92 */
93 for (c = i = 0; i < cf->cf_state_count; i++) {
94
95 CTASSERT(CPUFREQ_STATE_ENABLED != 0);
96 CTASSERT(CPUFREQ_STATE_DISABLED != 0);
97
98 if (cf->cf_state[i].cfs_freq == 0)
99 continue;
100
101 if (cf->cf_state[i].cfs_freq > 9999 &&
102 cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
103 cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
104 continue;
105
106 for (j = k = 0; j < i; j++) {
107
108 if (cf->cf_state[i].cfs_freq >=
109 cf->cf_state[j].cfs_freq) {
110 k = 1;
111 break;
112 }
113 }
114
115 if (k != 0)
116 continue;
117
118 cf_backend->cf_state[c].cfs_index = c;
119 cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
120 cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
121
122 c++;
123 }
124
125 cf_backend->cf_state_count = c;
126
127 if (cf_backend->cf_state_count == 0) {
128 mutex_exit(&cpufreq_lock);
129 cpufreq_deregister();
130 return EINVAL;
131 }
132
133 rv = cpufreq_latency();
134
135 if (rv != 0) {
136 mutex_exit(&cpufreq_lock);
137 cpufreq_deregister();
138 return rv;
139 }
140
141 m = cpufreq_get_max();
142 cpufreq_set_all_raw(m);
143 mutex_exit(&cpufreq_lock);
144
145 return 0;
146 }
147
148 void
149 cpufreq_deregister(void)
150 {
151
152 mutex_enter(&cpufreq_lock);
153 memset(cf_backend, 0, sizeof(*cf_backend));
154 mutex_exit(&cpufreq_lock);
155 }
156
157 static int
158 cpufreq_latency(void)
159 {
160 struct cpufreq *cf = cf_backend;
161 struct timespec nta, ntb;
162 const uint32_t n = 10;
163 uint32_t i, j, l, m;
164 uint64_t s;
165
166 l = cpufreq_get_min();
167 m = cpufreq_get_max();
168
169 /*
170 * For each state, sample the average transition
171 * latency required to set the state for all CPUs.
172 */
173 for (i = 0; i < cf->cf_state_count; i++) {
174
175 for (s = 0, j = 0; j < n; j++) {
176
177 /*
178 * Attempt to exclude possible
179 * caching done by the backend.
180 */
181 if (i == 0)
182 cpufreq_set_all_raw(l);
183 else {
184 cpufreq_set_all_raw(m);
185 }
186
187 nta.tv_sec = nta.tv_nsec = 0;
188 ntb.tv_sec = ntb.tv_nsec = 0;
189
190 nanotime(&nta);
191 cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
192 nanotime(&ntb);
193 timespecsub(&ntb, &nta, &ntb);
194
195 if (ntb.tv_sec != 0 ||
196 ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
197 continue;
198
199 if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
200 break;
201
202 s += ntb.tv_nsec;
203 }
204
205 /*
206 * Consider the backend unsuitable if
207 * the transition latency was too high.
208 */
209 if (s == 0)
210 return EMSGSIZE;
211
212 cf->cf_state[i].cfs_latency = s / n;
213 }
214
215 return 0;
216 }
217
218 void
219 cpufreq_suspend(struct cpu_info *ci)
220 {
221 struct cpufreq *cf = cf_backend;
222 uint32_t l, s;
223
224 mutex_enter(&cpufreq_lock);
225
226 if (cf->cf_init != true) {
227 mutex_exit(&cpufreq_lock);
228 return;
229 }
230
231 l = cpufreq_get_min();
232 s = cpufreq_get_raw(ci);
233
234 cpufreq_set_raw(ci, l);
235 cf->cf_state_saved = s;
236
237 mutex_exit(&cpufreq_lock);
238 }
239
240 void
241 cpufreq_resume(struct cpu_info *ci)
242 {
243 struct cpufreq *cf = cf_backend;
244
245 mutex_enter(&cpufreq_lock);
246
247 if (cf->cf_init != true || cf->cf_state_saved == 0) {
248 mutex_exit(&cpufreq_lock);
249 return;
250 }
251
252 cpufreq_set_raw(ci, cf->cf_state_saved);
253 mutex_exit(&cpufreq_lock);
254 }
255
256 uint32_t
257 cpufreq_get(struct cpu_info *ci)
258 {
259 struct cpufreq *cf = cf_backend;
260 uint32_t freq;
261
262 mutex_enter(&cpufreq_lock);
263
264 if (cf->cf_init != true) {
265 mutex_exit(&cpufreq_lock);
266 return 0;
267 }
268
269 freq = cpufreq_get_raw(ci);
270 mutex_exit(&cpufreq_lock);
271
272 return freq;
273 }
274
275 static uint32_t
276 cpufreq_get_max(void)
277 {
278 struct cpufreq *cf = cf_backend;
279
280 KASSERT(cf->cf_init != false);
281 KASSERT(mutex_owned(&cpufreq_lock) != 0);
282
283 return cf->cf_state[0].cfs_freq;
284 }
285
286 static uint32_t
287 cpufreq_get_min(void)
288 {
289 struct cpufreq *cf = cf_backend;
290
291 KASSERT(cf->cf_init != false);
292 KASSERT(mutex_owned(&cpufreq_lock) != 0);
293
294 return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
295 }
296
297 static uint32_t
298 cpufreq_get_raw(struct cpu_info *ci)
299 {
300 struct cpufreq *cf = cf_backend;
301 uint32_t freq = 0;
302 uint64_t xc;
303
304 KASSERT(cf->cf_init != false);
305 KASSERT(mutex_owned(&cpufreq_lock) != 0);
306
307 xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
308 xc_wait(xc);
309
310 return freq;
311 }
312
313 int
314 cpufreq_get_backend(struct cpufreq *dst)
315 {
316 struct cpufreq *cf = cf_backend;
317
318 mutex_enter(&cpufreq_lock);
319
320 if (cf->cf_init != true || dst == NULL) {
321 mutex_exit(&cpufreq_lock);
322 return ENODEV;
323 }
324
325 memcpy(dst, cf, sizeof(*cf));
326 mutex_exit(&cpufreq_lock);
327
328 return 0;
329 }
330
331 int
332 cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
333 {
334 struct cpufreq *cf = cf_backend;
335
336 mutex_enter(&cpufreq_lock);
337
338 if (cf->cf_init != true || cfs == NULL) {
339 mutex_exit(&cpufreq_lock);
340 return ENODEV;
341 }
342
343 cpufreq_get_state_raw(freq, cfs);
344 mutex_exit(&cpufreq_lock);
345
346 return 0;
347 }
348
349 int
350 cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
351 {
352 struct cpufreq *cf = cf_backend;
353
354 mutex_enter(&cpufreq_lock);
355
356 if (cf->cf_init != true || cfs == NULL) {
357 mutex_exit(&cpufreq_lock);
358 return ENODEV;
359 }
360
361 if (index >= cf->cf_state_count) {
362 mutex_exit(&cpu_lock);
363 return EINVAL;
364 }
365
366 memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
367 mutex_exit(&cpufreq_lock);
368
369 return 0;
370 }
371
372 static void
373 cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
374 {
375 struct cpufreq *cf = cf_backend;
376 uint32_t f, hi, i = 0, lo = 0;
377
378 KASSERT(mutex_owned(&cpufreq_lock) != 0);
379 KASSERT(cf->cf_init != false && cfs != NULL);
380
381 hi = cf->cf_state_count;
382
383 while (lo < hi) {
384
385 i = (lo + hi) >> 1;
386 f = cf->cf_state[i].cfs_freq;
387
388 if (freq == f)
389 break;
390 else if (freq > f)
391 hi = i;
392 else {
393 lo = i + 1;
394 }
395 }
396
397 memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
398 }
399
400 void
401 cpufreq_set(struct cpu_info *ci, uint32_t freq)
402 {
403 struct cpufreq *cf = cf_backend;
404
405 mutex_enter(&cpufreq_lock);
406
407 if (__predict_false(cf->cf_init != true)) {
408 mutex_exit(&cpufreq_lock);
409 return;
410 }
411
412 cpufreq_set_raw(ci, freq);
413 mutex_exit(&cpufreq_lock);
414 }
415
416 static void
417 cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
418 {
419 struct cpufreq *cf = cf_backend;
420 uint64_t xc;
421
422 KASSERT(cf->cf_init != false);
423 KASSERT(mutex_owned(&cpufreq_lock) != 0);
424
425 xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
426 xc_wait(xc);
427 }
428
429 void
430 cpufreq_set_all(uint32_t freq)
431 {
432 struct cpufreq *cf = cf_backend;
433
434 mutex_enter(&cpufreq_lock);
435
436 if (__predict_false(cf->cf_init != true)) {
437 mutex_exit(&cpufreq_lock);
438 return;
439 }
440
441 cpufreq_set_all_raw(freq);
442 mutex_exit(&cpufreq_lock);
443 }
444
445 static void
446 cpufreq_set_all_raw(uint32_t freq)
447 {
448 struct cpufreq *cf = cf_backend;
449 uint64_t xc;
450
451 KASSERT(cf->cf_init != false);
452 KASSERT(mutex_owned(&cpufreq_lock) != 0);
453
454 xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
455 xc_wait(xc);
456 }
457
458 #ifdef notyet
459 void
460 cpufreq_set_higher(struct cpu_info *ci)
461 {
462 cpufreq_set_step(ci, -1);
463 }
464
465 void
466 cpufreq_set_lower(struct cpu_info *ci)
467 {
468 cpufreq_set_step(ci, 1);
469 }
470
471 static void
472 cpufreq_set_step(struct cpu_info *ci, int32_t step)
473 {
474 struct cpufreq *cf = cf_backend;
475 struct cpufreq_state cfs;
476 uint32_t freq;
477 int32_t index;
478
479 mutex_enter(&cpufreq_lock);
480 cf = cf_backend;
481
482 if (__predict_false(cf->cf_init != true)) {
483 mutex_exit(&cpufreq_lock);
484 return;
485 }
486
487 freq = cpufreq_get_raw(ci);
488
489 if (__predict_false(freq == 0)) {
490 mutex_exit(&cpufreq_lock);
491 return;
492 }
493
494 cpufreq_get_state_raw(freq, &cfs);
495 index = cfs.cfs_index + step;
496
497 if (index < 0 || index >= (int32_t)cf->cf_state_count) {
498 mutex_exit(&cpufreq_lock);
499 return;
500 }
501
502 cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
503 mutex_exit(&cpufreq_lock);
504 }
505 #endif
506