subr_devsw.c revision 1.15.6.3 1 1.15.6.3 mjf /* $NetBSD: subr_devsw.c,v 1.15.6.3 2008/04/03 12:43:03 mjf Exp $ */
2 1.11 ad
3 1.2 gehenna /*-
4 1.11 ad * Copyright (c) 2001, 2002, 2007 The NetBSD Foundation, Inc.
5 1.2 gehenna * All rights reserved.
6 1.2 gehenna *
7 1.2 gehenna * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by MAEKAWA Masahide <gehenna (at) NetBSD.org>, and by Andrew Doran.
9 1.2 gehenna *
10 1.2 gehenna * Redistribution and use in source and binary forms, with or without
11 1.2 gehenna * modification, are permitted provided that the following conditions
12 1.2 gehenna * are met:
13 1.2 gehenna * 1. Redistributions of source code must retain the above copyright
14 1.2 gehenna * notice, this list of conditions and the following disclaimer.
15 1.2 gehenna * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 gehenna * notice, this list of conditions and the following disclaimer in the
17 1.2 gehenna * documentation and/or other materials provided with the distribution.
18 1.2 gehenna * 3. All advertising materials mentioning features or use of this software
19 1.2 gehenna * must display the following acknowledgement:
20 1.2 gehenna * This product includes software developed by the NetBSD
21 1.2 gehenna * Foundation, Inc. and its contributors.
22 1.2 gehenna * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 gehenna * contributors may be used to endorse or promote products derived
24 1.2 gehenna * from this software without specific prior written permission.
25 1.2 gehenna *
26 1.2 gehenna * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 gehenna * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 gehenna * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 gehenna * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 gehenna * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 gehenna * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 gehenna * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 gehenna * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 gehenna * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 gehenna * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 gehenna * POSSIBILITY OF SUCH DAMAGE.
37 1.2 gehenna */
38 1.11 ad
39 1.11 ad /*
40 1.11 ad * Overview
41 1.11 ad *
42 1.11 ad * subr_devsw.c: registers device drivers by name and by major
43 1.11 ad * number, and provides wrapper methods for performing I/O and
44 1.11 ad * other tasks on device drivers, keying on the device number
45 1.11 ad * (dev_t).
46 1.11 ad *
47 1.11 ad * When the system is built, the config(8) command generates
48 1.11 ad * static tables of device drivers built into the kernel image
49 1.11 ad * along with their associated methods. These are recorded in
50 1.11 ad * the cdevsw0 and bdevsw0 tables. Drivers can also be added to
51 1.11 ad * and removed from the system dynamically.
52 1.11 ad *
53 1.11 ad * Allocation
54 1.11 ad *
55 1.11 ad * When the system initially boots only the statically allocated
56 1.11 ad * indexes (bdevsw0, cdevsw0) are used. If these overflow due to
57 1.11 ad * allocation, we allocate a fixed block of memory to hold the new,
58 1.11 ad * expanded index. This "fork" of the table is only ever performed
59 1.11 ad * once in order to guarantee that other threads may safely access
60 1.11 ad * the device tables:
61 1.11 ad *
62 1.11 ad * o Once a thread has a "reference" to the table via an earlier
63 1.11 ad * open() call, we know that the entry in the table must exist
64 1.11 ad * and so it is safe to access it.
65 1.11 ad *
66 1.11 ad * o Regardless of whether other threads see the old or new
67 1.11 ad * pointers, they will point to a correct device switch
68 1.11 ad * structure for the operation being performed.
69 1.11 ad *
70 1.11 ad * XXX Currently, the wrapper methods such as cdev_read() verify
71 1.11 ad * that a device driver does in fact exist before calling the
72 1.11 ad * associated driver method. This should be changed so that
73 1.11 ad * once the device is has been referenced by a vnode (opened),
74 1.11 ad * calling the other methods should be valid until that reference
75 1.11 ad * is dropped.
76 1.11 ad */
77 1.7 lukem
78 1.7 lukem #include <sys/cdefs.h>
79 1.15.6.3 mjf __KERNEL_RCSID(0, "$NetBSD: subr_devsw.c,v 1.15.6.3 2008/04/03 12:43:03 mjf Exp $");
80 1.2 gehenna
81 1.2 gehenna #include <sys/param.h>
82 1.2 gehenna #include <sys/conf.h>
83 1.11 ad #include <sys/kmem.h>
84 1.2 gehenna #include <sys/systm.h>
85 1.11 ad #include <sys/poll.h>
86 1.11 ad #include <sys/tty.h>
87 1.15 matt #include <sys/cpu.h>
88 1.11 ad #include <sys/buf.h>
89 1.15.6.1 mjf #include <sys/dirent.h>
90 1.15.6.1 mjf #include <machine/stdarg.h>
91 1.15.6.1 mjf #include <sys/disklabel.h>
92 1.2 gehenna
93 1.2 gehenna #ifdef DEVSW_DEBUG
94 1.2 gehenna #define DPRINTF(x) printf x
95 1.2 gehenna #else /* DEVSW_DEBUG */
96 1.2 gehenna #define DPRINTF(x)
97 1.2 gehenna #endif /* DEVSW_DEBUG */
98 1.2 gehenna
99 1.11 ad #define MAXDEVSW 512 /* the maximum of major device number */
100 1.2 gehenna #define BDEVSW_SIZE (sizeof(struct bdevsw *))
101 1.2 gehenna #define CDEVSW_SIZE (sizeof(struct cdevsw *))
102 1.2 gehenna #define DEVSWCONV_SIZE (sizeof(struct devsw_conv))
103 1.2 gehenna
104 1.2 gehenna extern const struct bdevsw **bdevsw, *bdevsw0[];
105 1.2 gehenna extern const struct cdevsw **cdevsw, *cdevsw0[];
106 1.2 gehenna extern struct devsw_conv *devsw_conv, devsw_conv0[];
107 1.2 gehenna extern const int sys_bdevsws, sys_cdevsws;
108 1.2 gehenna extern int max_bdevsws, max_cdevsws, max_devsw_convs;
109 1.2 gehenna
110 1.14 pooka static int bdevsw_attach(const struct bdevsw *, int *);
111 1.14 pooka static int cdevsw_attach(const struct cdevsw *, int *);
112 1.11 ad static void devsw_detach_locked(const struct bdevsw *, const struct cdevsw *);
113 1.11 ad
114 1.13 ad kmutex_t devsw_lock;
115 1.15.6.1 mjf extern kmutex_t dname_lock;
116 1.15.6.1 mjf
117 1.15.6.1 mjf /*
118 1.15.6.1 mjf * A table of initialisation functions for device drivers that
119 1.15.6.1 mjf * don't have an attach routine.
120 1.15.6.1 mjf */
121 1.15.6.1 mjf void (*devsw_init_funcs[])(void) = {
122 1.15.6.1 mjf bpf_init,
123 1.15.6.1 mjf cttyinit,
124 1.15.6.1 mjf mem_init,
125 1.15.6.1 mjf swap_init,
126 1.15.6.1 mjf NULL,
127 1.15.6.1 mjf };
128 1.11 ad
129 1.11 ad void
130 1.11 ad devsw_init(void)
131 1.11 ad {
132 1.15.6.1 mjf int i;
133 1.11 ad
134 1.11 ad KASSERT(sys_bdevsws < MAXDEVSW - 1);
135 1.11 ad KASSERT(sys_cdevsws < MAXDEVSW - 1);
136 1.11 ad
137 1.11 ad mutex_init(&devsw_lock, MUTEX_DEFAULT, IPL_NONE);
138 1.15.6.1 mjf mutex_init(&dname_lock, MUTEX_DEFAULT, IPL_NONE);
139 1.15.6.1 mjf TAILQ_INIT(&device_names);
140 1.15.6.1 mjf
141 1.15.6.1 mjf /*
142 1.15.6.1 mjf * Technically, some device drivers don't ever get 'attached'
143 1.15.6.1 mjf * so we provide this table to allow device drivers to register
144 1.15.6.1 mjf * their device names.
145 1.15.6.1 mjf */
146 1.15.6.1 mjf for (i = 0; devsw_init_funcs[i] != NULL; i++)
147 1.15.6.1 mjf devsw_init_funcs[i]();
148 1.11 ad }
149 1.2 gehenna
150 1.2 gehenna int
151 1.2 gehenna devsw_attach(const char *devname, const struct bdevsw *bdev, int *bmajor,
152 1.2 gehenna const struct cdevsw *cdev, int *cmajor)
153 1.2 gehenna {
154 1.2 gehenna struct devsw_conv *conv;
155 1.2 gehenna char *name;
156 1.2 gehenna int error, i;
157 1.2 gehenna
158 1.2 gehenna if (devname == NULL || cdev == NULL)
159 1.2 gehenna return (EINVAL);
160 1.2 gehenna
161 1.11 ad mutex_enter(&devsw_lock);
162 1.11 ad
163 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
164 1.2 gehenna conv = &devsw_conv[i];
165 1.2 gehenna if (conv->d_name == NULL || strcmp(devname, conv->d_name) != 0)
166 1.2 gehenna continue;
167 1.2 gehenna
168 1.2 gehenna if (*bmajor < 0)
169 1.2 gehenna *bmajor = conv->d_bmajor;
170 1.2 gehenna if (*cmajor < 0)
171 1.2 gehenna *cmajor = conv->d_cmajor;
172 1.2 gehenna
173 1.11 ad if (*bmajor != conv->d_bmajor || *cmajor != conv->d_cmajor) {
174 1.11 ad error = EINVAL;
175 1.11 ad goto fail;
176 1.11 ad }
177 1.11 ad if ((*bmajor >= 0 && bdev == NULL) || *cmajor < 0) {
178 1.11 ad error = EINVAL;
179 1.11 ad goto fail;
180 1.11 ad }
181 1.2 gehenna
182 1.2 gehenna if ((*bmajor >= 0 && bdevsw[*bmajor] != NULL) ||
183 1.11 ad cdevsw[*cmajor] != NULL) {
184 1.11 ad error = EEXIST;
185 1.11 ad goto fail;
186 1.11 ad }
187 1.2 gehenna
188 1.2 gehenna if (bdev != NULL)
189 1.2 gehenna bdevsw[*bmajor] = bdev;
190 1.2 gehenna cdevsw[*cmajor] = cdev;
191 1.2 gehenna
192 1.11 ad mutex_exit(&devsw_lock);
193 1.2 gehenna return (0);
194 1.2 gehenna }
195 1.2 gehenna
196 1.14 pooka error = bdevsw_attach(bdev, bmajor);
197 1.11 ad if (error != 0)
198 1.11 ad goto fail;
199 1.14 pooka error = cdevsw_attach(cdev, cmajor);
200 1.2 gehenna if (error != 0) {
201 1.11 ad devsw_detach_locked(bdev, NULL);
202 1.11 ad goto fail;
203 1.2 gehenna }
204 1.2 gehenna
205 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
206 1.2 gehenna if (devsw_conv[i].d_name == NULL)
207 1.2 gehenna break;
208 1.2 gehenna }
209 1.2 gehenna if (i == max_devsw_convs) {
210 1.2 gehenna struct devsw_conv *newptr;
211 1.2 gehenna int old, new;
212 1.2 gehenna
213 1.2 gehenna old = max_devsw_convs;
214 1.2 gehenna new = old + 1;
215 1.2 gehenna
216 1.11 ad newptr = kmem_zalloc(new * DEVSWCONV_SIZE, KM_NOSLEEP);
217 1.2 gehenna if (newptr == NULL) {
218 1.11 ad devsw_detach_locked(bdev, cdev);
219 1.11 ad error = ENOMEM;
220 1.11 ad goto fail;
221 1.2 gehenna }
222 1.2 gehenna newptr[old].d_name = NULL;
223 1.2 gehenna newptr[old].d_bmajor = -1;
224 1.2 gehenna newptr[old].d_cmajor = -1;
225 1.2 gehenna memcpy(newptr, devsw_conv, old * DEVSWCONV_SIZE);
226 1.2 gehenna if (devsw_conv != devsw_conv0)
227 1.11 ad kmem_free(devsw_conv, old * DEVSWCONV_SIZE);
228 1.2 gehenna devsw_conv = newptr;
229 1.2 gehenna max_devsw_convs = new;
230 1.2 gehenna }
231 1.2 gehenna
232 1.6 itojun i = strlen(devname) + 1;
233 1.11 ad name = kmem_alloc(i, KM_NOSLEEP);
234 1.2 gehenna if (name == NULL) {
235 1.11 ad devsw_detach_locked(bdev, cdev);
236 1.11 ad goto fail;
237 1.2 gehenna }
238 1.6 itojun strlcpy(name, devname, i);
239 1.2 gehenna
240 1.2 gehenna devsw_conv[i].d_name = name;
241 1.2 gehenna devsw_conv[i].d_bmajor = *bmajor;
242 1.2 gehenna devsw_conv[i].d_cmajor = *cmajor;
243 1.2 gehenna
244 1.11 ad mutex_exit(&devsw_lock);
245 1.2 gehenna return (0);
246 1.11 ad fail:
247 1.11 ad mutex_exit(&devsw_lock);
248 1.11 ad return (error);
249 1.2 gehenna }
250 1.2 gehenna
251 1.2 gehenna static int
252 1.14 pooka bdevsw_attach(const struct bdevsw *devsw, int *devmajor)
253 1.2 gehenna {
254 1.11 ad const struct bdevsw **newptr;
255 1.2 gehenna int bmajor, i;
256 1.2 gehenna
257 1.11 ad KASSERT(mutex_owned(&devsw_lock));
258 1.11 ad
259 1.2 gehenna if (devsw == NULL)
260 1.2 gehenna return (0);
261 1.2 gehenna
262 1.2 gehenna if (*devmajor < 0) {
263 1.2 gehenna for (bmajor = sys_bdevsws ; bmajor < max_bdevsws ; bmajor++) {
264 1.2 gehenna if (bdevsw[bmajor] != NULL)
265 1.2 gehenna continue;
266 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
267 1.2 gehenna if (devsw_conv[i].d_bmajor == bmajor)
268 1.2 gehenna break;
269 1.2 gehenna }
270 1.2 gehenna if (i != max_devsw_convs)
271 1.2 gehenna continue;
272 1.2 gehenna break;
273 1.2 gehenna }
274 1.3 gehenna *devmajor = bmajor;
275 1.2 gehenna }
276 1.11 ad
277 1.2 gehenna if (*devmajor >= MAXDEVSW) {
278 1.11 ad printf("bdevsw_attach: block majors exhausted");
279 1.2 gehenna return (ENOMEM);
280 1.2 gehenna }
281 1.2 gehenna
282 1.2 gehenna if (*devmajor >= max_bdevsws) {
283 1.11 ad KASSERT(bdevsw == bdevsw0);
284 1.11 ad newptr = kmem_zalloc(MAXDEVSW * BDEVSW_SIZE, KM_NOSLEEP);
285 1.2 gehenna if (newptr == NULL)
286 1.2 gehenna return (ENOMEM);
287 1.11 ad memcpy(newptr, bdevsw, max_bdevsws * BDEVSW_SIZE);
288 1.2 gehenna bdevsw = newptr;
289 1.11 ad max_bdevsws = MAXDEVSW;
290 1.2 gehenna }
291 1.2 gehenna
292 1.2 gehenna if (bdevsw[*devmajor] != NULL)
293 1.2 gehenna return (EEXIST);
294 1.2 gehenna
295 1.2 gehenna bdevsw[*devmajor] = devsw;
296 1.2 gehenna
297 1.2 gehenna return (0);
298 1.2 gehenna }
299 1.2 gehenna
300 1.2 gehenna static int
301 1.14 pooka cdevsw_attach(const struct cdevsw *devsw, int *devmajor)
302 1.2 gehenna {
303 1.11 ad const struct cdevsw **newptr;
304 1.2 gehenna int cmajor, i;
305 1.2 gehenna
306 1.11 ad KASSERT(mutex_owned(&devsw_lock));
307 1.11 ad
308 1.2 gehenna if (*devmajor < 0) {
309 1.2 gehenna for (cmajor = sys_cdevsws ; cmajor < max_cdevsws ; cmajor++) {
310 1.2 gehenna if (cdevsw[cmajor] != NULL)
311 1.2 gehenna continue;
312 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
313 1.2 gehenna if (devsw_conv[i].d_cmajor == cmajor)
314 1.2 gehenna break;
315 1.2 gehenna }
316 1.2 gehenna if (i != max_devsw_convs)
317 1.2 gehenna continue;
318 1.2 gehenna break;
319 1.2 gehenna }
320 1.3 gehenna *devmajor = cmajor;
321 1.2 gehenna }
322 1.11 ad
323 1.2 gehenna if (*devmajor >= MAXDEVSW) {
324 1.11 ad printf("cdevsw_attach: character majors exhausted");
325 1.2 gehenna return (ENOMEM);
326 1.2 gehenna }
327 1.2 gehenna
328 1.2 gehenna if (*devmajor >= max_cdevsws) {
329 1.11 ad KASSERT(cdevsw == cdevsw0);
330 1.11 ad newptr = kmem_zalloc(MAXDEVSW * CDEVSW_SIZE, KM_NOSLEEP);
331 1.2 gehenna if (newptr == NULL)
332 1.2 gehenna return (ENOMEM);
333 1.11 ad memcpy(newptr, cdevsw, max_cdevsws * CDEVSW_SIZE);
334 1.2 gehenna cdevsw = newptr;
335 1.11 ad max_cdevsws = MAXDEVSW;
336 1.2 gehenna }
337 1.2 gehenna
338 1.2 gehenna if (cdevsw[*devmajor] != NULL)
339 1.2 gehenna return (EEXIST);
340 1.2 gehenna
341 1.2 gehenna cdevsw[*devmajor] = devsw;
342 1.2 gehenna
343 1.2 gehenna return (0);
344 1.2 gehenna }
345 1.2 gehenna
346 1.11 ad static void
347 1.11 ad devsw_detach_locked(const struct bdevsw *bdev, const struct cdevsw *cdev)
348 1.2 gehenna {
349 1.2 gehenna int i;
350 1.2 gehenna
351 1.11 ad KASSERT(mutex_owned(&devsw_lock));
352 1.11 ad
353 1.2 gehenna if (bdev != NULL) {
354 1.2 gehenna for (i = 0 ; i < max_bdevsws ; i++) {
355 1.2 gehenna if (bdevsw[i] != bdev)
356 1.2 gehenna continue;
357 1.2 gehenna bdevsw[i] = NULL;
358 1.2 gehenna break;
359 1.2 gehenna }
360 1.2 gehenna }
361 1.2 gehenna if (cdev != NULL) {
362 1.2 gehenna for (i = 0 ; i < max_cdevsws ; i++) {
363 1.2 gehenna if (cdevsw[i] != cdev)
364 1.2 gehenna continue;
365 1.2 gehenna cdevsw[i] = NULL;
366 1.2 gehenna break;
367 1.2 gehenna }
368 1.2 gehenna }
369 1.2 gehenna }
370 1.2 gehenna
371 1.11 ad void
372 1.11 ad devsw_detach(const struct bdevsw *bdev, const struct cdevsw *cdev)
373 1.11 ad {
374 1.11 ad
375 1.11 ad mutex_enter(&devsw_lock);
376 1.11 ad devsw_detach_locked(bdev, cdev);
377 1.11 ad mutex_exit(&devsw_lock);
378 1.11 ad }
379 1.11 ad
380 1.11 ad /*
381 1.11 ad * Look up a block device by number.
382 1.11 ad *
383 1.11 ad * => Caller must ensure that the device is attached.
384 1.11 ad */
385 1.2 gehenna const struct bdevsw *
386 1.2 gehenna bdevsw_lookup(dev_t dev)
387 1.2 gehenna {
388 1.2 gehenna int bmajor;
389 1.2 gehenna
390 1.2 gehenna if (dev == NODEV)
391 1.2 gehenna return (NULL);
392 1.2 gehenna bmajor = major(dev);
393 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws)
394 1.2 gehenna return (NULL);
395 1.2 gehenna
396 1.2 gehenna return (bdevsw[bmajor]);
397 1.2 gehenna }
398 1.2 gehenna
399 1.11 ad /*
400 1.11 ad * Look up a character device by number.
401 1.11 ad *
402 1.11 ad * => Caller must ensure that the device is attached.
403 1.11 ad */
404 1.2 gehenna const struct cdevsw *
405 1.2 gehenna cdevsw_lookup(dev_t dev)
406 1.2 gehenna {
407 1.2 gehenna int cmajor;
408 1.2 gehenna
409 1.2 gehenna if (dev == NODEV)
410 1.2 gehenna return (NULL);
411 1.2 gehenna cmajor = major(dev);
412 1.2 gehenna if (cmajor < 0 || cmajor >= max_cdevsws)
413 1.2 gehenna return (NULL);
414 1.2 gehenna
415 1.2 gehenna return (cdevsw[cmajor]);
416 1.2 gehenna }
417 1.2 gehenna
418 1.11 ad /*
419 1.11 ad * Look up a block device by reference to its operations set.
420 1.11 ad *
421 1.11 ad * => Caller must ensure that the device is not detached, and therefore
422 1.11 ad * that the returned major is still valid when dereferenced.
423 1.11 ad */
424 1.2 gehenna int
425 1.2 gehenna bdevsw_lookup_major(const struct bdevsw *bdev)
426 1.2 gehenna {
427 1.2 gehenna int bmajor;
428 1.2 gehenna
429 1.2 gehenna for (bmajor = 0 ; bmajor < max_bdevsws ; bmajor++) {
430 1.2 gehenna if (bdevsw[bmajor] == bdev)
431 1.2 gehenna return (bmajor);
432 1.2 gehenna }
433 1.2 gehenna
434 1.2 gehenna return (-1);
435 1.2 gehenna }
436 1.2 gehenna
437 1.11 ad /*
438 1.11 ad * Look up a character device by reference to its operations set.
439 1.11 ad *
440 1.11 ad * => Caller must ensure that the device is not detached, and therefore
441 1.11 ad * that the returned major is still valid when dereferenced.
442 1.11 ad */
443 1.2 gehenna int
444 1.2 gehenna cdevsw_lookup_major(const struct cdevsw *cdev)
445 1.2 gehenna {
446 1.2 gehenna int cmajor;
447 1.2 gehenna
448 1.2 gehenna for (cmajor = 0 ; cmajor < max_cdevsws ; cmajor++) {
449 1.2 gehenna if (cdevsw[cmajor] == cdev)
450 1.2 gehenna return (cmajor);
451 1.2 gehenna }
452 1.2 gehenna
453 1.2 gehenna return (-1);
454 1.2 gehenna }
455 1.2 gehenna
456 1.2 gehenna /*
457 1.2 gehenna * Convert from block major number to name.
458 1.11 ad *
459 1.11 ad * => Caller must ensure that the device is not detached, and therefore
460 1.11 ad * that the name pointer is still valid when dereferenced.
461 1.2 gehenna */
462 1.2 gehenna const char *
463 1.2 gehenna devsw_blk2name(int bmajor)
464 1.2 gehenna {
465 1.11 ad const char *name;
466 1.2 gehenna int cmajor, i;
467 1.2 gehenna
468 1.11 ad name = NULL;
469 1.11 ad cmajor = -1;
470 1.11 ad
471 1.11 ad mutex_enter(&devsw_lock);
472 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
473 1.11 ad mutex_exit(&devsw_lock);
474 1.2 gehenna return (NULL);
475 1.2 gehenna }
476 1.11 ad for (i = 0 ; i < max_devsw_convs; i++) {
477 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
478 1.11 ad cmajor = devsw_conv[i].d_cmajor;
479 1.11 ad break;
480 1.11 ad }
481 1.11 ad }
482 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
483 1.11 ad name = devsw_conv[i].d_name;
484 1.11 ad mutex_exit(&devsw_lock);
485 1.2 gehenna
486 1.11 ad return (name);
487 1.2 gehenna }
488 1.2 gehenna
489 1.2 gehenna /*
490 1.2 gehenna * Convert from device name to block major number.
491 1.11 ad *
492 1.11 ad * => Caller must ensure that the device is not detached, and therefore
493 1.11 ad * that the major number is still valid when dereferenced.
494 1.2 gehenna */
495 1.2 gehenna int
496 1.2 gehenna devsw_name2blk(const char *name, char *devname, size_t devnamelen)
497 1.2 gehenna {
498 1.2 gehenna struct devsw_conv *conv;
499 1.2 gehenna int bmajor, i;
500 1.2 gehenna
501 1.2 gehenna if (name == NULL)
502 1.2 gehenna return (-1);
503 1.2 gehenna
504 1.11 ad mutex_enter(&devsw_lock);
505 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
506 1.5 mrg size_t len;
507 1.5 mrg
508 1.2 gehenna conv = &devsw_conv[i];
509 1.2 gehenna if (conv->d_name == NULL)
510 1.2 gehenna continue;
511 1.5 mrg len = strlen(conv->d_name);
512 1.5 mrg if (strncmp(conv->d_name, name, len) != 0)
513 1.5 mrg continue;
514 1.5 mrg if (*(name +len) && !isdigit(*(name + len)))
515 1.2 gehenna continue;
516 1.2 gehenna bmajor = conv->d_bmajor;
517 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws ||
518 1.2 gehenna bdevsw[bmajor] == NULL)
519 1.5 mrg break;
520 1.2 gehenna if (devname != NULL) {
521 1.2 gehenna #ifdef DEVSW_DEBUG
522 1.2 gehenna if (strlen(conv->d_name) >= devnamelen)
523 1.2 gehenna printf("devsw_name2blk: too short buffer");
524 1.2 gehenna #endif /* DEVSW_DEBUG */
525 1.4 tsutsui strncpy(devname, conv->d_name, devnamelen);
526 1.2 gehenna devname[devnamelen - 1] = '\0';
527 1.2 gehenna }
528 1.11 ad mutex_exit(&devsw_lock);
529 1.2 gehenna return (bmajor);
530 1.2 gehenna }
531 1.2 gehenna
532 1.11 ad mutex_exit(&devsw_lock);
533 1.2 gehenna return (-1);
534 1.2 gehenna }
535 1.2 gehenna
536 1.2 gehenna /*
537 1.15.6.3 mjf * Convert from device name to char major number.
538 1.15.6.3 mjf *
539 1.15.6.3 mjf * => Caller must ensure that the device is not detached, and therefore
540 1.15.6.3 mjf * that the major number is still valid when dereferenced.
541 1.15.6.3 mjf */
542 1.15.6.3 mjf int
543 1.15.6.3 mjf devsw_name2chr(const char *name, char *devname, size_t devnamelen)
544 1.15.6.3 mjf {
545 1.15.6.3 mjf struct devsw_conv *conv;
546 1.15.6.3 mjf int cmajor, i;
547 1.15.6.3 mjf
548 1.15.6.3 mjf if (name == NULL)
549 1.15.6.3 mjf return (-1);
550 1.15.6.3 mjf
551 1.15.6.3 mjf mutex_enter(&devsw_lock);
552 1.15.6.3 mjf for (i = 0 ; i < max_devsw_convs ; i++) {
553 1.15.6.3 mjf size_t len;
554 1.15.6.3 mjf
555 1.15.6.3 mjf conv = &devsw_conv[i];
556 1.15.6.3 mjf if (conv->d_name == NULL)
557 1.15.6.3 mjf continue;
558 1.15.6.3 mjf len = strlen(conv->d_name);
559 1.15.6.3 mjf if (strncmp(conv->d_name, name, len) != 0)
560 1.15.6.3 mjf continue;
561 1.15.6.3 mjf if (*(name +len) && !isdigit(*(name + len)))
562 1.15.6.3 mjf continue;
563 1.15.6.3 mjf cmajor = conv->d_cmajor;
564 1.15.6.3 mjf if (cmajor < 0 || cmajor >= max_cdevsws ||
565 1.15.6.3 mjf cdevsw[cmajor] == NULL)
566 1.15.6.3 mjf break;
567 1.15.6.3 mjf if (devname != NULL) {
568 1.15.6.3 mjf #ifdef DEVSW_DEBUG
569 1.15.6.3 mjf if (strlen(conv->d_name) >= devnamelen)
570 1.15.6.3 mjf printf("devsw_name2chr: too short buffer");
571 1.15.6.3 mjf #endif /* DEVSW_DEBUG */
572 1.15.6.3 mjf strncpy(devname, conv->d_name, devnamelen);
573 1.15.6.3 mjf devname[devnamelen - 1] = '\0';
574 1.15.6.3 mjf }
575 1.15.6.3 mjf mutex_exit(&devsw_lock);
576 1.15.6.3 mjf return (cmajor);
577 1.15.6.3 mjf }
578 1.15.6.3 mjf
579 1.15.6.3 mjf mutex_exit(&devsw_lock);
580 1.15.6.3 mjf return (-1);
581 1.15.6.3 mjf }
582 1.15.6.3 mjf
583 1.15.6.3 mjf /*
584 1.2 gehenna * Convert from character dev_t to block dev_t.
585 1.11 ad *
586 1.11 ad * => Caller must ensure that the device is not detached, and therefore
587 1.11 ad * that the major number is still valid when dereferenced.
588 1.2 gehenna */
589 1.2 gehenna dev_t
590 1.2 gehenna devsw_chr2blk(dev_t cdev)
591 1.2 gehenna {
592 1.2 gehenna int bmajor, cmajor, i;
593 1.11 ad dev_t rv;
594 1.2 gehenna
595 1.2 gehenna cmajor = major(cdev);
596 1.11 ad bmajor = -1;
597 1.11 ad rv = NODEV;
598 1.2 gehenna
599 1.11 ad mutex_enter(&devsw_lock);
600 1.11 ad if (cmajor < 0 || cmajor >= max_cdevsws || cdevsw[cmajor] == NULL) {
601 1.11 ad mutex_exit(&devsw_lock);
602 1.11 ad return (NODEV);
603 1.11 ad }
604 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
605 1.11 ad if (devsw_conv[i].d_cmajor == cmajor) {
606 1.11 ad bmajor = devsw_conv[i].d_bmajor;
607 1.11 ad break;
608 1.11 ad }
609 1.2 gehenna }
610 1.11 ad if (bmajor >= 0 && bmajor < max_bdevsws && bdevsw[bmajor] != NULL)
611 1.11 ad rv = makedev(bmajor, minor(cdev));
612 1.11 ad mutex_exit(&devsw_lock);
613 1.2 gehenna
614 1.11 ad return (rv);
615 1.2 gehenna }
616 1.2 gehenna
617 1.2 gehenna /*
618 1.2 gehenna * Convert from block dev_t to character dev_t.
619 1.11 ad *
620 1.11 ad * => Caller must ensure that the device is not detached, and therefore
621 1.11 ad * that the major number is still valid when dereferenced.
622 1.2 gehenna */
623 1.2 gehenna dev_t
624 1.2 gehenna devsw_blk2chr(dev_t bdev)
625 1.2 gehenna {
626 1.2 gehenna int bmajor, cmajor, i;
627 1.11 ad dev_t rv;
628 1.2 gehenna
629 1.11 ad bmajor = major(bdev);
630 1.11 ad cmajor = -1;
631 1.11 ad rv = NODEV;
632 1.11 ad
633 1.11 ad mutex_enter(&devsw_lock);
634 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
635 1.11 ad mutex_exit(&devsw_lock);
636 1.2 gehenna return (NODEV);
637 1.11 ad }
638 1.11 ad for (i = 0 ; i < max_devsw_convs ; i++) {
639 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
640 1.11 ad cmajor = devsw_conv[i].d_cmajor;
641 1.11 ad break;
642 1.11 ad }
643 1.11 ad }
644 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
645 1.11 ad rv = makedev(cmajor, minor(bdev));
646 1.11 ad mutex_exit(&devsw_lock);
647 1.2 gehenna
648 1.11 ad return (rv);
649 1.11 ad }
650 1.11 ad
651 1.11 ad /*
652 1.11 ad * Device access methods.
653 1.11 ad */
654 1.11 ad
655 1.11 ad #define DEV_LOCK(d) \
656 1.11 ad if ((d->d_flag & D_MPSAFE) == 0) { \
657 1.11 ad KERNEL_LOCK(1, curlwp); \
658 1.11 ad }
659 1.2 gehenna
660 1.11 ad #define DEV_UNLOCK(d) \
661 1.11 ad if ((d->d_flag & D_MPSAFE) == 0) { \
662 1.11 ad KERNEL_UNLOCK_ONE(curlwp); \
663 1.2 gehenna }
664 1.2 gehenna
665 1.11 ad int
666 1.11 ad bdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
667 1.11 ad {
668 1.11 ad const struct bdevsw *d;
669 1.11 ad int rv;
670 1.11 ad
671 1.11 ad /*
672 1.11 ad * For open we need to lock, in order to synchronize
673 1.11 ad * with attach/detach.
674 1.11 ad */
675 1.11 ad mutex_enter(&devsw_lock);
676 1.11 ad d = bdevsw_lookup(dev);
677 1.11 ad mutex_exit(&devsw_lock);
678 1.11 ad if (d == NULL)
679 1.11 ad return ENXIO;
680 1.11 ad
681 1.11 ad DEV_LOCK(d);
682 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
683 1.11 ad DEV_UNLOCK(d);
684 1.11 ad
685 1.11 ad return rv;
686 1.11 ad }
687 1.11 ad
688 1.11 ad int
689 1.11 ad bdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
690 1.11 ad {
691 1.11 ad const struct bdevsw *d;
692 1.11 ad int rv;
693 1.11 ad
694 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
695 1.11 ad return ENXIO;
696 1.11 ad
697 1.11 ad DEV_LOCK(d);
698 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
699 1.11 ad DEV_UNLOCK(d);
700 1.11 ad
701 1.11 ad return rv;
702 1.11 ad }
703 1.11 ad
704 1.11 ad void
705 1.11 ad bdev_strategy(struct buf *bp)
706 1.11 ad {
707 1.11 ad const struct bdevsw *d;
708 1.11 ad
709 1.11 ad if ((d = bdevsw_lookup(bp->b_dev)) == NULL)
710 1.11 ad panic("bdev_strategy");
711 1.11 ad
712 1.11 ad DEV_LOCK(d);
713 1.11 ad (*d->d_strategy)(bp);
714 1.11 ad DEV_UNLOCK(d);
715 1.11 ad }
716 1.11 ad
717 1.11 ad int
718 1.11 ad bdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
719 1.11 ad {
720 1.11 ad const struct bdevsw *d;
721 1.11 ad int rv;
722 1.11 ad
723 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
724 1.11 ad return ENXIO;
725 1.11 ad
726 1.11 ad DEV_LOCK(d);
727 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
728 1.11 ad DEV_UNLOCK(d);
729 1.11 ad
730 1.11 ad return rv;
731 1.11 ad }
732 1.11 ad
733 1.11 ad int
734 1.11 ad bdev_dump(dev_t dev, daddr_t addr, void *data, size_t sz)
735 1.11 ad {
736 1.11 ad const struct bdevsw *d;
737 1.11 ad int rv;
738 1.11 ad
739 1.11 ad /*
740 1.11 ad * Dump can be called without the device open. Since it can
741 1.11 ad * currently only be called with the system paused (and in a
742 1.11 ad * potentially unstable state), we don't perform any locking.
743 1.11 ad */
744 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
745 1.11 ad return ENXIO;
746 1.11 ad
747 1.11 ad /* DEV_LOCK(d); */
748 1.11 ad rv = (*d->d_dump)(dev, addr, data, sz);
749 1.11 ad /* DEV_UNLOCK(d); */
750 1.11 ad
751 1.11 ad return rv;
752 1.11 ad }
753 1.11 ad
754 1.11 ad int
755 1.11 ad bdev_type(dev_t dev)
756 1.11 ad {
757 1.11 ad const struct bdevsw *d;
758 1.11 ad
759 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
760 1.11 ad return D_OTHER;
761 1.11 ad return d->d_flag & D_TYPEMASK;
762 1.11 ad }
763 1.11 ad
764 1.11 ad int
765 1.11 ad cdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
766 1.11 ad {
767 1.11 ad const struct cdevsw *d;
768 1.11 ad int rv;
769 1.11 ad
770 1.11 ad /*
771 1.11 ad * For open we need to lock, in order to synchronize
772 1.11 ad * with attach/detach.
773 1.11 ad */
774 1.11 ad mutex_enter(&devsw_lock);
775 1.11 ad d = cdevsw_lookup(dev);
776 1.11 ad mutex_exit(&devsw_lock);
777 1.11 ad if (d == NULL)
778 1.11 ad return ENXIO;
779 1.11 ad
780 1.11 ad DEV_LOCK(d);
781 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
782 1.11 ad DEV_UNLOCK(d);
783 1.11 ad
784 1.11 ad return rv;
785 1.11 ad }
786 1.11 ad
787 1.11 ad int
788 1.11 ad cdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
789 1.11 ad {
790 1.11 ad const struct cdevsw *d;
791 1.11 ad int rv;
792 1.11 ad
793 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
794 1.11 ad return ENXIO;
795 1.11 ad
796 1.11 ad DEV_LOCK(d);
797 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
798 1.11 ad DEV_UNLOCK(d);
799 1.11 ad
800 1.11 ad return rv;
801 1.11 ad }
802 1.11 ad
803 1.11 ad int
804 1.11 ad cdev_read(dev_t dev, struct uio *uio, int flag)
805 1.11 ad {
806 1.11 ad const struct cdevsw *d;
807 1.11 ad int rv;
808 1.11 ad
809 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
810 1.11 ad return ENXIO;
811 1.11 ad
812 1.11 ad DEV_LOCK(d);
813 1.11 ad rv = (*d->d_read)(dev, uio, flag);
814 1.11 ad DEV_UNLOCK(d);
815 1.11 ad
816 1.11 ad return rv;
817 1.11 ad }
818 1.11 ad
819 1.11 ad int
820 1.11 ad cdev_write(dev_t dev, struct uio *uio, int flag)
821 1.11 ad {
822 1.11 ad const struct cdevsw *d;
823 1.11 ad int rv;
824 1.11 ad
825 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
826 1.11 ad return ENXIO;
827 1.11 ad
828 1.11 ad DEV_LOCK(d);
829 1.11 ad rv = (*d->d_write)(dev, uio, flag);
830 1.11 ad DEV_UNLOCK(d);
831 1.11 ad
832 1.11 ad return rv;
833 1.11 ad }
834 1.11 ad
835 1.11 ad int
836 1.11 ad cdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
837 1.11 ad {
838 1.11 ad const struct cdevsw *d;
839 1.11 ad int rv;
840 1.11 ad
841 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
842 1.11 ad return ENXIO;
843 1.11 ad
844 1.11 ad DEV_LOCK(d);
845 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
846 1.11 ad DEV_UNLOCK(d);
847 1.11 ad
848 1.11 ad return rv;
849 1.11 ad }
850 1.11 ad
851 1.11 ad void
852 1.11 ad cdev_stop(struct tty *tp, int flag)
853 1.11 ad {
854 1.11 ad const struct cdevsw *d;
855 1.11 ad
856 1.11 ad if ((d = cdevsw_lookup(tp->t_dev)) == NULL)
857 1.11 ad return;
858 1.11 ad
859 1.11 ad DEV_LOCK(d);
860 1.11 ad (*d->d_stop)(tp, flag);
861 1.11 ad DEV_UNLOCK(d);
862 1.11 ad }
863 1.11 ad
864 1.11 ad struct tty *
865 1.11 ad cdev_tty(dev_t dev)
866 1.11 ad {
867 1.11 ad const struct cdevsw *d;
868 1.11 ad struct tty * rv;
869 1.11 ad
870 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
871 1.11 ad return NULL;
872 1.11 ad
873 1.12 ad /* XXX Check if necessary. */
874 1.12 ad if (d->d_tty == NULL)
875 1.12 ad return NULL;
876 1.12 ad
877 1.11 ad DEV_LOCK(d);
878 1.11 ad rv = (*d->d_tty)(dev);
879 1.11 ad DEV_UNLOCK(d);
880 1.11 ad
881 1.11 ad return rv;
882 1.11 ad }
883 1.11 ad
884 1.11 ad int
885 1.11 ad cdev_poll(dev_t dev, int flag, lwp_t *l)
886 1.11 ad {
887 1.11 ad const struct cdevsw *d;
888 1.11 ad int rv;
889 1.11 ad
890 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
891 1.11 ad return POLLERR;
892 1.11 ad
893 1.11 ad DEV_LOCK(d);
894 1.11 ad rv = (*d->d_poll)(dev, flag, l);
895 1.11 ad DEV_UNLOCK(d);
896 1.11 ad
897 1.11 ad return rv;
898 1.11 ad }
899 1.11 ad
900 1.11 ad paddr_t
901 1.11 ad cdev_mmap(dev_t dev, off_t off, int flag)
902 1.11 ad {
903 1.11 ad const struct cdevsw *d;
904 1.11 ad paddr_t rv;
905 1.11 ad
906 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
907 1.11 ad return (paddr_t)-1LL;
908 1.11 ad
909 1.11 ad DEV_LOCK(d);
910 1.11 ad rv = (*d->d_mmap)(dev, off, flag);
911 1.11 ad DEV_UNLOCK(d);
912 1.11 ad
913 1.11 ad return rv;
914 1.11 ad }
915 1.11 ad
916 1.11 ad int
917 1.11 ad cdev_kqfilter(dev_t dev, struct knote *kn)
918 1.11 ad {
919 1.11 ad const struct cdevsw *d;
920 1.11 ad int rv;
921 1.11 ad
922 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
923 1.11 ad return ENXIO;
924 1.11 ad
925 1.11 ad DEV_LOCK(d);
926 1.11 ad rv = (*d->d_kqfilter)(dev, kn);
927 1.11 ad DEV_UNLOCK(d);
928 1.11 ad
929 1.11 ad return rv;
930 1.11 ad }
931 1.11 ad
932 1.11 ad int
933 1.11 ad cdev_type(dev_t dev)
934 1.11 ad {
935 1.11 ad const struct cdevsw *d;
936 1.11 ad
937 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
938 1.11 ad return D_OTHER;
939 1.11 ad return d->d_flag & D_TYPEMASK;
940 1.2 gehenna }
941 1.15.6.1 mjf
942 1.15.6.1 mjf /*
943 1.15.6.1 mjf * Register a dev_t and name for a device driver with devfs.
944 1.15.6.1 mjf * We maintain a TAILQ of registered device drivers names and dev_t's.
945 1.15.6.1 mjf *
946 1.15.6.1 mjf * => if devp is NULL this device has no device_t instance. An example
947 1.15.6.1 mjf * of this is zero(4).
948 1.15.6.1 mjf *
949 1.15.6.1 mjf * => if there already exists another name for this dev_t, then 'name'
950 1.15.6.1 mjf * is assumed to be an alias of a previously registered device driver.
951 1.15.6.1 mjf * TODO: The above isn't actually true at the moment, we just return 0.
952 1.15.6.1 mjf *
953 1.15.6.1 mjf * => 'cdev' indiciates whether we are a char or block device.
954 1.15.6.1 mjf * If 'cdev' is true, we are a character device, otherwise we
955 1.15.6.1 mjf * are a block device.
956 1.15.6.1 mjf */
957 1.15.6.1 mjf int
958 1.15.6.1 mjf device_register_name(dev_t dev, device_t devp, boolean_t cdev,
959 1.15.6.1 mjf enum devtype dtype, const char *fmt, ...)
960 1.15.6.1 mjf {
961 1.15.6.1 mjf struct device_name *dn;
962 1.15.6.1 mjf va_list ap;
963 1.15.6.1 mjf
964 1.15.6.1 mjf /* TODO: Check for aliases */
965 1.15.6.1 mjf
966 1.15.6.1 mjf dn = kmem_zalloc(sizeof(*dn), KM_NOSLEEP);
967 1.15.6.1 mjf if (dn == NULL)
968 1.15.6.1 mjf return ENOMEM;
969 1.15.6.1 mjf
970 1.15.6.1 mjf dn->d_dev = dev;
971 1.15.6.1 mjf dn->d_devp = devp;
972 1.15.6.1 mjf dn->d_char = cdev;
973 1.15.6.1 mjf dn->d_type = dtype;
974 1.15.6.1 mjf
975 1.15.6.1 mjf dn->d_name = kmem_zalloc(MAXNAMLEN, KM_NOSLEEP);
976 1.15.6.1 mjf va_start(ap, fmt);
977 1.15.6.1 mjf vsnprintf(dn->d_name, MAXNAMLEN, fmt, ap);
978 1.15.6.1 mjf va_end(ap);
979 1.15.6.1 mjf
980 1.15.6.1 mjf mutex_enter(&dname_lock);
981 1.15.6.1 mjf TAILQ_INSERT_TAIL(&device_names, dn, d_next);
982 1.15.6.1 mjf mutex_exit(&dname_lock);
983 1.15.6.1 mjf
984 1.15.6.1 mjf return 0;
985 1.15.6.1 mjf }
986 1.15.6.1 mjf
987 1.15.6.1 mjf /*
988 1.15.6.1 mjf * Remove a previously registered name for 'dev'.
989 1.15.6.1 mjf *
990 1.15.6.1 mjf * => This must be called twice with different values for 'dev' if
991 1.15.6.1 mjf * the caller previously registered a name for a character device
992 1.15.6.1 mjf * and a name for a block device.
993 1.15.6.1 mjf */
994 1.15.6.1 mjf int
995 1.15.6.1 mjf device_unregister_name(dev_t dev, const char *fmt, ...)
996 1.15.6.1 mjf {
997 1.15.6.1 mjf int error = 0;
998 1.15.6.1 mjf struct device_name *dn;
999 1.15.6.1 mjf va_list ap;
1000 1.15.6.1 mjf char name[MAXNAMLEN];
1001 1.15.6.1 mjf
1002 1.15.6.1 mjf va_start(ap, fmt);
1003 1.15.6.1 mjf vsnprintf(name, MAXNAMLEN, fmt, ap);
1004 1.15.6.1 mjf va_end(ap);
1005 1.15.6.1 mjf
1006 1.15.6.1 mjf mutex_enter(&dname_lock);
1007 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1008 1.15.6.1 mjf if (strcmp(dn->d_name, name) == 0)
1009 1.15.6.1 mjf break;
1010 1.15.6.1 mjf }
1011 1.15.6.1 mjf
1012 1.15.6.1 mjf if (dn != NULL)
1013 1.15.6.1 mjf dn->d_gone = true;
1014 1.15.6.1 mjf else
1015 1.15.6.1 mjf error = EINVAL;
1016 1.15.6.1 mjf
1017 1.15.6.1 mjf mutex_exit(&dname_lock);
1018 1.15.6.1 mjf return error;
1019 1.15.6.1 mjf }
1020 1.15.6.1 mjf
1021 1.15.6.1 mjf struct device_name *
1022 1.15.6.2 mjf device_lookup_info(dev_t dev, int is_char)
1023 1.15.6.1 mjf {
1024 1.15.6.1 mjf struct device_name *dn;
1025 1.15.6.1 mjf
1026 1.15.6.1 mjf mutex_enter(&dname_lock);
1027 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1028 1.15.6.2 mjf if ((dn->d_dev == dev) && (dn->d_char == is_char))
1029 1.15.6.1 mjf break;
1030 1.15.6.1 mjf }
1031 1.15.6.1 mjf mutex_exit(&dname_lock);
1032 1.15.6.1 mjf
1033 1.15.6.1 mjf return dn;
1034 1.15.6.1 mjf }
1035