subr_devsw.c revision 1.15.6.6 1 1.15.6.6 mjf /* $NetBSD: subr_devsw.c,v 1.15.6.6 2008/04/14 16:23:56 mjf Exp $ */
2 1.11 ad
3 1.2 gehenna /*-
4 1.11 ad * Copyright (c) 2001, 2002, 2007 The NetBSD Foundation, Inc.
5 1.2 gehenna * All rights reserved.
6 1.2 gehenna *
7 1.2 gehenna * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by MAEKAWA Masahide <gehenna (at) NetBSD.org>, and by Andrew Doran.
9 1.2 gehenna *
10 1.2 gehenna * Redistribution and use in source and binary forms, with or without
11 1.2 gehenna * modification, are permitted provided that the following conditions
12 1.2 gehenna * are met:
13 1.2 gehenna * 1. Redistributions of source code must retain the above copyright
14 1.2 gehenna * notice, this list of conditions and the following disclaimer.
15 1.2 gehenna * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 gehenna * notice, this list of conditions and the following disclaimer in the
17 1.2 gehenna * documentation and/or other materials provided with the distribution.
18 1.2 gehenna * 3. All advertising materials mentioning features or use of this software
19 1.2 gehenna * must display the following acknowledgement:
20 1.2 gehenna * This product includes software developed by the NetBSD
21 1.2 gehenna * Foundation, Inc. and its contributors.
22 1.2 gehenna * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 gehenna * contributors may be used to endorse or promote products derived
24 1.2 gehenna * from this software without specific prior written permission.
25 1.2 gehenna *
26 1.2 gehenna * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 gehenna * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 gehenna * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 gehenna * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 gehenna * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 gehenna * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 gehenna * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 gehenna * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 gehenna * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 gehenna * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 gehenna * POSSIBILITY OF SUCH DAMAGE.
37 1.2 gehenna */
38 1.11 ad
39 1.11 ad /*
40 1.11 ad * Overview
41 1.11 ad *
42 1.11 ad * subr_devsw.c: registers device drivers by name and by major
43 1.11 ad * number, and provides wrapper methods for performing I/O and
44 1.11 ad * other tasks on device drivers, keying on the device number
45 1.11 ad * (dev_t).
46 1.11 ad *
47 1.11 ad * When the system is built, the config(8) command generates
48 1.11 ad * static tables of device drivers built into the kernel image
49 1.11 ad * along with their associated methods. These are recorded in
50 1.11 ad * the cdevsw0 and bdevsw0 tables. Drivers can also be added to
51 1.11 ad * and removed from the system dynamically.
52 1.11 ad *
53 1.11 ad * Allocation
54 1.11 ad *
55 1.11 ad * When the system initially boots only the statically allocated
56 1.11 ad * indexes (bdevsw0, cdevsw0) are used. If these overflow due to
57 1.11 ad * allocation, we allocate a fixed block of memory to hold the new,
58 1.11 ad * expanded index. This "fork" of the table is only ever performed
59 1.11 ad * once in order to guarantee that other threads may safely access
60 1.11 ad * the device tables:
61 1.11 ad *
62 1.11 ad * o Once a thread has a "reference" to the table via an earlier
63 1.11 ad * open() call, we know that the entry in the table must exist
64 1.11 ad * and so it is safe to access it.
65 1.11 ad *
66 1.11 ad * o Regardless of whether other threads see the old or new
67 1.11 ad * pointers, they will point to a correct device switch
68 1.11 ad * structure for the operation being performed.
69 1.11 ad *
70 1.11 ad * XXX Currently, the wrapper methods such as cdev_read() verify
71 1.11 ad * that a device driver does in fact exist before calling the
72 1.11 ad * associated driver method. This should be changed so that
73 1.11 ad * once the device is has been referenced by a vnode (opened),
74 1.11 ad * calling the other methods should be valid until that reference
75 1.11 ad * is dropped.
76 1.11 ad */
77 1.7 lukem
78 1.7 lukem #include <sys/cdefs.h>
79 1.15.6.6 mjf __KERNEL_RCSID(0, "$NetBSD: subr_devsw.c,v 1.15.6.6 2008/04/14 16:23:56 mjf Exp $");
80 1.2 gehenna
81 1.2 gehenna #include <sys/param.h>
82 1.2 gehenna #include <sys/conf.h>
83 1.11 ad #include <sys/kmem.h>
84 1.2 gehenna #include <sys/systm.h>
85 1.11 ad #include <sys/poll.h>
86 1.11 ad #include <sys/tty.h>
87 1.15 matt #include <sys/cpu.h>
88 1.11 ad #include <sys/buf.h>
89 1.15.6.1 mjf #include <sys/dirent.h>
90 1.15.6.1 mjf #include <machine/stdarg.h>
91 1.15.6.1 mjf #include <sys/disklabel.h>
92 1.2 gehenna
93 1.2 gehenna #ifdef DEVSW_DEBUG
94 1.2 gehenna #define DPRINTF(x) printf x
95 1.2 gehenna #else /* DEVSW_DEBUG */
96 1.2 gehenna #define DPRINTF(x)
97 1.2 gehenna #endif /* DEVSW_DEBUG */
98 1.2 gehenna
99 1.11 ad #define MAXDEVSW 512 /* the maximum of major device number */
100 1.2 gehenna #define BDEVSW_SIZE (sizeof(struct bdevsw *))
101 1.2 gehenna #define CDEVSW_SIZE (sizeof(struct cdevsw *))
102 1.2 gehenna #define DEVSWCONV_SIZE (sizeof(struct devsw_conv))
103 1.2 gehenna
104 1.2 gehenna extern const struct bdevsw **bdevsw, *bdevsw0[];
105 1.2 gehenna extern const struct cdevsw **cdevsw, *cdevsw0[];
106 1.2 gehenna extern struct devsw_conv *devsw_conv, devsw_conv0[];
107 1.2 gehenna extern const int sys_bdevsws, sys_cdevsws;
108 1.2 gehenna extern int max_bdevsws, max_cdevsws, max_devsw_convs;
109 1.2 gehenna
110 1.14 pooka static int bdevsw_attach(const struct bdevsw *, int *);
111 1.14 pooka static int cdevsw_attach(const struct cdevsw *, int *);
112 1.11 ad static void devsw_detach_locked(const struct bdevsw *, const struct cdevsw *);
113 1.11 ad
114 1.15.6.6 mjf static struct device_name *device_name_alloc(dev_t, device_t, bool,
115 1.15.6.6 mjf enum devtype, const char *, va_list);
116 1.15.6.6 mjf
117 1.13 ad kmutex_t devsw_lock;
118 1.15.6.1 mjf extern kmutex_t dname_lock;
119 1.15.6.1 mjf
120 1.15.6.1 mjf /*
121 1.15.6.1 mjf * A table of initialisation functions for device drivers that
122 1.15.6.1 mjf * don't have an attach routine.
123 1.15.6.1 mjf */
124 1.15.6.1 mjf void (*devsw_init_funcs[])(void) = {
125 1.15.6.1 mjf bpf_init,
126 1.15.6.1 mjf cttyinit,
127 1.15.6.1 mjf mem_init,
128 1.15.6.1 mjf swap_init,
129 1.15.6.1 mjf NULL,
130 1.15.6.1 mjf };
131 1.11 ad
132 1.11 ad void
133 1.11 ad devsw_init(void)
134 1.11 ad {
135 1.15.6.1 mjf int i;
136 1.11 ad
137 1.11 ad KASSERT(sys_bdevsws < MAXDEVSW - 1);
138 1.11 ad KASSERT(sys_cdevsws < MAXDEVSW - 1);
139 1.11 ad
140 1.11 ad mutex_init(&devsw_lock, MUTEX_DEFAULT, IPL_NONE);
141 1.15.6.1 mjf mutex_init(&dname_lock, MUTEX_DEFAULT, IPL_NONE);
142 1.15.6.1 mjf TAILQ_INIT(&device_names);
143 1.15.6.1 mjf
144 1.15.6.1 mjf /*
145 1.15.6.1 mjf * Technically, some device drivers don't ever get 'attached'
146 1.15.6.1 mjf * so we provide this table to allow device drivers to register
147 1.15.6.1 mjf * their device names.
148 1.15.6.1 mjf */
149 1.15.6.1 mjf for (i = 0; devsw_init_funcs[i] != NULL; i++)
150 1.15.6.1 mjf devsw_init_funcs[i]();
151 1.11 ad }
152 1.2 gehenna
153 1.2 gehenna int
154 1.2 gehenna devsw_attach(const char *devname, const struct bdevsw *bdev, int *bmajor,
155 1.2 gehenna const struct cdevsw *cdev, int *cmajor)
156 1.2 gehenna {
157 1.2 gehenna struct devsw_conv *conv;
158 1.2 gehenna char *name;
159 1.2 gehenna int error, i;
160 1.2 gehenna
161 1.2 gehenna if (devname == NULL || cdev == NULL)
162 1.2 gehenna return (EINVAL);
163 1.2 gehenna
164 1.11 ad mutex_enter(&devsw_lock);
165 1.11 ad
166 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
167 1.2 gehenna conv = &devsw_conv[i];
168 1.2 gehenna if (conv->d_name == NULL || strcmp(devname, conv->d_name) != 0)
169 1.2 gehenna continue;
170 1.2 gehenna
171 1.2 gehenna if (*bmajor < 0)
172 1.2 gehenna *bmajor = conv->d_bmajor;
173 1.2 gehenna if (*cmajor < 0)
174 1.2 gehenna *cmajor = conv->d_cmajor;
175 1.2 gehenna
176 1.11 ad if (*bmajor != conv->d_bmajor || *cmajor != conv->d_cmajor) {
177 1.11 ad error = EINVAL;
178 1.11 ad goto fail;
179 1.11 ad }
180 1.11 ad if ((*bmajor >= 0 && bdev == NULL) || *cmajor < 0) {
181 1.11 ad error = EINVAL;
182 1.11 ad goto fail;
183 1.11 ad }
184 1.2 gehenna
185 1.2 gehenna if ((*bmajor >= 0 && bdevsw[*bmajor] != NULL) ||
186 1.11 ad cdevsw[*cmajor] != NULL) {
187 1.11 ad error = EEXIST;
188 1.11 ad goto fail;
189 1.11 ad }
190 1.2 gehenna
191 1.2 gehenna if (bdev != NULL)
192 1.2 gehenna bdevsw[*bmajor] = bdev;
193 1.2 gehenna cdevsw[*cmajor] = cdev;
194 1.2 gehenna
195 1.11 ad mutex_exit(&devsw_lock);
196 1.2 gehenna return (0);
197 1.2 gehenna }
198 1.2 gehenna
199 1.14 pooka error = bdevsw_attach(bdev, bmajor);
200 1.11 ad if (error != 0)
201 1.11 ad goto fail;
202 1.14 pooka error = cdevsw_attach(cdev, cmajor);
203 1.2 gehenna if (error != 0) {
204 1.11 ad devsw_detach_locked(bdev, NULL);
205 1.11 ad goto fail;
206 1.2 gehenna }
207 1.2 gehenna
208 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
209 1.2 gehenna if (devsw_conv[i].d_name == NULL)
210 1.2 gehenna break;
211 1.2 gehenna }
212 1.2 gehenna if (i == max_devsw_convs) {
213 1.2 gehenna struct devsw_conv *newptr;
214 1.2 gehenna int old, new;
215 1.2 gehenna
216 1.2 gehenna old = max_devsw_convs;
217 1.2 gehenna new = old + 1;
218 1.2 gehenna
219 1.11 ad newptr = kmem_zalloc(new * DEVSWCONV_SIZE, KM_NOSLEEP);
220 1.2 gehenna if (newptr == NULL) {
221 1.11 ad devsw_detach_locked(bdev, cdev);
222 1.11 ad error = ENOMEM;
223 1.11 ad goto fail;
224 1.2 gehenna }
225 1.2 gehenna newptr[old].d_name = NULL;
226 1.2 gehenna newptr[old].d_bmajor = -1;
227 1.2 gehenna newptr[old].d_cmajor = -1;
228 1.2 gehenna memcpy(newptr, devsw_conv, old * DEVSWCONV_SIZE);
229 1.2 gehenna if (devsw_conv != devsw_conv0)
230 1.11 ad kmem_free(devsw_conv, old * DEVSWCONV_SIZE);
231 1.2 gehenna devsw_conv = newptr;
232 1.2 gehenna max_devsw_convs = new;
233 1.2 gehenna }
234 1.2 gehenna
235 1.6 itojun i = strlen(devname) + 1;
236 1.11 ad name = kmem_alloc(i, KM_NOSLEEP);
237 1.2 gehenna if (name == NULL) {
238 1.11 ad devsw_detach_locked(bdev, cdev);
239 1.11 ad goto fail;
240 1.2 gehenna }
241 1.6 itojun strlcpy(name, devname, i);
242 1.2 gehenna
243 1.2 gehenna devsw_conv[i].d_name = name;
244 1.2 gehenna devsw_conv[i].d_bmajor = *bmajor;
245 1.2 gehenna devsw_conv[i].d_cmajor = *cmajor;
246 1.2 gehenna
247 1.11 ad mutex_exit(&devsw_lock);
248 1.2 gehenna return (0);
249 1.11 ad fail:
250 1.11 ad mutex_exit(&devsw_lock);
251 1.11 ad return (error);
252 1.2 gehenna }
253 1.2 gehenna
254 1.2 gehenna static int
255 1.14 pooka bdevsw_attach(const struct bdevsw *devsw, int *devmajor)
256 1.2 gehenna {
257 1.11 ad const struct bdevsw **newptr;
258 1.2 gehenna int bmajor, i;
259 1.2 gehenna
260 1.11 ad KASSERT(mutex_owned(&devsw_lock));
261 1.11 ad
262 1.2 gehenna if (devsw == NULL)
263 1.2 gehenna return (0);
264 1.2 gehenna
265 1.2 gehenna if (*devmajor < 0) {
266 1.2 gehenna for (bmajor = sys_bdevsws ; bmajor < max_bdevsws ; bmajor++) {
267 1.2 gehenna if (bdevsw[bmajor] != NULL)
268 1.2 gehenna continue;
269 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
270 1.2 gehenna if (devsw_conv[i].d_bmajor == bmajor)
271 1.2 gehenna break;
272 1.2 gehenna }
273 1.2 gehenna if (i != max_devsw_convs)
274 1.2 gehenna continue;
275 1.2 gehenna break;
276 1.2 gehenna }
277 1.3 gehenna *devmajor = bmajor;
278 1.2 gehenna }
279 1.11 ad
280 1.2 gehenna if (*devmajor >= MAXDEVSW) {
281 1.11 ad printf("bdevsw_attach: block majors exhausted");
282 1.2 gehenna return (ENOMEM);
283 1.2 gehenna }
284 1.2 gehenna
285 1.2 gehenna if (*devmajor >= max_bdevsws) {
286 1.11 ad KASSERT(bdevsw == bdevsw0);
287 1.11 ad newptr = kmem_zalloc(MAXDEVSW * BDEVSW_SIZE, KM_NOSLEEP);
288 1.2 gehenna if (newptr == NULL)
289 1.2 gehenna return (ENOMEM);
290 1.11 ad memcpy(newptr, bdevsw, max_bdevsws * BDEVSW_SIZE);
291 1.2 gehenna bdevsw = newptr;
292 1.11 ad max_bdevsws = MAXDEVSW;
293 1.2 gehenna }
294 1.2 gehenna
295 1.2 gehenna if (bdevsw[*devmajor] != NULL)
296 1.2 gehenna return (EEXIST);
297 1.2 gehenna
298 1.2 gehenna bdevsw[*devmajor] = devsw;
299 1.2 gehenna
300 1.2 gehenna return (0);
301 1.2 gehenna }
302 1.2 gehenna
303 1.2 gehenna static int
304 1.14 pooka cdevsw_attach(const struct cdevsw *devsw, int *devmajor)
305 1.2 gehenna {
306 1.11 ad const struct cdevsw **newptr;
307 1.2 gehenna int cmajor, i;
308 1.2 gehenna
309 1.11 ad KASSERT(mutex_owned(&devsw_lock));
310 1.11 ad
311 1.2 gehenna if (*devmajor < 0) {
312 1.2 gehenna for (cmajor = sys_cdevsws ; cmajor < max_cdevsws ; cmajor++) {
313 1.2 gehenna if (cdevsw[cmajor] != NULL)
314 1.2 gehenna continue;
315 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
316 1.2 gehenna if (devsw_conv[i].d_cmajor == cmajor)
317 1.2 gehenna break;
318 1.2 gehenna }
319 1.2 gehenna if (i != max_devsw_convs)
320 1.2 gehenna continue;
321 1.2 gehenna break;
322 1.2 gehenna }
323 1.3 gehenna *devmajor = cmajor;
324 1.2 gehenna }
325 1.11 ad
326 1.2 gehenna if (*devmajor >= MAXDEVSW) {
327 1.11 ad printf("cdevsw_attach: character majors exhausted");
328 1.2 gehenna return (ENOMEM);
329 1.2 gehenna }
330 1.2 gehenna
331 1.2 gehenna if (*devmajor >= max_cdevsws) {
332 1.11 ad KASSERT(cdevsw == cdevsw0);
333 1.11 ad newptr = kmem_zalloc(MAXDEVSW * CDEVSW_SIZE, KM_NOSLEEP);
334 1.2 gehenna if (newptr == NULL)
335 1.2 gehenna return (ENOMEM);
336 1.11 ad memcpy(newptr, cdevsw, max_cdevsws * CDEVSW_SIZE);
337 1.2 gehenna cdevsw = newptr;
338 1.11 ad max_cdevsws = MAXDEVSW;
339 1.2 gehenna }
340 1.2 gehenna
341 1.2 gehenna if (cdevsw[*devmajor] != NULL)
342 1.2 gehenna return (EEXIST);
343 1.2 gehenna
344 1.2 gehenna cdevsw[*devmajor] = devsw;
345 1.2 gehenna
346 1.2 gehenna return (0);
347 1.2 gehenna }
348 1.2 gehenna
349 1.11 ad static void
350 1.11 ad devsw_detach_locked(const struct bdevsw *bdev, const struct cdevsw *cdev)
351 1.2 gehenna {
352 1.2 gehenna int i;
353 1.2 gehenna
354 1.11 ad KASSERT(mutex_owned(&devsw_lock));
355 1.11 ad
356 1.2 gehenna if (bdev != NULL) {
357 1.2 gehenna for (i = 0 ; i < max_bdevsws ; i++) {
358 1.2 gehenna if (bdevsw[i] != bdev)
359 1.2 gehenna continue;
360 1.2 gehenna bdevsw[i] = NULL;
361 1.2 gehenna break;
362 1.2 gehenna }
363 1.2 gehenna }
364 1.2 gehenna if (cdev != NULL) {
365 1.2 gehenna for (i = 0 ; i < max_cdevsws ; i++) {
366 1.2 gehenna if (cdevsw[i] != cdev)
367 1.2 gehenna continue;
368 1.2 gehenna cdevsw[i] = NULL;
369 1.2 gehenna break;
370 1.2 gehenna }
371 1.2 gehenna }
372 1.2 gehenna }
373 1.2 gehenna
374 1.11 ad void
375 1.11 ad devsw_detach(const struct bdevsw *bdev, const struct cdevsw *cdev)
376 1.11 ad {
377 1.11 ad
378 1.11 ad mutex_enter(&devsw_lock);
379 1.11 ad devsw_detach_locked(bdev, cdev);
380 1.11 ad mutex_exit(&devsw_lock);
381 1.11 ad }
382 1.11 ad
383 1.11 ad /*
384 1.11 ad * Look up a block device by number.
385 1.11 ad *
386 1.11 ad * => Caller must ensure that the device is attached.
387 1.11 ad */
388 1.2 gehenna const struct bdevsw *
389 1.2 gehenna bdevsw_lookup(dev_t dev)
390 1.2 gehenna {
391 1.2 gehenna int bmajor;
392 1.2 gehenna
393 1.2 gehenna if (dev == NODEV)
394 1.2 gehenna return (NULL);
395 1.2 gehenna bmajor = major(dev);
396 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws)
397 1.2 gehenna return (NULL);
398 1.2 gehenna
399 1.2 gehenna return (bdevsw[bmajor]);
400 1.2 gehenna }
401 1.2 gehenna
402 1.11 ad /*
403 1.11 ad * Look up a character device by number.
404 1.11 ad *
405 1.11 ad * => Caller must ensure that the device is attached.
406 1.11 ad */
407 1.2 gehenna const struct cdevsw *
408 1.2 gehenna cdevsw_lookup(dev_t dev)
409 1.2 gehenna {
410 1.2 gehenna int cmajor;
411 1.2 gehenna
412 1.2 gehenna if (dev == NODEV)
413 1.2 gehenna return (NULL);
414 1.2 gehenna cmajor = major(dev);
415 1.2 gehenna if (cmajor < 0 || cmajor >= max_cdevsws)
416 1.2 gehenna return (NULL);
417 1.2 gehenna
418 1.2 gehenna return (cdevsw[cmajor]);
419 1.2 gehenna }
420 1.2 gehenna
421 1.11 ad /*
422 1.11 ad * Look up a block device by reference to its operations set.
423 1.11 ad *
424 1.11 ad * => Caller must ensure that the device is not detached, and therefore
425 1.11 ad * that the returned major is still valid when dereferenced.
426 1.11 ad */
427 1.2 gehenna int
428 1.2 gehenna bdevsw_lookup_major(const struct bdevsw *bdev)
429 1.2 gehenna {
430 1.2 gehenna int bmajor;
431 1.2 gehenna
432 1.2 gehenna for (bmajor = 0 ; bmajor < max_bdevsws ; bmajor++) {
433 1.2 gehenna if (bdevsw[bmajor] == bdev)
434 1.2 gehenna return (bmajor);
435 1.2 gehenna }
436 1.2 gehenna
437 1.2 gehenna return (-1);
438 1.2 gehenna }
439 1.2 gehenna
440 1.11 ad /*
441 1.11 ad * Look up a character device by reference to its operations set.
442 1.11 ad *
443 1.11 ad * => Caller must ensure that the device is not detached, and therefore
444 1.11 ad * that the returned major is still valid when dereferenced.
445 1.11 ad */
446 1.2 gehenna int
447 1.2 gehenna cdevsw_lookup_major(const struct cdevsw *cdev)
448 1.2 gehenna {
449 1.2 gehenna int cmajor;
450 1.2 gehenna
451 1.2 gehenna for (cmajor = 0 ; cmajor < max_cdevsws ; cmajor++) {
452 1.2 gehenna if (cdevsw[cmajor] == cdev)
453 1.2 gehenna return (cmajor);
454 1.2 gehenna }
455 1.2 gehenna
456 1.2 gehenna return (-1);
457 1.2 gehenna }
458 1.2 gehenna
459 1.2 gehenna /*
460 1.2 gehenna * Convert from block major number to name.
461 1.11 ad *
462 1.11 ad * => Caller must ensure that the device is not detached, and therefore
463 1.11 ad * that the name pointer is still valid when dereferenced.
464 1.2 gehenna */
465 1.2 gehenna const char *
466 1.2 gehenna devsw_blk2name(int bmajor)
467 1.2 gehenna {
468 1.11 ad const char *name;
469 1.2 gehenna int cmajor, i;
470 1.2 gehenna
471 1.11 ad name = NULL;
472 1.11 ad cmajor = -1;
473 1.11 ad
474 1.11 ad mutex_enter(&devsw_lock);
475 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
476 1.11 ad mutex_exit(&devsw_lock);
477 1.2 gehenna return (NULL);
478 1.2 gehenna }
479 1.11 ad for (i = 0 ; i < max_devsw_convs; i++) {
480 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
481 1.11 ad cmajor = devsw_conv[i].d_cmajor;
482 1.11 ad break;
483 1.11 ad }
484 1.11 ad }
485 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
486 1.11 ad name = devsw_conv[i].d_name;
487 1.11 ad mutex_exit(&devsw_lock);
488 1.2 gehenna
489 1.11 ad return (name);
490 1.2 gehenna }
491 1.2 gehenna
492 1.2 gehenna /*
493 1.2 gehenna * Convert from device name to block major number.
494 1.11 ad *
495 1.11 ad * => Caller must ensure that the device is not detached, and therefore
496 1.11 ad * that the major number is still valid when dereferenced.
497 1.2 gehenna */
498 1.2 gehenna int
499 1.2 gehenna devsw_name2blk(const char *name, char *devname, size_t devnamelen)
500 1.2 gehenna {
501 1.2 gehenna struct devsw_conv *conv;
502 1.2 gehenna int bmajor, i;
503 1.2 gehenna
504 1.2 gehenna if (name == NULL)
505 1.2 gehenna return (-1);
506 1.2 gehenna
507 1.11 ad mutex_enter(&devsw_lock);
508 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
509 1.5 mrg size_t len;
510 1.5 mrg
511 1.2 gehenna conv = &devsw_conv[i];
512 1.2 gehenna if (conv->d_name == NULL)
513 1.2 gehenna continue;
514 1.5 mrg len = strlen(conv->d_name);
515 1.5 mrg if (strncmp(conv->d_name, name, len) != 0)
516 1.5 mrg continue;
517 1.5 mrg if (*(name +len) && !isdigit(*(name + len)))
518 1.2 gehenna continue;
519 1.2 gehenna bmajor = conv->d_bmajor;
520 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws ||
521 1.2 gehenna bdevsw[bmajor] == NULL)
522 1.5 mrg break;
523 1.2 gehenna if (devname != NULL) {
524 1.2 gehenna #ifdef DEVSW_DEBUG
525 1.2 gehenna if (strlen(conv->d_name) >= devnamelen)
526 1.2 gehenna printf("devsw_name2blk: too short buffer");
527 1.2 gehenna #endif /* DEVSW_DEBUG */
528 1.4 tsutsui strncpy(devname, conv->d_name, devnamelen);
529 1.2 gehenna devname[devnamelen - 1] = '\0';
530 1.2 gehenna }
531 1.11 ad mutex_exit(&devsw_lock);
532 1.2 gehenna return (bmajor);
533 1.2 gehenna }
534 1.2 gehenna
535 1.11 ad mutex_exit(&devsw_lock);
536 1.2 gehenna return (-1);
537 1.2 gehenna }
538 1.2 gehenna
539 1.2 gehenna /*
540 1.15.6.3 mjf * Convert from device name to char major number.
541 1.15.6.3 mjf *
542 1.15.6.3 mjf * => Caller must ensure that the device is not detached, and therefore
543 1.15.6.3 mjf * that the major number is still valid when dereferenced.
544 1.15.6.3 mjf */
545 1.15.6.3 mjf int
546 1.15.6.3 mjf devsw_name2chr(const char *name, char *devname, size_t devnamelen)
547 1.15.6.3 mjf {
548 1.15.6.3 mjf struct devsw_conv *conv;
549 1.15.6.3 mjf int cmajor, i;
550 1.15.6.3 mjf
551 1.15.6.3 mjf if (name == NULL)
552 1.15.6.3 mjf return (-1);
553 1.15.6.3 mjf
554 1.15.6.3 mjf mutex_enter(&devsw_lock);
555 1.15.6.3 mjf for (i = 0 ; i < max_devsw_convs ; i++) {
556 1.15.6.3 mjf size_t len;
557 1.15.6.3 mjf
558 1.15.6.3 mjf conv = &devsw_conv[i];
559 1.15.6.3 mjf if (conv->d_name == NULL)
560 1.15.6.3 mjf continue;
561 1.15.6.3 mjf len = strlen(conv->d_name);
562 1.15.6.3 mjf if (strncmp(conv->d_name, name, len) != 0)
563 1.15.6.3 mjf continue;
564 1.15.6.3 mjf if (*(name +len) && !isdigit(*(name + len)))
565 1.15.6.3 mjf continue;
566 1.15.6.3 mjf cmajor = conv->d_cmajor;
567 1.15.6.3 mjf if (cmajor < 0 || cmajor >= max_cdevsws ||
568 1.15.6.3 mjf cdevsw[cmajor] == NULL)
569 1.15.6.3 mjf break;
570 1.15.6.3 mjf if (devname != NULL) {
571 1.15.6.3 mjf #ifdef DEVSW_DEBUG
572 1.15.6.3 mjf if (strlen(conv->d_name) >= devnamelen)
573 1.15.6.3 mjf printf("devsw_name2chr: too short buffer");
574 1.15.6.3 mjf #endif /* DEVSW_DEBUG */
575 1.15.6.3 mjf strncpy(devname, conv->d_name, devnamelen);
576 1.15.6.3 mjf devname[devnamelen - 1] = '\0';
577 1.15.6.3 mjf }
578 1.15.6.3 mjf mutex_exit(&devsw_lock);
579 1.15.6.3 mjf return (cmajor);
580 1.15.6.3 mjf }
581 1.15.6.3 mjf
582 1.15.6.3 mjf mutex_exit(&devsw_lock);
583 1.15.6.3 mjf return (-1);
584 1.15.6.3 mjf }
585 1.15.6.3 mjf
586 1.15.6.3 mjf /*
587 1.2 gehenna * Convert from character dev_t to block dev_t.
588 1.11 ad *
589 1.11 ad * => Caller must ensure that the device is not detached, and therefore
590 1.11 ad * that the major number is still valid when dereferenced.
591 1.2 gehenna */
592 1.2 gehenna dev_t
593 1.2 gehenna devsw_chr2blk(dev_t cdev)
594 1.2 gehenna {
595 1.2 gehenna int bmajor, cmajor, i;
596 1.11 ad dev_t rv;
597 1.2 gehenna
598 1.2 gehenna cmajor = major(cdev);
599 1.11 ad bmajor = -1;
600 1.11 ad rv = NODEV;
601 1.2 gehenna
602 1.11 ad mutex_enter(&devsw_lock);
603 1.11 ad if (cmajor < 0 || cmajor >= max_cdevsws || cdevsw[cmajor] == NULL) {
604 1.11 ad mutex_exit(&devsw_lock);
605 1.11 ad return (NODEV);
606 1.11 ad }
607 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
608 1.11 ad if (devsw_conv[i].d_cmajor == cmajor) {
609 1.11 ad bmajor = devsw_conv[i].d_bmajor;
610 1.11 ad break;
611 1.11 ad }
612 1.2 gehenna }
613 1.11 ad if (bmajor >= 0 && bmajor < max_bdevsws && bdevsw[bmajor] != NULL)
614 1.11 ad rv = makedev(bmajor, minor(cdev));
615 1.11 ad mutex_exit(&devsw_lock);
616 1.2 gehenna
617 1.11 ad return (rv);
618 1.2 gehenna }
619 1.2 gehenna
620 1.2 gehenna /*
621 1.2 gehenna * Convert from block dev_t to character dev_t.
622 1.11 ad *
623 1.11 ad * => Caller must ensure that the device is not detached, and therefore
624 1.11 ad * that the major number is still valid when dereferenced.
625 1.2 gehenna */
626 1.2 gehenna dev_t
627 1.2 gehenna devsw_blk2chr(dev_t bdev)
628 1.2 gehenna {
629 1.2 gehenna int bmajor, cmajor, i;
630 1.11 ad dev_t rv;
631 1.2 gehenna
632 1.11 ad bmajor = major(bdev);
633 1.11 ad cmajor = -1;
634 1.11 ad rv = NODEV;
635 1.11 ad
636 1.11 ad mutex_enter(&devsw_lock);
637 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
638 1.11 ad mutex_exit(&devsw_lock);
639 1.2 gehenna return (NODEV);
640 1.11 ad }
641 1.11 ad for (i = 0 ; i < max_devsw_convs ; i++) {
642 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
643 1.11 ad cmajor = devsw_conv[i].d_cmajor;
644 1.11 ad break;
645 1.11 ad }
646 1.11 ad }
647 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
648 1.11 ad rv = makedev(cmajor, minor(bdev));
649 1.11 ad mutex_exit(&devsw_lock);
650 1.2 gehenna
651 1.11 ad return (rv);
652 1.11 ad }
653 1.11 ad
654 1.11 ad /*
655 1.11 ad * Device access methods.
656 1.11 ad */
657 1.11 ad
658 1.11 ad #define DEV_LOCK(d) \
659 1.11 ad if ((d->d_flag & D_MPSAFE) == 0) { \
660 1.11 ad KERNEL_LOCK(1, curlwp); \
661 1.11 ad }
662 1.2 gehenna
663 1.11 ad #define DEV_UNLOCK(d) \
664 1.11 ad if ((d->d_flag & D_MPSAFE) == 0) { \
665 1.11 ad KERNEL_UNLOCK_ONE(curlwp); \
666 1.2 gehenna }
667 1.2 gehenna
668 1.11 ad int
669 1.11 ad bdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
670 1.11 ad {
671 1.11 ad const struct bdevsw *d;
672 1.11 ad int rv;
673 1.11 ad
674 1.11 ad /*
675 1.11 ad * For open we need to lock, in order to synchronize
676 1.11 ad * with attach/detach.
677 1.11 ad */
678 1.11 ad mutex_enter(&devsw_lock);
679 1.11 ad d = bdevsw_lookup(dev);
680 1.11 ad mutex_exit(&devsw_lock);
681 1.11 ad if (d == NULL)
682 1.11 ad return ENXIO;
683 1.11 ad
684 1.11 ad DEV_LOCK(d);
685 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
686 1.11 ad DEV_UNLOCK(d);
687 1.11 ad
688 1.11 ad return rv;
689 1.11 ad }
690 1.11 ad
691 1.11 ad int
692 1.11 ad bdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
693 1.11 ad {
694 1.11 ad const struct bdevsw *d;
695 1.11 ad int rv;
696 1.11 ad
697 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
698 1.11 ad return ENXIO;
699 1.11 ad
700 1.11 ad DEV_LOCK(d);
701 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
702 1.11 ad DEV_UNLOCK(d);
703 1.11 ad
704 1.11 ad return rv;
705 1.11 ad }
706 1.11 ad
707 1.11 ad void
708 1.11 ad bdev_strategy(struct buf *bp)
709 1.11 ad {
710 1.11 ad const struct bdevsw *d;
711 1.11 ad
712 1.11 ad if ((d = bdevsw_lookup(bp->b_dev)) == NULL)
713 1.11 ad panic("bdev_strategy");
714 1.11 ad
715 1.11 ad DEV_LOCK(d);
716 1.11 ad (*d->d_strategy)(bp);
717 1.11 ad DEV_UNLOCK(d);
718 1.11 ad }
719 1.11 ad
720 1.11 ad int
721 1.11 ad bdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
722 1.11 ad {
723 1.11 ad const struct bdevsw *d;
724 1.11 ad int rv;
725 1.11 ad
726 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
727 1.11 ad return ENXIO;
728 1.11 ad
729 1.11 ad DEV_LOCK(d);
730 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
731 1.11 ad DEV_UNLOCK(d);
732 1.11 ad
733 1.11 ad return rv;
734 1.11 ad }
735 1.11 ad
736 1.11 ad int
737 1.11 ad bdev_dump(dev_t dev, daddr_t addr, void *data, size_t sz)
738 1.11 ad {
739 1.11 ad const struct bdevsw *d;
740 1.11 ad int rv;
741 1.11 ad
742 1.11 ad /*
743 1.11 ad * Dump can be called without the device open. Since it can
744 1.11 ad * currently only be called with the system paused (and in a
745 1.11 ad * potentially unstable state), we don't perform any locking.
746 1.11 ad */
747 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
748 1.11 ad return ENXIO;
749 1.11 ad
750 1.11 ad /* DEV_LOCK(d); */
751 1.11 ad rv = (*d->d_dump)(dev, addr, data, sz);
752 1.11 ad /* DEV_UNLOCK(d); */
753 1.11 ad
754 1.11 ad return rv;
755 1.11 ad }
756 1.11 ad
757 1.11 ad int
758 1.11 ad bdev_type(dev_t dev)
759 1.11 ad {
760 1.11 ad const struct bdevsw *d;
761 1.11 ad
762 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
763 1.11 ad return D_OTHER;
764 1.11 ad return d->d_flag & D_TYPEMASK;
765 1.11 ad }
766 1.11 ad
767 1.11 ad int
768 1.11 ad cdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
769 1.11 ad {
770 1.11 ad const struct cdevsw *d;
771 1.11 ad int rv;
772 1.11 ad
773 1.11 ad /*
774 1.11 ad * For open we need to lock, in order to synchronize
775 1.11 ad * with attach/detach.
776 1.11 ad */
777 1.11 ad mutex_enter(&devsw_lock);
778 1.11 ad d = cdevsw_lookup(dev);
779 1.11 ad mutex_exit(&devsw_lock);
780 1.11 ad if (d == NULL)
781 1.11 ad return ENXIO;
782 1.11 ad
783 1.11 ad DEV_LOCK(d);
784 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
785 1.11 ad DEV_UNLOCK(d);
786 1.11 ad
787 1.11 ad return rv;
788 1.11 ad }
789 1.11 ad
790 1.11 ad int
791 1.11 ad cdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
792 1.11 ad {
793 1.11 ad const struct cdevsw *d;
794 1.11 ad int rv;
795 1.11 ad
796 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
797 1.11 ad return ENXIO;
798 1.11 ad
799 1.11 ad DEV_LOCK(d);
800 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
801 1.11 ad DEV_UNLOCK(d);
802 1.11 ad
803 1.11 ad return rv;
804 1.11 ad }
805 1.11 ad
806 1.11 ad int
807 1.11 ad cdev_read(dev_t dev, struct uio *uio, int flag)
808 1.11 ad {
809 1.11 ad const struct cdevsw *d;
810 1.11 ad int rv;
811 1.11 ad
812 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
813 1.11 ad return ENXIO;
814 1.11 ad
815 1.11 ad DEV_LOCK(d);
816 1.11 ad rv = (*d->d_read)(dev, uio, flag);
817 1.11 ad DEV_UNLOCK(d);
818 1.11 ad
819 1.11 ad return rv;
820 1.11 ad }
821 1.11 ad
822 1.11 ad int
823 1.11 ad cdev_write(dev_t dev, struct uio *uio, int flag)
824 1.11 ad {
825 1.11 ad const struct cdevsw *d;
826 1.11 ad int rv;
827 1.11 ad
828 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
829 1.11 ad return ENXIO;
830 1.11 ad
831 1.11 ad DEV_LOCK(d);
832 1.11 ad rv = (*d->d_write)(dev, uio, flag);
833 1.11 ad DEV_UNLOCK(d);
834 1.11 ad
835 1.11 ad return rv;
836 1.11 ad }
837 1.11 ad
838 1.11 ad int
839 1.11 ad cdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
840 1.11 ad {
841 1.11 ad const struct cdevsw *d;
842 1.11 ad int rv;
843 1.11 ad
844 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
845 1.11 ad return ENXIO;
846 1.11 ad
847 1.11 ad DEV_LOCK(d);
848 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
849 1.11 ad DEV_UNLOCK(d);
850 1.11 ad
851 1.11 ad return rv;
852 1.11 ad }
853 1.11 ad
854 1.11 ad void
855 1.11 ad cdev_stop(struct tty *tp, int flag)
856 1.11 ad {
857 1.11 ad const struct cdevsw *d;
858 1.11 ad
859 1.11 ad if ((d = cdevsw_lookup(tp->t_dev)) == NULL)
860 1.11 ad return;
861 1.11 ad
862 1.11 ad DEV_LOCK(d);
863 1.11 ad (*d->d_stop)(tp, flag);
864 1.11 ad DEV_UNLOCK(d);
865 1.11 ad }
866 1.11 ad
867 1.11 ad struct tty *
868 1.11 ad cdev_tty(dev_t dev)
869 1.11 ad {
870 1.11 ad const struct cdevsw *d;
871 1.11 ad struct tty * rv;
872 1.11 ad
873 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
874 1.11 ad return NULL;
875 1.11 ad
876 1.12 ad /* XXX Check if necessary. */
877 1.12 ad if (d->d_tty == NULL)
878 1.12 ad return NULL;
879 1.12 ad
880 1.11 ad DEV_LOCK(d);
881 1.11 ad rv = (*d->d_tty)(dev);
882 1.11 ad DEV_UNLOCK(d);
883 1.11 ad
884 1.11 ad return rv;
885 1.11 ad }
886 1.11 ad
887 1.11 ad int
888 1.11 ad cdev_poll(dev_t dev, int flag, lwp_t *l)
889 1.11 ad {
890 1.11 ad const struct cdevsw *d;
891 1.11 ad int rv;
892 1.11 ad
893 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
894 1.11 ad return POLLERR;
895 1.11 ad
896 1.11 ad DEV_LOCK(d);
897 1.11 ad rv = (*d->d_poll)(dev, flag, l);
898 1.11 ad DEV_UNLOCK(d);
899 1.11 ad
900 1.11 ad return rv;
901 1.11 ad }
902 1.11 ad
903 1.11 ad paddr_t
904 1.11 ad cdev_mmap(dev_t dev, off_t off, int flag)
905 1.11 ad {
906 1.11 ad const struct cdevsw *d;
907 1.11 ad paddr_t rv;
908 1.11 ad
909 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
910 1.11 ad return (paddr_t)-1LL;
911 1.11 ad
912 1.11 ad DEV_LOCK(d);
913 1.11 ad rv = (*d->d_mmap)(dev, off, flag);
914 1.11 ad DEV_UNLOCK(d);
915 1.11 ad
916 1.11 ad return rv;
917 1.11 ad }
918 1.11 ad
919 1.11 ad int
920 1.11 ad cdev_kqfilter(dev_t dev, struct knote *kn)
921 1.11 ad {
922 1.11 ad const struct cdevsw *d;
923 1.11 ad int rv;
924 1.11 ad
925 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
926 1.11 ad return ENXIO;
927 1.11 ad
928 1.11 ad DEV_LOCK(d);
929 1.11 ad rv = (*d->d_kqfilter)(dev, kn);
930 1.11 ad DEV_UNLOCK(d);
931 1.11 ad
932 1.11 ad return rv;
933 1.11 ad }
934 1.11 ad
935 1.11 ad int
936 1.11 ad cdev_type(dev_t dev)
937 1.11 ad {
938 1.11 ad const struct cdevsw *d;
939 1.11 ad
940 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
941 1.11 ad return D_OTHER;
942 1.11 ad return d->d_flag & D_TYPEMASK;
943 1.2 gehenna }
944 1.15.6.1 mjf
945 1.15.6.6 mjf static struct device_name *
946 1.15.6.6 mjf device_name_alloc(dev_t dev, device_t devp, bool cdev,
947 1.15.6.6 mjf enum devtype dtype, const char *fmt, va_list src)
948 1.15.6.6 mjf {
949 1.15.6.6 mjf struct device_name *dn;
950 1.15.6.6 mjf va_list dst;
951 1.15.6.6 mjf
952 1.15.6.6 mjf /* TODO: Check for aliases */
953 1.15.6.6 mjf
954 1.15.6.6 mjf dn = kmem_zalloc(sizeof(*dn), KM_NOSLEEP);
955 1.15.6.6 mjf if (dn == NULL)
956 1.15.6.6 mjf return NULL;
957 1.15.6.6 mjf
958 1.15.6.6 mjf dn->d_dev = dev;
959 1.15.6.6 mjf dn->d_devp = devp;
960 1.15.6.6 mjf dn->d_char = cdev;
961 1.15.6.6 mjf dn->d_type = dtype;
962 1.15.6.6 mjf
963 1.15.6.6 mjf dn->d_name = kmem_zalloc(MAXNAMLEN, KM_NOSLEEP);
964 1.15.6.6 mjf va_copy(dst, src);
965 1.15.6.6 mjf vsnprintf(dn->d_name, MAXNAMLEN, fmt, dst);
966 1.15.6.6 mjf va_end(dst);
967 1.15.6.6 mjf
968 1.15.6.6 mjf return dn;
969 1.15.6.6 mjf }
970 1.15.6.6 mjf
971 1.15.6.1 mjf /*
972 1.15.6.1 mjf * Register a dev_t and name for a device driver with devfs.
973 1.15.6.1 mjf * We maintain a TAILQ of registered device drivers names and dev_t's.
974 1.15.6.1 mjf *
975 1.15.6.1 mjf * => if devp is NULL this device has no device_t instance. An example
976 1.15.6.1 mjf * of this is zero(4).
977 1.15.6.1 mjf *
978 1.15.6.1 mjf * => if there already exists another name for this dev_t, then 'name'
979 1.15.6.1 mjf * is assumed to be an alias of a previously registered device driver.
980 1.15.6.1 mjf * TODO: The above isn't actually true at the moment, we just return 0.
981 1.15.6.1 mjf *
982 1.15.6.1 mjf * => 'cdev' indiciates whether we are a char or block device.
983 1.15.6.1 mjf * If 'cdev' is true, we are a character device, otherwise we
984 1.15.6.1 mjf * are a block device.
985 1.15.6.1 mjf */
986 1.15.6.1 mjf int
987 1.15.6.6 mjf device_register_name(dev_t dev, device_t devp, bool cdev,
988 1.15.6.1 mjf enum devtype dtype, const char *fmt, ...)
989 1.15.6.1 mjf {
990 1.15.6.1 mjf struct device_name *dn;
991 1.15.6.1 mjf va_list ap;
992 1.15.6.1 mjf
993 1.15.6.6 mjf va_start(ap, fmt);
994 1.15.6.1 mjf
995 1.15.6.6 mjf if ((dn = device_name_alloc(dev, devp, cdev, dtype, fmt, ap)) == NULL)
996 1.15.6.1 mjf return ENOMEM;
997 1.15.6.1 mjf
998 1.15.6.1 mjf va_end(ap);
999 1.15.6.1 mjf
1000 1.15.6.1 mjf mutex_enter(&dname_lock);
1001 1.15.6.1 mjf TAILQ_INSERT_TAIL(&device_names, dn, d_next);
1002 1.15.6.1 mjf mutex_exit(&dname_lock);
1003 1.15.6.1 mjf
1004 1.15.6.1 mjf return 0;
1005 1.15.6.1 mjf }
1006 1.15.6.1 mjf
1007 1.15.6.1 mjf /*
1008 1.15.6.1 mjf * Remove a previously registered name for 'dev'.
1009 1.15.6.1 mjf *
1010 1.15.6.1 mjf * => This must be called twice with different values for 'dev' if
1011 1.15.6.1 mjf * the caller previously registered a name for a character device
1012 1.15.6.1 mjf * and a name for a block device.
1013 1.15.6.1 mjf */
1014 1.15.6.1 mjf int
1015 1.15.6.5 mjf device_deregister_name(dev_t dev, const char *fmt, ...)
1016 1.15.6.1 mjf {
1017 1.15.6.1 mjf int error = 0;
1018 1.15.6.1 mjf struct device_name *dn;
1019 1.15.6.1 mjf va_list ap;
1020 1.15.6.1 mjf char name[MAXNAMLEN];
1021 1.15.6.1 mjf
1022 1.15.6.1 mjf va_start(ap, fmt);
1023 1.15.6.1 mjf vsnprintf(name, MAXNAMLEN, fmt, ap);
1024 1.15.6.1 mjf va_end(ap);
1025 1.15.6.1 mjf
1026 1.15.6.1 mjf mutex_enter(&dname_lock);
1027 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1028 1.15.6.4 mjf if ((strcmp(dn->d_name, name) == 0) && (dn->d_gone == false))
1029 1.15.6.1 mjf break;
1030 1.15.6.1 mjf }
1031 1.15.6.1 mjf
1032 1.15.6.1 mjf if (dn != NULL)
1033 1.15.6.1 mjf dn->d_gone = true;
1034 1.15.6.1 mjf else
1035 1.15.6.1 mjf error = EINVAL;
1036 1.15.6.1 mjf
1037 1.15.6.1 mjf mutex_exit(&dname_lock);
1038 1.15.6.1 mjf return error;
1039 1.15.6.1 mjf }
1040 1.15.6.1 mjf
1041 1.15.6.4 mjf /*
1042 1.15.6.4 mjf * Remove all device names for this device_t.
1043 1.15.6.4 mjf */
1044 1.15.6.4 mjf int
1045 1.15.6.5 mjf device_deregister_all(device_t dev)
1046 1.15.6.4 mjf {
1047 1.15.6.4 mjf struct device_name *dn;
1048 1.15.6.4 mjf
1049 1.15.6.4 mjf mutex_enter(&dname_lock);
1050 1.15.6.4 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1051 1.15.6.4 mjf if ((dn->d_devp == dev) && (dn->d_gone == false))
1052 1.15.6.4 mjf dn->d_gone = true;
1053 1.15.6.4 mjf }
1054 1.15.6.4 mjf mutex_exit(&dname_lock);
1055 1.15.6.4 mjf return 0;
1056 1.15.6.4 mjf }
1057 1.15.6.4 mjf
1058 1.15.6.1 mjf struct device_name *
1059 1.15.6.2 mjf device_lookup_info(dev_t dev, int is_char)
1060 1.15.6.1 mjf {
1061 1.15.6.1 mjf struct device_name *dn;
1062 1.15.6.1 mjf
1063 1.15.6.1 mjf mutex_enter(&dname_lock);
1064 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1065 1.15.6.2 mjf if ((dn->d_dev == dev) && (dn->d_char == is_char))
1066 1.15.6.1 mjf break;
1067 1.15.6.1 mjf }
1068 1.15.6.1 mjf mutex_exit(&dname_lock);
1069 1.15.6.1 mjf
1070 1.15.6.1 mjf return dn;
1071 1.15.6.1 mjf }
1072 1.15.6.6 mjf
1073 1.15.6.6 mjf /*
1074 1.15.6.6 mjf * Register a name for a device_t and wait for the device file to be
1075 1.15.6.6 mjf * created in devfs mounts. Normally this operation is asynchronous in
1076 1.15.6.6 mjf * the sense that a device name is registered and at some later time
1077 1.15.6.6 mjf * a device file will appear in a devfs mount.
1078 1.15.6.6 mjf *
1079 1.15.6.6 mjf * cond - A kernel condition variable
1080 1.15.6.6 mjf * ticks - Timeout value in hz
1081 1.15.6.6 mjf *
1082 1.15.6.6 mjf * NOTE: There is no guarantee that a device file will be created,
1083 1.15.6.6 mjf * however, the caller will be notified in a synchronous manner
1084 1.15.6.6 mjf * whether the creation failed or not.
1085 1.15.6.6 mjf */
1086 1.15.6.6 mjf int
1087 1.15.6.6 mjf device_register_sync(dev_t dev, device_t devp, bool cdev,
1088 1.15.6.6 mjf enum devtype dtype, kcondvar_t cond, int ticks, const char *fmt, ...)
1089 1.15.6.6 mjf {
1090 1.15.6.6 mjf int error = 0;
1091 1.15.6.6 mjf struct device_name *dn;
1092 1.15.6.6 mjf va_list ap;
1093 1.15.6.6 mjf
1094 1.15.6.6 mjf va_start(ap, fmt);
1095 1.15.6.6 mjf
1096 1.15.6.6 mjf if ((dn = device_name_alloc(dev, devp, cdev, dtype, fmt, ap)) == NULL)
1097 1.15.6.6 mjf return ENOMEM;
1098 1.15.6.6 mjf dn->d_busy = true;
1099 1.15.6.6 mjf dn->d_cv = cond;
1100 1.15.6.6 mjf
1101 1.15.6.6 mjf va_end(ap);
1102 1.15.6.6 mjf
1103 1.15.6.6 mjf mutex_enter(&dname_lock);
1104 1.15.6.6 mjf TAILQ_INSERT_TAIL(&device_names, dn, d_next);
1105 1.15.6.6 mjf mutex_exit(&dname_lock);
1106 1.15.6.6 mjf
1107 1.15.6.6 mjf mutex_init(&dn->d_cvmutex, MUTEX_DEFAULT, IPL_NONE);
1108 1.15.6.6 mjf
1109 1.15.6.6 mjf mutex_enter(&dn->d_cvmutex);
1110 1.15.6.6 mjf
1111 1.15.6.6 mjf while (dn->d_busy == true) {
1112 1.15.6.6 mjf if (ticks <= 0)
1113 1.15.6.6 mjf error = cv_wait_sig(&dn->d_cv, &dn->d_cvmutex);
1114 1.15.6.6 mjf else
1115 1.15.6.6 mjf error = cv_timedwait_sig(&dn->d_cv,
1116 1.15.6.6 mjf &dn->d_cvmutex, ticks);
1117 1.15.6.6 mjf
1118 1.15.6.6 mjf }
1119 1.15.6.6 mjf error = dn->d_retval;
1120 1.15.6.6 mjf mutex_exit(&dn->d_cvmutex);
1121 1.15.6.6 mjf
1122 1.15.6.6 mjf return error;
1123 1.15.6.6 mjf }
1124