subr_devsw.c revision 1.15.6.9 1 1.15.6.7 mjf /* $NetBSD: subr_devsw.c,v 1.15.6.9 2009/01/17 13:29:19 mjf Exp $ */
2 1.11 ad
3 1.2 gehenna /*-
4 1.15.6.7 mjf * Copyright (c) 2001, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 gehenna * All rights reserved.
6 1.2 gehenna *
7 1.2 gehenna * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by MAEKAWA Masahide <gehenna (at) NetBSD.org>, and by Andrew Doran.
9 1.2 gehenna *
10 1.2 gehenna * Redistribution and use in source and binary forms, with or without
11 1.2 gehenna * modification, are permitted provided that the following conditions
12 1.2 gehenna * are met:
13 1.2 gehenna * 1. Redistributions of source code must retain the above copyright
14 1.2 gehenna * notice, this list of conditions and the following disclaimer.
15 1.2 gehenna * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 gehenna * notice, this list of conditions and the following disclaimer in the
17 1.2 gehenna * documentation and/or other materials provided with the distribution.
18 1.2 gehenna *
19 1.2 gehenna * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 gehenna * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 gehenna * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 gehenna * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 gehenna * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 gehenna * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 gehenna * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 gehenna * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 gehenna * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 gehenna * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 gehenna * POSSIBILITY OF SUCH DAMAGE.
30 1.2 gehenna */
31 1.11 ad
32 1.11 ad /*
33 1.11 ad * Overview
34 1.11 ad *
35 1.11 ad * subr_devsw.c: registers device drivers by name and by major
36 1.11 ad * number, and provides wrapper methods for performing I/O and
37 1.11 ad * other tasks on device drivers, keying on the device number
38 1.11 ad * (dev_t).
39 1.11 ad *
40 1.11 ad * When the system is built, the config(8) command generates
41 1.11 ad * static tables of device drivers built into the kernel image
42 1.11 ad * along with their associated methods. These are recorded in
43 1.11 ad * the cdevsw0 and bdevsw0 tables. Drivers can also be added to
44 1.11 ad * and removed from the system dynamically.
45 1.11 ad *
46 1.11 ad * Allocation
47 1.11 ad *
48 1.11 ad * When the system initially boots only the statically allocated
49 1.11 ad * indexes (bdevsw0, cdevsw0) are used. If these overflow due to
50 1.11 ad * allocation, we allocate a fixed block of memory to hold the new,
51 1.11 ad * expanded index. This "fork" of the table is only ever performed
52 1.11 ad * once in order to guarantee that other threads may safely access
53 1.11 ad * the device tables:
54 1.11 ad *
55 1.11 ad * o Once a thread has a "reference" to the table via an earlier
56 1.11 ad * open() call, we know that the entry in the table must exist
57 1.11 ad * and so it is safe to access it.
58 1.11 ad *
59 1.11 ad * o Regardless of whether other threads see the old or new
60 1.11 ad * pointers, they will point to a correct device switch
61 1.11 ad * structure for the operation being performed.
62 1.11 ad *
63 1.11 ad * XXX Currently, the wrapper methods such as cdev_read() verify
64 1.11 ad * that a device driver does in fact exist before calling the
65 1.11 ad * associated driver method. This should be changed so that
66 1.11 ad * once the device is has been referenced by a vnode (opened),
67 1.11 ad * calling the other methods should be valid until that reference
68 1.11 ad * is dropped.
69 1.11 ad */
70 1.7 lukem
71 1.7 lukem #include <sys/cdefs.h>
72 1.15.6.7 mjf __KERNEL_RCSID(0, "$NetBSD: subr_devsw.c,v 1.15.6.9 2009/01/17 13:29:19 mjf Exp $");
73 1.2 gehenna
74 1.2 gehenna #include <sys/param.h>
75 1.2 gehenna #include <sys/conf.h>
76 1.11 ad #include <sys/kmem.h>
77 1.2 gehenna #include <sys/systm.h>
78 1.11 ad #include <sys/poll.h>
79 1.11 ad #include <sys/tty.h>
80 1.15 matt #include <sys/cpu.h>
81 1.11 ad #include <sys/buf.h>
82 1.15.6.1 mjf #include <sys/dirent.h>
83 1.15.6.1 mjf #include <machine/stdarg.h>
84 1.15.6.1 mjf #include <sys/disklabel.h>
85 1.2 gehenna
86 1.2 gehenna #ifdef DEVSW_DEBUG
87 1.2 gehenna #define DPRINTF(x) printf x
88 1.2 gehenna #else /* DEVSW_DEBUG */
89 1.2 gehenna #define DPRINTF(x)
90 1.2 gehenna #endif /* DEVSW_DEBUG */
91 1.2 gehenna
92 1.11 ad #define MAXDEVSW 512 /* the maximum of major device number */
93 1.2 gehenna #define BDEVSW_SIZE (sizeof(struct bdevsw *))
94 1.2 gehenna #define CDEVSW_SIZE (sizeof(struct cdevsw *))
95 1.2 gehenna #define DEVSWCONV_SIZE (sizeof(struct devsw_conv))
96 1.2 gehenna
97 1.2 gehenna extern const struct bdevsw **bdevsw, *bdevsw0[];
98 1.2 gehenna extern const struct cdevsw **cdevsw, *cdevsw0[];
99 1.2 gehenna extern struct devsw_conv *devsw_conv, devsw_conv0[];
100 1.2 gehenna extern const int sys_bdevsws, sys_cdevsws;
101 1.2 gehenna extern int max_bdevsws, max_cdevsws, max_devsw_convs;
102 1.2 gehenna
103 1.14 pooka static int bdevsw_attach(const struct bdevsw *, int *);
104 1.14 pooka static int cdevsw_attach(const struct cdevsw *, int *);
105 1.11 ad static void devsw_detach_locked(const struct bdevsw *, const struct cdevsw *);
106 1.11 ad
107 1.15.6.6 mjf static struct device_name *device_name_alloc(dev_t, device_t, bool,
108 1.15.6.6 mjf enum devtype, const char *, va_list);
109 1.15.6.6 mjf
110 1.15.6.1 mjf extern kmutex_t dname_lock;
111 1.15.6.1 mjf
112 1.15.6.1 mjf /*
113 1.15.6.1 mjf * A table of initialisation functions for device drivers that
114 1.15.6.1 mjf * don't have an attach routine.
115 1.15.6.1 mjf */
116 1.15.6.1 mjf void (*devsw_init_funcs[])(void) = {
117 1.15.6.1 mjf bpf_init,
118 1.15.6.1 mjf cttyinit,
119 1.15.6.1 mjf mem_init,
120 1.15.6.1 mjf swap_init,
121 1.15.6.1 mjf NULL,
122 1.15.6.1 mjf };
123 1.11 ad
124 1.15.6.9 mjf kmutex_t device_lock;
125 1.15.6.9 mjf
126 1.11 ad void
127 1.11 ad devsw_init(void)
128 1.11 ad {
129 1.15.6.1 mjf int i;
130 1.11 ad
131 1.11 ad KASSERT(sys_bdevsws < MAXDEVSW - 1);
132 1.11 ad KASSERT(sys_cdevsws < MAXDEVSW - 1);
133 1.11 ad
134 1.15.6.9 mjf mutex_init(&device_lock, MUTEX_DEFAULT, IPL_NONE);
135 1.15.6.1 mjf mutex_init(&dname_lock, MUTEX_DEFAULT, IPL_NONE);
136 1.15.6.1 mjf TAILQ_INIT(&device_names);
137 1.15.6.1 mjf
138 1.15.6.1 mjf /*
139 1.15.6.1 mjf * Technically, some device drivers don't ever get 'attached'
140 1.15.6.1 mjf * so we provide this table to allow device drivers to register
141 1.15.6.1 mjf * their device names.
142 1.15.6.1 mjf */
143 1.15.6.1 mjf for (i = 0; devsw_init_funcs[i] != NULL; i++)
144 1.15.6.1 mjf devsw_init_funcs[i]();
145 1.11 ad }
146 1.2 gehenna
147 1.2 gehenna int
148 1.2 gehenna devsw_attach(const char *devname, const struct bdevsw *bdev, int *bmajor,
149 1.2 gehenna const struct cdevsw *cdev, int *cmajor)
150 1.2 gehenna {
151 1.2 gehenna struct devsw_conv *conv;
152 1.2 gehenna char *name;
153 1.2 gehenna int error, i;
154 1.2 gehenna
155 1.2 gehenna if (devname == NULL || cdev == NULL)
156 1.2 gehenna return (EINVAL);
157 1.2 gehenna
158 1.15.6.9 mjf mutex_enter(&device_lock);
159 1.11 ad
160 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
161 1.2 gehenna conv = &devsw_conv[i];
162 1.2 gehenna if (conv->d_name == NULL || strcmp(devname, conv->d_name) != 0)
163 1.2 gehenna continue;
164 1.2 gehenna
165 1.2 gehenna if (*bmajor < 0)
166 1.2 gehenna *bmajor = conv->d_bmajor;
167 1.2 gehenna if (*cmajor < 0)
168 1.2 gehenna *cmajor = conv->d_cmajor;
169 1.2 gehenna
170 1.11 ad if (*bmajor != conv->d_bmajor || *cmajor != conv->d_cmajor) {
171 1.11 ad error = EINVAL;
172 1.11 ad goto fail;
173 1.11 ad }
174 1.11 ad if ((*bmajor >= 0 && bdev == NULL) || *cmajor < 0) {
175 1.11 ad error = EINVAL;
176 1.11 ad goto fail;
177 1.11 ad }
178 1.2 gehenna
179 1.2 gehenna if ((*bmajor >= 0 && bdevsw[*bmajor] != NULL) ||
180 1.11 ad cdevsw[*cmajor] != NULL) {
181 1.11 ad error = EEXIST;
182 1.11 ad goto fail;
183 1.11 ad }
184 1.2 gehenna
185 1.2 gehenna if (bdev != NULL)
186 1.2 gehenna bdevsw[*bmajor] = bdev;
187 1.2 gehenna cdevsw[*cmajor] = cdev;
188 1.2 gehenna
189 1.15.6.9 mjf mutex_exit(&device_lock);
190 1.2 gehenna return (0);
191 1.2 gehenna }
192 1.2 gehenna
193 1.14 pooka error = bdevsw_attach(bdev, bmajor);
194 1.11 ad if (error != 0)
195 1.11 ad goto fail;
196 1.14 pooka error = cdevsw_attach(cdev, cmajor);
197 1.2 gehenna if (error != 0) {
198 1.11 ad devsw_detach_locked(bdev, NULL);
199 1.11 ad goto fail;
200 1.2 gehenna }
201 1.2 gehenna
202 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
203 1.2 gehenna if (devsw_conv[i].d_name == NULL)
204 1.2 gehenna break;
205 1.2 gehenna }
206 1.2 gehenna if (i == max_devsw_convs) {
207 1.2 gehenna struct devsw_conv *newptr;
208 1.2 gehenna int old, new;
209 1.2 gehenna
210 1.2 gehenna old = max_devsw_convs;
211 1.2 gehenna new = old + 1;
212 1.2 gehenna
213 1.11 ad newptr = kmem_zalloc(new * DEVSWCONV_SIZE, KM_NOSLEEP);
214 1.2 gehenna if (newptr == NULL) {
215 1.11 ad devsw_detach_locked(bdev, cdev);
216 1.11 ad error = ENOMEM;
217 1.11 ad goto fail;
218 1.2 gehenna }
219 1.2 gehenna newptr[old].d_name = NULL;
220 1.2 gehenna newptr[old].d_bmajor = -1;
221 1.2 gehenna newptr[old].d_cmajor = -1;
222 1.2 gehenna memcpy(newptr, devsw_conv, old * DEVSWCONV_SIZE);
223 1.2 gehenna if (devsw_conv != devsw_conv0)
224 1.11 ad kmem_free(devsw_conv, old * DEVSWCONV_SIZE);
225 1.2 gehenna devsw_conv = newptr;
226 1.2 gehenna max_devsw_convs = new;
227 1.2 gehenna }
228 1.2 gehenna
229 1.6 itojun i = strlen(devname) + 1;
230 1.11 ad name = kmem_alloc(i, KM_NOSLEEP);
231 1.2 gehenna if (name == NULL) {
232 1.11 ad devsw_detach_locked(bdev, cdev);
233 1.11 ad goto fail;
234 1.2 gehenna }
235 1.6 itojun strlcpy(name, devname, i);
236 1.2 gehenna
237 1.2 gehenna devsw_conv[i].d_name = name;
238 1.2 gehenna devsw_conv[i].d_bmajor = *bmajor;
239 1.2 gehenna devsw_conv[i].d_cmajor = *cmajor;
240 1.2 gehenna
241 1.15.6.9 mjf mutex_exit(&device_lock);
242 1.2 gehenna return (0);
243 1.11 ad fail:
244 1.15.6.9 mjf mutex_exit(&device_lock);
245 1.11 ad return (error);
246 1.2 gehenna }
247 1.2 gehenna
248 1.2 gehenna static int
249 1.14 pooka bdevsw_attach(const struct bdevsw *devsw, int *devmajor)
250 1.2 gehenna {
251 1.11 ad const struct bdevsw **newptr;
252 1.2 gehenna int bmajor, i;
253 1.2 gehenna
254 1.15.6.9 mjf KASSERT(mutex_owned(&device_lock));
255 1.11 ad
256 1.2 gehenna if (devsw == NULL)
257 1.2 gehenna return (0);
258 1.2 gehenna
259 1.2 gehenna if (*devmajor < 0) {
260 1.2 gehenna for (bmajor = sys_bdevsws ; bmajor < max_bdevsws ; bmajor++) {
261 1.2 gehenna if (bdevsw[bmajor] != NULL)
262 1.2 gehenna continue;
263 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
264 1.2 gehenna if (devsw_conv[i].d_bmajor == bmajor)
265 1.2 gehenna break;
266 1.2 gehenna }
267 1.2 gehenna if (i != max_devsw_convs)
268 1.2 gehenna continue;
269 1.2 gehenna break;
270 1.2 gehenna }
271 1.3 gehenna *devmajor = bmajor;
272 1.2 gehenna }
273 1.11 ad
274 1.2 gehenna if (*devmajor >= MAXDEVSW) {
275 1.11 ad printf("bdevsw_attach: block majors exhausted");
276 1.2 gehenna return (ENOMEM);
277 1.2 gehenna }
278 1.2 gehenna
279 1.2 gehenna if (*devmajor >= max_bdevsws) {
280 1.11 ad KASSERT(bdevsw == bdevsw0);
281 1.11 ad newptr = kmem_zalloc(MAXDEVSW * BDEVSW_SIZE, KM_NOSLEEP);
282 1.2 gehenna if (newptr == NULL)
283 1.2 gehenna return (ENOMEM);
284 1.11 ad memcpy(newptr, bdevsw, max_bdevsws * BDEVSW_SIZE);
285 1.2 gehenna bdevsw = newptr;
286 1.11 ad max_bdevsws = MAXDEVSW;
287 1.2 gehenna }
288 1.2 gehenna
289 1.2 gehenna if (bdevsw[*devmajor] != NULL)
290 1.2 gehenna return (EEXIST);
291 1.2 gehenna
292 1.2 gehenna bdevsw[*devmajor] = devsw;
293 1.2 gehenna
294 1.2 gehenna return (0);
295 1.2 gehenna }
296 1.2 gehenna
297 1.2 gehenna static int
298 1.14 pooka cdevsw_attach(const struct cdevsw *devsw, int *devmajor)
299 1.2 gehenna {
300 1.11 ad const struct cdevsw **newptr;
301 1.2 gehenna int cmajor, i;
302 1.2 gehenna
303 1.15.6.9 mjf KASSERT(mutex_owned(&device_lock));
304 1.11 ad
305 1.2 gehenna if (*devmajor < 0) {
306 1.2 gehenna for (cmajor = sys_cdevsws ; cmajor < max_cdevsws ; cmajor++) {
307 1.2 gehenna if (cdevsw[cmajor] != NULL)
308 1.2 gehenna continue;
309 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
310 1.2 gehenna if (devsw_conv[i].d_cmajor == cmajor)
311 1.2 gehenna break;
312 1.2 gehenna }
313 1.2 gehenna if (i != max_devsw_convs)
314 1.2 gehenna continue;
315 1.2 gehenna break;
316 1.2 gehenna }
317 1.3 gehenna *devmajor = cmajor;
318 1.2 gehenna }
319 1.11 ad
320 1.2 gehenna if (*devmajor >= MAXDEVSW) {
321 1.11 ad printf("cdevsw_attach: character majors exhausted");
322 1.2 gehenna return (ENOMEM);
323 1.2 gehenna }
324 1.2 gehenna
325 1.2 gehenna if (*devmajor >= max_cdevsws) {
326 1.11 ad KASSERT(cdevsw == cdevsw0);
327 1.11 ad newptr = kmem_zalloc(MAXDEVSW * CDEVSW_SIZE, KM_NOSLEEP);
328 1.2 gehenna if (newptr == NULL)
329 1.2 gehenna return (ENOMEM);
330 1.11 ad memcpy(newptr, cdevsw, max_cdevsws * CDEVSW_SIZE);
331 1.2 gehenna cdevsw = newptr;
332 1.11 ad max_cdevsws = MAXDEVSW;
333 1.2 gehenna }
334 1.2 gehenna
335 1.2 gehenna if (cdevsw[*devmajor] != NULL)
336 1.2 gehenna return (EEXIST);
337 1.2 gehenna
338 1.2 gehenna cdevsw[*devmajor] = devsw;
339 1.2 gehenna
340 1.2 gehenna return (0);
341 1.2 gehenna }
342 1.2 gehenna
343 1.11 ad static void
344 1.11 ad devsw_detach_locked(const struct bdevsw *bdev, const struct cdevsw *cdev)
345 1.2 gehenna {
346 1.2 gehenna int i;
347 1.2 gehenna
348 1.15.6.9 mjf KASSERT(mutex_owned(&device_lock));
349 1.11 ad
350 1.2 gehenna if (bdev != NULL) {
351 1.2 gehenna for (i = 0 ; i < max_bdevsws ; i++) {
352 1.2 gehenna if (bdevsw[i] != bdev)
353 1.2 gehenna continue;
354 1.2 gehenna bdevsw[i] = NULL;
355 1.2 gehenna break;
356 1.2 gehenna }
357 1.2 gehenna }
358 1.2 gehenna if (cdev != NULL) {
359 1.2 gehenna for (i = 0 ; i < max_cdevsws ; i++) {
360 1.2 gehenna if (cdevsw[i] != cdev)
361 1.2 gehenna continue;
362 1.2 gehenna cdevsw[i] = NULL;
363 1.2 gehenna break;
364 1.2 gehenna }
365 1.2 gehenna }
366 1.2 gehenna }
367 1.2 gehenna
368 1.15.6.7 mjf int
369 1.11 ad devsw_detach(const struct bdevsw *bdev, const struct cdevsw *cdev)
370 1.11 ad {
371 1.11 ad
372 1.15.6.9 mjf mutex_enter(&device_lock);
373 1.11 ad devsw_detach_locked(bdev, cdev);
374 1.15.6.9 mjf mutex_exit(&device_lock);
375 1.15.6.7 mjf return 0;
376 1.11 ad }
377 1.11 ad
378 1.11 ad /*
379 1.11 ad * Look up a block device by number.
380 1.11 ad *
381 1.11 ad * => Caller must ensure that the device is attached.
382 1.11 ad */
383 1.2 gehenna const struct bdevsw *
384 1.2 gehenna bdevsw_lookup(dev_t dev)
385 1.2 gehenna {
386 1.2 gehenna int bmajor;
387 1.2 gehenna
388 1.2 gehenna if (dev == NODEV)
389 1.2 gehenna return (NULL);
390 1.2 gehenna bmajor = major(dev);
391 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws)
392 1.2 gehenna return (NULL);
393 1.2 gehenna
394 1.2 gehenna return (bdevsw[bmajor]);
395 1.2 gehenna }
396 1.2 gehenna
397 1.11 ad /*
398 1.11 ad * Look up a character device by number.
399 1.11 ad *
400 1.11 ad * => Caller must ensure that the device is attached.
401 1.11 ad */
402 1.2 gehenna const struct cdevsw *
403 1.2 gehenna cdevsw_lookup(dev_t dev)
404 1.2 gehenna {
405 1.2 gehenna int cmajor;
406 1.2 gehenna
407 1.2 gehenna if (dev == NODEV)
408 1.2 gehenna return (NULL);
409 1.2 gehenna cmajor = major(dev);
410 1.2 gehenna if (cmajor < 0 || cmajor >= max_cdevsws)
411 1.2 gehenna return (NULL);
412 1.2 gehenna
413 1.2 gehenna return (cdevsw[cmajor]);
414 1.2 gehenna }
415 1.2 gehenna
416 1.11 ad /*
417 1.11 ad * Look up a block device by reference to its operations set.
418 1.11 ad *
419 1.11 ad * => Caller must ensure that the device is not detached, and therefore
420 1.11 ad * that the returned major is still valid when dereferenced.
421 1.11 ad */
422 1.2 gehenna int
423 1.2 gehenna bdevsw_lookup_major(const struct bdevsw *bdev)
424 1.2 gehenna {
425 1.2 gehenna int bmajor;
426 1.2 gehenna
427 1.2 gehenna for (bmajor = 0 ; bmajor < max_bdevsws ; bmajor++) {
428 1.2 gehenna if (bdevsw[bmajor] == bdev)
429 1.2 gehenna return (bmajor);
430 1.2 gehenna }
431 1.2 gehenna
432 1.2 gehenna return (-1);
433 1.2 gehenna }
434 1.2 gehenna
435 1.11 ad /*
436 1.11 ad * Look up a character device by reference to its operations set.
437 1.11 ad *
438 1.11 ad * => Caller must ensure that the device is not detached, and therefore
439 1.11 ad * that the returned major is still valid when dereferenced.
440 1.11 ad */
441 1.2 gehenna int
442 1.2 gehenna cdevsw_lookup_major(const struct cdevsw *cdev)
443 1.2 gehenna {
444 1.2 gehenna int cmajor;
445 1.2 gehenna
446 1.2 gehenna for (cmajor = 0 ; cmajor < max_cdevsws ; cmajor++) {
447 1.2 gehenna if (cdevsw[cmajor] == cdev)
448 1.2 gehenna return (cmajor);
449 1.2 gehenna }
450 1.2 gehenna
451 1.2 gehenna return (-1);
452 1.2 gehenna }
453 1.2 gehenna
454 1.2 gehenna /*
455 1.2 gehenna * Convert from block major number to name.
456 1.11 ad *
457 1.11 ad * => Caller must ensure that the device is not detached, and therefore
458 1.11 ad * that the name pointer is still valid when dereferenced.
459 1.2 gehenna */
460 1.2 gehenna const char *
461 1.2 gehenna devsw_blk2name(int bmajor)
462 1.2 gehenna {
463 1.11 ad const char *name;
464 1.2 gehenna int cmajor, i;
465 1.2 gehenna
466 1.11 ad name = NULL;
467 1.11 ad cmajor = -1;
468 1.11 ad
469 1.15.6.9 mjf mutex_enter(&device_lock);
470 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
471 1.15.6.9 mjf mutex_exit(&device_lock);
472 1.2 gehenna return (NULL);
473 1.2 gehenna }
474 1.11 ad for (i = 0 ; i < max_devsw_convs; i++) {
475 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
476 1.11 ad cmajor = devsw_conv[i].d_cmajor;
477 1.11 ad break;
478 1.11 ad }
479 1.11 ad }
480 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
481 1.11 ad name = devsw_conv[i].d_name;
482 1.15.6.9 mjf mutex_exit(&device_lock);
483 1.2 gehenna
484 1.11 ad return (name);
485 1.2 gehenna }
486 1.2 gehenna
487 1.2 gehenna /*
488 1.2 gehenna * Convert from device name to block major number.
489 1.11 ad *
490 1.11 ad * => Caller must ensure that the device is not detached, and therefore
491 1.11 ad * that the major number is still valid when dereferenced.
492 1.2 gehenna */
493 1.2 gehenna int
494 1.2 gehenna devsw_name2blk(const char *name, char *devname, size_t devnamelen)
495 1.2 gehenna {
496 1.2 gehenna struct devsw_conv *conv;
497 1.2 gehenna int bmajor, i;
498 1.2 gehenna
499 1.2 gehenna if (name == NULL)
500 1.2 gehenna return (-1);
501 1.2 gehenna
502 1.15.6.9 mjf mutex_enter(&device_lock);
503 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
504 1.5 mrg size_t len;
505 1.5 mrg
506 1.2 gehenna conv = &devsw_conv[i];
507 1.2 gehenna if (conv->d_name == NULL)
508 1.2 gehenna continue;
509 1.5 mrg len = strlen(conv->d_name);
510 1.5 mrg if (strncmp(conv->d_name, name, len) != 0)
511 1.5 mrg continue;
512 1.5 mrg if (*(name +len) && !isdigit(*(name + len)))
513 1.2 gehenna continue;
514 1.2 gehenna bmajor = conv->d_bmajor;
515 1.2 gehenna if (bmajor < 0 || bmajor >= max_bdevsws ||
516 1.2 gehenna bdevsw[bmajor] == NULL)
517 1.5 mrg break;
518 1.2 gehenna if (devname != NULL) {
519 1.2 gehenna #ifdef DEVSW_DEBUG
520 1.2 gehenna if (strlen(conv->d_name) >= devnamelen)
521 1.2 gehenna printf("devsw_name2blk: too short buffer");
522 1.2 gehenna #endif /* DEVSW_DEBUG */
523 1.4 tsutsui strncpy(devname, conv->d_name, devnamelen);
524 1.2 gehenna devname[devnamelen - 1] = '\0';
525 1.2 gehenna }
526 1.15.6.9 mjf mutex_exit(&device_lock);
527 1.2 gehenna return (bmajor);
528 1.2 gehenna }
529 1.2 gehenna
530 1.15.6.9 mjf mutex_exit(&device_lock);
531 1.2 gehenna return (-1);
532 1.2 gehenna }
533 1.2 gehenna
534 1.2 gehenna /*
535 1.15.6.3 mjf * Convert from device name to char major number.
536 1.15.6.3 mjf *
537 1.15.6.3 mjf * => Caller must ensure that the device is not detached, and therefore
538 1.15.6.3 mjf * that the major number is still valid when dereferenced.
539 1.15.6.3 mjf */
540 1.15.6.3 mjf int
541 1.15.6.3 mjf devsw_name2chr(const char *name, char *devname, size_t devnamelen)
542 1.15.6.3 mjf {
543 1.15.6.3 mjf struct devsw_conv *conv;
544 1.15.6.3 mjf int cmajor, i;
545 1.15.6.3 mjf
546 1.15.6.3 mjf if (name == NULL)
547 1.15.6.3 mjf return (-1);
548 1.15.6.3 mjf
549 1.15.6.9 mjf mutex_enter(&device_lock);
550 1.15.6.3 mjf for (i = 0 ; i < max_devsw_convs ; i++) {
551 1.15.6.3 mjf size_t len;
552 1.15.6.3 mjf
553 1.15.6.3 mjf conv = &devsw_conv[i];
554 1.15.6.3 mjf if (conv->d_name == NULL)
555 1.15.6.3 mjf continue;
556 1.15.6.3 mjf len = strlen(conv->d_name);
557 1.15.6.3 mjf if (strncmp(conv->d_name, name, len) != 0)
558 1.15.6.3 mjf continue;
559 1.15.6.3 mjf if (*(name +len) && !isdigit(*(name + len)))
560 1.15.6.3 mjf continue;
561 1.15.6.3 mjf cmajor = conv->d_cmajor;
562 1.15.6.3 mjf if (cmajor < 0 || cmajor >= max_cdevsws ||
563 1.15.6.3 mjf cdevsw[cmajor] == NULL)
564 1.15.6.3 mjf break;
565 1.15.6.3 mjf if (devname != NULL) {
566 1.15.6.3 mjf #ifdef DEVSW_DEBUG
567 1.15.6.3 mjf if (strlen(conv->d_name) >= devnamelen)
568 1.15.6.3 mjf printf("devsw_name2chr: too short buffer");
569 1.15.6.3 mjf #endif /* DEVSW_DEBUG */
570 1.15.6.3 mjf strncpy(devname, conv->d_name, devnamelen);
571 1.15.6.3 mjf devname[devnamelen - 1] = '\0';
572 1.15.6.3 mjf }
573 1.15.6.9 mjf mutex_exit(&device_lock);
574 1.15.6.3 mjf return (cmajor);
575 1.15.6.3 mjf }
576 1.15.6.3 mjf
577 1.15.6.9 mjf mutex_exit(&device_lock);
578 1.15.6.3 mjf return (-1);
579 1.15.6.3 mjf }
580 1.15.6.3 mjf
581 1.15.6.3 mjf /*
582 1.2 gehenna * Convert from character dev_t to block dev_t.
583 1.11 ad *
584 1.11 ad * => Caller must ensure that the device is not detached, and therefore
585 1.11 ad * that the major number is still valid when dereferenced.
586 1.2 gehenna */
587 1.2 gehenna dev_t
588 1.2 gehenna devsw_chr2blk(dev_t cdev)
589 1.2 gehenna {
590 1.2 gehenna int bmajor, cmajor, i;
591 1.11 ad dev_t rv;
592 1.2 gehenna
593 1.2 gehenna cmajor = major(cdev);
594 1.11 ad bmajor = -1;
595 1.11 ad rv = NODEV;
596 1.2 gehenna
597 1.15.6.9 mjf mutex_enter(&device_lock);
598 1.11 ad if (cmajor < 0 || cmajor >= max_cdevsws || cdevsw[cmajor] == NULL) {
599 1.15.6.9 mjf mutex_exit(&device_lock);
600 1.11 ad return (NODEV);
601 1.11 ad }
602 1.2 gehenna for (i = 0 ; i < max_devsw_convs ; i++) {
603 1.11 ad if (devsw_conv[i].d_cmajor == cmajor) {
604 1.11 ad bmajor = devsw_conv[i].d_bmajor;
605 1.11 ad break;
606 1.11 ad }
607 1.2 gehenna }
608 1.11 ad if (bmajor >= 0 && bmajor < max_bdevsws && bdevsw[bmajor] != NULL)
609 1.11 ad rv = makedev(bmajor, minor(cdev));
610 1.15.6.9 mjf mutex_exit(&device_lock);
611 1.2 gehenna
612 1.11 ad return (rv);
613 1.2 gehenna }
614 1.2 gehenna
615 1.2 gehenna /*
616 1.2 gehenna * Convert from block dev_t to character dev_t.
617 1.11 ad *
618 1.11 ad * => Caller must ensure that the device is not detached, and therefore
619 1.11 ad * that the major number is still valid when dereferenced.
620 1.2 gehenna */
621 1.2 gehenna dev_t
622 1.2 gehenna devsw_blk2chr(dev_t bdev)
623 1.2 gehenna {
624 1.2 gehenna int bmajor, cmajor, i;
625 1.11 ad dev_t rv;
626 1.2 gehenna
627 1.11 ad bmajor = major(bdev);
628 1.11 ad cmajor = -1;
629 1.11 ad rv = NODEV;
630 1.11 ad
631 1.15.6.9 mjf mutex_enter(&device_lock);
632 1.11 ad if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
633 1.15.6.9 mjf mutex_exit(&device_lock);
634 1.2 gehenna return (NODEV);
635 1.11 ad }
636 1.11 ad for (i = 0 ; i < max_devsw_convs ; i++) {
637 1.11 ad if (devsw_conv[i].d_bmajor == bmajor) {
638 1.11 ad cmajor = devsw_conv[i].d_cmajor;
639 1.11 ad break;
640 1.11 ad }
641 1.11 ad }
642 1.11 ad if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
643 1.11 ad rv = makedev(cmajor, minor(bdev));
644 1.15.6.9 mjf mutex_exit(&device_lock);
645 1.2 gehenna
646 1.11 ad return (rv);
647 1.11 ad }
648 1.11 ad
649 1.11 ad /*
650 1.11 ad * Device access methods.
651 1.11 ad */
652 1.11 ad
653 1.11 ad #define DEV_LOCK(d) \
654 1.15.6.7 mjf if ((mpflag = (d->d_flag & D_MPSAFE)) == 0) { \
655 1.15.6.7 mjf KERNEL_LOCK(1, NULL); \
656 1.11 ad }
657 1.2 gehenna
658 1.11 ad #define DEV_UNLOCK(d) \
659 1.15.6.7 mjf if (mpflag == 0) { \
660 1.15.6.7 mjf KERNEL_UNLOCK_ONE(NULL); \
661 1.2 gehenna }
662 1.2 gehenna
663 1.11 ad int
664 1.11 ad bdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
665 1.11 ad {
666 1.11 ad const struct bdevsw *d;
667 1.15.6.7 mjf int rv, mpflag;
668 1.11 ad
669 1.11 ad /*
670 1.11 ad * For open we need to lock, in order to synchronize
671 1.11 ad * with attach/detach.
672 1.11 ad */
673 1.15.6.9 mjf mutex_enter(&device_lock);
674 1.11 ad d = bdevsw_lookup(dev);
675 1.15.6.9 mjf mutex_exit(&device_lock);
676 1.11 ad if (d == NULL)
677 1.11 ad return ENXIO;
678 1.11 ad
679 1.11 ad DEV_LOCK(d);
680 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
681 1.11 ad DEV_UNLOCK(d);
682 1.11 ad
683 1.11 ad return rv;
684 1.11 ad }
685 1.11 ad
686 1.11 ad int
687 1.11 ad bdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
688 1.11 ad {
689 1.11 ad const struct bdevsw *d;
690 1.15.6.7 mjf int rv, mpflag;
691 1.11 ad
692 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
693 1.11 ad return ENXIO;
694 1.11 ad
695 1.11 ad DEV_LOCK(d);
696 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
697 1.11 ad DEV_UNLOCK(d);
698 1.11 ad
699 1.11 ad return rv;
700 1.11 ad }
701 1.11 ad
702 1.11 ad void
703 1.11 ad bdev_strategy(struct buf *bp)
704 1.11 ad {
705 1.11 ad const struct bdevsw *d;
706 1.15.6.7 mjf int mpflag;
707 1.11 ad
708 1.11 ad if ((d = bdevsw_lookup(bp->b_dev)) == NULL)
709 1.11 ad panic("bdev_strategy");
710 1.11 ad
711 1.11 ad DEV_LOCK(d);
712 1.11 ad (*d->d_strategy)(bp);
713 1.11 ad DEV_UNLOCK(d);
714 1.11 ad }
715 1.11 ad
716 1.11 ad int
717 1.11 ad bdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
718 1.11 ad {
719 1.11 ad const struct bdevsw *d;
720 1.15.6.7 mjf int rv, mpflag;
721 1.11 ad
722 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
723 1.11 ad return ENXIO;
724 1.11 ad
725 1.11 ad DEV_LOCK(d);
726 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
727 1.11 ad DEV_UNLOCK(d);
728 1.11 ad
729 1.11 ad return rv;
730 1.11 ad }
731 1.11 ad
732 1.11 ad int
733 1.11 ad bdev_dump(dev_t dev, daddr_t addr, void *data, size_t sz)
734 1.11 ad {
735 1.11 ad const struct bdevsw *d;
736 1.11 ad int rv;
737 1.11 ad
738 1.11 ad /*
739 1.11 ad * Dump can be called without the device open. Since it can
740 1.11 ad * currently only be called with the system paused (and in a
741 1.11 ad * potentially unstable state), we don't perform any locking.
742 1.11 ad */
743 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
744 1.11 ad return ENXIO;
745 1.11 ad
746 1.11 ad /* DEV_LOCK(d); */
747 1.11 ad rv = (*d->d_dump)(dev, addr, data, sz);
748 1.11 ad /* DEV_UNLOCK(d); */
749 1.11 ad
750 1.11 ad return rv;
751 1.11 ad }
752 1.11 ad
753 1.11 ad int
754 1.11 ad bdev_type(dev_t dev)
755 1.11 ad {
756 1.11 ad const struct bdevsw *d;
757 1.11 ad
758 1.11 ad if ((d = bdevsw_lookup(dev)) == NULL)
759 1.11 ad return D_OTHER;
760 1.11 ad return d->d_flag & D_TYPEMASK;
761 1.11 ad }
762 1.11 ad
763 1.11 ad int
764 1.11 ad cdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
765 1.11 ad {
766 1.11 ad const struct cdevsw *d;
767 1.15.6.7 mjf int rv, mpflag;
768 1.11 ad
769 1.11 ad /*
770 1.11 ad * For open we need to lock, in order to synchronize
771 1.11 ad * with attach/detach.
772 1.11 ad */
773 1.15.6.9 mjf mutex_enter(&device_lock);
774 1.11 ad d = cdevsw_lookup(dev);
775 1.15.6.9 mjf mutex_exit(&device_lock);
776 1.11 ad if (d == NULL)
777 1.11 ad return ENXIO;
778 1.11 ad
779 1.11 ad DEV_LOCK(d);
780 1.11 ad rv = (*d->d_open)(dev, flag, devtype, l);
781 1.11 ad DEV_UNLOCK(d);
782 1.11 ad
783 1.11 ad return rv;
784 1.11 ad }
785 1.11 ad
786 1.11 ad int
787 1.11 ad cdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
788 1.11 ad {
789 1.11 ad const struct cdevsw *d;
790 1.15.6.7 mjf int rv, mpflag;
791 1.11 ad
792 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
793 1.11 ad return ENXIO;
794 1.11 ad
795 1.11 ad DEV_LOCK(d);
796 1.11 ad rv = (*d->d_close)(dev, flag, devtype, l);
797 1.11 ad DEV_UNLOCK(d);
798 1.11 ad
799 1.11 ad return rv;
800 1.11 ad }
801 1.11 ad
802 1.11 ad int
803 1.11 ad cdev_read(dev_t dev, struct uio *uio, int flag)
804 1.11 ad {
805 1.11 ad const struct cdevsw *d;
806 1.15.6.7 mjf int rv, mpflag;
807 1.11 ad
808 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
809 1.11 ad return ENXIO;
810 1.11 ad
811 1.11 ad DEV_LOCK(d);
812 1.11 ad rv = (*d->d_read)(dev, uio, flag);
813 1.11 ad DEV_UNLOCK(d);
814 1.11 ad
815 1.11 ad return rv;
816 1.11 ad }
817 1.11 ad
818 1.11 ad int
819 1.11 ad cdev_write(dev_t dev, struct uio *uio, int flag)
820 1.11 ad {
821 1.11 ad const struct cdevsw *d;
822 1.15.6.7 mjf int rv, mpflag;
823 1.11 ad
824 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
825 1.11 ad return ENXIO;
826 1.11 ad
827 1.11 ad DEV_LOCK(d);
828 1.11 ad rv = (*d->d_write)(dev, uio, flag);
829 1.11 ad DEV_UNLOCK(d);
830 1.11 ad
831 1.11 ad return rv;
832 1.11 ad }
833 1.11 ad
834 1.11 ad int
835 1.11 ad cdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
836 1.11 ad {
837 1.11 ad const struct cdevsw *d;
838 1.15.6.7 mjf int rv, mpflag;
839 1.11 ad
840 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
841 1.11 ad return ENXIO;
842 1.11 ad
843 1.11 ad DEV_LOCK(d);
844 1.11 ad rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
845 1.11 ad DEV_UNLOCK(d);
846 1.11 ad
847 1.11 ad return rv;
848 1.11 ad }
849 1.11 ad
850 1.11 ad void
851 1.11 ad cdev_stop(struct tty *tp, int flag)
852 1.11 ad {
853 1.11 ad const struct cdevsw *d;
854 1.15.6.7 mjf int mpflag;
855 1.11 ad
856 1.11 ad if ((d = cdevsw_lookup(tp->t_dev)) == NULL)
857 1.11 ad return;
858 1.11 ad
859 1.11 ad DEV_LOCK(d);
860 1.11 ad (*d->d_stop)(tp, flag);
861 1.11 ad DEV_UNLOCK(d);
862 1.11 ad }
863 1.11 ad
864 1.11 ad struct tty *
865 1.11 ad cdev_tty(dev_t dev)
866 1.11 ad {
867 1.11 ad const struct cdevsw *d;
868 1.11 ad
869 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
870 1.11 ad return NULL;
871 1.11 ad
872 1.12 ad /* XXX Check if necessary. */
873 1.12 ad if (d->d_tty == NULL)
874 1.12 ad return NULL;
875 1.12 ad
876 1.15.6.8 mjf return (*d->d_tty)(dev);
877 1.11 ad }
878 1.11 ad
879 1.11 ad int
880 1.11 ad cdev_poll(dev_t dev, int flag, lwp_t *l)
881 1.11 ad {
882 1.11 ad const struct cdevsw *d;
883 1.15.6.7 mjf int rv, mpflag;
884 1.11 ad
885 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
886 1.11 ad return POLLERR;
887 1.11 ad
888 1.11 ad DEV_LOCK(d);
889 1.11 ad rv = (*d->d_poll)(dev, flag, l);
890 1.11 ad DEV_UNLOCK(d);
891 1.11 ad
892 1.11 ad return rv;
893 1.11 ad }
894 1.11 ad
895 1.11 ad paddr_t
896 1.11 ad cdev_mmap(dev_t dev, off_t off, int flag)
897 1.11 ad {
898 1.11 ad const struct cdevsw *d;
899 1.11 ad paddr_t rv;
900 1.15.6.7 mjf int mpflag;
901 1.11 ad
902 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
903 1.11 ad return (paddr_t)-1LL;
904 1.11 ad
905 1.11 ad DEV_LOCK(d);
906 1.11 ad rv = (*d->d_mmap)(dev, off, flag);
907 1.11 ad DEV_UNLOCK(d);
908 1.11 ad
909 1.11 ad return rv;
910 1.11 ad }
911 1.11 ad
912 1.11 ad int
913 1.11 ad cdev_kqfilter(dev_t dev, struct knote *kn)
914 1.11 ad {
915 1.11 ad const struct cdevsw *d;
916 1.15.6.7 mjf int rv, mpflag;
917 1.11 ad
918 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
919 1.11 ad return ENXIO;
920 1.11 ad
921 1.11 ad DEV_LOCK(d);
922 1.11 ad rv = (*d->d_kqfilter)(dev, kn);
923 1.11 ad DEV_UNLOCK(d);
924 1.11 ad
925 1.11 ad return rv;
926 1.11 ad }
927 1.11 ad
928 1.11 ad int
929 1.11 ad cdev_type(dev_t dev)
930 1.11 ad {
931 1.11 ad const struct cdevsw *d;
932 1.11 ad
933 1.11 ad if ((d = cdevsw_lookup(dev)) == NULL)
934 1.11 ad return D_OTHER;
935 1.11 ad return d->d_flag & D_TYPEMASK;
936 1.2 gehenna }
937 1.15.6.1 mjf
938 1.15.6.6 mjf static struct device_name *
939 1.15.6.6 mjf device_name_alloc(dev_t dev, device_t devp, bool cdev,
940 1.15.6.6 mjf enum devtype dtype, const char *fmt, va_list src)
941 1.15.6.6 mjf {
942 1.15.6.6 mjf struct device_name *dn;
943 1.15.6.6 mjf va_list dst;
944 1.15.6.6 mjf
945 1.15.6.6 mjf /* TODO: Check for aliases */
946 1.15.6.6 mjf
947 1.15.6.6 mjf dn = kmem_zalloc(sizeof(*dn), KM_NOSLEEP);
948 1.15.6.6 mjf if (dn == NULL)
949 1.15.6.6 mjf return NULL;
950 1.15.6.6 mjf
951 1.15.6.6 mjf dn->d_dev = dev;
952 1.15.6.6 mjf dn->d_devp = devp;
953 1.15.6.6 mjf dn->d_char = cdev;
954 1.15.6.6 mjf dn->d_type = dtype;
955 1.15.6.6 mjf
956 1.15.6.6 mjf dn->d_name = kmem_zalloc(MAXNAMLEN, KM_NOSLEEP);
957 1.15.6.6 mjf va_copy(dst, src);
958 1.15.6.6 mjf vsnprintf(dn->d_name, MAXNAMLEN, fmt, dst);
959 1.15.6.6 mjf va_end(dst);
960 1.15.6.6 mjf
961 1.15.6.6 mjf return dn;
962 1.15.6.6 mjf }
963 1.15.6.6 mjf
964 1.15.6.1 mjf /*
965 1.15.6.1 mjf * Register a dev_t and name for a device driver with devfs.
966 1.15.6.1 mjf * We maintain a TAILQ of registered device drivers names and dev_t's.
967 1.15.6.1 mjf *
968 1.15.6.1 mjf * => if devp is NULL this device has no device_t instance. An example
969 1.15.6.1 mjf * of this is zero(4).
970 1.15.6.1 mjf *
971 1.15.6.1 mjf * => if there already exists another name for this dev_t, then 'name'
972 1.15.6.1 mjf * is assumed to be an alias of a previously registered device driver.
973 1.15.6.1 mjf * TODO: The above isn't actually true at the moment, we just return 0.
974 1.15.6.1 mjf *
975 1.15.6.1 mjf * => 'cdev' indiciates whether we are a char or block device.
976 1.15.6.1 mjf * If 'cdev' is true, we are a character device, otherwise we
977 1.15.6.1 mjf * are a block device.
978 1.15.6.1 mjf */
979 1.15.6.1 mjf int
980 1.15.6.6 mjf device_register_name(dev_t dev, device_t devp, bool cdev,
981 1.15.6.1 mjf enum devtype dtype, const char *fmt, ...)
982 1.15.6.1 mjf {
983 1.15.6.1 mjf struct device_name *dn;
984 1.15.6.1 mjf va_list ap;
985 1.15.6.1 mjf
986 1.15.6.6 mjf va_start(ap, fmt);
987 1.15.6.1 mjf
988 1.15.6.6 mjf if ((dn = device_name_alloc(dev, devp, cdev, dtype, fmt, ap)) == NULL)
989 1.15.6.1 mjf return ENOMEM;
990 1.15.6.1 mjf
991 1.15.6.1 mjf va_end(ap);
992 1.15.6.1 mjf
993 1.15.6.1 mjf mutex_enter(&dname_lock);
994 1.15.6.1 mjf TAILQ_INSERT_TAIL(&device_names, dn, d_next);
995 1.15.6.1 mjf mutex_exit(&dname_lock);
996 1.15.6.1 mjf
997 1.15.6.1 mjf return 0;
998 1.15.6.1 mjf }
999 1.15.6.1 mjf
1000 1.15.6.1 mjf /*
1001 1.15.6.1 mjf * Remove a previously registered name for 'dev'.
1002 1.15.6.1 mjf *
1003 1.15.6.1 mjf * => This must be called twice with different values for 'dev' if
1004 1.15.6.1 mjf * the caller previously registered a name for a character device
1005 1.15.6.1 mjf * and a name for a block device.
1006 1.15.6.1 mjf */
1007 1.15.6.1 mjf int
1008 1.15.6.5 mjf device_deregister_name(dev_t dev, const char *fmt, ...)
1009 1.15.6.1 mjf {
1010 1.15.6.1 mjf int error = 0;
1011 1.15.6.1 mjf struct device_name *dn;
1012 1.15.6.1 mjf va_list ap;
1013 1.15.6.1 mjf char name[MAXNAMLEN];
1014 1.15.6.1 mjf
1015 1.15.6.1 mjf va_start(ap, fmt);
1016 1.15.6.1 mjf vsnprintf(name, MAXNAMLEN, fmt, ap);
1017 1.15.6.1 mjf va_end(ap);
1018 1.15.6.1 mjf
1019 1.15.6.1 mjf mutex_enter(&dname_lock);
1020 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1021 1.15.6.4 mjf if ((strcmp(dn->d_name, name) == 0) && (dn->d_gone == false))
1022 1.15.6.1 mjf break;
1023 1.15.6.1 mjf }
1024 1.15.6.1 mjf
1025 1.15.6.1 mjf if (dn != NULL)
1026 1.15.6.1 mjf dn->d_gone = true;
1027 1.15.6.1 mjf else
1028 1.15.6.1 mjf error = EINVAL;
1029 1.15.6.1 mjf
1030 1.15.6.1 mjf mutex_exit(&dname_lock);
1031 1.15.6.1 mjf return error;
1032 1.15.6.1 mjf }
1033 1.15.6.1 mjf
1034 1.15.6.4 mjf /*
1035 1.15.6.4 mjf * Remove all device names for this device_t.
1036 1.15.6.4 mjf */
1037 1.15.6.4 mjf int
1038 1.15.6.5 mjf device_deregister_all(device_t dev)
1039 1.15.6.4 mjf {
1040 1.15.6.4 mjf struct device_name *dn;
1041 1.15.6.4 mjf
1042 1.15.6.4 mjf mutex_enter(&dname_lock);
1043 1.15.6.4 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1044 1.15.6.4 mjf if ((dn->d_devp == dev) && (dn->d_gone == false))
1045 1.15.6.4 mjf dn->d_gone = true;
1046 1.15.6.4 mjf }
1047 1.15.6.4 mjf mutex_exit(&dname_lock);
1048 1.15.6.4 mjf return 0;
1049 1.15.6.4 mjf }
1050 1.15.6.4 mjf
1051 1.15.6.1 mjf struct device_name *
1052 1.15.6.2 mjf device_lookup_info(dev_t dev, int is_char)
1053 1.15.6.1 mjf {
1054 1.15.6.1 mjf struct device_name *dn;
1055 1.15.6.1 mjf
1056 1.15.6.1 mjf mutex_enter(&dname_lock);
1057 1.15.6.1 mjf TAILQ_FOREACH(dn, &device_names, d_next) {
1058 1.15.6.2 mjf if ((dn->d_dev == dev) && (dn->d_char == is_char))
1059 1.15.6.1 mjf break;
1060 1.15.6.1 mjf }
1061 1.15.6.1 mjf mutex_exit(&dname_lock);
1062 1.15.6.1 mjf
1063 1.15.6.1 mjf return dn;
1064 1.15.6.1 mjf }
1065 1.15.6.6 mjf
1066 1.15.6.6 mjf /*
1067 1.15.6.6 mjf * Register a name for a device_t and wait for the device file to be
1068 1.15.6.6 mjf * created in devfs mounts. Normally this operation is asynchronous in
1069 1.15.6.6 mjf * the sense that a device name is registered and at some later time
1070 1.15.6.6 mjf * a device file will appear in a devfs mount.
1071 1.15.6.6 mjf *
1072 1.15.6.6 mjf * cond - A kernel condition variable
1073 1.15.6.6 mjf * ticks - Timeout value in hz
1074 1.15.6.6 mjf *
1075 1.15.6.6 mjf * NOTE: There is no guarantee that a device file will be created,
1076 1.15.6.6 mjf * however, the caller will be notified in a synchronous manner
1077 1.15.6.6 mjf * whether the creation failed or not.
1078 1.15.6.6 mjf */
1079 1.15.6.6 mjf int
1080 1.15.6.6 mjf device_register_sync(dev_t dev, device_t devp, bool cdev,
1081 1.15.6.6 mjf enum devtype dtype, kcondvar_t cond, int ticks, const char *fmt, ...)
1082 1.15.6.6 mjf {
1083 1.15.6.6 mjf int error = 0;
1084 1.15.6.6 mjf struct device_name *dn;
1085 1.15.6.6 mjf va_list ap;
1086 1.15.6.6 mjf
1087 1.15.6.6 mjf va_start(ap, fmt);
1088 1.15.6.6 mjf
1089 1.15.6.6 mjf if ((dn = device_name_alloc(dev, devp, cdev, dtype, fmt, ap)) == NULL)
1090 1.15.6.6 mjf return ENOMEM;
1091 1.15.6.6 mjf dn->d_busy = true;
1092 1.15.6.6 mjf dn->d_cv = cond;
1093 1.15.6.6 mjf
1094 1.15.6.6 mjf va_end(ap);
1095 1.15.6.6 mjf
1096 1.15.6.6 mjf mutex_enter(&dname_lock);
1097 1.15.6.6 mjf TAILQ_INSERT_TAIL(&device_names, dn, d_next);
1098 1.15.6.6 mjf mutex_exit(&dname_lock);
1099 1.15.6.6 mjf
1100 1.15.6.6 mjf mutex_init(&dn->d_cvmutex, MUTEX_DEFAULT, IPL_NONE);
1101 1.15.6.6 mjf
1102 1.15.6.6 mjf mutex_enter(&dn->d_cvmutex);
1103 1.15.6.6 mjf
1104 1.15.6.6 mjf while (dn->d_busy == true) {
1105 1.15.6.6 mjf if (ticks <= 0)
1106 1.15.6.6 mjf error = cv_wait_sig(&dn->d_cv, &dn->d_cvmutex);
1107 1.15.6.6 mjf else
1108 1.15.6.6 mjf error = cv_timedwait_sig(&dn->d_cv,
1109 1.15.6.6 mjf &dn->d_cvmutex, ticks);
1110 1.15.6.6 mjf
1111 1.15.6.6 mjf }
1112 1.15.6.6 mjf error = dn->d_retval;
1113 1.15.6.6 mjf mutex_exit(&dn->d_cvmutex);
1114 1.15.6.6 mjf
1115 1.15.6.6 mjf return error;
1116 1.15.6.6 mjf }
1117