subr_devsw.c revision 1.46 1 /* $NetBSD: subr_devsw.c,v 1.46 2022/07/09 10:30:27 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by MAEKAWA Masahide <gehenna (at) NetBSD.org>, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * subr_devsw.c: registers device drivers by name and by major
36 * number, and provides wrapper methods for performing I/O and
37 * other tasks on device drivers, keying on the device number
38 * (dev_t).
39 *
40 * When the system is built, the config(8) command generates
41 * static tables of device drivers built into the kernel image
42 * along with their associated methods. These are recorded in
43 * the cdevsw0 and bdevsw0 tables. Drivers can also be added to
44 * and removed from the system dynamically.
45 *
46 * Allocation
47 *
48 * When the system initially boots only the statically allocated
49 * indexes (bdevsw0, cdevsw0) are used. If these overflow due to
50 * allocation, we allocate a fixed block of memory to hold the new,
51 * expanded index. This "fork" of the table is only ever performed
52 * once in order to guarantee that other threads may safely access
53 * the device tables:
54 *
55 * o Once a thread has a "reference" to the table via an earlier
56 * open() call, we know that the entry in the table must exist
57 * and so it is safe to access it.
58 *
59 * o Regardless of whether other threads see the old or new
60 * pointers, they will point to a correct device switch
61 * structure for the operation being performed.
62 *
63 * XXX Currently, the wrapper methods such as cdev_read() verify
64 * that a device driver does in fact exist before calling the
65 * associated driver method. This should be changed so that
66 * once the device is has been referenced by a vnode (opened),
67 * calling the other methods should be valid until that reference
68 * is dropped.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: subr_devsw.c,v 1.46 2022/07/09 10:30:27 riastradh Exp $");
73
74 #ifdef _KERNEL_OPT
75 #include "opt_dtrace.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/conf.h>
80 #include <sys/kmem.h>
81 #include <sys/systm.h>
82 #include <sys/poll.h>
83 #include <sys/tty.h>
84 #include <sys/cpu.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/sdt.h>
88 #include <sys/atomic.h>
89 #include <sys/localcount.h>
90 #include <sys/pserialize.h>
91 #include <sys/xcall.h>
92 #include <sys/device.h>
93
94 #ifdef DEVSW_DEBUG
95 #define DPRINTF(x) printf x
96 #else /* DEVSW_DEBUG */
97 #define DPRINTF(x)
98 #endif /* DEVSW_DEBUG */
99
100 #define MAXDEVSW 512 /* the maximum of major device number */
101 #define BDEVSW_SIZE (sizeof(struct bdevsw *))
102 #define CDEVSW_SIZE (sizeof(struct cdevsw *))
103 #define DEVSWCONV_SIZE (sizeof(struct devsw_conv))
104
105 struct devswref {
106 struct localcount *dr_lc;
107 };
108
109 /* XXX bdevsw, cdevsw, max_bdevsws, and max_cdevsws should be volatile */
110 extern const struct bdevsw **bdevsw, *bdevsw0[];
111 extern const struct cdevsw **cdevsw, *cdevsw0[];
112 extern struct devsw_conv *devsw_conv, devsw_conv0[];
113 extern const int sys_bdevsws, sys_cdevsws;
114 extern int max_bdevsws, max_cdevsws, max_devsw_convs;
115
116 static struct devswref *cdevswref;
117 static struct devswref *bdevswref;
118 static kcondvar_t devsw_cv;
119
120 static int bdevsw_attach(const struct bdevsw *, devmajor_t *);
121 static int cdevsw_attach(const struct cdevsw *, devmajor_t *);
122 static void devsw_detach_locked(const struct bdevsw *, const struct cdevsw *);
123
124 kmutex_t device_lock;
125
126 void (*biodone_vfs)(buf_t *) = (void *)nullop;
127
128 void
129 devsw_init(void)
130 {
131
132 KASSERT(sys_bdevsws < MAXDEVSW - 1);
133 KASSERT(sys_cdevsws < MAXDEVSW - 1);
134 mutex_init(&device_lock, MUTEX_DEFAULT, IPL_NONE);
135
136 cv_init(&devsw_cv, "devsw");
137 }
138
139 int
140 devsw_attach(const char *devname,
141 const struct bdevsw *bdev, devmajor_t *bmajor,
142 const struct cdevsw *cdev, devmajor_t *cmajor)
143 {
144 struct devsw_conv *conv;
145 char *name;
146 int error, i;
147
148 if (devname == NULL || cdev == NULL)
149 return EINVAL;
150
151 mutex_enter(&device_lock);
152
153 for (i = 0; i < max_devsw_convs; i++) {
154 conv = &devsw_conv[i];
155 if (conv->d_name == NULL || strcmp(devname, conv->d_name) != 0)
156 continue;
157
158 if (*bmajor < 0)
159 *bmajor = conv->d_bmajor;
160 if (*cmajor < 0)
161 *cmajor = conv->d_cmajor;
162
163 if (*bmajor != conv->d_bmajor || *cmajor != conv->d_cmajor) {
164 error = EINVAL;
165 goto out;
166 }
167 if ((*bmajor >= 0 && bdev == NULL) || *cmajor < 0) {
168 error = EINVAL;
169 goto out;
170 }
171
172 if ((*bmajor >= 0 && bdevsw[*bmajor] != NULL) ||
173 cdevsw[*cmajor] != NULL) {
174 error = EEXIST;
175 goto out;
176 }
177 break;
178 }
179
180 /*
181 * XXX This should allocate what it needs up front so we never
182 * need to flail around trying to unwind.
183 */
184 error = bdevsw_attach(bdev, bmajor);
185 if (error != 0)
186 goto out;
187 error = cdevsw_attach(cdev, cmajor);
188 if (error != 0) {
189 devsw_detach_locked(bdev, NULL);
190 goto out;
191 }
192
193 /*
194 * If we already found a conv, we're done. Otherwise, find an
195 * empty slot or extend the table.
196 */
197 if (i == max_devsw_convs)
198 goto out;
199
200 for (i = 0; i < max_devsw_convs; i++) {
201 if (devsw_conv[i].d_name == NULL)
202 break;
203 }
204 if (i == max_devsw_convs) {
205 struct devsw_conv *newptr;
206 int old_convs, new_convs;
207
208 old_convs = max_devsw_convs;
209 new_convs = old_convs + 1;
210
211 newptr = kmem_zalloc(new_convs * DEVSWCONV_SIZE, KM_NOSLEEP);
212 if (newptr == NULL) {
213 devsw_detach_locked(bdev, cdev);
214 error = ENOMEM;
215 goto out;
216 }
217 newptr[old_convs].d_name = NULL;
218 newptr[old_convs].d_bmajor = -1;
219 newptr[old_convs].d_cmajor = -1;
220 memcpy(newptr, devsw_conv, old_convs * DEVSWCONV_SIZE);
221 if (devsw_conv != devsw_conv0)
222 kmem_free(devsw_conv, old_convs * DEVSWCONV_SIZE);
223 devsw_conv = newptr;
224 max_devsw_convs = new_convs;
225 }
226
227 name = kmem_strdupsize(devname, NULL, KM_NOSLEEP);
228 if (name == NULL) {
229 devsw_detach_locked(bdev, cdev);
230 error = ENOMEM;
231 goto out;
232 }
233
234 devsw_conv[i].d_name = name;
235 devsw_conv[i].d_bmajor = *bmajor;
236 devsw_conv[i].d_cmajor = *cmajor;
237 error = 0;
238 out:
239 mutex_exit(&device_lock);
240 return error;
241 }
242
243 static int
244 bdevsw_attach(const struct bdevsw *devsw, devmajor_t *devmajor)
245 {
246 const struct bdevsw **newbdevsw = NULL;
247 struct devswref *newbdevswref = NULL;
248 struct localcount *lc;
249 devmajor_t bmajor;
250 int i;
251
252 KASSERT(mutex_owned(&device_lock));
253
254 if (devsw == NULL)
255 return 0;
256
257 if (*devmajor < 0) {
258 for (bmajor = sys_bdevsws; bmajor < max_bdevsws; bmajor++) {
259 if (bdevsw[bmajor] != NULL)
260 continue;
261 for (i = 0; i < max_devsw_convs; i++) {
262 if (devsw_conv[i].d_bmajor == bmajor)
263 break;
264 }
265 if (i != max_devsw_convs)
266 continue;
267 break;
268 }
269 *devmajor = bmajor;
270 }
271
272 if (*devmajor >= MAXDEVSW) {
273 printf("%s: block majors exhausted\n", __func__);
274 return ENOMEM;
275 }
276
277 if (bdevswref == NULL) {
278 newbdevswref = kmem_zalloc(MAXDEVSW * sizeof(newbdevswref[0]),
279 KM_NOSLEEP);
280 if (newbdevswref == NULL)
281 return ENOMEM;
282 atomic_store_release(&bdevswref, newbdevswref);
283 }
284
285 if (*devmajor >= max_bdevsws) {
286 KASSERT(bdevsw == bdevsw0);
287 newbdevsw = kmem_zalloc(MAXDEVSW * sizeof(newbdevsw[0]),
288 KM_NOSLEEP);
289 if (newbdevsw == NULL)
290 return ENOMEM;
291 memcpy(newbdevsw, bdevsw, max_bdevsws * sizeof(bdevsw[0]));
292 atomic_store_release(&bdevsw, newbdevsw);
293 atomic_store_release(&max_bdevsws, MAXDEVSW);
294 }
295
296 if (bdevsw[*devmajor] != NULL)
297 return EEXIST;
298
299 KASSERT(bdevswref[*devmajor].dr_lc == NULL);
300 lc = kmem_zalloc(sizeof(*lc), KM_SLEEP);
301 localcount_init(lc);
302 bdevswref[*devmajor].dr_lc = lc;
303
304 atomic_store_release(&bdevsw[*devmajor], devsw);
305
306 return 0;
307 }
308
309 static int
310 cdevsw_attach(const struct cdevsw *devsw, devmajor_t *devmajor)
311 {
312 const struct cdevsw **newcdevsw = NULL;
313 struct devswref *newcdevswref = NULL;
314 struct localcount *lc;
315 devmajor_t cmajor;
316 int i;
317
318 KASSERT(mutex_owned(&device_lock));
319
320 if (*devmajor < 0) {
321 for (cmajor = sys_cdevsws; cmajor < max_cdevsws; cmajor++) {
322 if (cdevsw[cmajor] != NULL)
323 continue;
324 for (i = 0; i < max_devsw_convs; i++) {
325 if (devsw_conv[i].d_cmajor == cmajor)
326 break;
327 }
328 if (i != max_devsw_convs)
329 continue;
330 break;
331 }
332 *devmajor = cmajor;
333 }
334
335 if (*devmajor >= MAXDEVSW) {
336 printf("%s: character majors exhausted\n", __func__);
337 return ENOMEM;
338 }
339
340 if (cdevswref == NULL) {
341 newcdevswref = kmem_zalloc(MAXDEVSW * sizeof(newcdevswref[0]),
342 KM_NOSLEEP);
343 if (newcdevswref == NULL)
344 return ENOMEM;
345 atomic_store_release(&cdevswref, newcdevswref);
346 }
347
348 if (*devmajor >= max_cdevsws) {
349 KASSERT(cdevsw == cdevsw0);
350 newcdevsw = kmem_zalloc(MAXDEVSW * sizeof(newcdevsw[0]),
351 KM_NOSLEEP);
352 if (newcdevsw == NULL)
353 return ENOMEM;
354 memcpy(newcdevsw, cdevsw, max_cdevsws * sizeof(cdevsw[0]));
355 atomic_store_release(&cdevsw, newcdevsw);
356 atomic_store_release(&max_cdevsws, MAXDEVSW);
357 }
358
359 if (cdevsw[*devmajor] != NULL)
360 return EEXIST;
361
362 KASSERT(cdevswref[*devmajor].dr_lc == NULL);
363 lc = kmem_zalloc(sizeof(*lc), KM_SLEEP);
364 localcount_init(lc);
365 cdevswref[*devmajor].dr_lc = lc;
366
367 atomic_store_release(&cdevsw[*devmajor], devsw);
368
369 return 0;
370 }
371
372 static void
373 devsw_detach_locked(const struct bdevsw *bdev, const struct cdevsw *cdev)
374 {
375 int bi, ci = -1/*XXXGCC*/, di;
376 struct cfdriver *cd;
377 device_t dv;
378
379 KASSERT(mutex_owned(&device_lock));
380
381 /*
382 * If this is wired to an autoconf device, make sure the device
383 * has no more instances. No locking here because under
384 * correct use of devsw_detach, none of this state can change
385 * at this point.
386 */
387 if (cdev != NULL && (cd = cdev->d_cfdriver) != NULL) {
388 for (di = 0; di < cd->cd_ndevs; di++) {
389 KASSERTMSG((dv = cd->cd_devs[di]) == NULL,
390 "detaching character device driver %s"
391 " still has attached unit %s",
392 cd->cd_name, device_xname(dv));
393 }
394 }
395 if (bdev != NULL && (cd = bdev->d_cfdriver) != NULL) {
396 for (di = 0; di < cd->cd_ndevs; di++) {
397 KASSERTMSG((dv = cd->cd_devs[di]) == NULL,
398 "detaching block device driver %s"
399 " still has attached unit %s",
400 cd->cd_name, device_xname(dv));
401 }
402 }
403
404 /* Prevent new references. */
405 if (bdev != NULL) {
406 for (bi = 0; bi < max_bdevsws; bi++) {
407 if (bdevsw[bi] != bdev)
408 continue;
409 atomic_store_relaxed(&bdevsw[bi], NULL);
410 break;
411 }
412 KASSERT(bi < max_bdevsws);
413 }
414 if (cdev != NULL) {
415 for (ci = 0; ci < max_cdevsws; ci++) {
416 if (cdevsw[ci] != cdev)
417 continue;
418 atomic_store_relaxed(&cdevsw[ci], NULL);
419 break;
420 }
421 KASSERT(ci < max_cdevsws);
422 }
423
424 if (bdev == NULL && cdev == NULL) /* XXX possible? */
425 return;
426
427 /*
428 * Wait for all bdevsw_lookup_acquire, cdevsw_lookup_acquire
429 * calls to notice that the devsw is gone.
430 *
431 * XXX Despite the use of the pserialize_read_enter/exit API
432 * elsewhere in this file, we use xc_barrier here instead of
433 * pserialize_perform -- because devsw_init is too early for
434 * pserialize_create. Either pserialize_create should be made
435 * to work earlier, or it should be nixed altogether. Until
436 * that is fixed, xc_barrier will serve the same purpose.
437 */
438 xc_barrier(0);
439
440 /*
441 * Wait for all references to drain. It is the caller's
442 * responsibility to ensure that at this point, there are no
443 * extant open instances and all new d_open calls will fail.
444 *
445 * Note that localcount_drain may release and reacquire
446 * device_lock.
447 */
448 if (bdev != NULL) {
449 localcount_drain(bdevswref[bi].dr_lc,
450 &devsw_cv, &device_lock);
451 localcount_fini(bdevswref[bi].dr_lc);
452 kmem_free(bdevswref[bi].dr_lc, sizeof(*bdevswref[bi].dr_lc));
453 bdevswref[bi].dr_lc = NULL;
454 }
455 if (cdev != NULL) {
456 localcount_drain(cdevswref[ci].dr_lc,
457 &devsw_cv, &device_lock);
458 localcount_fini(cdevswref[ci].dr_lc);
459 kmem_free(cdevswref[ci].dr_lc, sizeof(*cdevswref[ci].dr_lc));
460 cdevswref[ci].dr_lc = NULL;
461 }
462 }
463
464 void
465 devsw_detach(const struct bdevsw *bdev, const struct cdevsw *cdev)
466 {
467
468 mutex_enter(&device_lock);
469 devsw_detach_locked(bdev, cdev);
470 mutex_exit(&device_lock);
471 }
472
473 /*
474 * Look up a block device by number.
475 *
476 * => Caller must ensure that the device is attached.
477 */
478 const struct bdevsw *
479 bdevsw_lookup(dev_t dev)
480 {
481 devmajor_t bmajor;
482
483 if (dev == NODEV)
484 return NULL;
485 bmajor = major(dev);
486 if (bmajor < 0 || bmajor >= atomic_load_relaxed(&max_bdevsws))
487 return NULL;
488
489 return atomic_load_consume(&bdevsw)[bmajor];
490 }
491
492 static const struct bdevsw *
493 bdevsw_lookup_acquire(dev_t dev, struct localcount **lcp)
494 {
495 devmajor_t bmajor;
496 const struct bdevsw *bdev = NULL, *const *curbdevsw;
497 struct devswref *curbdevswref;
498 int s;
499
500 if (dev == NODEV)
501 return NULL;
502 bmajor = major(dev);
503 if (bmajor < 0)
504 return NULL;
505
506 s = pserialize_read_enter();
507
508 /*
509 * max_bdevsws never goes down, so it is safe to rely on this
510 * condition without any locking for the array access below.
511 * Test sys_bdevsws first so we can avoid the memory barrier in
512 * that case.
513 */
514 if (bmajor >= sys_bdevsws &&
515 bmajor >= atomic_load_acquire(&max_bdevsws))
516 goto out;
517 curbdevsw = atomic_load_consume(&bdevsw);
518 if ((bdev = atomic_load_consume(&curbdevsw[bmajor])) == NULL)
519 goto out;
520
521 curbdevswref = atomic_load_consume(&bdevswref);
522 if (curbdevswref == NULL) {
523 *lcp = NULL;
524 } else if ((*lcp = curbdevswref[bmajor].dr_lc) != NULL) {
525 localcount_acquire(*lcp);
526 }
527 out:
528 pserialize_read_exit(s);
529 return bdev;
530 }
531
532 static void
533 bdevsw_release(const struct bdevsw *bdev, struct localcount *lc)
534 {
535
536 if (lc == NULL)
537 return;
538 localcount_release(lc, &devsw_cv, &device_lock);
539 }
540
541 /*
542 * Look up a character device by number.
543 *
544 * => Caller must ensure that the device is attached.
545 */
546 const struct cdevsw *
547 cdevsw_lookup(dev_t dev)
548 {
549 devmajor_t cmajor;
550
551 if (dev == NODEV)
552 return NULL;
553 cmajor = major(dev);
554 if (cmajor < 0 || cmajor >= atomic_load_relaxed(&max_cdevsws))
555 return NULL;
556
557 return atomic_load_consume(&cdevsw)[cmajor];
558 }
559
560 static const struct cdevsw *
561 cdevsw_lookup_acquire(dev_t dev, struct localcount **lcp)
562 {
563 devmajor_t cmajor;
564 const struct cdevsw *cdev = NULL, *const *curcdevsw;
565 struct devswref *curcdevswref;
566 int s;
567
568 if (dev == NODEV)
569 return NULL;
570 cmajor = major(dev);
571 if (cmajor < 0)
572 return NULL;
573
574 s = pserialize_read_enter();
575
576 /*
577 * max_cdevsws never goes down, so it is safe to rely on this
578 * condition without any locking for the array access below.
579 * Test sys_cdevsws first so we can avoid the memory barrier in
580 * that case.
581 */
582 if (cmajor >= sys_cdevsws &&
583 cmajor >= atomic_load_acquire(&max_cdevsws))
584 goto out;
585 curcdevsw = atomic_load_consume(&cdevsw);
586 if ((cdev = atomic_load_consume(&curcdevsw[cmajor])) == NULL)
587 goto out;
588
589 curcdevswref = atomic_load_consume(&cdevswref);
590 if (curcdevswref == NULL) {
591 *lcp = NULL;
592 } else if ((*lcp = curcdevswref[cmajor].dr_lc) != NULL) {
593 localcount_acquire(*lcp);
594 }
595 out:
596 pserialize_read_exit(s);
597 return cdev;
598 }
599
600 static void
601 cdevsw_release(const struct cdevsw *cdev, struct localcount *lc)
602 {
603
604 if (lc == NULL)
605 return;
606 localcount_release(lc, &devsw_cv, &device_lock);
607 }
608
609 /*
610 * Look up a block device by reference to its operations set.
611 *
612 * => Caller must ensure that the device is not detached, and therefore
613 * that the returned major is still valid when dereferenced.
614 */
615 devmajor_t
616 bdevsw_lookup_major(const struct bdevsw *bdev)
617 {
618 const struct bdevsw *const *curbdevsw;
619 devmajor_t bmajor, bmax;
620
621 bmax = atomic_load_acquire(&max_bdevsws);
622 curbdevsw = atomic_load_consume(&bdevsw);
623 for (bmajor = 0; bmajor < bmax; bmajor++) {
624 if (atomic_load_relaxed(&curbdevsw[bmajor]) == bdev)
625 return bmajor;
626 }
627
628 return NODEVMAJOR;
629 }
630
631 /*
632 * Look up a character device by reference to its operations set.
633 *
634 * => Caller must ensure that the device is not detached, and therefore
635 * that the returned major is still valid when dereferenced.
636 */
637 devmajor_t
638 cdevsw_lookup_major(const struct cdevsw *cdev)
639 {
640 const struct cdevsw *const *curcdevsw;
641 devmajor_t cmajor, cmax;
642
643 cmax = atomic_load_acquire(&max_cdevsws);
644 curcdevsw = atomic_load_consume(&cdevsw);
645 for (cmajor = 0; cmajor < cmax; cmajor++) {
646 if (atomic_load_relaxed(&curcdevsw[cmajor]) == cdev)
647 return cmajor;
648 }
649
650 return NODEVMAJOR;
651 }
652
653 /*
654 * Convert from block major number to name.
655 *
656 * => Caller must ensure that the device is not detached, and therefore
657 * that the name pointer is still valid when dereferenced.
658 */
659 const char *
660 devsw_blk2name(devmajor_t bmajor)
661 {
662 const char *name;
663 devmajor_t cmajor;
664 int i;
665
666 name = NULL;
667 cmajor = -1;
668
669 mutex_enter(&device_lock);
670 if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
671 mutex_exit(&device_lock);
672 return NULL;
673 }
674 for (i = 0; i < max_devsw_convs; i++) {
675 if (devsw_conv[i].d_bmajor == bmajor) {
676 cmajor = devsw_conv[i].d_cmajor;
677 break;
678 }
679 }
680 if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
681 name = devsw_conv[i].d_name;
682 mutex_exit(&device_lock);
683
684 return name;
685 }
686
687 /*
688 * Convert char major number to device driver name.
689 */
690 const char *
691 cdevsw_getname(devmajor_t major)
692 {
693 const char *name;
694 int i;
695
696 name = NULL;
697
698 if (major < 0)
699 return NULL;
700
701 mutex_enter(&device_lock);
702 for (i = 0; i < max_devsw_convs; i++) {
703 if (devsw_conv[i].d_cmajor == major) {
704 name = devsw_conv[i].d_name;
705 break;
706 }
707 }
708 mutex_exit(&device_lock);
709 return name;
710 }
711
712 /*
713 * Convert block major number to device driver name.
714 */
715 const char *
716 bdevsw_getname(devmajor_t major)
717 {
718 const char *name;
719 int i;
720
721 name = NULL;
722
723 if (major < 0)
724 return NULL;
725
726 mutex_enter(&device_lock);
727 for (i = 0; i < max_devsw_convs; i++) {
728 if (devsw_conv[i].d_bmajor == major) {
729 name = devsw_conv[i].d_name;
730 break;
731 }
732 }
733 mutex_exit(&device_lock);
734 return name;
735 }
736
737 /*
738 * Convert from device name to block major number.
739 *
740 * => Caller must ensure that the device is not detached, and therefore
741 * that the major number is still valid when dereferenced.
742 */
743 devmajor_t
744 devsw_name2blk(const char *name, char *devname, size_t devnamelen)
745 {
746 struct devsw_conv *conv;
747 devmajor_t bmajor;
748 int i;
749
750 if (name == NULL)
751 return NODEVMAJOR;
752
753 mutex_enter(&device_lock);
754 for (i = 0; i < max_devsw_convs; i++) {
755 size_t len;
756
757 conv = &devsw_conv[i];
758 if (conv->d_name == NULL)
759 continue;
760 len = strlen(conv->d_name);
761 if (strncmp(conv->d_name, name, len) != 0)
762 continue;
763 if (name[len] != '\0' && !isdigit((unsigned char)name[len]))
764 continue;
765 bmajor = conv->d_bmajor;
766 if (bmajor < 0 || bmajor >= max_bdevsws ||
767 bdevsw[bmajor] == NULL)
768 break;
769 if (devname != NULL) {
770 #ifdef DEVSW_DEBUG
771 if (strlen(conv->d_name) >= devnamelen)
772 printf("%s: too short buffer\n", __func__);
773 #endif /* DEVSW_DEBUG */
774 strncpy(devname, conv->d_name, devnamelen);
775 devname[devnamelen - 1] = '\0';
776 }
777 mutex_exit(&device_lock);
778 return bmajor;
779 }
780
781 mutex_exit(&device_lock);
782 return NODEVMAJOR;
783 }
784
785 /*
786 * Convert from device name to char major number.
787 *
788 * => Caller must ensure that the device is not detached, and therefore
789 * that the major number is still valid when dereferenced.
790 */
791 devmajor_t
792 devsw_name2chr(const char *name, char *devname, size_t devnamelen)
793 {
794 struct devsw_conv *conv;
795 devmajor_t cmajor;
796 int i;
797
798 if (name == NULL)
799 return NODEVMAJOR;
800
801 mutex_enter(&device_lock);
802 for (i = 0; i < max_devsw_convs; i++) {
803 size_t len;
804
805 conv = &devsw_conv[i];
806 if (conv->d_name == NULL)
807 continue;
808 len = strlen(conv->d_name);
809 if (strncmp(conv->d_name, name, len) != 0)
810 continue;
811 if (name[len] != '\0' && !isdigit((unsigned char)name[len]))
812 continue;
813 cmajor = conv->d_cmajor;
814 if (cmajor < 0 || cmajor >= max_cdevsws ||
815 cdevsw[cmajor] == NULL)
816 break;
817 if (devname != NULL) {
818 #ifdef DEVSW_DEBUG
819 if (strlen(conv->d_name) >= devnamelen)
820 printf("%s: too short buffer", __func__);
821 #endif /* DEVSW_DEBUG */
822 strncpy(devname, conv->d_name, devnamelen);
823 devname[devnamelen - 1] = '\0';
824 }
825 mutex_exit(&device_lock);
826 return cmajor;
827 }
828
829 mutex_exit(&device_lock);
830 return NODEVMAJOR;
831 }
832
833 /*
834 * Convert from character dev_t to block dev_t.
835 *
836 * => Caller must ensure that the device is not detached, and therefore
837 * that the major number is still valid when dereferenced.
838 */
839 dev_t
840 devsw_chr2blk(dev_t cdev)
841 {
842 devmajor_t bmajor, cmajor;
843 int i;
844 dev_t rv;
845
846 cmajor = major(cdev);
847 bmajor = NODEVMAJOR;
848 rv = NODEV;
849
850 mutex_enter(&device_lock);
851 if (cmajor < 0 || cmajor >= max_cdevsws || cdevsw[cmajor] == NULL) {
852 mutex_exit(&device_lock);
853 return NODEV;
854 }
855 for (i = 0; i < max_devsw_convs; i++) {
856 if (devsw_conv[i].d_cmajor == cmajor) {
857 bmajor = devsw_conv[i].d_bmajor;
858 break;
859 }
860 }
861 if (bmajor >= 0 && bmajor < max_bdevsws && bdevsw[bmajor] != NULL)
862 rv = makedev(bmajor, minor(cdev));
863 mutex_exit(&device_lock);
864
865 return rv;
866 }
867
868 /*
869 * Convert from block dev_t to character dev_t.
870 *
871 * => Caller must ensure that the device is not detached, and therefore
872 * that the major number is still valid when dereferenced.
873 */
874 dev_t
875 devsw_blk2chr(dev_t bdev)
876 {
877 devmajor_t bmajor, cmajor;
878 int i;
879 dev_t rv;
880
881 bmajor = major(bdev);
882 cmajor = NODEVMAJOR;
883 rv = NODEV;
884
885 mutex_enter(&device_lock);
886 if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
887 mutex_exit(&device_lock);
888 return NODEV;
889 }
890 for (i = 0; i < max_devsw_convs; i++) {
891 if (devsw_conv[i].d_bmajor == bmajor) {
892 cmajor = devsw_conv[i].d_cmajor;
893 break;
894 }
895 }
896 if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
897 rv = makedev(cmajor, minor(bdev));
898 mutex_exit(&device_lock);
899
900 return rv;
901 }
902
903 /*
904 * Device access methods.
905 */
906
907 #define DEV_LOCK(d) \
908 if ((mpflag = (d->d_flag & D_MPSAFE)) == 0) { \
909 KERNEL_LOCK(1, NULL); \
910 }
911
912 #define DEV_UNLOCK(d) \
913 if (mpflag == 0) { \
914 KERNEL_UNLOCK_ONE(NULL); \
915 }
916
917 int
918 bdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
919 {
920 const struct bdevsw *d;
921 struct localcount *lc;
922 device_t dv = NULL/*XXXGCC*/;
923 int unit, rv, mpflag;
924
925 d = bdevsw_lookup_acquire(dev, &lc);
926 if (d == NULL)
927 return ENXIO;
928
929 if (d->d_devtounit) {
930 /*
931 * If the device node corresponds to an autoconf device
932 * instance, acquire a reference to it so that during
933 * d_open, device_lookup is stable.
934 *
935 * XXX This should also arrange to instantiate cloning
936 * pseudo-devices if appropriate, but that requires
937 * reviewing them all to find and verify a common
938 * pattern.
939 */
940 if ((unit = (*d->d_devtounit)(dev)) == -1)
941 return ENXIO;
942 if ((dv = device_lookup_acquire(d->d_cfdriver, unit)) == NULL)
943 return ENXIO;
944 }
945
946 DEV_LOCK(d);
947 rv = (*d->d_open)(dev, flag, devtype, l);
948 DEV_UNLOCK(d);
949
950 if (d->d_devtounit) {
951 device_release(dv);
952 }
953
954 bdevsw_release(d, lc);
955
956 return rv;
957 }
958
959 int
960 bdev_cancel(dev_t dev, int flag, int devtype, struct lwp *l)
961 {
962 const struct bdevsw *d;
963 int rv, mpflag;
964
965 if ((d = bdevsw_lookup(dev)) == NULL)
966 return ENXIO;
967 if (d->d_cancel == NULL)
968 return ENODEV;
969
970 DEV_LOCK(d);
971 rv = (*d->d_cancel)(dev, flag, devtype, l);
972 DEV_UNLOCK(d);
973
974 return rv;
975 }
976
977 int
978 bdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
979 {
980 const struct bdevsw *d;
981 int rv, mpflag;
982
983 if ((d = bdevsw_lookup(dev)) == NULL)
984 return ENXIO;
985
986 DEV_LOCK(d);
987 rv = (*d->d_close)(dev, flag, devtype, l);
988 DEV_UNLOCK(d);
989
990 return rv;
991 }
992
993 SDT_PROVIDER_DECLARE(io);
994 SDT_PROBE_DEFINE1(io, kernel, , start, "struct buf *"/*bp*/);
995
996 void
997 bdev_strategy(struct buf *bp)
998 {
999 const struct bdevsw *d;
1000 int mpflag;
1001
1002 SDT_PROBE1(io, kernel, , start, bp);
1003
1004 if ((d = bdevsw_lookup(bp->b_dev)) == NULL) {
1005 bp->b_error = ENXIO;
1006 bp->b_resid = bp->b_bcount;
1007 biodone_vfs(bp); /* biodone() iff vfs present */
1008 return;
1009 }
1010
1011 DEV_LOCK(d);
1012 (*d->d_strategy)(bp);
1013 DEV_UNLOCK(d);
1014 }
1015
1016 int
1017 bdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
1018 {
1019 const struct bdevsw *d;
1020 int rv, mpflag;
1021
1022 if ((d = bdevsw_lookup(dev)) == NULL)
1023 return ENXIO;
1024
1025 DEV_LOCK(d);
1026 rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
1027 DEV_UNLOCK(d);
1028
1029 return rv;
1030 }
1031
1032 int
1033 bdev_dump(dev_t dev, daddr_t addr, void *data, size_t sz)
1034 {
1035 const struct bdevsw *d;
1036 int rv;
1037
1038 /*
1039 * Dump can be called without the device open. Since it can
1040 * currently only be called with the system paused (and in a
1041 * potentially unstable state), we don't perform any locking.
1042 */
1043 if ((d = bdevsw_lookup(dev)) == NULL)
1044 return ENXIO;
1045
1046 /* DEV_LOCK(d); */
1047 rv = (*d->d_dump)(dev, addr, data, sz);
1048 /* DEV_UNLOCK(d); */
1049
1050 return rv;
1051 }
1052
1053 int
1054 bdev_flags(dev_t dev)
1055 {
1056 const struct bdevsw *d;
1057
1058 if ((d = bdevsw_lookup(dev)) == NULL)
1059 return 0;
1060 return d->d_flag & ~D_TYPEMASK;
1061 }
1062
1063 int
1064 bdev_type(dev_t dev)
1065 {
1066 const struct bdevsw *d;
1067
1068 if ((d = bdevsw_lookup(dev)) == NULL)
1069 return D_OTHER;
1070 return d->d_flag & D_TYPEMASK;
1071 }
1072
1073 int
1074 bdev_size(dev_t dev)
1075 {
1076 const struct bdevsw *d;
1077 int rv, mpflag = 0;
1078
1079 if ((d = bdevsw_lookup(dev)) == NULL ||
1080 d->d_psize == NULL)
1081 return -1;
1082
1083 /*
1084 * Don't to try lock the device if we're dumping.
1085 * XXX: is there a better way to test this?
1086 */
1087 if ((boothowto & RB_DUMP) == 0)
1088 DEV_LOCK(d);
1089 rv = (*d->d_psize)(dev);
1090 if ((boothowto & RB_DUMP) == 0)
1091 DEV_UNLOCK(d);
1092
1093 return rv;
1094 }
1095
1096 int
1097 bdev_discard(dev_t dev, off_t pos, off_t len)
1098 {
1099 const struct bdevsw *d;
1100 int rv, mpflag;
1101
1102 if ((d = bdevsw_lookup(dev)) == NULL)
1103 return ENXIO;
1104
1105 DEV_LOCK(d);
1106 rv = (*d->d_discard)(dev, pos, len);
1107 DEV_UNLOCK(d);
1108
1109 return rv;
1110 }
1111
1112 void
1113 bdev_detached(dev_t dev)
1114 {
1115 const struct bdevsw *d;
1116 device_t dv;
1117 int unit;
1118
1119 if ((d = bdevsw_lookup(dev)) == NULL)
1120 return;
1121 if (d->d_devtounit == NULL)
1122 return;
1123 if ((unit = (*d->d_devtounit)(dev)) == -1)
1124 return;
1125 if ((dv = device_lookup(d->d_cfdriver, unit)) == NULL)
1126 return;
1127 config_detach_commit(dv);
1128 }
1129
1130 int
1131 cdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
1132 {
1133 const struct cdevsw *d;
1134 struct localcount *lc;
1135 device_t dv = NULL/*XXXGCC*/;
1136 int unit, rv, mpflag;
1137
1138 d = cdevsw_lookup_acquire(dev, &lc);
1139 if (d == NULL)
1140 return ENXIO;
1141
1142 if (d->d_devtounit) {
1143 /*
1144 * If the device node corresponds to an autoconf device
1145 * instance, acquire a reference to it so that during
1146 * d_open, device_lookup is stable.
1147 *
1148 * XXX This should also arrange to instantiate cloning
1149 * pseudo-devices if appropriate, but that requires
1150 * reviewing them all to find and verify a common
1151 * pattern.
1152 */
1153 if ((unit = (*d->d_devtounit)(dev)) == -1)
1154 return ENXIO;
1155 if ((dv = device_lookup_acquire(d->d_cfdriver, unit)) == NULL)
1156 return ENXIO;
1157 }
1158
1159 DEV_LOCK(d);
1160 rv = (*d->d_open)(dev, flag, devtype, l);
1161 DEV_UNLOCK(d);
1162
1163 if (d->d_devtounit) {
1164 device_release(dv);
1165 }
1166
1167 cdevsw_release(d, lc);
1168
1169 return rv;
1170 }
1171
1172 int
1173 cdev_cancel(dev_t dev, int flag, int devtype, struct lwp *l)
1174 {
1175 const struct cdevsw *d;
1176 int rv, mpflag;
1177
1178 if ((d = cdevsw_lookup(dev)) == NULL)
1179 return ENXIO;
1180 if (d->d_cancel == NULL)
1181 return ENODEV;
1182
1183 DEV_LOCK(d);
1184 rv = (*d->d_cancel)(dev, flag, devtype, l);
1185 DEV_UNLOCK(d);
1186
1187 return rv;
1188 }
1189
1190 int
1191 cdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
1192 {
1193 const struct cdevsw *d;
1194 int rv, mpflag;
1195
1196 if ((d = cdevsw_lookup(dev)) == NULL)
1197 return ENXIO;
1198
1199 DEV_LOCK(d);
1200 rv = (*d->d_close)(dev, flag, devtype, l);
1201 DEV_UNLOCK(d);
1202
1203 return rv;
1204 }
1205
1206 int
1207 cdev_read(dev_t dev, struct uio *uio, int flag)
1208 {
1209 const struct cdevsw *d;
1210 int rv, mpflag;
1211
1212 if ((d = cdevsw_lookup(dev)) == NULL)
1213 return ENXIO;
1214
1215 DEV_LOCK(d);
1216 rv = (*d->d_read)(dev, uio, flag);
1217 DEV_UNLOCK(d);
1218
1219 return rv;
1220 }
1221
1222 int
1223 cdev_write(dev_t dev, struct uio *uio, int flag)
1224 {
1225 const struct cdevsw *d;
1226 int rv, mpflag;
1227
1228 if ((d = cdevsw_lookup(dev)) == NULL)
1229 return ENXIO;
1230
1231 DEV_LOCK(d);
1232 rv = (*d->d_write)(dev, uio, flag);
1233 DEV_UNLOCK(d);
1234
1235 return rv;
1236 }
1237
1238 int
1239 cdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
1240 {
1241 const struct cdevsw *d;
1242 int rv, mpflag;
1243
1244 if ((d = cdevsw_lookup(dev)) == NULL)
1245 return ENXIO;
1246
1247 DEV_LOCK(d);
1248 rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
1249 DEV_UNLOCK(d);
1250
1251 return rv;
1252 }
1253
1254 void
1255 cdev_stop(struct tty *tp, int flag)
1256 {
1257 const struct cdevsw *d;
1258 int mpflag;
1259
1260 if ((d = cdevsw_lookup(tp->t_dev)) == NULL)
1261 return;
1262
1263 DEV_LOCK(d);
1264 (*d->d_stop)(tp, flag);
1265 DEV_UNLOCK(d);
1266 }
1267
1268 struct tty *
1269 cdev_tty(dev_t dev)
1270 {
1271 const struct cdevsw *d;
1272
1273 if ((d = cdevsw_lookup(dev)) == NULL)
1274 return NULL;
1275
1276 /* XXX Check if necessary. */
1277 if (d->d_tty == NULL)
1278 return NULL;
1279
1280 return (*d->d_tty)(dev);
1281 }
1282
1283 int
1284 cdev_poll(dev_t dev, int flag, lwp_t *l)
1285 {
1286 const struct cdevsw *d;
1287 int rv, mpflag;
1288
1289 if ((d = cdevsw_lookup(dev)) == NULL)
1290 return POLLERR;
1291
1292 DEV_LOCK(d);
1293 rv = (*d->d_poll)(dev, flag, l);
1294 DEV_UNLOCK(d);
1295
1296 return rv;
1297 }
1298
1299 paddr_t
1300 cdev_mmap(dev_t dev, off_t off, int flag)
1301 {
1302 const struct cdevsw *d;
1303 paddr_t rv;
1304 int mpflag;
1305
1306 if ((d = cdevsw_lookup(dev)) == NULL)
1307 return (paddr_t)-1LL;
1308
1309 DEV_LOCK(d);
1310 rv = (*d->d_mmap)(dev, off, flag);
1311 DEV_UNLOCK(d);
1312
1313 return rv;
1314 }
1315
1316 int
1317 cdev_kqfilter(dev_t dev, struct knote *kn)
1318 {
1319 const struct cdevsw *d;
1320 int rv, mpflag;
1321
1322 if ((d = cdevsw_lookup(dev)) == NULL)
1323 return ENXIO;
1324
1325 DEV_LOCK(d);
1326 rv = (*d->d_kqfilter)(dev, kn);
1327 DEV_UNLOCK(d);
1328
1329 return rv;
1330 }
1331
1332 int
1333 cdev_discard(dev_t dev, off_t pos, off_t len)
1334 {
1335 const struct cdevsw *d;
1336 int rv, mpflag;
1337
1338 if ((d = cdevsw_lookup(dev)) == NULL)
1339 return ENXIO;
1340
1341 DEV_LOCK(d);
1342 rv = (*d->d_discard)(dev, pos, len);
1343 DEV_UNLOCK(d);
1344
1345 return rv;
1346 }
1347
1348 int
1349 cdev_flags(dev_t dev)
1350 {
1351 const struct cdevsw *d;
1352
1353 if ((d = cdevsw_lookup(dev)) == NULL)
1354 return 0;
1355 return d->d_flag & ~D_TYPEMASK;
1356 }
1357
1358 int
1359 cdev_type(dev_t dev)
1360 {
1361 const struct cdevsw *d;
1362
1363 if ((d = cdevsw_lookup(dev)) == NULL)
1364 return D_OTHER;
1365 return d->d_flag & D_TYPEMASK;
1366 }
1367
1368 void
1369 cdev_detached(dev_t dev)
1370 {
1371 const struct cdevsw *d;
1372 device_t dv;
1373 int unit;
1374
1375 if ((d = cdevsw_lookup(dev)) == NULL)
1376 return;
1377 if (d->d_devtounit == NULL)
1378 return;
1379 if ((unit = (*d->d_devtounit)(dev)) == -1)
1380 return;
1381 if ((dv = device_lookup(d->d_cfdriver, unit)) == NULL)
1382 return;
1383 config_detach_commit(dv);
1384 }
1385
1386 /*
1387 * nommap(dev, off, prot)
1388 *
1389 * mmap routine that always fails, for non-mmappable devices.
1390 */
1391 paddr_t
1392 nommap(dev_t dev, off_t off, int prot)
1393 {
1394
1395 return (paddr_t)-1;
1396 }
1397
1398 /*
1399 * dev_minor_unit(dev)
1400 *
1401 * Returns minor(dev) as an int. Intended for use with struct
1402 * bdevsw, cdevsw::d_devtounit for drivers whose /dev nodes are
1403 * implemented by reference to an autoconf instance with the minor
1404 * number.
1405 */
1406 int
1407 dev_minor_unit(dev_t dev)
1408 {
1409
1410 return minor(dev);
1411 }
1412