subr_devsw.c revision 1.48 1 /* $NetBSD: subr_devsw.c,v 1.48 2022/08/28 12:24:39 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by MAEKAWA Masahide <gehenna (at) NetBSD.org>, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * subr_devsw.c: registers device drivers by name and by major
36 * number, and provides wrapper methods for performing I/O and
37 * other tasks on device drivers, keying on the device number
38 * (dev_t).
39 *
40 * When the system is built, the config(8) command generates
41 * static tables of device drivers built into the kernel image
42 * along with their associated methods. These are recorded in
43 * the cdevsw0 and bdevsw0 tables. Drivers can also be added to
44 * and removed from the system dynamically.
45 *
46 * Allocation
47 *
48 * When the system initially boots only the statically allocated
49 * indexes (bdevsw0, cdevsw0) are used. If these overflow due to
50 * allocation, we allocate a fixed block of memory to hold the new,
51 * expanded index. This "fork" of the table is only ever performed
52 * once in order to guarantee that other threads may safely access
53 * the device tables:
54 *
55 * o Once a thread has a "reference" to the table via an earlier
56 * open() call, we know that the entry in the table must exist
57 * and so it is safe to access it.
58 *
59 * o Regardless of whether other threads see the old or new
60 * pointers, they will point to a correct device switch
61 * structure for the operation being performed.
62 *
63 * XXX Currently, the wrapper methods such as cdev_read() verify
64 * that a device driver does in fact exist before calling the
65 * associated driver method. This should be changed so that
66 * once the device is has been referenced by a vnode (opened),
67 * calling the other methods should be valid until that reference
68 * is dropped.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: subr_devsw.c,v 1.48 2022/08/28 12:24:39 riastradh Exp $");
73
74 #ifdef _KERNEL_OPT
75 #include "opt_dtrace.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/conf.h>
80 #include <sys/kmem.h>
81 #include <sys/systm.h>
82 #include <sys/poll.h>
83 #include <sys/tty.h>
84 #include <sys/cpu.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/sdt.h>
88 #include <sys/atomic.h>
89 #include <sys/localcount.h>
90 #include <sys/pserialize.h>
91 #include <sys/xcall.h>
92 #include <sys/device.h>
93
94 #ifdef DEVSW_DEBUG
95 #define DPRINTF(x) printf x
96 #else /* DEVSW_DEBUG */
97 #define DPRINTF(x)
98 #endif /* DEVSW_DEBUG */
99
100 #define MAXDEVSW 512 /* the maximum of major device number */
101 #define BDEVSW_SIZE (sizeof(struct bdevsw *))
102 #define CDEVSW_SIZE (sizeof(struct cdevsw *))
103 #define DEVSWCONV_SIZE (sizeof(struct devsw_conv))
104
105 struct devswref {
106 struct localcount *dr_lc;
107 };
108
109 /* XXX bdevsw, cdevsw, max_bdevsws, and max_cdevsws should be volatile */
110 extern const struct bdevsw **bdevsw, *bdevsw0[];
111 extern const struct cdevsw **cdevsw, *cdevsw0[];
112 extern struct devsw_conv *devsw_conv, devsw_conv0[];
113 extern const int sys_bdevsws, sys_cdevsws;
114 extern int max_bdevsws, max_cdevsws, max_devsw_convs;
115
116 static struct devswref *cdevswref;
117 static struct devswref *bdevswref;
118 static kcondvar_t devsw_cv;
119
120 static int bdevsw_attach(const struct bdevsw *, devmajor_t *);
121 static int cdevsw_attach(const struct cdevsw *, devmajor_t *);
122 static void devsw_detach_locked(const struct bdevsw *, const struct cdevsw *);
123
124 kmutex_t device_lock;
125
126 void (*biodone_vfs)(buf_t *) = (void *)nullop;
127
128 void
129 devsw_init(void)
130 {
131
132 KASSERT(sys_bdevsws < MAXDEVSW - 1);
133 KASSERT(sys_cdevsws < MAXDEVSW - 1);
134 mutex_init(&device_lock, MUTEX_DEFAULT, IPL_NONE);
135
136 cv_init(&devsw_cv, "devsw");
137 }
138
139 int
140 devsw_attach(const char *devname,
141 const struct bdevsw *bdev, devmajor_t *bmajor,
142 const struct cdevsw *cdev, devmajor_t *cmajor)
143 {
144 struct devsw_conv *conv;
145 char *name;
146 int error, i;
147
148 if (devname == NULL || cdev == NULL)
149 return EINVAL;
150
151 mutex_enter(&device_lock);
152
153 for (i = 0; i < max_devsw_convs; i++) {
154 conv = &devsw_conv[i];
155 if (conv->d_name == NULL || strcmp(devname, conv->d_name) != 0)
156 continue;
157
158 if (*bmajor < 0)
159 *bmajor = conv->d_bmajor;
160 if (*cmajor < 0)
161 *cmajor = conv->d_cmajor;
162
163 if (*bmajor != conv->d_bmajor || *cmajor != conv->d_cmajor) {
164 error = EINVAL;
165 goto out;
166 }
167 if ((*bmajor >= 0 && bdev == NULL) || *cmajor < 0) {
168 error = EINVAL;
169 goto out;
170 }
171
172 if ((*bmajor >= 0 && bdevsw[*bmajor] != NULL) ||
173 cdevsw[*cmajor] != NULL) {
174 error = EEXIST;
175 goto out;
176 }
177 break;
178 }
179
180 /*
181 * XXX This should allocate what it needs up front so we never
182 * need to flail around trying to unwind.
183 */
184 error = bdevsw_attach(bdev, bmajor);
185 if (error != 0)
186 goto out;
187 error = cdevsw_attach(cdev, cmajor);
188 if (error != 0) {
189 devsw_detach_locked(bdev, NULL);
190 goto out;
191 }
192
193 /*
194 * If we already found a conv, we're done. Otherwise, find an
195 * empty slot or extend the table.
196 */
197 if (i < max_devsw_convs) {
198 error = 0;
199 goto out;
200 }
201
202 for (i = 0; i < max_devsw_convs; i++) {
203 if (devsw_conv[i].d_name == NULL)
204 break;
205 }
206 if (i == max_devsw_convs) {
207 struct devsw_conv *newptr;
208 int old_convs, new_convs;
209
210 old_convs = max_devsw_convs;
211 new_convs = old_convs + 1;
212
213 newptr = kmem_zalloc(new_convs * DEVSWCONV_SIZE, KM_NOSLEEP);
214 if (newptr == NULL) {
215 devsw_detach_locked(bdev, cdev);
216 error = ENOMEM;
217 goto out;
218 }
219 newptr[old_convs].d_name = NULL;
220 newptr[old_convs].d_bmajor = -1;
221 newptr[old_convs].d_cmajor = -1;
222 memcpy(newptr, devsw_conv, old_convs * DEVSWCONV_SIZE);
223 if (devsw_conv != devsw_conv0)
224 kmem_free(devsw_conv, old_convs * DEVSWCONV_SIZE);
225 devsw_conv = newptr;
226 max_devsw_convs = new_convs;
227 }
228
229 name = kmem_strdupsize(devname, NULL, KM_NOSLEEP);
230 if (name == NULL) {
231 devsw_detach_locked(bdev, cdev);
232 error = ENOMEM;
233 goto out;
234 }
235
236 devsw_conv[i].d_name = name;
237 devsw_conv[i].d_bmajor = *bmajor;
238 devsw_conv[i].d_cmajor = *cmajor;
239 error = 0;
240 out:
241 mutex_exit(&device_lock);
242 return error;
243 }
244
245 static int
246 bdevsw_attach(const struct bdevsw *devsw, devmajor_t *devmajor)
247 {
248 const struct bdevsw **newbdevsw = NULL;
249 struct devswref *newbdevswref = NULL;
250 struct localcount *lc;
251 devmajor_t bmajor;
252 int i;
253
254 KASSERT(mutex_owned(&device_lock));
255
256 if (devsw == NULL)
257 return 0;
258
259 if (*devmajor < 0) {
260 for (bmajor = sys_bdevsws; bmajor < max_bdevsws; bmajor++) {
261 if (bdevsw[bmajor] != NULL)
262 continue;
263 for (i = 0; i < max_devsw_convs; i++) {
264 if (devsw_conv[i].d_bmajor == bmajor)
265 break;
266 }
267 if (i != max_devsw_convs)
268 continue;
269 break;
270 }
271 *devmajor = bmajor;
272 }
273
274 if (*devmajor >= MAXDEVSW) {
275 printf("%s: block majors exhausted\n", __func__);
276 return ENOMEM;
277 }
278
279 if (bdevswref == NULL) {
280 newbdevswref = kmem_zalloc(MAXDEVSW * sizeof(newbdevswref[0]),
281 KM_NOSLEEP);
282 if (newbdevswref == NULL)
283 return ENOMEM;
284 atomic_store_release(&bdevswref, newbdevswref);
285 }
286
287 if (*devmajor >= max_bdevsws) {
288 KASSERT(bdevsw == bdevsw0);
289 newbdevsw = kmem_zalloc(MAXDEVSW * sizeof(newbdevsw[0]),
290 KM_NOSLEEP);
291 if (newbdevsw == NULL)
292 return ENOMEM;
293 memcpy(newbdevsw, bdevsw, max_bdevsws * sizeof(bdevsw[0]));
294 atomic_store_release(&bdevsw, newbdevsw);
295 atomic_store_release(&max_bdevsws, MAXDEVSW);
296 }
297
298 if (bdevsw[*devmajor] != NULL)
299 return EEXIST;
300
301 KASSERT(bdevswref[*devmajor].dr_lc == NULL);
302 lc = kmem_zalloc(sizeof(*lc), KM_SLEEP);
303 localcount_init(lc);
304 bdevswref[*devmajor].dr_lc = lc;
305
306 atomic_store_release(&bdevsw[*devmajor], devsw);
307
308 return 0;
309 }
310
311 static int
312 cdevsw_attach(const struct cdevsw *devsw, devmajor_t *devmajor)
313 {
314 const struct cdevsw **newcdevsw = NULL;
315 struct devswref *newcdevswref = NULL;
316 struct localcount *lc;
317 devmajor_t cmajor;
318 int i;
319
320 KASSERT(mutex_owned(&device_lock));
321
322 if (*devmajor < 0) {
323 for (cmajor = sys_cdevsws; cmajor < max_cdevsws; cmajor++) {
324 if (cdevsw[cmajor] != NULL)
325 continue;
326 for (i = 0; i < max_devsw_convs; i++) {
327 if (devsw_conv[i].d_cmajor == cmajor)
328 break;
329 }
330 if (i != max_devsw_convs)
331 continue;
332 break;
333 }
334 *devmajor = cmajor;
335 }
336
337 if (*devmajor >= MAXDEVSW) {
338 printf("%s: character majors exhausted\n", __func__);
339 return ENOMEM;
340 }
341
342 if (cdevswref == NULL) {
343 newcdevswref = kmem_zalloc(MAXDEVSW * sizeof(newcdevswref[0]),
344 KM_NOSLEEP);
345 if (newcdevswref == NULL)
346 return ENOMEM;
347 atomic_store_release(&cdevswref, newcdevswref);
348 }
349
350 if (*devmajor >= max_cdevsws) {
351 KASSERT(cdevsw == cdevsw0);
352 newcdevsw = kmem_zalloc(MAXDEVSW * sizeof(newcdevsw[0]),
353 KM_NOSLEEP);
354 if (newcdevsw == NULL)
355 return ENOMEM;
356 memcpy(newcdevsw, cdevsw, max_cdevsws * sizeof(cdevsw[0]));
357 atomic_store_release(&cdevsw, newcdevsw);
358 atomic_store_release(&max_cdevsws, MAXDEVSW);
359 }
360
361 if (cdevsw[*devmajor] != NULL)
362 return EEXIST;
363
364 KASSERT(cdevswref[*devmajor].dr_lc == NULL);
365 lc = kmem_zalloc(sizeof(*lc), KM_SLEEP);
366 localcount_init(lc);
367 cdevswref[*devmajor].dr_lc = lc;
368
369 atomic_store_release(&cdevsw[*devmajor], devsw);
370
371 return 0;
372 }
373
374 static void
375 devsw_detach_locked(const struct bdevsw *bdev, const struct cdevsw *cdev)
376 {
377 int bi, ci = -1/*XXXGCC*/, di;
378 struct cfdriver *cd;
379 device_t dv;
380
381 KASSERT(mutex_owned(&device_lock));
382
383 /*
384 * If this is wired to an autoconf device, make sure the device
385 * has no more instances. No locking here because under
386 * correct use of devsw_detach, none of this state can change
387 * at this point.
388 */
389 if (cdev != NULL && (cd = cdev->d_cfdriver) != NULL) {
390 for (di = 0; di < cd->cd_ndevs; di++) {
391 KASSERTMSG((dv = cd->cd_devs[di]) == NULL,
392 "detaching character device driver %s"
393 " still has attached unit %s",
394 cd->cd_name, device_xname(dv));
395 }
396 }
397 if (bdev != NULL && (cd = bdev->d_cfdriver) != NULL) {
398 for (di = 0; di < cd->cd_ndevs; di++) {
399 KASSERTMSG((dv = cd->cd_devs[di]) == NULL,
400 "detaching block device driver %s"
401 " still has attached unit %s",
402 cd->cd_name, device_xname(dv));
403 }
404 }
405
406 /* Prevent new references. */
407 if (bdev != NULL) {
408 for (bi = 0; bi < max_bdevsws; bi++) {
409 if (bdevsw[bi] != bdev)
410 continue;
411 atomic_store_relaxed(&bdevsw[bi], NULL);
412 break;
413 }
414 KASSERT(bi < max_bdevsws);
415 }
416 if (cdev != NULL) {
417 for (ci = 0; ci < max_cdevsws; ci++) {
418 if (cdevsw[ci] != cdev)
419 continue;
420 atomic_store_relaxed(&cdevsw[ci], NULL);
421 break;
422 }
423 KASSERT(ci < max_cdevsws);
424 }
425
426 if (bdev == NULL && cdev == NULL) /* XXX possible? */
427 return;
428
429 /*
430 * Wait for all bdevsw_lookup_acquire, cdevsw_lookup_acquire
431 * calls to notice that the devsw is gone.
432 *
433 * XXX Despite the use of the pserialize_read_enter/exit API
434 * elsewhere in this file, we use xc_barrier here instead of
435 * pserialize_perform -- because devsw_init is too early for
436 * pserialize_create. Either pserialize_create should be made
437 * to work earlier, or it should be nixed altogether. Until
438 * that is fixed, xc_barrier will serve the same purpose.
439 */
440 xc_barrier(0);
441
442 /*
443 * Wait for all references to drain. It is the caller's
444 * responsibility to ensure that at this point, there are no
445 * extant open instances and all new d_open calls will fail.
446 *
447 * Note that localcount_drain may release and reacquire
448 * device_lock.
449 */
450 if (bdev != NULL) {
451 localcount_drain(bdevswref[bi].dr_lc,
452 &devsw_cv, &device_lock);
453 localcount_fini(bdevswref[bi].dr_lc);
454 kmem_free(bdevswref[bi].dr_lc, sizeof(*bdevswref[bi].dr_lc));
455 bdevswref[bi].dr_lc = NULL;
456 }
457 if (cdev != NULL) {
458 localcount_drain(cdevswref[ci].dr_lc,
459 &devsw_cv, &device_lock);
460 localcount_fini(cdevswref[ci].dr_lc);
461 kmem_free(cdevswref[ci].dr_lc, sizeof(*cdevswref[ci].dr_lc));
462 cdevswref[ci].dr_lc = NULL;
463 }
464 }
465
466 void
467 devsw_detach(const struct bdevsw *bdev, const struct cdevsw *cdev)
468 {
469
470 mutex_enter(&device_lock);
471 devsw_detach_locked(bdev, cdev);
472 mutex_exit(&device_lock);
473 }
474
475 /*
476 * Look up a block device by number.
477 *
478 * => Caller must ensure that the device is attached.
479 */
480 const struct bdevsw *
481 bdevsw_lookup(dev_t dev)
482 {
483 devmajor_t bmajor;
484
485 if (dev == NODEV)
486 return NULL;
487 bmajor = major(dev);
488 if (bmajor < 0 || bmajor >= atomic_load_relaxed(&max_bdevsws))
489 return NULL;
490
491 return atomic_load_consume(&bdevsw)[bmajor];
492 }
493
494 static const struct bdevsw *
495 bdevsw_lookup_acquire(dev_t dev, struct localcount **lcp)
496 {
497 devmajor_t bmajor;
498 const struct bdevsw *bdev = NULL, *const *curbdevsw;
499 struct devswref *curbdevswref;
500 int s;
501
502 if (dev == NODEV)
503 return NULL;
504 bmajor = major(dev);
505 if (bmajor < 0)
506 return NULL;
507
508 s = pserialize_read_enter();
509
510 /*
511 * max_bdevsws never goes down, so it is safe to rely on this
512 * condition without any locking for the array access below.
513 * Test sys_bdevsws first so we can avoid the memory barrier in
514 * that case.
515 */
516 if (bmajor >= sys_bdevsws &&
517 bmajor >= atomic_load_acquire(&max_bdevsws))
518 goto out;
519 curbdevsw = atomic_load_consume(&bdevsw);
520 if ((bdev = atomic_load_consume(&curbdevsw[bmajor])) == NULL)
521 goto out;
522
523 curbdevswref = atomic_load_consume(&bdevswref);
524 if (curbdevswref == NULL) {
525 *lcp = NULL;
526 } else if ((*lcp = curbdevswref[bmajor].dr_lc) != NULL) {
527 localcount_acquire(*lcp);
528 }
529 out:
530 pserialize_read_exit(s);
531 return bdev;
532 }
533
534 static void
535 bdevsw_release(const struct bdevsw *bdev, struct localcount *lc)
536 {
537
538 if (lc == NULL)
539 return;
540 localcount_release(lc, &devsw_cv, &device_lock);
541 }
542
543 /*
544 * Look up a character device by number.
545 *
546 * => Caller must ensure that the device is attached.
547 */
548 const struct cdevsw *
549 cdevsw_lookup(dev_t dev)
550 {
551 devmajor_t cmajor;
552
553 if (dev == NODEV)
554 return NULL;
555 cmajor = major(dev);
556 if (cmajor < 0 || cmajor >= atomic_load_relaxed(&max_cdevsws))
557 return NULL;
558
559 return atomic_load_consume(&cdevsw)[cmajor];
560 }
561
562 static const struct cdevsw *
563 cdevsw_lookup_acquire(dev_t dev, struct localcount **lcp)
564 {
565 devmajor_t cmajor;
566 const struct cdevsw *cdev = NULL, *const *curcdevsw;
567 struct devswref *curcdevswref;
568 int s;
569
570 if (dev == NODEV)
571 return NULL;
572 cmajor = major(dev);
573 if (cmajor < 0)
574 return NULL;
575
576 s = pserialize_read_enter();
577
578 /*
579 * max_cdevsws never goes down, so it is safe to rely on this
580 * condition without any locking for the array access below.
581 * Test sys_cdevsws first so we can avoid the memory barrier in
582 * that case.
583 */
584 if (cmajor >= sys_cdevsws &&
585 cmajor >= atomic_load_acquire(&max_cdevsws))
586 goto out;
587 curcdevsw = atomic_load_consume(&cdevsw);
588 if ((cdev = atomic_load_consume(&curcdevsw[cmajor])) == NULL)
589 goto out;
590
591 curcdevswref = atomic_load_consume(&cdevswref);
592 if (curcdevswref == NULL) {
593 *lcp = NULL;
594 } else if ((*lcp = curcdevswref[cmajor].dr_lc) != NULL) {
595 localcount_acquire(*lcp);
596 }
597 out:
598 pserialize_read_exit(s);
599 return cdev;
600 }
601
602 static void
603 cdevsw_release(const struct cdevsw *cdev, struct localcount *lc)
604 {
605
606 if (lc == NULL)
607 return;
608 localcount_release(lc, &devsw_cv, &device_lock);
609 }
610
611 /*
612 * Look up a block device by reference to its operations set.
613 *
614 * => Caller must ensure that the device is not detached, and therefore
615 * that the returned major is still valid when dereferenced.
616 */
617 devmajor_t
618 bdevsw_lookup_major(const struct bdevsw *bdev)
619 {
620 const struct bdevsw *const *curbdevsw;
621 devmajor_t bmajor, bmax;
622
623 bmax = atomic_load_acquire(&max_bdevsws);
624 curbdevsw = atomic_load_consume(&bdevsw);
625 for (bmajor = 0; bmajor < bmax; bmajor++) {
626 if (atomic_load_relaxed(&curbdevsw[bmajor]) == bdev)
627 return bmajor;
628 }
629
630 return NODEVMAJOR;
631 }
632
633 /*
634 * Look up a character device by reference to its operations set.
635 *
636 * => Caller must ensure that the device is not detached, and therefore
637 * that the returned major is still valid when dereferenced.
638 */
639 devmajor_t
640 cdevsw_lookup_major(const struct cdevsw *cdev)
641 {
642 const struct cdevsw *const *curcdevsw;
643 devmajor_t cmajor, cmax;
644
645 cmax = atomic_load_acquire(&max_cdevsws);
646 curcdevsw = atomic_load_consume(&cdevsw);
647 for (cmajor = 0; cmajor < cmax; cmajor++) {
648 if (atomic_load_relaxed(&curcdevsw[cmajor]) == cdev)
649 return cmajor;
650 }
651
652 return NODEVMAJOR;
653 }
654
655 /*
656 * Convert from block major number to name.
657 *
658 * => Caller must ensure that the device is not detached, and therefore
659 * that the name pointer is still valid when dereferenced.
660 */
661 const char *
662 devsw_blk2name(devmajor_t bmajor)
663 {
664 const char *name;
665 devmajor_t cmajor;
666 int i;
667
668 name = NULL;
669 cmajor = -1;
670
671 mutex_enter(&device_lock);
672 if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
673 mutex_exit(&device_lock);
674 return NULL;
675 }
676 for (i = 0; i < max_devsw_convs; i++) {
677 if (devsw_conv[i].d_bmajor == bmajor) {
678 cmajor = devsw_conv[i].d_cmajor;
679 break;
680 }
681 }
682 if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
683 name = devsw_conv[i].d_name;
684 mutex_exit(&device_lock);
685
686 return name;
687 }
688
689 /*
690 * Convert char major number to device driver name.
691 */
692 const char *
693 cdevsw_getname(devmajor_t major)
694 {
695 const char *name;
696 int i;
697
698 name = NULL;
699
700 if (major < 0)
701 return NULL;
702
703 mutex_enter(&device_lock);
704 for (i = 0; i < max_devsw_convs; i++) {
705 if (devsw_conv[i].d_cmajor == major) {
706 name = devsw_conv[i].d_name;
707 break;
708 }
709 }
710 mutex_exit(&device_lock);
711 return name;
712 }
713
714 /*
715 * Convert block major number to device driver name.
716 */
717 const char *
718 bdevsw_getname(devmajor_t major)
719 {
720 const char *name;
721 int i;
722
723 name = NULL;
724
725 if (major < 0)
726 return NULL;
727
728 mutex_enter(&device_lock);
729 for (i = 0; i < max_devsw_convs; i++) {
730 if (devsw_conv[i].d_bmajor == major) {
731 name = devsw_conv[i].d_name;
732 break;
733 }
734 }
735 mutex_exit(&device_lock);
736 return name;
737 }
738
739 /*
740 * Convert from device name to block major number.
741 *
742 * => Caller must ensure that the device is not detached, and therefore
743 * that the major number is still valid when dereferenced.
744 */
745 devmajor_t
746 devsw_name2blk(const char *name, char *devname, size_t devnamelen)
747 {
748 struct devsw_conv *conv;
749 devmajor_t bmajor;
750 int i;
751
752 if (name == NULL)
753 return NODEVMAJOR;
754
755 mutex_enter(&device_lock);
756 for (i = 0; i < max_devsw_convs; i++) {
757 size_t len;
758
759 conv = &devsw_conv[i];
760 if (conv->d_name == NULL)
761 continue;
762 len = strlen(conv->d_name);
763 if (strncmp(conv->d_name, name, len) != 0)
764 continue;
765 if (name[len] != '\0' && !isdigit((unsigned char)name[len]))
766 continue;
767 bmajor = conv->d_bmajor;
768 if (bmajor < 0 || bmajor >= max_bdevsws ||
769 bdevsw[bmajor] == NULL)
770 break;
771 if (devname != NULL) {
772 #ifdef DEVSW_DEBUG
773 if (strlen(conv->d_name) >= devnamelen)
774 printf("%s: too short buffer\n", __func__);
775 #endif /* DEVSW_DEBUG */
776 strncpy(devname, conv->d_name, devnamelen);
777 devname[devnamelen - 1] = '\0';
778 }
779 mutex_exit(&device_lock);
780 return bmajor;
781 }
782
783 mutex_exit(&device_lock);
784 return NODEVMAJOR;
785 }
786
787 /*
788 * Convert from device name to char major number.
789 *
790 * => Caller must ensure that the device is not detached, and therefore
791 * that the major number is still valid when dereferenced.
792 */
793 devmajor_t
794 devsw_name2chr(const char *name, char *devname, size_t devnamelen)
795 {
796 struct devsw_conv *conv;
797 devmajor_t cmajor;
798 int i;
799
800 if (name == NULL)
801 return NODEVMAJOR;
802
803 mutex_enter(&device_lock);
804 for (i = 0; i < max_devsw_convs; i++) {
805 size_t len;
806
807 conv = &devsw_conv[i];
808 if (conv->d_name == NULL)
809 continue;
810 len = strlen(conv->d_name);
811 if (strncmp(conv->d_name, name, len) != 0)
812 continue;
813 if (name[len] != '\0' && !isdigit((unsigned char)name[len]))
814 continue;
815 cmajor = conv->d_cmajor;
816 if (cmajor < 0 || cmajor >= max_cdevsws ||
817 cdevsw[cmajor] == NULL)
818 break;
819 if (devname != NULL) {
820 #ifdef DEVSW_DEBUG
821 if (strlen(conv->d_name) >= devnamelen)
822 printf("%s: too short buffer", __func__);
823 #endif /* DEVSW_DEBUG */
824 strncpy(devname, conv->d_name, devnamelen);
825 devname[devnamelen - 1] = '\0';
826 }
827 mutex_exit(&device_lock);
828 return cmajor;
829 }
830
831 mutex_exit(&device_lock);
832 return NODEVMAJOR;
833 }
834
835 /*
836 * Convert from character dev_t to block dev_t.
837 *
838 * => Caller must ensure that the device is not detached, and therefore
839 * that the major number is still valid when dereferenced.
840 */
841 dev_t
842 devsw_chr2blk(dev_t cdev)
843 {
844 devmajor_t bmajor, cmajor;
845 int i;
846 dev_t rv;
847
848 cmajor = major(cdev);
849 bmajor = NODEVMAJOR;
850 rv = NODEV;
851
852 mutex_enter(&device_lock);
853 if (cmajor < 0 || cmajor >= max_cdevsws || cdevsw[cmajor] == NULL) {
854 mutex_exit(&device_lock);
855 return NODEV;
856 }
857 for (i = 0; i < max_devsw_convs; i++) {
858 if (devsw_conv[i].d_cmajor == cmajor) {
859 bmajor = devsw_conv[i].d_bmajor;
860 break;
861 }
862 }
863 if (bmajor >= 0 && bmajor < max_bdevsws && bdevsw[bmajor] != NULL)
864 rv = makedev(bmajor, minor(cdev));
865 mutex_exit(&device_lock);
866
867 return rv;
868 }
869
870 /*
871 * Convert from block dev_t to character dev_t.
872 *
873 * => Caller must ensure that the device is not detached, and therefore
874 * that the major number is still valid when dereferenced.
875 */
876 dev_t
877 devsw_blk2chr(dev_t bdev)
878 {
879 devmajor_t bmajor, cmajor;
880 int i;
881 dev_t rv;
882
883 bmajor = major(bdev);
884 cmajor = NODEVMAJOR;
885 rv = NODEV;
886
887 mutex_enter(&device_lock);
888 if (bmajor < 0 || bmajor >= max_bdevsws || bdevsw[bmajor] == NULL) {
889 mutex_exit(&device_lock);
890 return NODEV;
891 }
892 for (i = 0; i < max_devsw_convs; i++) {
893 if (devsw_conv[i].d_bmajor == bmajor) {
894 cmajor = devsw_conv[i].d_cmajor;
895 break;
896 }
897 }
898 if (cmajor >= 0 && cmajor < max_cdevsws && cdevsw[cmajor] != NULL)
899 rv = makedev(cmajor, minor(bdev));
900 mutex_exit(&device_lock);
901
902 return rv;
903 }
904
905 /*
906 * Device access methods.
907 */
908
909 #define DEV_LOCK(d) \
910 if ((mpflag = (d->d_flag & D_MPSAFE)) == 0) { \
911 KERNEL_LOCK(1, NULL); \
912 }
913
914 #define DEV_UNLOCK(d) \
915 if (mpflag == 0) { \
916 KERNEL_UNLOCK_ONE(NULL); \
917 }
918
919 int
920 bdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
921 {
922 const struct bdevsw *d;
923 struct localcount *lc;
924 device_t dv = NULL/*XXXGCC*/;
925 int unit, rv, mpflag;
926
927 d = bdevsw_lookup_acquire(dev, &lc);
928 if (d == NULL)
929 return ENXIO;
930
931 if (d->d_devtounit) {
932 /*
933 * If the device node corresponds to an autoconf device
934 * instance, acquire a reference to it so that during
935 * d_open, device_lookup is stable.
936 *
937 * XXX This should also arrange to instantiate cloning
938 * pseudo-devices if appropriate, but that requires
939 * reviewing them all to find and verify a common
940 * pattern.
941 */
942 if ((unit = (*d->d_devtounit)(dev)) == -1)
943 return ENXIO;
944 if ((dv = device_lookup_acquire(d->d_cfdriver, unit)) == NULL)
945 return ENXIO;
946 }
947
948 DEV_LOCK(d);
949 rv = (*d->d_open)(dev, flag, devtype, l);
950 DEV_UNLOCK(d);
951
952 if (d->d_devtounit) {
953 device_release(dv);
954 }
955
956 bdevsw_release(d, lc);
957
958 return rv;
959 }
960
961 int
962 bdev_cancel(dev_t dev, int flag, int devtype, struct lwp *l)
963 {
964 const struct bdevsw *d;
965 int rv, mpflag;
966
967 if ((d = bdevsw_lookup(dev)) == NULL)
968 return ENXIO;
969 if (d->d_cancel == NULL)
970 return ENODEV;
971
972 DEV_LOCK(d);
973 rv = (*d->d_cancel)(dev, flag, devtype, l);
974 DEV_UNLOCK(d);
975
976 return rv;
977 }
978
979 int
980 bdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
981 {
982 const struct bdevsw *d;
983 int rv, mpflag;
984
985 if ((d = bdevsw_lookup(dev)) == NULL)
986 return ENXIO;
987
988 DEV_LOCK(d);
989 rv = (*d->d_close)(dev, flag, devtype, l);
990 DEV_UNLOCK(d);
991
992 return rv;
993 }
994
995 SDT_PROVIDER_DECLARE(io);
996 SDT_PROBE_DEFINE1(io, kernel, , start, "struct buf *"/*bp*/);
997
998 void
999 bdev_strategy(struct buf *bp)
1000 {
1001 const struct bdevsw *d;
1002 int mpflag;
1003
1004 SDT_PROBE1(io, kernel, , start, bp);
1005
1006 if ((d = bdevsw_lookup(bp->b_dev)) == NULL) {
1007 bp->b_error = ENXIO;
1008 bp->b_resid = bp->b_bcount;
1009 biodone_vfs(bp); /* biodone() iff vfs present */
1010 return;
1011 }
1012
1013 DEV_LOCK(d);
1014 (*d->d_strategy)(bp);
1015 DEV_UNLOCK(d);
1016 }
1017
1018 int
1019 bdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
1020 {
1021 const struct bdevsw *d;
1022 int rv, mpflag;
1023
1024 if ((d = bdevsw_lookup(dev)) == NULL)
1025 return ENXIO;
1026
1027 DEV_LOCK(d);
1028 rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
1029 DEV_UNLOCK(d);
1030
1031 return rv;
1032 }
1033
1034 int
1035 bdev_dump(dev_t dev, daddr_t addr, void *data, size_t sz)
1036 {
1037 const struct bdevsw *d;
1038 int rv;
1039
1040 /*
1041 * Dump can be called without the device open. Since it can
1042 * currently only be called with the system paused (and in a
1043 * potentially unstable state), we don't perform any locking.
1044 */
1045 if ((d = bdevsw_lookup(dev)) == NULL)
1046 return ENXIO;
1047
1048 /* DEV_LOCK(d); */
1049 rv = (*d->d_dump)(dev, addr, data, sz);
1050 /* DEV_UNLOCK(d); */
1051
1052 return rv;
1053 }
1054
1055 int
1056 bdev_flags(dev_t dev)
1057 {
1058 const struct bdevsw *d;
1059
1060 if ((d = bdevsw_lookup(dev)) == NULL)
1061 return 0;
1062 return d->d_flag & ~D_TYPEMASK;
1063 }
1064
1065 int
1066 bdev_type(dev_t dev)
1067 {
1068 const struct bdevsw *d;
1069
1070 if ((d = bdevsw_lookup(dev)) == NULL)
1071 return D_OTHER;
1072 return d->d_flag & D_TYPEMASK;
1073 }
1074
1075 int
1076 bdev_size(dev_t dev)
1077 {
1078 const struct bdevsw *d;
1079 int rv, mpflag = 0;
1080
1081 if ((d = bdevsw_lookup(dev)) == NULL ||
1082 d->d_psize == NULL)
1083 return -1;
1084
1085 /*
1086 * Don't to try lock the device if we're dumping.
1087 * XXX: is there a better way to test this?
1088 */
1089 if ((boothowto & RB_DUMP) == 0)
1090 DEV_LOCK(d);
1091 rv = (*d->d_psize)(dev);
1092 if ((boothowto & RB_DUMP) == 0)
1093 DEV_UNLOCK(d);
1094
1095 return rv;
1096 }
1097
1098 int
1099 bdev_discard(dev_t dev, off_t pos, off_t len)
1100 {
1101 const struct bdevsw *d;
1102 int rv, mpflag;
1103
1104 if ((d = bdevsw_lookup(dev)) == NULL)
1105 return ENXIO;
1106
1107 DEV_LOCK(d);
1108 rv = (*d->d_discard)(dev, pos, len);
1109 DEV_UNLOCK(d);
1110
1111 return rv;
1112 }
1113
1114 void
1115 bdev_detached(dev_t dev)
1116 {
1117 const struct bdevsw *d;
1118 device_t dv;
1119 int unit;
1120
1121 if ((d = bdevsw_lookup(dev)) == NULL)
1122 return;
1123 if (d->d_devtounit == NULL)
1124 return;
1125 if ((unit = (*d->d_devtounit)(dev)) == -1)
1126 return;
1127 if ((dv = device_lookup(d->d_cfdriver, unit)) == NULL)
1128 return;
1129 config_detach_commit(dv);
1130 }
1131
1132 int
1133 cdev_open(dev_t dev, int flag, int devtype, lwp_t *l)
1134 {
1135 const struct cdevsw *d;
1136 struct localcount *lc;
1137 device_t dv = NULL/*XXXGCC*/;
1138 int unit, rv, mpflag;
1139
1140 d = cdevsw_lookup_acquire(dev, &lc);
1141 if (d == NULL)
1142 return ENXIO;
1143
1144 if (d->d_devtounit) {
1145 /*
1146 * If the device node corresponds to an autoconf device
1147 * instance, acquire a reference to it so that during
1148 * d_open, device_lookup is stable.
1149 *
1150 * XXX This should also arrange to instantiate cloning
1151 * pseudo-devices if appropriate, but that requires
1152 * reviewing them all to find and verify a common
1153 * pattern.
1154 */
1155 if ((unit = (*d->d_devtounit)(dev)) == -1)
1156 return ENXIO;
1157 if ((dv = device_lookup_acquire(d->d_cfdriver, unit)) == NULL)
1158 return ENXIO;
1159 }
1160
1161 DEV_LOCK(d);
1162 rv = (*d->d_open)(dev, flag, devtype, l);
1163 DEV_UNLOCK(d);
1164
1165 if (d->d_devtounit) {
1166 device_release(dv);
1167 }
1168
1169 cdevsw_release(d, lc);
1170
1171 return rv;
1172 }
1173
1174 int
1175 cdev_cancel(dev_t dev, int flag, int devtype, struct lwp *l)
1176 {
1177 const struct cdevsw *d;
1178 int rv, mpflag;
1179
1180 if ((d = cdevsw_lookup(dev)) == NULL)
1181 return ENXIO;
1182 if (d->d_cancel == NULL)
1183 return ENODEV;
1184
1185 DEV_LOCK(d);
1186 rv = (*d->d_cancel)(dev, flag, devtype, l);
1187 DEV_UNLOCK(d);
1188
1189 return rv;
1190 }
1191
1192 int
1193 cdev_close(dev_t dev, int flag, int devtype, lwp_t *l)
1194 {
1195 const struct cdevsw *d;
1196 int rv, mpflag;
1197
1198 if ((d = cdevsw_lookup(dev)) == NULL)
1199 return ENXIO;
1200
1201 DEV_LOCK(d);
1202 rv = (*d->d_close)(dev, flag, devtype, l);
1203 DEV_UNLOCK(d);
1204
1205 return rv;
1206 }
1207
1208 int
1209 cdev_read(dev_t dev, struct uio *uio, int flag)
1210 {
1211 const struct cdevsw *d;
1212 int rv, mpflag;
1213
1214 if ((d = cdevsw_lookup(dev)) == NULL)
1215 return ENXIO;
1216
1217 DEV_LOCK(d);
1218 rv = (*d->d_read)(dev, uio, flag);
1219 DEV_UNLOCK(d);
1220
1221 return rv;
1222 }
1223
1224 int
1225 cdev_write(dev_t dev, struct uio *uio, int flag)
1226 {
1227 const struct cdevsw *d;
1228 int rv, mpflag;
1229
1230 if ((d = cdevsw_lookup(dev)) == NULL)
1231 return ENXIO;
1232
1233 DEV_LOCK(d);
1234 rv = (*d->d_write)(dev, uio, flag);
1235 DEV_UNLOCK(d);
1236
1237 return rv;
1238 }
1239
1240 int
1241 cdev_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
1242 {
1243 const struct cdevsw *d;
1244 int rv, mpflag;
1245
1246 if ((d = cdevsw_lookup(dev)) == NULL)
1247 return ENXIO;
1248
1249 DEV_LOCK(d);
1250 rv = (*d->d_ioctl)(dev, cmd, data, flag, l);
1251 DEV_UNLOCK(d);
1252
1253 return rv;
1254 }
1255
1256 void
1257 cdev_stop(struct tty *tp, int flag)
1258 {
1259 const struct cdevsw *d;
1260 int mpflag;
1261
1262 if ((d = cdevsw_lookup(tp->t_dev)) == NULL)
1263 return;
1264
1265 DEV_LOCK(d);
1266 (*d->d_stop)(tp, flag);
1267 DEV_UNLOCK(d);
1268 }
1269
1270 struct tty *
1271 cdev_tty(dev_t dev)
1272 {
1273 const struct cdevsw *d;
1274
1275 if ((d = cdevsw_lookup(dev)) == NULL)
1276 return NULL;
1277
1278 /* XXX Check if necessary. */
1279 if (d->d_tty == NULL)
1280 return NULL;
1281
1282 return (*d->d_tty)(dev);
1283 }
1284
1285 int
1286 cdev_poll(dev_t dev, int flag, lwp_t *l)
1287 {
1288 const struct cdevsw *d;
1289 int rv, mpflag;
1290
1291 if ((d = cdevsw_lookup(dev)) == NULL)
1292 return POLLERR;
1293
1294 DEV_LOCK(d);
1295 rv = (*d->d_poll)(dev, flag, l);
1296 DEV_UNLOCK(d);
1297
1298 return rv;
1299 }
1300
1301 paddr_t
1302 cdev_mmap(dev_t dev, off_t off, int flag)
1303 {
1304 const struct cdevsw *d;
1305 paddr_t rv;
1306 int mpflag;
1307
1308 if ((d = cdevsw_lookup(dev)) == NULL)
1309 return (paddr_t)-1LL;
1310
1311 DEV_LOCK(d);
1312 rv = (*d->d_mmap)(dev, off, flag);
1313 DEV_UNLOCK(d);
1314
1315 return rv;
1316 }
1317
1318 int
1319 cdev_kqfilter(dev_t dev, struct knote *kn)
1320 {
1321 const struct cdevsw *d;
1322 int rv, mpflag;
1323
1324 if ((d = cdevsw_lookup(dev)) == NULL)
1325 return ENXIO;
1326
1327 DEV_LOCK(d);
1328 rv = (*d->d_kqfilter)(dev, kn);
1329 DEV_UNLOCK(d);
1330
1331 return rv;
1332 }
1333
1334 int
1335 cdev_discard(dev_t dev, off_t pos, off_t len)
1336 {
1337 const struct cdevsw *d;
1338 int rv, mpflag;
1339
1340 if ((d = cdevsw_lookup(dev)) == NULL)
1341 return ENXIO;
1342
1343 DEV_LOCK(d);
1344 rv = (*d->d_discard)(dev, pos, len);
1345 DEV_UNLOCK(d);
1346
1347 return rv;
1348 }
1349
1350 int
1351 cdev_flags(dev_t dev)
1352 {
1353 const struct cdevsw *d;
1354
1355 if ((d = cdevsw_lookup(dev)) == NULL)
1356 return 0;
1357 return d->d_flag & ~D_TYPEMASK;
1358 }
1359
1360 int
1361 cdev_type(dev_t dev)
1362 {
1363 const struct cdevsw *d;
1364
1365 if ((d = cdevsw_lookup(dev)) == NULL)
1366 return D_OTHER;
1367 return d->d_flag & D_TYPEMASK;
1368 }
1369
1370 void
1371 cdev_detached(dev_t dev)
1372 {
1373 const struct cdevsw *d;
1374 device_t dv;
1375 int unit;
1376
1377 if ((d = cdevsw_lookup(dev)) == NULL)
1378 return;
1379 if (d->d_devtounit == NULL)
1380 return;
1381 if ((unit = (*d->d_devtounit)(dev)) == -1)
1382 return;
1383 if ((dv = device_lookup(d->d_cfdriver, unit)) == NULL)
1384 return;
1385 config_detach_commit(dv);
1386 }
1387
1388 /*
1389 * nommap(dev, off, prot)
1390 *
1391 * mmap routine that always fails, for non-mmappable devices.
1392 */
1393 paddr_t
1394 nommap(dev_t dev, off_t off, int prot)
1395 {
1396
1397 return (paddr_t)-1;
1398 }
1399
1400 /*
1401 * dev_minor_unit(dev)
1402 *
1403 * Returns minor(dev) as an int. Intended for use with struct
1404 * bdevsw, cdevsw::d_devtounit for drivers whose /dev nodes are
1405 * implemented by reference to an autoconf instance with the minor
1406 * number.
1407 */
1408 int
1409 dev_minor_unit(dev_t dev)
1410 {
1411
1412 return minor(dev);
1413 }
1414