Home | History | Annotate | Line # | Download | only in kern
subr_disk.c revision 1.29.6.5
      1  1.29.6.5   nathanw /*	$NetBSD: subr_disk.c,v 1.29.6.5 2002/08/01 02:46:23 nathanw Exp $	*/
      2      1.22   thorpej 
      3      1.22   thorpej /*-
      4      1.26   thorpej  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5      1.22   thorpej  * All rights reserved.
      6      1.22   thorpej  *
      7      1.22   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.22   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.22   thorpej  * NASA Ames Research Center.
     10      1.22   thorpej  *
     11      1.22   thorpej  * Redistribution and use in source and binary forms, with or without
     12      1.22   thorpej  * modification, are permitted provided that the following conditions
     13      1.22   thorpej  * are met:
     14      1.22   thorpej  * 1. Redistributions of source code must retain the above copyright
     15      1.22   thorpej  *    notice, this list of conditions and the following disclaimer.
     16      1.22   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.22   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18      1.22   thorpej  *    documentation and/or other materials provided with the distribution.
     19      1.22   thorpej  * 3. All advertising materials mentioning features or use of this software
     20      1.22   thorpej  *    must display the following acknowledgement:
     21      1.22   thorpej  *	This product includes software developed by the NetBSD
     22      1.22   thorpej  *	Foundation, Inc. and its contributors.
     23      1.22   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24      1.22   thorpej  *    contributors may be used to endorse or promote products derived
     25      1.22   thorpej  *    from this software without specific prior written permission.
     26      1.22   thorpej  *
     27      1.22   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28      1.22   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29      1.22   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30      1.22   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31      1.22   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32      1.22   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33      1.22   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34      1.22   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35      1.22   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36      1.22   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37      1.22   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38      1.22   thorpej  */
     39      1.12       cgd 
     40      1.11   mycroft /*
     41      1.11   mycroft  * Copyright (c) 1982, 1986, 1988, 1993
     42      1.11   mycroft  *	The Regents of the University of California.  All rights reserved.
     43      1.11   mycroft  * (c) UNIX System Laboratories, Inc.
     44      1.11   mycroft  * All or some portions of this file are derived from material licensed
     45      1.11   mycroft  * to the University of California by American Telephone and Telegraph
     46      1.11   mycroft  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47      1.11   mycroft  * the permission of UNIX System Laboratories, Inc.
     48      1.11   mycroft  *
     49      1.11   mycroft  * Redistribution and use in source and binary forms, with or without
     50      1.11   mycroft  * modification, are permitted provided that the following conditions
     51      1.11   mycroft  * are met:
     52      1.11   mycroft  * 1. Redistributions of source code must retain the above copyright
     53      1.11   mycroft  *    notice, this list of conditions and the following disclaimer.
     54      1.11   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     55      1.11   mycroft  *    notice, this list of conditions and the following disclaimer in the
     56      1.11   mycroft  *    documentation and/or other materials provided with the distribution.
     57      1.11   mycroft  * 3. All advertising materials mentioning features or use of this software
     58      1.11   mycroft  *    must display the following acknowledgement:
     59      1.11   mycroft  *	This product includes software developed by the University of
     60      1.11   mycroft  *	California, Berkeley and its contributors.
     61      1.11   mycroft  * 4. Neither the name of the University nor the names of its contributors
     62      1.11   mycroft  *    may be used to endorse or promote products derived from this software
     63      1.11   mycroft  *    without specific prior written permission.
     64      1.11   mycroft  *
     65      1.11   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66      1.11   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67      1.11   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68      1.11   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69      1.11   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70      1.11   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71      1.11   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72      1.11   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73      1.11   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74      1.11   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75      1.11   mycroft  * SUCH DAMAGE.
     76      1.11   mycroft  *
     77      1.12       cgd  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
     78      1.11   mycroft  */
     79  1.29.6.2   nathanw 
     80  1.29.6.2   nathanw #include <sys/cdefs.h>
     81  1.29.6.5   nathanw __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.29.6.5 2002/08/01 02:46:23 nathanw Exp $");
     82      1.11   mycroft 
     83      1.11   mycroft #include <sys/param.h>
     84      1.15   thorpej #include <sys/kernel.h>
     85      1.15   thorpej #include <sys/malloc.h>
     86      1.11   mycroft #include <sys/buf.h>
     87      1.15   thorpej #include <sys/syslog.h>
     88      1.11   mycroft #include <sys/disklabel.h>
     89      1.15   thorpej #include <sys/disk.h>
     90  1.29.6.4   nathanw #include <sys/sysctl.h>
     91      1.14   thorpej 
     92      1.14   thorpej /*
     93      1.15   thorpej  * A global list of all disks attached to the system.  May grow or
     94      1.15   thorpej  * shrink over time.
     95      1.15   thorpej  */
     96      1.15   thorpej struct	disklist_head disklist;	/* TAILQ_HEAD */
     97      1.15   thorpej int	disk_count;		/* number of drives in global disklist */
     98  1.29.6.4   nathanw struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
     99      1.15   thorpej 
    100      1.15   thorpej /*
    101  1.29.6.5   nathanw  * XXX This interface will be removed in the near future!
    102  1.29.6.5   nathanw  *
    103      1.11   mycroft  * Seek sort for disks.  We depend on the driver which calls us using b_resid
    104      1.11   mycroft  * as the current cylinder number.
    105      1.11   mycroft  *
    106      1.26   thorpej  * The argument bufq is an I/O queue for the device, on which there are
    107      1.26   thorpej  * actually two queues, sorted in ascending cylinder order.  The first
    108      1.26   thorpej  * queue holds those requests which are positioned after the current
    109      1.26   thorpej  * cylinder (in the first request); the second holds requests which came
    110      1.26   thorpej  * in after their cylinder number was passed.  Thus we implement a one-way
    111      1.26   thorpej  * scan, retracting after reaching the end of the drive to the first request
    112      1.26   thorpej  * on the second queue, at which time it becomes the first queue.
    113      1.11   mycroft  *
    114      1.11   mycroft  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    115      1.11   mycroft  * allocated.
    116      1.26   thorpej  *
    117      1.26   thorpej  * This is further adjusted by any `barriers' which may exist in the queue.
    118      1.26   thorpej  * The bufq points to the last such ordered request.
    119      1.11   mycroft  */
    120      1.11   mycroft void
    121  1.29.6.1   nathanw disksort_cylinder(struct buf_queue *bufq, struct buf *bp)
    122      1.11   mycroft {
    123      1.26   thorpej 	struct buf *bq, *nbq;
    124      1.26   thorpej 
    125      1.26   thorpej 	/*
    126      1.26   thorpej 	 * If there are ordered requests on the queue, we must start
    127      1.26   thorpej 	 * the elevator sort after the last of these.
    128      1.26   thorpej 	 */
    129      1.26   thorpej 	if ((bq = bufq->bq_barrier) == NULL)
    130      1.26   thorpej 		bq = BUFQ_FIRST(bufq);
    131      1.11   mycroft 
    132      1.26   thorpej 	/*
    133      1.26   thorpej 	 * If the queue is empty, of if it's an ordered request,
    134      1.26   thorpej 	 * it's easy; we just go on the end.
    135      1.26   thorpej 	 */
    136      1.26   thorpej 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    137      1.26   thorpej 		BUFQ_INSERT_TAIL(bufq, bp);
    138      1.11   mycroft 		return;
    139      1.11   mycroft 	}
    140      1.11   mycroft 
    141      1.11   mycroft 	/*
    142      1.11   mycroft 	 * If we lie after the first (currently active) request, then we
    143      1.11   mycroft 	 * must locate the second request list and add ourselves to it.
    144      1.11   mycroft 	 */
    145      1.27   hannken 	if (bp->b_cylinder < bq->b_cylinder ||
    146      1.28   thorpej 	    (bp->b_cylinder == bq->b_cylinder &&
    147      1.28   thorpej 	     bp->b_rawblkno < bq->b_rawblkno)) {
    148      1.26   thorpej 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    149      1.11   mycroft 			/*
    150      1.11   mycroft 			 * Check for an ``inversion'' in the normally ascending
    151      1.11   mycroft 			 * cylinder numbers, indicating the start of the second
    152      1.11   mycroft 			 * request list.
    153      1.11   mycroft 			 */
    154      1.26   thorpej 			if (nbq->b_cylinder < bq->b_cylinder) {
    155      1.11   mycroft 				/*
    156      1.11   mycroft 				 * Search the second request list for the first
    157      1.11   mycroft 				 * request at a larger cylinder number.  We go
    158      1.11   mycroft 				 * before that; if there is no such request, we
    159      1.11   mycroft 				 * go at end.
    160      1.11   mycroft 				 */
    161      1.11   mycroft 				do {
    162      1.26   thorpej 					if (bp->b_cylinder < nbq->b_cylinder)
    163      1.11   mycroft 						goto insert;
    164      1.26   thorpej 					if (bp->b_cylinder == nbq->b_cylinder &&
    165      1.28   thorpej 					    bp->b_rawblkno < nbq->b_rawblkno)
    166      1.26   thorpej 						goto insert;
    167      1.26   thorpej 					bq = nbq;
    168      1.26   thorpej 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    169      1.26   thorpej 				goto insert;		/* after last */
    170      1.26   thorpej 			}
    171  1.29.6.3   nathanw 			bq = nbq;
    172      1.26   thorpej 		}
    173      1.26   thorpej 		/*
    174      1.26   thorpej 		 * No inversions... we will go after the last, and
    175      1.26   thorpej 		 * be the first request in the second request list.
    176      1.26   thorpej 		 */
    177      1.26   thorpej 		goto insert;
    178      1.26   thorpej 	}
    179      1.26   thorpej 	/*
    180      1.26   thorpej 	 * Request is at/after the current request...
    181      1.26   thorpej 	 * sort in the first request list.
    182      1.26   thorpej 	 */
    183      1.26   thorpej 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    184      1.26   thorpej 		/*
    185      1.26   thorpej 		 * We want to go after the current request if there is an
    186      1.26   thorpej 		 * inversion after it (i.e. it is the end of the first
    187      1.26   thorpej 		 * request list), or if the next request is a larger cylinder
    188      1.26   thorpej 		 * than our request.
    189      1.26   thorpej 		 */
    190      1.26   thorpej 		if (nbq->b_cylinder < bq->b_cylinder ||
    191      1.26   thorpej 		    bp->b_cylinder < nbq->b_cylinder ||
    192      1.26   thorpej 		    (bp->b_cylinder == nbq->b_cylinder &&
    193      1.28   thorpej 		     bp->b_rawblkno < nbq->b_rawblkno))
    194      1.26   thorpej 			goto insert;
    195      1.26   thorpej 		bq = nbq;
    196      1.26   thorpej 	}
    197      1.26   thorpej 	/*
    198      1.26   thorpej 	 * Neither a second list nor a larger request... we go at the end of
    199      1.26   thorpej 	 * the first list, which is the same as the end of the whole schebang.
    200      1.26   thorpej 	 */
    201      1.26   thorpej insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    202      1.26   thorpej }
    203      1.26   thorpej 
    204      1.26   thorpej /*
    205      1.28   thorpej  * Seek sort for disks.  This version sorts based on b_rawblkno, which
    206      1.26   thorpej  * indicates the block number.
    207      1.26   thorpej  *
    208      1.26   thorpej  * As before, there are actually two queues, sorted in ascendening block
    209      1.26   thorpej  * order.  The first queue holds those requests which are positioned after
    210      1.26   thorpej  * the current block (in the first request); the second holds requests which
    211      1.26   thorpej  * came in after their block number was passed.  Thus we implement a one-way
    212      1.26   thorpej  * scan, retracting after reaching the end of the driver to the first request
    213      1.26   thorpej  * on the second queue, at which time it becomes the first queue.
    214      1.26   thorpej  *
    215      1.26   thorpej  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    216      1.26   thorpej  * allocated.
    217      1.26   thorpej  *
    218      1.26   thorpej  * This is further adjusted by any `barriers' which may exist in the queue.
    219      1.26   thorpej  * The bufq points to the last such ordered request.
    220      1.26   thorpej  */
    221      1.26   thorpej void
    222  1.29.6.1   nathanw disksort_blkno(struct buf_queue *bufq, struct buf *bp)
    223      1.26   thorpej {
    224      1.26   thorpej 	struct buf *bq, *nbq;
    225      1.26   thorpej 
    226      1.26   thorpej 	/*
    227      1.26   thorpej 	 * If there are ordered requests on the queue, we must start
    228      1.26   thorpej 	 * the elevator sort after the last of these.
    229      1.26   thorpej 	 */
    230      1.26   thorpej 	if ((bq = bufq->bq_barrier) == NULL)
    231      1.26   thorpej 		bq = BUFQ_FIRST(bufq);
    232      1.26   thorpej 
    233      1.26   thorpej 	/*
    234      1.26   thorpej 	 * If the queue is empty, or if it's an ordered request,
    235      1.26   thorpej 	 * it's easy; we just go on the end.
    236      1.26   thorpej 	 */
    237      1.26   thorpej 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    238      1.26   thorpej 		BUFQ_INSERT_TAIL(bufq, bp);
    239      1.26   thorpej 		return;
    240      1.26   thorpej 	}
    241      1.26   thorpej 
    242      1.26   thorpej 	/*
    243      1.26   thorpej 	 * If we lie after the first (currently active) request, then we
    244      1.26   thorpej 	 * must locate the second request list and add ourselves to it.
    245      1.26   thorpej 	 */
    246      1.28   thorpej 	if (bp->b_rawblkno < bq->b_rawblkno) {
    247      1.26   thorpej 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    248      1.26   thorpej 			/*
    249      1.26   thorpej 			 * Check for an ``inversion'' in the normally ascending
    250      1.26   thorpej 			 * block numbers, indicating the start of the second
    251      1.26   thorpej 			 * request list.
    252      1.26   thorpej 			 */
    253      1.28   thorpej 			if (nbq->b_rawblkno < bq->b_rawblkno) {
    254      1.26   thorpej 				/*
    255      1.26   thorpej 				 * Search the second request list for the first
    256      1.26   thorpej 				 * request at a larger block number.  We go
    257      1.26   thorpej 				 * after that; if there is no such request, we
    258      1.26   thorpej 				 * go at the end.
    259      1.26   thorpej 				 */
    260      1.26   thorpej 				do {
    261      1.28   thorpej 					if (bp->b_rawblkno < nbq->b_rawblkno)
    262      1.11   mycroft 						goto insert;
    263      1.26   thorpej 					bq = nbq;
    264      1.26   thorpej 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    265      1.11   mycroft 				goto insert;		/* after last */
    266      1.11   mycroft 			}
    267  1.29.6.3   nathanw 			bq = nbq;
    268      1.11   mycroft 		}
    269      1.11   mycroft 		/*
    270      1.11   mycroft 		 * No inversions... we will go after the last, and
    271      1.11   mycroft 		 * be the first request in the second request list.
    272      1.11   mycroft 		 */
    273      1.11   mycroft 		goto insert;
    274      1.11   mycroft 	}
    275      1.11   mycroft 	/*
    276      1.11   mycroft 	 * Request is at/after the current request...
    277      1.11   mycroft 	 * sort in the first request list.
    278      1.11   mycroft 	 */
    279      1.26   thorpej 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    280      1.11   mycroft 		/*
    281      1.11   mycroft 		 * We want to go after the current request if there is an
    282      1.11   mycroft 		 * inversion after it (i.e. it is the end of the first
    283      1.11   mycroft 		 * request list), or if the next request is a larger cylinder
    284      1.11   mycroft 		 * than our request.
    285      1.11   mycroft 		 */
    286      1.28   thorpej 		if (nbq->b_rawblkno < bq->b_rawblkno ||
    287      1.28   thorpej 		    bp->b_rawblkno < nbq->b_rawblkno)
    288      1.11   mycroft 			goto insert;
    289      1.26   thorpej 		bq = nbq;
    290      1.11   mycroft 	}
    291      1.11   mycroft 	/*
    292      1.11   mycroft 	 * Neither a second list nor a larger request... we go at the end of
    293      1.11   mycroft 	 * the first list, which is the same as the end of the whole schebang.
    294      1.11   mycroft 	 */
    295      1.26   thorpej insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    296      1.26   thorpej }
    297      1.26   thorpej 
    298      1.26   thorpej /*
    299      1.26   thorpej  * Seek non-sort for disks.  This version simply inserts requests at
    300      1.26   thorpej  * the tail of the queue.
    301      1.26   thorpej  */
    302      1.26   thorpej void
    303  1.29.6.1   nathanw disksort_tail(struct buf_queue *bufq, struct buf *bp)
    304      1.26   thorpej {
    305      1.26   thorpej 
    306      1.26   thorpej 	BUFQ_INSERT_TAIL(bufq, bp);
    307      1.11   mycroft }
    308      1.11   mycroft 
    309      1.11   mycroft /*
    310  1.29.6.5   nathanw  * XXX End of to be removed interface!
    311  1.29.6.5   nathanw  */
    312  1.29.6.5   nathanw 
    313  1.29.6.5   nathanw /*
    314      1.11   mycroft  * Compute checksum for disk label.
    315      1.11   mycroft  */
    316      1.11   mycroft u_int
    317  1.29.6.1   nathanw dkcksum(struct disklabel *lp)
    318      1.11   mycroft {
    319      1.29  augustss 	u_short *start, *end;
    320      1.29  augustss 	u_short sum = 0;
    321      1.11   mycroft 
    322      1.11   mycroft 	start = (u_short *)lp;
    323      1.11   mycroft 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
    324      1.11   mycroft 	while (start < end)
    325      1.11   mycroft 		sum ^= *start++;
    326      1.11   mycroft 	return (sum);
    327      1.11   mycroft }
    328      1.11   mycroft 
    329      1.11   mycroft /*
    330      1.11   mycroft  * Disk error is the preface to plaintive error messages
    331      1.11   mycroft  * about failing disk transfers.  It prints messages of the form
    332      1.11   mycroft 
    333      1.11   mycroft hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
    334      1.11   mycroft 
    335      1.11   mycroft  * if the offset of the error in the transfer and a disk label
    336      1.11   mycroft  * are both available.  blkdone should be -1 if the position of the error
    337      1.11   mycroft  * is unknown; the disklabel pointer may be null from drivers that have not
    338      1.20  christos  * been converted to use them.  The message is printed with printf
    339      1.11   mycroft  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
    340      1.20  christos  * The message should be completed (with at least a newline) with printf
    341      1.11   mycroft  * or addlog, respectively.  There is no trailing space.
    342      1.11   mycroft  */
    343      1.11   mycroft void
    344  1.29.6.5   nathanw diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
    345  1.29.6.5   nathanw     int blkdone, const struct disklabel *lp)
    346      1.11   mycroft {
    347      1.25  drochner 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
    348  1.29.6.1   nathanw 	void (*pr)(const char *, ...);
    349      1.11   mycroft 	char partname = 'a' + part;
    350      1.11   mycroft 	int sn;
    351      1.11   mycroft 
    352      1.11   mycroft 	if (pri != LOG_PRINTF) {
    353      1.17  christos 		static const char fmt[] = "";
    354      1.17  christos 		log(pri, fmt);
    355      1.11   mycroft 		pr = addlog;
    356      1.11   mycroft 	} else
    357      1.20  christos 		pr = printf;
    358      1.11   mycroft 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
    359      1.11   mycroft 	    bp->b_flags & B_READ ? "read" : "writ");
    360      1.11   mycroft 	sn = bp->b_blkno;
    361      1.11   mycroft 	if (bp->b_bcount <= DEV_BSIZE)
    362      1.11   mycroft 		(*pr)("%d", sn);
    363      1.11   mycroft 	else {
    364      1.11   mycroft 		if (blkdone >= 0) {
    365      1.11   mycroft 			sn += blkdone;
    366      1.11   mycroft 			(*pr)("%d of ", sn);
    367      1.11   mycroft 		}
    368      1.11   mycroft 		(*pr)("%d-%d", bp->b_blkno,
    369      1.11   mycroft 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
    370      1.11   mycroft 	}
    371      1.11   mycroft 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
    372      1.11   mycroft 		sn += lp->d_partitions[part].p_offset;
    373      1.11   mycroft 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
    374      1.11   mycroft 		    sn / lp->d_secpercyl);
    375      1.11   mycroft 		sn %= lp->d_secpercyl;
    376  1.29.6.4   nathanw 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors,
    377  1.29.6.4   nathanw 		    sn % lp->d_nsectors);
    378      1.11   mycroft 	}
    379      1.15   thorpej }
    380      1.15   thorpej 
    381      1.15   thorpej /*
    382      1.15   thorpej  * Initialize the disklist.  Called by main() before autoconfiguration.
    383      1.15   thorpej  */
    384      1.15   thorpej void
    385  1.29.6.1   nathanw disk_init(void)
    386      1.15   thorpej {
    387      1.15   thorpej 
    388      1.15   thorpej 	TAILQ_INIT(&disklist);
    389      1.15   thorpej 	disk_count = 0;
    390      1.15   thorpej }
    391      1.15   thorpej 
    392      1.15   thorpej /*
    393      1.15   thorpej  * Searches the disklist for the disk corresponding to the
    394      1.15   thorpej  * name provided.
    395      1.15   thorpej  */
    396      1.15   thorpej struct disk *
    397  1.29.6.1   nathanw disk_find(char *name)
    398      1.15   thorpej {
    399      1.15   thorpej 	struct disk *diskp;
    400      1.15   thorpej 
    401      1.15   thorpej 	if ((name == NULL) || (disk_count <= 0))
    402      1.15   thorpej 		return (NULL);
    403      1.15   thorpej 
    404  1.29.6.4   nathanw 	simple_lock(&disklist_slock);
    405  1.29.6.4   nathanw 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    406  1.29.6.4   nathanw 	    diskp = TAILQ_NEXT(diskp, dk_link))
    407  1.29.6.4   nathanw 		if (strcmp(diskp->dk_name, name) == 0) {
    408  1.29.6.4   nathanw 			simple_unlock(&disklist_slock);
    409      1.15   thorpej 			return (diskp);
    410  1.29.6.4   nathanw 		}
    411  1.29.6.4   nathanw 	simple_unlock(&disklist_slock);
    412      1.15   thorpej 
    413      1.15   thorpej 	return (NULL);
    414      1.15   thorpej }
    415      1.15   thorpej 
    416      1.15   thorpej /*
    417      1.15   thorpej  * Attach a disk.
    418      1.15   thorpej  */
    419      1.15   thorpej void
    420  1.29.6.1   nathanw disk_attach(struct disk *diskp)
    421      1.15   thorpej {
    422      1.15   thorpej 	int s;
    423      1.15   thorpej 
    424      1.15   thorpej 	/*
    425      1.15   thorpej 	 * Allocate and initialize the disklabel structures.  Note that
    426      1.15   thorpej 	 * it's not safe to sleep here, since we're probably going to be
    427      1.15   thorpej 	 * called during autoconfiguration.
    428      1.15   thorpej 	 */
    429      1.15   thorpej 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
    430      1.15   thorpej 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
    431      1.15   thorpej 	    M_NOWAIT);
    432      1.15   thorpej 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
    433      1.15   thorpej 		panic("disk_attach: can't allocate storage for disklabel");
    434      1.15   thorpej 
    435      1.24     perry 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
    436      1.24     perry 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
    437      1.15   thorpej 
    438      1.15   thorpej 	/*
    439      1.15   thorpej 	 * Set the attached timestamp.
    440      1.15   thorpej 	 */
    441      1.15   thorpej 	s = splclock();
    442      1.15   thorpej 	diskp->dk_attachtime = mono_time;
    443      1.15   thorpej 	splx(s);
    444      1.15   thorpej 
    445      1.15   thorpej 	/*
    446      1.15   thorpej 	 * Link into the disklist.
    447      1.15   thorpej 	 */
    448  1.29.6.4   nathanw 	simple_lock(&disklist_slock);
    449      1.15   thorpej 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
    450  1.29.6.4   nathanw 	simple_unlock(&disklist_slock);
    451      1.15   thorpej 	++disk_count;
    452      1.15   thorpej }
    453      1.15   thorpej 
    454      1.15   thorpej /*
    455      1.16  christos  * Detach a disk.
    456      1.15   thorpej  */
    457      1.15   thorpej void
    458  1.29.6.1   nathanw disk_detach(struct disk *diskp)
    459      1.15   thorpej {
    460      1.15   thorpej 
    461      1.15   thorpej 	/*
    462      1.23   thorpej 	 * Remove from the disklist.
    463      1.23   thorpej 	 */
    464      1.23   thorpej 	if (--disk_count < 0)
    465      1.23   thorpej 		panic("disk_detach: disk_count < 0");
    466  1.29.6.4   nathanw 	simple_lock(&disklist_slock);
    467      1.23   thorpej 	TAILQ_REMOVE(&disklist, diskp, dk_link);
    468  1.29.6.4   nathanw 	simple_unlock(&disklist_slock);
    469      1.23   thorpej 
    470      1.23   thorpej 	/*
    471      1.15   thorpej 	 * Free the space used by the disklabel structures.
    472      1.15   thorpej 	 */
    473      1.15   thorpej 	free(diskp->dk_label, M_DEVBUF);
    474      1.15   thorpej 	free(diskp->dk_cpulabel, M_DEVBUF);
    475      1.15   thorpej }
    476      1.15   thorpej 
    477      1.15   thorpej /*
    478      1.15   thorpej  * Increment a disk's busy counter.  If the counter is going from
    479      1.15   thorpej  * 0 to 1, set the timestamp.
    480      1.15   thorpej  */
    481      1.15   thorpej void
    482  1.29.6.1   nathanw disk_busy(struct disk *diskp)
    483      1.15   thorpej {
    484      1.15   thorpej 	int s;
    485      1.15   thorpej 
    486      1.15   thorpej 	/*
    487      1.15   thorpej 	 * XXX We'd like to use something as accurate as microtime(),
    488      1.15   thorpej 	 * but that doesn't depend on the system TOD clock.
    489      1.15   thorpej 	 */
    490      1.15   thorpej 	if (diskp->dk_busy++ == 0) {
    491      1.15   thorpej 		s = splclock();
    492      1.15   thorpej 		diskp->dk_timestamp = mono_time;
    493      1.15   thorpej 		splx(s);
    494      1.15   thorpej 	}
    495      1.15   thorpej }
    496      1.15   thorpej 
    497      1.15   thorpej /*
    498      1.15   thorpej  * Decrement a disk's busy counter, increment the byte count, total busy
    499      1.15   thorpej  * time, and reset the timestamp.
    500      1.15   thorpej  */
    501      1.15   thorpej void
    502  1.29.6.1   nathanw disk_unbusy(struct disk *diskp, long bcount)
    503      1.15   thorpej {
    504      1.15   thorpej 	int s;
    505      1.15   thorpej 	struct timeval dv_time, diff_time;
    506      1.15   thorpej 
    507      1.23   thorpej 	if (diskp->dk_busy-- == 0) {
    508      1.23   thorpej 		printf("%s: dk_busy < 0\n", diskp->dk_name);
    509      1.23   thorpej 		panic("disk_unbusy");
    510      1.23   thorpej 	}
    511      1.15   thorpej 
    512      1.15   thorpej 	s = splclock();
    513      1.15   thorpej 	dv_time = mono_time;
    514      1.15   thorpej 	splx(s);
    515      1.15   thorpej 
    516      1.15   thorpej 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
    517      1.15   thorpej 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
    518      1.15   thorpej 
    519      1.15   thorpej 	diskp->dk_timestamp = dv_time;
    520      1.15   thorpej 	if (bcount > 0) {
    521      1.15   thorpej 		diskp->dk_bytes += bcount;
    522      1.15   thorpej 		diskp->dk_xfer++;
    523      1.15   thorpej 	}
    524      1.15   thorpej }
    525      1.15   thorpej 
    526      1.15   thorpej /*
    527      1.15   thorpej  * Reset the metrics counters on the given disk.  Note that we cannot
    528      1.15   thorpej  * reset the busy counter, as it may case a panic in disk_unbusy().
    529      1.15   thorpej  * We also must avoid playing with the timestamp information, as it
    530      1.15   thorpej  * may skew any pending transfer results.
    531      1.15   thorpej  */
    532      1.15   thorpej void
    533  1.29.6.1   nathanw disk_resetstat(struct disk *diskp)
    534      1.15   thorpej {
    535      1.15   thorpej 	int s = splbio(), t;
    536      1.15   thorpej 
    537      1.15   thorpej 	diskp->dk_xfer = 0;
    538      1.15   thorpej 	diskp->dk_bytes = 0;
    539      1.15   thorpej 
    540      1.15   thorpej 	t = splclock();
    541      1.15   thorpej 	diskp->dk_attachtime = mono_time;
    542      1.15   thorpej 	splx(t);
    543      1.15   thorpej 
    544      1.15   thorpej 	timerclear(&diskp->dk_time);
    545      1.15   thorpej 
    546      1.15   thorpej 	splx(s);
    547  1.29.6.4   nathanw }
    548  1.29.6.4   nathanw 
    549  1.29.6.4   nathanw int
    550  1.29.6.4   nathanw sysctl_disknames(void *vwhere, size_t *sizep)
    551  1.29.6.4   nathanw {
    552  1.29.6.4   nathanw 	char buf[DK_DISKNAMELEN + 1];
    553  1.29.6.4   nathanw 	char *where = vwhere;
    554  1.29.6.4   nathanw 	struct disk *diskp;
    555  1.29.6.4   nathanw 	size_t needed, left, slen;
    556  1.29.6.4   nathanw 	int error, first;
    557  1.29.6.4   nathanw 
    558  1.29.6.4   nathanw 	first = 1;
    559  1.29.6.4   nathanw 	error = 0;
    560  1.29.6.4   nathanw 	needed = 0;
    561  1.29.6.4   nathanw 	left = *sizep;
    562  1.29.6.4   nathanw 
    563  1.29.6.4   nathanw 	simple_lock(&disklist_slock);
    564  1.29.6.4   nathanw 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    565  1.29.6.4   nathanw 	    diskp = TAILQ_NEXT(diskp, dk_link)) {
    566  1.29.6.4   nathanw 		if (where == NULL)
    567  1.29.6.4   nathanw 			needed += strlen(diskp->dk_name) + 1;
    568  1.29.6.4   nathanw 		else {
    569  1.29.6.4   nathanw 			memset(buf, 0, sizeof(buf));
    570  1.29.6.4   nathanw 			if (first) {
    571  1.29.6.4   nathanw 				strncpy(buf, diskp->dk_name, sizeof(buf));
    572  1.29.6.4   nathanw 				first = 0;
    573  1.29.6.4   nathanw 			} else {
    574  1.29.6.4   nathanw 				buf[0] = ' ';
    575  1.29.6.4   nathanw 				strncpy(buf + 1, diskp->dk_name,
    576  1.29.6.4   nathanw 				    sizeof(buf) - 1);
    577  1.29.6.4   nathanw 			}
    578  1.29.6.4   nathanw 			buf[DK_DISKNAMELEN] = '\0';
    579  1.29.6.4   nathanw 			slen = strlen(buf);
    580  1.29.6.4   nathanw 			if (left < slen + 1)
    581  1.29.6.4   nathanw 				break;
    582  1.29.6.4   nathanw 			/* +1 to copy out the trailing NUL byte */
    583  1.29.6.4   nathanw 			error = copyout(buf, where, slen + 1);
    584  1.29.6.4   nathanw 			if (error)
    585  1.29.6.4   nathanw 				break;
    586  1.29.6.4   nathanw 			where += slen;
    587  1.29.6.4   nathanw 			needed += slen;
    588  1.29.6.4   nathanw 			left -= slen;
    589  1.29.6.4   nathanw 		}
    590  1.29.6.4   nathanw 	}
    591  1.29.6.4   nathanw 	simple_unlock(&disklist_slock);
    592  1.29.6.4   nathanw 	*sizep = needed;
    593  1.29.6.4   nathanw 	return (error);
    594  1.29.6.4   nathanw }
    595  1.29.6.4   nathanw 
    596  1.29.6.4   nathanw int
    597  1.29.6.4   nathanw sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
    598  1.29.6.4   nathanw {
    599  1.29.6.4   nathanw 	struct disk_sysctl sdisk;
    600  1.29.6.4   nathanw 	struct disk *diskp;
    601  1.29.6.4   nathanw 	char *where = vwhere;
    602  1.29.6.4   nathanw 	size_t tocopy, left;
    603  1.29.6.4   nathanw 	int error;
    604  1.29.6.4   nathanw 
    605  1.29.6.4   nathanw 	if (where == NULL) {
    606  1.29.6.4   nathanw 		*sizep = disk_count * sizeof(struct disk_sysctl);
    607  1.29.6.4   nathanw 		return (0);
    608  1.29.6.4   nathanw 	}
    609  1.29.6.4   nathanw 
    610  1.29.6.4   nathanw 	if (namelen == 0)
    611  1.29.6.4   nathanw 		tocopy = sizeof(sdisk);
    612  1.29.6.4   nathanw 	else
    613  1.29.6.4   nathanw 		tocopy = name[0];
    614  1.29.6.4   nathanw 
    615  1.29.6.4   nathanw 	error = 0;
    616  1.29.6.4   nathanw 	left = *sizep;
    617  1.29.6.4   nathanw 	memset(&sdisk, 0, sizeof(sdisk));
    618  1.29.6.4   nathanw 	*sizep = 0;
    619  1.29.6.4   nathanw 
    620  1.29.6.4   nathanw 	simple_lock(&disklist_slock);
    621  1.29.6.4   nathanw 	TAILQ_FOREACH(diskp, &disklist, dk_link) {
    622  1.29.6.4   nathanw 		if (left < sizeof(struct disk_sysctl))
    623  1.29.6.4   nathanw 			break;
    624  1.29.6.4   nathanw 		strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
    625  1.29.6.4   nathanw 		sdisk.dk_xfer = diskp->dk_xfer;
    626  1.29.6.4   nathanw 		sdisk.dk_seek = diskp->dk_seek;
    627  1.29.6.4   nathanw 		sdisk.dk_bytes = diskp->dk_bytes;
    628  1.29.6.4   nathanw 		sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
    629  1.29.6.4   nathanw 		sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
    630  1.29.6.4   nathanw 		sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
    631  1.29.6.4   nathanw 		sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
    632  1.29.6.4   nathanw 		sdisk.dk_time_sec = diskp->dk_time.tv_sec;
    633  1.29.6.4   nathanw 		sdisk.dk_time_usec = diskp->dk_time.tv_usec;
    634  1.29.6.4   nathanw 		sdisk.dk_busy = diskp->dk_busy;
    635  1.29.6.4   nathanw 
    636  1.29.6.4   nathanw 		error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
    637  1.29.6.4   nathanw 		if (error)
    638  1.29.6.4   nathanw 			break;
    639  1.29.6.4   nathanw 		where += tocopy;
    640  1.29.6.4   nathanw 		*sizep += tocopy;
    641  1.29.6.4   nathanw 		left -= tocopy;
    642  1.29.6.4   nathanw 	}
    643  1.29.6.4   nathanw 	simple_unlock(&disklist_slock);
    644  1.29.6.4   nathanw 	return (error);
    645  1.29.6.5   nathanw }
    646  1.29.6.5   nathanw 
    647  1.29.6.5   nathanw 
    648  1.29.6.5   nathanw struct bufq_fcfs {
    649  1.29.6.5   nathanw 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
    650  1.29.6.5   nathanw };
    651  1.29.6.5   nathanw 
    652  1.29.6.5   nathanw struct bufq_disksort {
    653  1.29.6.5   nathanw 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
    654  1.29.6.5   nathanw };
    655  1.29.6.5   nathanw 
    656  1.29.6.5   nathanw #define PRIO_READ_BURST		48
    657  1.29.6.5   nathanw #define PRIO_WRITE_REQ		16
    658  1.29.6.5   nathanw 
    659  1.29.6.5   nathanw struct bufq_prio {
    660  1.29.6.5   nathanw 	TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
    661  1.29.6.5   nathanw 	struct buf *bq_write_next;	/* next request in bq_write */
    662  1.29.6.5   nathanw 	struct buf *bq_next;		/* current request */
    663  1.29.6.5   nathanw 	int bq_read_burst;		/* # of consecutive reads */
    664  1.29.6.5   nathanw };
    665  1.29.6.5   nathanw 
    666  1.29.6.5   nathanw 
    667  1.29.6.5   nathanw /*
    668  1.29.6.5   nathanw  * Check if two buf's are in ascending order.
    669  1.29.6.5   nathanw  */
    670  1.29.6.5   nathanw static __inline int
    671  1.29.6.5   nathanw buf_inorder(struct buf *bp, struct buf *bq, int sortby)
    672  1.29.6.5   nathanw {
    673  1.29.6.5   nathanw 	int r;
    674  1.29.6.5   nathanw 
    675  1.29.6.5   nathanw 	if (bp == NULL || bq == NULL)
    676  1.29.6.5   nathanw 		return(bq == NULL);
    677  1.29.6.5   nathanw 
    678  1.29.6.5   nathanw 	if (sortby == BUFQ_SORT_CYLINDER)
    679  1.29.6.5   nathanw 		r = bp->b_cylinder - bq->b_cylinder;
    680  1.29.6.5   nathanw 	else
    681  1.29.6.5   nathanw 		r = 0;
    682  1.29.6.5   nathanw 
    683  1.29.6.5   nathanw 	if (r == 0)
    684  1.29.6.5   nathanw 		r = bp->b_rawblkno - bq->b_rawblkno;
    685  1.29.6.5   nathanw 
    686  1.29.6.5   nathanw 	return(r <= 0);
    687  1.29.6.5   nathanw }
    688  1.29.6.5   nathanw 
    689  1.29.6.5   nathanw 
    690  1.29.6.5   nathanw /*
    691  1.29.6.5   nathanw  * First-come first-served sort for disks.
    692  1.29.6.5   nathanw  *
    693  1.29.6.5   nathanw  * Requests are appended to the queue without any reordering.
    694  1.29.6.5   nathanw  */
    695  1.29.6.5   nathanw static void
    696  1.29.6.5   nathanw bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
    697  1.29.6.5   nathanw {
    698  1.29.6.5   nathanw 	struct bufq_fcfs *fcfs = bufq->bq_private;
    699  1.29.6.5   nathanw 
    700  1.29.6.5   nathanw 	TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
    701  1.29.6.5   nathanw }
    702  1.29.6.5   nathanw 
    703  1.29.6.5   nathanw static struct buf *
    704  1.29.6.5   nathanw bufq_fcfs_get(struct bufq_state *bufq, int remove)
    705  1.29.6.5   nathanw {
    706  1.29.6.5   nathanw 	struct bufq_fcfs *fcfs = bufq->bq_private;
    707  1.29.6.5   nathanw 	struct buf *bp;
    708  1.29.6.5   nathanw 
    709  1.29.6.5   nathanw 	bp = TAILQ_FIRST(&fcfs->bq_head);
    710  1.29.6.5   nathanw 
    711  1.29.6.5   nathanw 	if (bp != NULL && remove)
    712  1.29.6.5   nathanw 		TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
    713  1.29.6.5   nathanw 
    714  1.29.6.5   nathanw 	return(bp);
    715  1.29.6.5   nathanw }
    716  1.29.6.5   nathanw 
    717  1.29.6.5   nathanw 
    718  1.29.6.5   nathanw /*
    719  1.29.6.5   nathanw  * Seek sort for disks.
    720  1.29.6.5   nathanw  *
    721  1.29.6.5   nathanw  * There are actually two queues, sorted in ascendening order.  The first
    722  1.29.6.5   nathanw  * queue holds those requests which are positioned after the current block;
    723  1.29.6.5   nathanw  * the second holds requests which came in after their position was passed.
    724  1.29.6.5   nathanw  * Thus we implement a one-way scan, retracting after reaching the end of
    725  1.29.6.5   nathanw  * the drive to the first request on the second queue, at which time it
    726  1.29.6.5   nathanw  * becomes the first queue.
    727  1.29.6.5   nathanw  *
    728  1.29.6.5   nathanw  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    729  1.29.6.5   nathanw  * allocated.
    730  1.29.6.5   nathanw  */
    731  1.29.6.5   nathanw static void
    732  1.29.6.5   nathanw bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
    733  1.29.6.5   nathanw {
    734  1.29.6.5   nathanw 	struct bufq_disksort *disksort = bufq->bq_private;
    735  1.29.6.5   nathanw 	struct buf *bq, *nbq;
    736  1.29.6.5   nathanw 	int sortby;
    737  1.29.6.5   nathanw 
    738  1.29.6.5   nathanw 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
    739  1.29.6.5   nathanw 
    740  1.29.6.5   nathanw 	bq = TAILQ_FIRST(&disksort->bq_head);
    741  1.29.6.5   nathanw 
    742  1.29.6.5   nathanw 	/*
    743  1.29.6.5   nathanw 	 * If the queue is empty it's easy; we just go on the end.
    744  1.29.6.5   nathanw 	 */
    745  1.29.6.5   nathanw 	if (bq == NULL) {
    746  1.29.6.5   nathanw 		TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
    747  1.29.6.5   nathanw 		return;
    748  1.29.6.5   nathanw 	}
    749  1.29.6.5   nathanw 
    750  1.29.6.5   nathanw 	/*
    751  1.29.6.5   nathanw 	 * If we lie before the currently active request, then we
    752  1.29.6.5   nathanw 	 * must locate the second request list and add ourselves to it.
    753  1.29.6.5   nathanw 	 */
    754  1.29.6.5   nathanw 	if (buf_inorder(bp, bq, sortby)) {
    755  1.29.6.5   nathanw 		while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
    756  1.29.6.5   nathanw 			/*
    757  1.29.6.5   nathanw 			 * Check for an ``inversion'' in the normally ascending
    758  1.29.6.5   nathanw 			 * block numbers, indicating the start of the second
    759  1.29.6.5   nathanw 			 * request list.
    760  1.29.6.5   nathanw 			 */
    761  1.29.6.5   nathanw 			if (buf_inorder(nbq, bq, sortby)) {
    762  1.29.6.5   nathanw 				/*
    763  1.29.6.5   nathanw 				 * Search the second request list for the first
    764  1.29.6.5   nathanw 				 * request at a larger block number.  We go
    765  1.29.6.5   nathanw 				 * after that; if there is no such request, we
    766  1.29.6.5   nathanw 				 * go at the end.
    767  1.29.6.5   nathanw 				 */
    768  1.29.6.5   nathanw 				do {
    769  1.29.6.5   nathanw 					if (buf_inorder(bp, nbq, sortby))
    770  1.29.6.5   nathanw 						goto insert;
    771  1.29.6.5   nathanw 					bq = nbq;
    772  1.29.6.5   nathanw 				} while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL);
    773  1.29.6.5   nathanw 				goto insert;		/* after last */
    774  1.29.6.5   nathanw 			}
    775  1.29.6.5   nathanw 			bq = nbq;
    776  1.29.6.5   nathanw 		}
    777  1.29.6.5   nathanw 		/*
    778  1.29.6.5   nathanw 		 * No inversions... we will go after the last, and
    779  1.29.6.5   nathanw 		 * be the first request in the second request list.
    780  1.29.6.5   nathanw 		 */
    781  1.29.6.5   nathanw 		goto insert;
    782  1.29.6.5   nathanw 	}
    783  1.29.6.5   nathanw 	/*
    784  1.29.6.5   nathanw 	 * Request is at/after the current request...
    785  1.29.6.5   nathanw 	 * sort in the first request list.
    786  1.29.6.5   nathanw 	 */
    787  1.29.6.5   nathanw 	while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
    788  1.29.6.5   nathanw 		/*
    789  1.29.6.5   nathanw 		 * We want to go after the current request if there is an
    790  1.29.6.5   nathanw 		 * inversion after it (i.e. it is the end of the first
    791  1.29.6.5   nathanw 		 * request list), or if the next request is a larger cylinder
    792  1.29.6.5   nathanw 		 * than our request.
    793  1.29.6.5   nathanw 		 */
    794  1.29.6.5   nathanw 		if (buf_inorder(nbq, bq, sortby) ||
    795  1.29.6.5   nathanw 		    buf_inorder(bp, nbq, sortby))
    796  1.29.6.5   nathanw 			goto insert;
    797  1.29.6.5   nathanw 		bq = nbq;
    798  1.29.6.5   nathanw 	}
    799  1.29.6.5   nathanw 	/*
    800  1.29.6.5   nathanw 	 * Neither a second list nor a larger request... we go at the end of
    801  1.29.6.5   nathanw 	 * the first list, which is the same as the end of the whole schebang.
    802  1.29.6.5   nathanw 	 */
    803  1.29.6.5   nathanw insert:	TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
    804  1.29.6.5   nathanw }
    805  1.29.6.5   nathanw 
    806  1.29.6.5   nathanw static struct buf *
    807  1.29.6.5   nathanw bufq_disksort_get(struct bufq_state *bufq, int remove)
    808  1.29.6.5   nathanw {
    809  1.29.6.5   nathanw 	struct bufq_disksort *disksort = bufq->bq_private;
    810  1.29.6.5   nathanw 	struct buf *bp;
    811  1.29.6.5   nathanw 
    812  1.29.6.5   nathanw 	bp = TAILQ_FIRST(&disksort->bq_head);
    813  1.29.6.5   nathanw 
    814  1.29.6.5   nathanw 	if (bp != NULL && remove)
    815  1.29.6.5   nathanw 		TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
    816  1.29.6.5   nathanw 
    817  1.29.6.5   nathanw 	return(bp);
    818  1.29.6.5   nathanw }
    819  1.29.6.5   nathanw 
    820  1.29.6.5   nathanw 
    821  1.29.6.5   nathanw /*
    822  1.29.6.5   nathanw  * Seek sort for disks.
    823  1.29.6.5   nathanw  *
    824  1.29.6.5   nathanw  * There are two queues.  The first queue holds read requests; the second
    825  1.29.6.5   nathanw  * holds write requests.  The read queue is first-come first-served; the
    826  1.29.6.5   nathanw  * write queue is sorted in ascendening block order.
    827  1.29.6.5   nathanw  * The read queue is processed first.  After PRIO_READ_BURST consecutive
    828  1.29.6.5   nathanw  * read requests with non-empty write queue PRIO_WRITE_REQ requests from
    829  1.29.6.5   nathanw  * the write queue will be processed.
    830  1.29.6.5   nathanw  */
    831  1.29.6.5   nathanw static void
    832  1.29.6.5   nathanw bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
    833  1.29.6.5   nathanw {
    834  1.29.6.5   nathanw 	struct bufq_prio *prio = bufq->bq_private;
    835  1.29.6.5   nathanw 	struct buf *bq;
    836  1.29.6.5   nathanw 	int sortby;
    837  1.29.6.5   nathanw 
    838  1.29.6.5   nathanw 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
    839  1.29.6.5   nathanw 
    840  1.29.6.5   nathanw 	/*
    841  1.29.6.5   nathanw 	 * If it's a read request append it to the list.
    842  1.29.6.5   nathanw 	 */
    843  1.29.6.5   nathanw 	if ((bp->b_flags & B_READ) == B_READ) {
    844  1.29.6.5   nathanw 		TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
    845  1.29.6.5   nathanw 		return;
    846  1.29.6.5   nathanw 	}
    847  1.29.6.5   nathanw 
    848  1.29.6.5   nathanw 	bq = TAILQ_FIRST(&prio->bq_write);
    849  1.29.6.5   nathanw 
    850  1.29.6.5   nathanw 	/*
    851  1.29.6.5   nathanw 	 * If the write list is empty, simply append it to the list.
    852  1.29.6.5   nathanw 	 */
    853  1.29.6.5   nathanw 	if (bq == NULL) {
    854  1.29.6.5   nathanw 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
    855  1.29.6.5   nathanw 		prio->bq_write_next = bp;
    856  1.29.6.5   nathanw 		return;
    857  1.29.6.5   nathanw 	}
    858  1.29.6.5   nathanw 
    859  1.29.6.5   nathanw 	/*
    860  1.29.6.5   nathanw 	 * If we lie after the next request, insert after this request.
    861  1.29.6.5   nathanw 	 */
    862  1.29.6.5   nathanw 	if (buf_inorder(prio->bq_write_next, bp, sortby))
    863  1.29.6.5   nathanw 		bq = prio->bq_write_next;
    864  1.29.6.5   nathanw 
    865  1.29.6.5   nathanw 	/*
    866  1.29.6.5   nathanw 	 * Search for the first request at a larger block number.
    867  1.29.6.5   nathanw 	 * We go before this request if it exists.
    868  1.29.6.5   nathanw 	 */
    869  1.29.6.5   nathanw 	while (bq != NULL && buf_inorder(bq, bp, sortby))
    870  1.29.6.5   nathanw 		bq = TAILQ_NEXT(bq, b_actq);
    871  1.29.6.5   nathanw 
    872  1.29.6.5   nathanw 	if (bq != NULL)
    873  1.29.6.5   nathanw 		TAILQ_INSERT_BEFORE(bq, bp, b_actq);
    874  1.29.6.5   nathanw 	else
    875  1.29.6.5   nathanw 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
    876  1.29.6.5   nathanw }
    877  1.29.6.5   nathanw 
    878  1.29.6.5   nathanw static struct buf *
    879  1.29.6.5   nathanw bufq_prio_get(struct bufq_state *bufq, int remove)
    880  1.29.6.5   nathanw {
    881  1.29.6.5   nathanw 	struct bufq_prio *prio = bufq->bq_private;
    882  1.29.6.5   nathanw 	struct buf *bp;
    883  1.29.6.5   nathanw 
    884  1.29.6.5   nathanw 	/*
    885  1.29.6.5   nathanw 	 * If no current request, get next from the lists.
    886  1.29.6.5   nathanw 	 */
    887  1.29.6.5   nathanw 	if (prio->bq_next == NULL) {
    888  1.29.6.5   nathanw 		/*
    889  1.29.6.5   nathanw 		 * If at least one list is empty, select the other.
    890  1.29.6.5   nathanw 		 */
    891  1.29.6.5   nathanw 
    892  1.29.6.5   nathanw 		if (TAILQ_FIRST(&prio->bq_read) == NULL) {
    893  1.29.6.5   nathanw 			prio->bq_next = prio->bq_write_next;
    894  1.29.6.5   nathanw 			prio->bq_read_burst = 0;
    895  1.29.6.5   nathanw 		} else if (prio->bq_write_next == NULL) {
    896  1.29.6.5   nathanw 			prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    897  1.29.6.5   nathanw 			prio->bq_read_burst = 0;
    898  1.29.6.5   nathanw 		} else {
    899  1.29.6.5   nathanw 			/*
    900  1.29.6.5   nathanw 			 * Both list have requests.  Select the read list up
    901  1.29.6.5   nathanw 			 * to PRIO_READ_BURST times, then select the write
    902  1.29.6.5   nathanw 			 * list PRIO_WRITE_REQ times.
    903  1.29.6.5   nathanw 			 */
    904  1.29.6.5   nathanw 
    905  1.29.6.5   nathanw 			if (prio->bq_read_burst++ < PRIO_READ_BURST)
    906  1.29.6.5   nathanw 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    907  1.29.6.5   nathanw 			else if (prio->bq_read_burst <
    908  1.29.6.5   nathanw 				     PRIO_READ_BURST + PRIO_WRITE_REQ)
    909  1.29.6.5   nathanw 				prio->bq_next = prio->bq_write_next;
    910  1.29.6.5   nathanw 			else {
    911  1.29.6.5   nathanw 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    912  1.29.6.5   nathanw 				prio->bq_read_burst = 0;
    913  1.29.6.5   nathanw 			}
    914  1.29.6.5   nathanw 		}
    915  1.29.6.5   nathanw 	}
    916  1.29.6.5   nathanw 
    917  1.29.6.5   nathanw 	bp = prio->bq_next;
    918  1.29.6.5   nathanw 
    919  1.29.6.5   nathanw 	if (prio->bq_next != NULL && remove) {
    920  1.29.6.5   nathanw 		if ((prio->bq_next->b_flags & B_READ) == B_READ)
    921  1.29.6.5   nathanw 			TAILQ_REMOVE(&prio->bq_read, prio->bq_next, b_actq);
    922  1.29.6.5   nathanw 		else {
    923  1.29.6.5   nathanw 			TAILQ_REMOVE(&prio->bq_write, prio->bq_next, b_actq);
    924  1.29.6.5   nathanw 			/*
    925  1.29.6.5   nathanw 			 * Advance the write pointer.
    926  1.29.6.5   nathanw 			 */
    927  1.29.6.5   nathanw 			prio->bq_write_next =
    928  1.29.6.5   nathanw 			    TAILQ_NEXT(prio->bq_write_next, b_actq);
    929  1.29.6.5   nathanw 			if (prio->bq_write_next == NULL)
    930  1.29.6.5   nathanw 				prio->bq_write_next =
    931  1.29.6.5   nathanw 				    TAILQ_FIRST(&prio->bq_write);
    932  1.29.6.5   nathanw 		}
    933  1.29.6.5   nathanw 
    934  1.29.6.5   nathanw 		prio->bq_next = NULL;
    935  1.29.6.5   nathanw 	}
    936  1.29.6.5   nathanw 
    937  1.29.6.5   nathanw 	return(bp);
    938  1.29.6.5   nathanw }
    939  1.29.6.5   nathanw 
    940  1.29.6.5   nathanw /*
    941  1.29.6.5   nathanw  * Create a device buffer queue.
    942  1.29.6.5   nathanw  */
    943  1.29.6.5   nathanw void
    944  1.29.6.5   nathanw bufq_alloc(struct bufq_state *bufq, int flags)
    945  1.29.6.5   nathanw {
    946  1.29.6.5   nathanw 	struct bufq_fcfs *fcfs;
    947  1.29.6.5   nathanw 	struct bufq_disksort *disksort;
    948  1.29.6.5   nathanw 	struct bufq_prio *prio;
    949  1.29.6.5   nathanw 
    950  1.29.6.5   nathanw 	bufq->bq_flags = flags;
    951  1.29.6.5   nathanw 
    952  1.29.6.5   nathanw 	switch (flags & BUFQ_SORT_MASK) {
    953  1.29.6.5   nathanw 	case BUFQ_SORT_RAWBLOCK:
    954  1.29.6.5   nathanw 	case BUFQ_SORT_CYLINDER:
    955  1.29.6.5   nathanw 		break;
    956  1.29.6.5   nathanw 	case 0:
    957  1.29.6.5   nathanw 		if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
    958  1.29.6.5   nathanw 			break;
    959  1.29.6.5   nathanw 		/* FALLTHROUGH */
    960  1.29.6.5   nathanw 	default:
    961  1.29.6.5   nathanw 		panic("bufq_alloc: sort out of range");
    962  1.29.6.5   nathanw 	}
    963  1.29.6.5   nathanw 
    964  1.29.6.5   nathanw 	switch (flags & BUFQ_METHOD_MASK) {
    965  1.29.6.5   nathanw 	case BUFQ_FCFS:
    966  1.29.6.5   nathanw 		bufq->bq_get = bufq_fcfs_get;
    967  1.29.6.5   nathanw 		bufq->bq_put = bufq_fcfs_put;
    968  1.29.6.5   nathanw 		MALLOC(bufq->bq_private, struct bufq_fcfs *,
    969  1.29.6.5   nathanw 		    sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
    970  1.29.6.5   nathanw 		fcfs = (struct bufq_fcfs *)bufq->bq_private;
    971  1.29.6.5   nathanw 		TAILQ_INIT(&fcfs->bq_head);
    972  1.29.6.5   nathanw 		break;
    973  1.29.6.5   nathanw 	case BUFQ_DISKSORT:
    974  1.29.6.5   nathanw 		bufq->bq_get = bufq_disksort_get;
    975  1.29.6.5   nathanw 		bufq->bq_put = bufq_disksort_put;
    976  1.29.6.5   nathanw 		MALLOC(bufq->bq_private, struct bufq_disksort *,
    977  1.29.6.5   nathanw 		    sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
    978  1.29.6.5   nathanw 		disksort = (struct bufq_disksort *)bufq->bq_private;
    979  1.29.6.5   nathanw 		TAILQ_INIT(&disksort->bq_head);
    980  1.29.6.5   nathanw 		break;
    981  1.29.6.5   nathanw 	case BUFQ_READ_PRIO:
    982  1.29.6.5   nathanw 		bufq->bq_get = bufq_prio_get;
    983  1.29.6.5   nathanw 		bufq->bq_put = bufq_prio_put;
    984  1.29.6.5   nathanw 		MALLOC(bufq->bq_private, struct bufq_prio *,
    985  1.29.6.5   nathanw 		    sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
    986  1.29.6.5   nathanw 		prio = (struct bufq_prio *)bufq->bq_private;
    987  1.29.6.5   nathanw 		TAILQ_INIT(&prio->bq_read);
    988  1.29.6.5   nathanw 		TAILQ_INIT(&prio->bq_write);
    989  1.29.6.5   nathanw 		break;
    990  1.29.6.5   nathanw 	default:
    991  1.29.6.5   nathanw 		panic("bufq_alloc: method out of range");
    992  1.29.6.5   nathanw 	}
    993  1.29.6.5   nathanw }
    994  1.29.6.5   nathanw 
    995  1.29.6.5   nathanw /*
    996  1.29.6.5   nathanw  * Destroy a device buffer queue.
    997  1.29.6.5   nathanw  */
    998  1.29.6.5   nathanw void
    999  1.29.6.5   nathanw bufq_free(struct bufq_state *bufq)
   1000  1.29.6.5   nathanw {
   1001  1.29.6.5   nathanw 	KASSERT(bufq->bq_private != NULL);
   1002  1.29.6.5   nathanw 	KASSERT(BUFQ_PEEK(bufq) == NULL);
   1003  1.29.6.5   nathanw 
   1004  1.29.6.5   nathanw 	FREE(bufq->bq_private, M_DEVBUF);
   1005  1.29.6.5   nathanw 	bufq->bq_get = NULL;
   1006  1.29.6.5   nathanw 	bufq->bq_put = NULL;
   1007      1.11   mycroft }
   1008