subr_disk.c revision 1.52.2.1 1 1.52.2.1 skrll /* $NetBSD: subr_disk.c,v 1.52.2.1 2004/08/03 10:52:54 skrll Exp $ */
2 1.22 thorpej
3 1.22 thorpej /*-
4 1.26 thorpej * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 1.22 thorpej * All rights reserved.
6 1.22 thorpej *
7 1.22 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.22 thorpej * NASA Ames Research Center.
10 1.22 thorpej *
11 1.22 thorpej * Redistribution and use in source and binary forms, with or without
12 1.22 thorpej * modification, are permitted provided that the following conditions
13 1.22 thorpej * are met:
14 1.22 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.22 thorpej * notice, this list of conditions and the following disclaimer.
16 1.22 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.22 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.22 thorpej * documentation and/or other materials provided with the distribution.
19 1.22 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.22 thorpej * must display the following acknowledgement:
21 1.22 thorpej * This product includes software developed by the NetBSD
22 1.22 thorpej * Foundation, Inc. and its contributors.
23 1.22 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.22 thorpej * contributors may be used to endorse or promote products derived
25 1.22 thorpej * from this software without specific prior written permission.
26 1.22 thorpej *
27 1.22 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.22 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.22 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.22 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.22 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.22 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.22 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.22 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.22 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.22 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.22 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.22 thorpej */
39 1.12 cgd
40 1.11 mycroft /*
41 1.11 mycroft * Copyright (c) 1982, 1986, 1988, 1993
42 1.11 mycroft * The Regents of the University of California. All rights reserved.
43 1.11 mycroft * (c) UNIX System Laboratories, Inc.
44 1.11 mycroft * All or some portions of this file are derived from material licensed
45 1.11 mycroft * to the University of California by American Telephone and Telegraph
46 1.11 mycroft * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.11 mycroft * the permission of UNIX System Laboratories, Inc.
48 1.11 mycroft *
49 1.11 mycroft * Redistribution and use in source and binary forms, with or without
50 1.11 mycroft * modification, are permitted provided that the following conditions
51 1.11 mycroft * are met:
52 1.11 mycroft * 1. Redistributions of source code must retain the above copyright
53 1.11 mycroft * notice, this list of conditions and the following disclaimer.
54 1.11 mycroft * 2. Redistributions in binary form must reproduce the above copyright
55 1.11 mycroft * notice, this list of conditions and the following disclaimer in the
56 1.11 mycroft * documentation and/or other materials provided with the distribution.
57 1.52.2.1 skrll * 3. Neither the name of the University nor the names of its contributors
58 1.11 mycroft * may be used to endorse or promote products derived from this software
59 1.11 mycroft * without specific prior written permission.
60 1.11 mycroft *
61 1.11 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.11 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.11 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.11 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.11 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.11 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.11 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.11 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.11 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.11 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.11 mycroft * SUCH DAMAGE.
72 1.11 mycroft *
73 1.12 cgd * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
74 1.11 mycroft */
75 1.31 lukem
76 1.31 lukem #include <sys/cdefs.h>
77 1.52.2.1 skrll __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.52.2.1 2004/08/03 10:52:54 skrll Exp $");
78 1.48 mrg
79 1.48 mrg #include "opt_compat_netbsd.h"
80 1.52.2.1 skrll #include "opt_bufq.h"
81 1.11 mycroft
82 1.11 mycroft #include <sys/param.h>
83 1.15 thorpej #include <sys/kernel.h>
84 1.15 thorpej #include <sys/malloc.h>
85 1.11 mycroft #include <sys/buf.h>
86 1.15 thorpej #include <sys/syslog.h>
87 1.11 mycroft #include <sys/disklabel.h>
88 1.15 thorpej #include <sys/disk.h>
89 1.33 simonb #include <sys/sysctl.h>
90 1.47 mrg #include <lib/libkern/libkern.h>
91 1.14 thorpej
92 1.14 thorpej /*
93 1.15 thorpej * A global list of all disks attached to the system. May grow or
94 1.15 thorpej * shrink over time.
95 1.15 thorpej */
96 1.15 thorpej struct disklist_head disklist; /* TAILQ_HEAD */
97 1.15 thorpej int disk_count; /* number of drives in global disklist */
98 1.33 simonb struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
99 1.39 hannken
100 1.52.2.1 skrll #ifdef NEW_BUFQ_STRATEGY
101 1.52.2.1 skrll int bufq_disk_default_strat = BUFQ_READ_PRIO;
102 1.52.2.1 skrll #else /* NEW_BUFQ_STRATEGY */
103 1.52.2.1 skrll int bufq_disk_default_strat = BUFQ_DISKSORT;
104 1.52.2.1 skrll #endif /* NEW_BUFQ_STRATEGY */
105 1.52.2.1 skrll
106 1.39 hannken /*
107 1.11 mycroft * Compute checksum for disk label.
108 1.11 mycroft */
109 1.11 mycroft u_int
110 1.30 simonb dkcksum(struct disklabel *lp)
111 1.11 mycroft {
112 1.29 augustss u_short *start, *end;
113 1.29 augustss u_short sum = 0;
114 1.11 mycroft
115 1.11 mycroft start = (u_short *)lp;
116 1.11 mycroft end = (u_short *)&lp->d_partitions[lp->d_npartitions];
117 1.11 mycroft while (start < end)
118 1.11 mycroft sum ^= *start++;
119 1.11 mycroft return (sum);
120 1.11 mycroft }
121 1.11 mycroft
122 1.11 mycroft /*
123 1.11 mycroft * Disk error is the preface to plaintive error messages
124 1.11 mycroft * about failing disk transfers. It prints messages of the form
125 1.11 mycroft
126 1.11 mycroft hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
127 1.11 mycroft
128 1.11 mycroft * if the offset of the error in the transfer and a disk label
129 1.11 mycroft * are both available. blkdone should be -1 if the position of the error
130 1.11 mycroft * is unknown; the disklabel pointer may be null from drivers that have not
131 1.20 christos * been converted to use them. The message is printed with printf
132 1.11 mycroft * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
133 1.20 christos * The message should be completed (with at least a newline) with printf
134 1.11 mycroft * or addlog, respectively. There is no trailing space.
135 1.11 mycroft */
136 1.51 dsl #ifndef PRIdaddr
137 1.51 dsl #define PRIdaddr PRId64
138 1.51 dsl #endif
139 1.11 mycroft void
140 1.38 yamt diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
141 1.38 yamt int blkdone, const struct disklabel *lp)
142 1.11 mycroft {
143 1.25 drochner int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
144 1.30 simonb void (*pr)(const char *, ...);
145 1.11 mycroft char partname = 'a' + part;
146 1.51 dsl daddr_t sn;
147 1.51 dsl
148 1.52 dsl if (/*CONSTCOND*/0)
149 1.51 dsl /* Compiler will error this is the format is wrong... */
150 1.51 dsl printf("%" PRIdaddr, bp->b_blkno);
151 1.11 mycroft
152 1.11 mycroft if (pri != LOG_PRINTF) {
153 1.17 christos static const char fmt[] = "";
154 1.17 christos log(pri, fmt);
155 1.11 mycroft pr = addlog;
156 1.11 mycroft } else
157 1.20 christos pr = printf;
158 1.11 mycroft (*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
159 1.11 mycroft bp->b_flags & B_READ ? "read" : "writ");
160 1.11 mycroft sn = bp->b_blkno;
161 1.11 mycroft if (bp->b_bcount <= DEV_BSIZE)
162 1.51 dsl (*pr)("%" PRIdaddr, sn);
163 1.11 mycroft else {
164 1.11 mycroft if (blkdone >= 0) {
165 1.11 mycroft sn += blkdone;
166 1.51 dsl (*pr)("%" PRIdaddr " of ", sn);
167 1.11 mycroft }
168 1.51 dsl (*pr)("%" PRIdaddr "-%" PRIdaddr "", bp->b_blkno,
169 1.11 mycroft bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
170 1.11 mycroft }
171 1.11 mycroft if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
172 1.11 mycroft sn += lp->d_partitions[part].p_offset;
173 1.51 dsl (*pr)(" (%s%d bn %" PRIdaddr "; cn %" PRIdaddr "",
174 1.51 dsl dname, unit, sn, sn / lp->d_secpercyl);
175 1.11 mycroft sn %= lp->d_secpercyl;
176 1.51 dsl (*pr)(" tn %" PRIdaddr " sn %" PRIdaddr ")",
177 1.51 dsl sn / lp->d_nsectors, sn % lp->d_nsectors);
178 1.11 mycroft }
179 1.15 thorpej }
180 1.15 thorpej
181 1.15 thorpej /*
182 1.15 thorpej * Initialize the disklist. Called by main() before autoconfiguration.
183 1.15 thorpej */
184 1.15 thorpej void
185 1.30 simonb disk_init(void)
186 1.15 thorpej {
187 1.15 thorpej
188 1.15 thorpej TAILQ_INIT(&disklist);
189 1.15 thorpej disk_count = 0;
190 1.15 thorpej }
191 1.15 thorpej
192 1.15 thorpej /*
193 1.15 thorpej * Searches the disklist for the disk corresponding to the
194 1.15 thorpej * name provided.
195 1.15 thorpej */
196 1.15 thorpej struct disk *
197 1.30 simonb disk_find(char *name)
198 1.15 thorpej {
199 1.15 thorpej struct disk *diskp;
200 1.15 thorpej
201 1.15 thorpej if ((name == NULL) || (disk_count <= 0))
202 1.15 thorpej return (NULL);
203 1.15 thorpej
204 1.33 simonb simple_lock(&disklist_slock);
205 1.33 simonb for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
206 1.33 simonb diskp = TAILQ_NEXT(diskp, dk_link))
207 1.33 simonb if (strcmp(diskp->dk_name, name) == 0) {
208 1.33 simonb simple_unlock(&disklist_slock);
209 1.15 thorpej return (diskp);
210 1.33 simonb }
211 1.33 simonb simple_unlock(&disklist_slock);
212 1.15 thorpej
213 1.15 thorpej return (NULL);
214 1.15 thorpej }
215 1.15 thorpej
216 1.15 thorpej /*
217 1.15 thorpej * Attach a disk.
218 1.15 thorpej */
219 1.15 thorpej void
220 1.30 simonb disk_attach(struct disk *diskp)
221 1.15 thorpej {
222 1.15 thorpej int s;
223 1.15 thorpej
224 1.15 thorpej /*
225 1.15 thorpej * Allocate and initialize the disklabel structures. Note that
226 1.15 thorpej * it's not safe to sleep here, since we're probably going to be
227 1.15 thorpej * called during autoconfiguration.
228 1.15 thorpej */
229 1.15 thorpej diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
230 1.15 thorpej diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
231 1.15 thorpej M_NOWAIT);
232 1.15 thorpej if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
233 1.15 thorpej panic("disk_attach: can't allocate storage for disklabel");
234 1.15 thorpej
235 1.24 perry memset(diskp->dk_label, 0, sizeof(struct disklabel));
236 1.24 perry memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
237 1.15 thorpej
238 1.15 thorpej /*
239 1.15 thorpej * Set the attached timestamp.
240 1.15 thorpej */
241 1.15 thorpej s = splclock();
242 1.15 thorpej diskp->dk_attachtime = mono_time;
243 1.15 thorpej splx(s);
244 1.15 thorpej
245 1.15 thorpej /*
246 1.15 thorpej * Link into the disklist.
247 1.15 thorpej */
248 1.33 simonb simple_lock(&disklist_slock);
249 1.15 thorpej TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
250 1.33 simonb simple_unlock(&disklist_slock);
251 1.15 thorpej ++disk_count;
252 1.15 thorpej }
253 1.15 thorpej
254 1.15 thorpej /*
255 1.16 christos * Detach a disk.
256 1.15 thorpej */
257 1.15 thorpej void
258 1.30 simonb disk_detach(struct disk *diskp)
259 1.15 thorpej {
260 1.15 thorpej
261 1.15 thorpej /*
262 1.23 thorpej * Remove from the disklist.
263 1.23 thorpej */
264 1.23 thorpej if (--disk_count < 0)
265 1.23 thorpej panic("disk_detach: disk_count < 0");
266 1.33 simonb simple_lock(&disklist_slock);
267 1.23 thorpej TAILQ_REMOVE(&disklist, diskp, dk_link);
268 1.33 simonb simple_unlock(&disklist_slock);
269 1.23 thorpej
270 1.23 thorpej /*
271 1.15 thorpej * Free the space used by the disklabel structures.
272 1.15 thorpej */
273 1.15 thorpej free(diskp->dk_label, M_DEVBUF);
274 1.15 thorpej free(diskp->dk_cpulabel, M_DEVBUF);
275 1.15 thorpej }
276 1.15 thorpej
277 1.15 thorpej /*
278 1.15 thorpej * Increment a disk's busy counter. If the counter is going from
279 1.15 thorpej * 0 to 1, set the timestamp.
280 1.15 thorpej */
281 1.15 thorpej void
282 1.30 simonb disk_busy(struct disk *diskp)
283 1.15 thorpej {
284 1.15 thorpej int s;
285 1.15 thorpej
286 1.15 thorpej /*
287 1.15 thorpej * XXX We'd like to use something as accurate as microtime(),
288 1.15 thorpej * but that doesn't depend on the system TOD clock.
289 1.15 thorpej */
290 1.15 thorpej if (diskp->dk_busy++ == 0) {
291 1.15 thorpej s = splclock();
292 1.15 thorpej diskp->dk_timestamp = mono_time;
293 1.15 thorpej splx(s);
294 1.15 thorpej }
295 1.15 thorpej }
296 1.15 thorpej
297 1.15 thorpej /*
298 1.15 thorpej * Decrement a disk's busy counter, increment the byte count, total busy
299 1.15 thorpej * time, and reset the timestamp.
300 1.15 thorpej */
301 1.15 thorpej void
302 1.45 mrg disk_unbusy(struct disk *diskp, long bcount, int read)
303 1.15 thorpej {
304 1.15 thorpej int s;
305 1.15 thorpej struct timeval dv_time, diff_time;
306 1.15 thorpej
307 1.23 thorpej if (diskp->dk_busy-- == 0) {
308 1.23 thorpej printf("%s: dk_busy < 0\n", diskp->dk_name);
309 1.23 thorpej panic("disk_unbusy");
310 1.23 thorpej }
311 1.15 thorpej
312 1.15 thorpej s = splclock();
313 1.15 thorpej dv_time = mono_time;
314 1.15 thorpej splx(s);
315 1.15 thorpej
316 1.15 thorpej timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
317 1.15 thorpej timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
318 1.15 thorpej
319 1.15 thorpej diskp->dk_timestamp = dv_time;
320 1.15 thorpej if (bcount > 0) {
321 1.45 mrg if (read) {
322 1.45 mrg diskp->dk_rbytes += bcount;
323 1.45 mrg diskp->dk_rxfer++;
324 1.45 mrg } else {
325 1.45 mrg diskp->dk_wbytes += bcount;
326 1.45 mrg diskp->dk_wxfer++;
327 1.45 mrg }
328 1.15 thorpej }
329 1.15 thorpej }
330 1.15 thorpej
331 1.15 thorpej /*
332 1.15 thorpej * Reset the metrics counters on the given disk. Note that we cannot
333 1.15 thorpej * reset the busy counter, as it may case a panic in disk_unbusy().
334 1.15 thorpej * We also must avoid playing with the timestamp information, as it
335 1.15 thorpej * may skew any pending transfer results.
336 1.15 thorpej */
337 1.15 thorpej void
338 1.30 simonb disk_resetstat(struct disk *diskp)
339 1.15 thorpej {
340 1.15 thorpej int s = splbio(), t;
341 1.15 thorpej
342 1.45 mrg diskp->dk_rxfer = 0;
343 1.45 mrg diskp->dk_rbytes = 0;
344 1.45 mrg diskp->dk_wxfer = 0;
345 1.45 mrg diskp->dk_wbytes = 0;
346 1.15 thorpej
347 1.15 thorpej t = splclock();
348 1.15 thorpej diskp->dk_attachtime = mono_time;
349 1.15 thorpej splx(t);
350 1.15 thorpej
351 1.15 thorpej timerclear(&diskp->dk_time);
352 1.15 thorpej
353 1.15 thorpej splx(s);
354 1.33 simonb }
355 1.33 simonb
356 1.33 simonb int
357 1.52.2.1 skrll sysctl_hw_disknames(SYSCTLFN_ARGS)
358 1.33 simonb {
359 1.33 simonb char buf[DK_DISKNAMELEN + 1];
360 1.52.2.1 skrll char *where = oldp;
361 1.33 simonb struct disk *diskp;
362 1.33 simonb size_t needed, left, slen;
363 1.33 simonb int error, first;
364 1.33 simonb
365 1.52.2.1 skrll if (newp != NULL)
366 1.52.2.1 skrll return (EPERM);
367 1.52.2.1 skrll if (namelen != 0)
368 1.52.2.1 skrll return (EINVAL);
369 1.52.2.1 skrll
370 1.33 simonb first = 1;
371 1.33 simonb error = 0;
372 1.33 simonb needed = 0;
373 1.52.2.1 skrll left = *oldlenp;
374 1.35 simonb
375 1.33 simonb simple_lock(&disklist_slock);
376 1.33 simonb for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
377 1.33 simonb diskp = TAILQ_NEXT(diskp, dk_link)) {
378 1.33 simonb if (where == NULL)
379 1.33 simonb needed += strlen(diskp->dk_name) + 1;
380 1.33 simonb else {
381 1.33 simonb memset(buf, 0, sizeof(buf));
382 1.33 simonb if (first) {
383 1.33 simonb strncpy(buf, diskp->dk_name, sizeof(buf));
384 1.33 simonb first = 0;
385 1.33 simonb } else {
386 1.33 simonb buf[0] = ' ';
387 1.36 enami strncpy(buf + 1, diskp->dk_name,
388 1.37 enami sizeof(buf) - 1);
389 1.33 simonb }
390 1.33 simonb buf[DK_DISKNAMELEN] = '\0';
391 1.33 simonb slen = strlen(buf);
392 1.33 simonb if (left < slen + 1)
393 1.33 simonb break;
394 1.33 simonb /* +1 to copy out the trailing NUL byte */
395 1.33 simonb error = copyout(buf, where, slen + 1);
396 1.33 simonb if (error)
397 1.33 simonb break;
398 1.33 simonb where += slen;
399 1.33 simonb needed += slen;
400 1.33 simonb left -= slen;
401 1.33 simonb }
402 1.33 simonb }
403 1.33 simonb simple_unlock(&disklist_slock);
404 1.52.2.1 skrll *oldlenp = needed;
405 1.33 simonb return (error);
406 1.33 simonb }
407 1.33 simonb
408 1.33 simonb int
409 1.52.2.1 skrll sysctl_hw_diskstats(SYSCTLFN_ARGS)
410 1.33 simonb {
411 1.33 simonb struct disk_sysctl sdisk;
412 1.33 simonb struct disk *diskp;
413 1.52.2.1 skrll char *where = oldp;
414 1.33 simonb size_t tocopy, left;
415 1.33 simonb int error;
416 1.33 simonb
417 1.52.2.1 skrll if (newp != NULL)
418 1.52.2.1 skrll return (EPERM);
419 1.52.2.1 skrll
420 1.48 mrg /*
421 1.48 mrg * The original hw.diskstats call was broken and did not require
422 1.48 mrg * the userland to pass in it's size of struct disk_sysctl. This
423 1.48 mrg * was fixed after NetBSD 1.6 was released, and any applications
424 1.48 mrg * that do not pass in the size are given an error only, unless
425 1.48 mrg * we care about 1.6 compatibility.
426 1.48 mrg */
427 1.33 simonb if (namelen == 0)
428 1.47 mrg #ifdef COMPAT_16
429 1.49 enami tocopy = offsetof(struct disk_sysctl, dk_rxfer);
430 1.47 mrg #else
431 1.47 mrg return (EINVAL);
432 1.47 mrg #endif
433 1.33 simonb else
434 1.33 simonb tocopy = name[0];
435 1.49 enami
436 1.49 enami if (where == NULL) {
437 1.52.2.1 skrll *oldlenp = disk_count * tocopy;
438 1.49 enami return (0);
439 1.49 enami }
440 1.33 simonb
441 1.33 simonb error = 0;
442 1.52.2.1 skrll left = *oldlenp;
443 1.33 simonb memset(&sdisk, 0, sizeof(sdisk));
444 1.52.2.1 skrll *oldlenp = 0;
445 1.33 simonb
446 1.33 simonb simple_lock(&disklist_slock);
447 1.34 simonb TAILQ_FOREACH(diskp, &disklist, dk_link) {
448 1.46 simonb if (left < tocopy)
449 1.33 simonb break;
450 1.36 enami strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
451 1.45 mrg sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
452 1.45 mrg sdisk.dk_rxfer = diskp->dk_rxfer;
453 1.45 mrg sdisk.dk_wxfer = diskp->dk_wxfer;
454 1.33 simonb sdisk.dk_seek = diskp->dk_seek;
455 1.45 mrg sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
456 1.45 mrg sdisk.dk_rbytes = diskp->dk_rbytes;
457 1.45 mrg sdisk.dk_wbytes = diskp->dk_wbytes;
458 1.33 simonb sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
459 1.33 simonb sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
460 1.33 simonb sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
461 1.33 simonb sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
462 1.33 simonb sdisk.dk_time_sec = diskp->dk_time.tv_sec;
463 1.33 simonb sdisk.dk_time_usec = diskp->dk_time.tv_usec;
464 1.33 simonb sdisk.dk_busy = diskp->dk_busy;
465 1.35 simonb
466 1.33 simonb error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
467 1.33 simonb if (error)
468 1.33 simonb break;
469 1.33 simonb where += tocopy;
470 1.52.2.1 skrll *oldlenp += tocopy;
471 1.33 simonb left -= tocopy;
472 1.33 simonb }
473 1.33 simonb simple_unlock(&disklist_slock);
474 1.33 simonb return (error);
475 1.39 hannken }
476 1.39 hannken
477 1.39 hannken struct bufq_fcfs {
478 1.39 hannken TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
479 1.39 hannken };
480 1.39 hannken
481 1.39 hannken struct bufq_disksort {
482 1.39 hannken TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
483 1.39 hannken };
484 1.39 hannken
485 1.39 hannken #define PRIO_READ_BURST 48
486 1.39 hannken #define PRIO_WRITE_REQ 16
487 1.39 hannken
488 1.39 hannken struct bufq_prio {
489 1.39 hannken TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
490 1.39 hannken struct buf *bq_write_next; /* next request in bq_write */
491 1.41 hannken struct buf *bq_next; /* current request */
492 1.39 hannken int bq_read_burst; /* # of consecutive reads */
493 1.39 hannken };
494 1.39 hannken
495 1.39 hannken
496 1.52.2.1 skrll static __inline int buf_inorder(const struct buf *, const struct buf *, int);
497 1.52.2.1 skrll
498 1.39 hannken /*
499 1.39 hannken * Check if two buf's are in ascending order.
500 1.39 hannken */
501 1.39 hannken static __inline int
502 1.52.2.1 skrll buf_inorder(const struct buf *bp, const struct buf *bq, int sortby)
503 1.39 hannken {
504 1.39 hannken
505 1.39 hannken if (bp == NULL || bq == NULL)
506 1.43 enami return (bq == NULL);
507 1.39 hannken
508 1.52.2.1 skrll if (sortby == BUFQ_SORT_CYLINDER) {
509 1.52.2.1 skrll if (bp->b_cylinder != bq->b_cylinder)
510 1.52.2.1 skrll return bp->b_cylinder < bq->b_cylinder;
511 1.52.2.1 skrll else
512 1.52.2.1 skrll return bp->b_rawblkno < bq->b_rawblkno;
513 1.52.2.1 skrll } else
514 1.52.2.1 skrll return bp->b_rawblkno < bq->b_rawblkno;
515 1.39 hannken }
516 1.39 hannken
517 1.39 hannken
518 1.39 hannken /*
519 1.39 hannken * First-come first-served sort for disks.
520 1.39 hannken *
521 1.39 hannken * Requests are appended to the queue without any reordering.
522 1.39 hannken */
523 1.39 hannken static void
524 1.39 hannken bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
525 1.39 hannken {
526 1.39 hannken struct bufq_fcfs *fcfs = bufq->bq_private;
527 1.39 hannken
528 1.39 hannken TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
529 1.39 hannken }
530 1.39 hannken
531 1.39 hannken static struct buf *
532 1.39 hannken bufq_fcfs_get(struct bufq_state *bufq, int remove)
533 1.39 hannken {
534 1.39 hannken struct bufq_fcfs *fcfs = bufq->bq_private;
535 1.39 hannken struct buf *bp;
536 1.39 hannken
537 1.39 hannken bp = TAILQ_FIRST(&fcfs->bq_head);
538 1.39 hannken
539 1.39 hannken if (bp != NULL && remove)
540 1.39 hannken TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
541 1.39 hannken
542 1.43 enami return (bp);
543 1.39 hannken }
544 1.39 hannken
545 1.39 hannken
546 1.39 hannken /*
547 1.39 hannken * Seek sort for disks.
548 1.39 hannken *
549 1.39 hannken * There are actually two queues, sorted in ascendening order. The first
550 1.39 hannken * queue holds those requests which are positioned after the current block;
551 1.39 hannken * the second holds requests which came in after their position was passed.
552 1.39 hannken * Thus we implement a one-way scan, retracting after reaching the end of
553 1.39 hannken * the drive to the first request on the second queue, at which time it
554 1.39 hannken * becomes the first queue.
555 1.39 hannken *
556 1.39 hannken * A one-way scan is natural because of the way UNIX read-ahead blocks are
557 1.39 hannken * allocated.
558 1.39 hannken */
559 1.39 hannken static void
560 1.39 hannken bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
561 1.39 hannken {
562 1.39 hannken struct bufq_disksort *disksort = bufq->bq_private;
563 1.39 hannken struct buf *bq, *nbq;
564 1.39 hannken int sortby;
565 1.39 hannken
566 1.39 hannken sortby = bufq->bq_flags & BUFQ_SORT_MASK;
567 1.39 hannken
568 1.39 hannken bq = TAILQ_FIRST(&disksort->bq_head);
569 1.39 hannken
570 1.39 hannken /*
571 1.39 hannken * If the queue is empty it's easy; we just go on the end.
572 1.39 hannken */
573 1.39 hannken if (bq == NULL) {
574 1.39 hannken TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
575 1.39 hannken return;
576 1.39 hannken }
577 1.39 hannken
578 1.39 hannken /*
579 1.39 hannken * If we lie before the currently active request, then we
580 1.39 hannken * must locate the second request list and add ourselves to it.
581 1.39 hannken */
582 1.39 hannken if (buf_inorder(bp, bq, sortby)) {
583 1.39 hannken while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
584 1.39 hannken /*
585 1.39 hannken * Check for an ``inversion'' in the normally ascending
586 1.39 hannken * block numbers, indicating the start of the second
587 1.39 hannken * request list.
588 1.39 hannken */
589 1.39 hannken if (buf_inorder(nbq, bq, sortby)) {
590 1.39 hannken /*
591 1.39 hannken * Search the second request list for the first
592 1.39 hannken * request at a larger block number. We go
593 1.39 hannken * after that; if there is no such request, we
594 1.39 hannken * go at the end.
595 1.39 hannken */
596 1.39 hannken do {
597 1.39 hannken if (buf_inorder(bp, nbq, sortby))
598 1.39 hannken goto insert;
599 1.39 hannken bq = nbq;
600 1.43 enami } while ((nbq =
601 1.43 enami TAILQ_NEXT(bq, b_actq)) != NULL);
602 1.39 hannken goto insert; /* after last */
603 1.39 hannken }
604 1.39 hannken bq = nbq;
605 1.39 hannken }
606 1.39 hannken /*
607 1.39 hannken * No inversions... we will go after the last, and
608 1.39 hannken * be the first request in the second request list.
609 1.39 hannken */
610 1.39 hannken goto insert;
611 1.39 hannken }
612 1.39 hannken /*
613 1.39 hannken * Request is at/after the current request...
614 1.39 hannken * sort in the first request list.
615 1.39 hannken */
616 1.39 hannken while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
617 1.39 hannken /*
618 1.39 hannken * We want to go after the current request if there is an
619 1.39 hannken * inversion after it (i.e. it is the end of the first
620 1.39 hannken * request list), or if the next request is a larger cylinder
621 1.39 hannken * than our request.
622 1.39 hannken */
623 1.39 hannken if (buf_inorder(nbq, bq, sortby) ||
624 1.39 hannken buf_inorder(bp, nbq, sortby))
625 1.39 hannken goto insert;
626 1.39 hannken bq = nbq;
627 1.39 hannken }
628 1.39 hannken /*
629 1.39 hannken * Neither a second list nor a larger request... we go at the end of
630 1.39 hannken * the first list, which is the same as the end of the whole schebang.
631 1.39 hannken */
632 1.39 hannken insert: TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
633 1.39 hannken }
634 1.39 hannken
635 1.39 hannken static struct buf *
636 1.39 hannken bufq_disksort_get(struct bufq_state *bufq, int remove)
637 1.39 hannken {
638 1.39 hannken struct bufq_disksort *disksort = bufq->bq_private;
639 1.39 hannken struct buf *bp;
640 1.39 hannken
641 1.39 hannken bp = TAILQ_FIRST(&disksort->bq_head);
642 1.39 hannken
643 1.39 hannken if (bp != NULL && remove)
644 1.39 hannken TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
645 1.39 hannken
646 1.43 enami return (bp);
647 1.39 hannken }
648 1.39 hannken
649 1.39 hannken
650 1.39 hannken /*
651 1.39 hannken * Seek sort for disks.
652 1.39 hannken *
653 1.39 hannken * There are two queues. The first queue holds read requests; the second
654 1.39 hannken * holds write requests. The read queue is first-come first-served; the
655 1.39 hannken * write queue is sorted in ascendening block order.
656 1.39 hannken * The read queue is processed first. After PRIO_READ_BURST consecutive
657 1.39 hannken * read requests with non-empty write queue PRIO_WRITE_REQ requests from
658 1.39 hannken * the write queue will be processed.
659 1.39 hannken */
660 1.39 hannken static void
661 1.39 hannken bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
662 1.39 hannken {
663 1.39 hannken struct bufq_prio *prio = bufq->bq_private;
664 1.39 hannken struct buf *bq;
665 1.39 hannken int sortby;
666 1.39 hannken
667 1.39 hannken sortby = bufq->bq_flags & BUFQ_SORT_MASK;
668 1.39 hannken
669 1.39 hannken /*
670 1.39 hannken * If it's a read request append it to the list.
671 1.39 hannken */
672 1.39 hannken if ((bp->b_flags & B_READ) == B_READ) {
673 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
674 1.39 hannken return;
675 1.39 hannken }
676 1.39 hannken
677 1.39 hannken bq = TAILQ_FIRST(&prio->bq_write);
678 1.39 hannken
679 1.39 hannken /*
680 1.39 hannken * If the write list is empty, simply append it to the list.
681 1.39 hannken */
682 1.39 hannken if (bq == NULL) {
683 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
684 1.39 hannken prio->bq_write_next = bp;
685 1.39 hannken return;
686 1.39 hannken }
687 1.39 hannken
688 1.39 hannken /*
689 1.39 hannken * If we lie after the next request, insert after this request.
690 1.39 hannken */
691 1.39 hannken if (buf_inorder(prio->bq_write_next, bp, sortby))
692 1.39 hannken bq = prio->bq_write_next;
693 1.39 hannken
694 1.39 hannken /*
695 1.39 hannken * Search for the first request at a larger block number.
696 1.39 hannken * We go before this request if it exists.
697 1.39 hannken */
698 1.39 hannken while (bq != NULL && buf_inorder(bq, bp, sortby))
699 1.39 hannken bq = TAILQ_NEXT(bq, b_actq);
700 1.39 hannken
701 1.39 hannken if (bq != NULL)
702 1.39 hannken TAILQ_INSERT_BEFORE(bq, bp, b_actq);
703 1.39 hannken else
704 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
705 1.39 hannken }
706 1.39 hannken
707 1.39 hannken static struct buf *
708 1.39 hannken bufq_prio_get(struct bufq_state *bufq, int remove)
709 1.39 hannken {
710 1.39 hannken struct bufq_prio *prio = bufq->bq_private;
711 1.39 hannken struct buf *bp;
712 1.39 hannken
713 1.39 hannken /*
714 1.41 hannken * If no current request, get next from the lists.
715 1.39 hannken */
716 1.41 hannken if (prio->bq_next == NULL) {
717 1.39 hannken /*
718 1.41 hannken * If at least one list is empty, select the other.
719 1.39 hannken */
720 1.41 hannken if (TAILQ_FIRST(&prio->bq_read) == NULL) {
721 1.41 hannken prio->bq_next = prio->bq_write_next;
722 1.41 hannken prio->bq_read_burst = 0;
723 1.41 hannken } else if (prio->bq_write_next == NULL) {
724 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
725 1.39 hannken prio->bq_read_burst = 0;
726 1.41 hannken } else {
727 1.41 hannken /*
728 1.41 hannken * Both list have requests. Select the read list up
729 1.41 hannken * to PRIO_READ_BURST times, then select the write
730 1.41 hannken * list PRIO_WRITE_REQ times.
731 1.41 hannken */
732 1.41 hannken if (prio->bq_read_burst++ < PRIO_READ_BURST)
733 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
734 1.41 hannken else if (prio->bq_read_burst <
735 1.43 enami PRIO_READ_BURST + PRIO_WRITE_REQ)
736 1.41 hannken prio->bq_next = prio->bq_write_next;
737 1.41 hannken else {
738 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
739 1.41 hannken prio->bq_read_burst = 0;
740 1.41 hannken }
741 1.39 hannken }
742 1.39 hannken }
743 1.39 hannken
744 1.41 hannken bp = prio->bq_next;
745 1.41 hannken
746 1.44 enami if (bp != NULL && remove) {
747 1.44 enami if ((bp->b_flags & B_READ) == B_READ)
748 1.44 enami TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
749 1.39 hannken else {
750 1.39 hannken /*
751 1.44 enami * Advance the write pointer before removing
752 1.44 enami * bp since it is actually prio->bq_write_next.
753 1.39 hannken */
754 1.39 hannken prio->bq_write_next =
755 1.39 hannken TAILQ_NEXT(prio->bq_write_next, b_actq);
756 1.44 enami TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
757 1.39 hannken if (prio->bq_write_next == NULL)
758 1.39 hannken prio->bq_write_next =
759 1.39 hannken TAILQ_FIRST(&prio->bq_write);
760 1.39 hannken }
761 1.41 hannken
762 1.41 hannken prio->bq_next = NULL;
763 1.39 hannken }
764 1.39 hannken
765 1.43 enami return (bp);
766 1.39 hannken }
767 1.39 hannken
768 1.52.2.1 skrll
769 1.52.2.1 skrll /*
770 1.52.2.1 skrll * Cyclical scan (CSCAN)
771 1.52.2.1 skrll */
772 1.52.2.1 skrll TAILQ_HEAD(bqhead, buf);
773 1.52.2.1 skrll struct cscan_queue {
774 1.52.2.1 skrll struct bqhead cq_head[2]; /* actual lists of buffers */
775 1.52.2.1 skrll int cq_idx; /* current list index */
776 1.52.2.1 skrll int cq_lastcylinder; /* b_cylinder of the last request */
777 1.52.2.1 skrll daddr_t cq_lastrawblkno; /* b_rawblkno of the last request */
778 1.52.2.1 skrll };
779 1.52.2.1 skrll
780 1.52.2.1 skrll static int __inline cscan_empty(const struct cscan_queue *);
781 1.52.2.1 skrll static void cscan_put(struct cscan_queue *, struct buf *, int);
782 1.52.2.1 skrll static struct buf *cscan_get(struct cscan_queue *, int);
783 1.52.2.1 skrll static void cscan_init(struct cscan_queue *);
784 1.52.2.1 skrll
785 1.52.2.1 skrll static __inline int
786 1.52.2.1 skrll cscan_empty(const struct cscan_queue *q)
787 1.52.2.1 skrll {
788 1.52.2.1 skrll
789 1.52.2.1 skrll return TAILQ_EMPTY(&q->cq_head[0]) && TAILQ_EMPTY(&q->cq_head[1]);
790 1.52.2.1 skrll }
791 1.52.2.1 skrll
792 1.52.2.1 skrll static void
793 1.52.2.1 skrll cscan_put(struct cscan_queue *q, struct buf *bp, int sortby)
794 1.52.2.1 skrll {
795 1.52.2.1 skrll struct buf tmp;
796 1.52.2.1 skrll struct buf *it;
797 1.52.2.1 skrll struct bqhead *bqh;
798 1.52.2.1 skrll int idx;
799 1.52.2.1 skrll
800 1.52.2.1 skrll tmp.b_cylinder = q->cq_lastcylinder;
801 1.52.2.1 skrll tmp.b_rawblkno = q->cq_lastrawblkno;
802 1.52.2.1 skrll
803 1.52.2.1 skrll if (buf_inorder(bp, &tmp, sortby))
804 1.52.2.1 skrll idx = 1 - q->cq_idx;
805 1.52.2.1 skrll else
806 1.52.2.1 skrll idx = q->cq_idx;
807 1.52.2.1 skrll
808 1.52.2.1 skrll bqh = &q->cq_head[idx];
809 1.52.2.1 skrll
810 1.52.2.1 skrll TAILQ_FOREACH(it, bqh, b_actq)
811 1.52.2.1 skrll if (buf_inorder(bp, it, sortby))
812 1.52.2.1 skrll break;
813 1.52.2.1 skrll
814 1.52.2.1 skrll if (it != NULL)
815 1.52.2.1 skrll TAILQ_INSERT_BEFORE(it, bp, b_actq);
816 1.52.2.1 skrll else
817 1.52.2.1 skrll TAILQ_INSERT_TAIL(bqh, bp, b_actq);
818 1.52.2.1 skrll }
819 1.52.2.1 skrll
820 1.52.2.1 skrll static struct buf *
821 1.52.2.1 skrll cscan_get(struct cscan_queue *q, int remove)
822 1.52.2.1 skrll {
823 1.52.2.1 skrll int idx = q->cq_idx;
824 1.52.2.1 skrll struct bqhead *bqh;
825 1.52.2.1 skrll struct buf *bp;
826 1.52.2.1 skrll
827 1.52.2.1 skrll bqh = &q->cq_head[idx];
828 1.52.2.1 skrll bp = TAILQ_FIRST(bqh);
829 1.52.2.1 skrll
830 1.52.2.1 skrll if (bp == NULL) {
831 1.52.2.1 skrll /* switch queue */
832 1.52.2.1 skrll idx = 1 - idx;
833 1.52.2.1 skrll bqh = &q->cq_head[idx];
834 1.52.2.1 skrll bp = TAILQ_FIRST(bqh);
835 1.52.2.1 skrll }
836 1.52.2.1 skrll
837 1.52.2.1 skrll KDASSERT((bp != NULL && !cscan_empty(q)) ||
838 1.52.2.1 skrll (bp == NULL && cscan_empty(q)));
839 1.52.2.1 skrll
840 1.52.2.1 skrll if (bp != NULL && remove) {
841 1.52.2.1 skrll q->cq_idx = idx;
842 1.52.2.1 skrll TAILQ_REMOVE(bqh, bp, b_actq);
843 1.52.2.1 skrll
844 1.52.2.1 skrll q->cq_lastcylinder = bp->b_cylinder;
845 1.52.2.1 skrll q->cq_lastrawblkno =
846 1.52.2.1 skrll bp->b_rawblkno + (bp->b_bcount >> DEV_BSHIFT);
847 1.52.2.1 skrll }
848 1.52.2.1 skrll
849 1.52.2.1 skrll return (bp);
850 1.52.2.1 skrll }
851 1.52.2.1 skrll
852 1.52.2.1 skrll static void
853 1.52.2.1 skrll cscan_init(struct cscan_queue *q)
854 1.52.2.1 skrll {
855 1.52.2.1 skrll
856 1.52.2.1 skrll TAILQ_INIT(&q->cq_head[0]);
857 1.52.2.1 skrll TAILQ_INIT(&q->cq_head[1]);
858 1.52.2.1 skrll }
859 1.52.2.1 skrll
860 1.52.2.1 skrll
861 1.52.2.1 skrll /*
862 1.52.2.1 skrll * Per-prioritiy CSCAN.
863 1.52.2.1 skrll *
864 1.52.2.1 skrll * XXX probably we should have a way to raise
865 1.52.2.1 skrll * priority of the on-queue requests.
866 1.52.2.1 skrll */
867 1.52.2.1 skrll #define PRIOCSCAN_NQUEUE 3
868 1.52.2.1 skrll
869 1.52.2.1 skrll struct priocscan_queue {
870 1.52.2.1 skrll struct cscan_queue q_queue;
871 1.52.2.1 skrll int q_burst;
872 1.52.2.1 skrll };
873 1.52.2.1 skrll
874 1.52.2.1 skrll struct bufq_priocscan {
875 1.52.2.1 skrll struct priocscan_queue bq_queue[PRIOCSCAN_NQUEUE];
876 1.52.2.1 skrll
877 1.52.2.1 skrll #if 0
878 1.52.2.1 skrll /*
879 1.52.2.1 skrll * XXX using "global" head position can reduce positioning time
880 1.52.2.1 skrll * when switching between queues.
881 1.52.2.1 skrll * although it might affect against fairness.
882 1.52.2.1 skrll */
883 1.52.2.1 skrll daddr_t bq_lastrawblkno;
884 1.52.2.1 skrll int bq_lastcylinder;
885 1.52.2.1 skrll #endif
886 1.52.2.1 skrll };
887 1.52.2.1 skrll
888 1.52.2.1 skrll /*
889 1.52.2.1 skrll * how many requests to serve when having pending requests on other queues.
890 1.52.2.1 skrll *
891 1.52.2.1 skrll * XXX tune
892 1.52.2.1 skrll */
893 1.52.2.1 skrll const int priocscan_burst[] = {
894 1.52.2.1 skrll 64, 16, 4
895 1.52.2.1 skrll };
896 1.52.2.1 skrll
897 1.52.2.1 skrll static void bufq_priocscan_put(struct bufq_state *, struct buf *);
898 1.52.2.1 skrll static struct buf *bufq_priocscan_get(struct bufq_state *, int);
899 1.52.2.1 skrll static void bufq_priocscan_init(struct bufq_state *);
900 1.52.2.1 skrll static __inline struct cscan_queue *bufq_priocscan_selectqueue(
901 1.52.2.1 skrll struct bufq_priocscan *, const struct buf *);
902 1.52.2.1 skrll
903 1.52.2.1 skrll static __inline struct cscan_queue *
904 1.52.2.1 skrll bufq_priocscan_selectqueue(struct bufq_priocscan *q, const struct buf *bp)
905 1.52.2.1 skrll {
906 1.52.2.1 skrll static const int priocscan_priomap[] = {
907 1.52.2.1 skrll [BPRIO_TIMENONCRITICAL] = 2,
908 1.52.2.1 skrll [BPRIO_TIMELIMITED] = 1,
909 1.52.2.1 skrll [BPRIO_TIMECRITICAL] = 0
910 1.52.2.1 skrll };
911 1.52.2.1 skrll
912 1.52.2.1 skrll return &q->bq_queue[priocscan_priomap[BIO_GETPRIO(bp)]].q_queue;
913 1.52.2.1 skrll }
914 1.52.2.1 skrll
915 1.52.2.1 skrll static void
916 1.52.2.1 skrll bufq_priocscan_put(struct bufq_state *bufq, struct buf *bp)
917 1.52.2.1 skrll {
918 1.52.2.1 skrll struct bufq_priocscan *q = bufq->bq_private;
919 1.52.2.1 skrll struct cscan_queue *cq;
920 1.52.2.1 skrll const int sortby = bufq->bq_flags & BUFQ_SORT_MASK;
921 1.52.2.1 skrll
922 1.52.2.1 skrll cq = bufq_priocscan_selectqueue(q, bp);
923 1.52.2.1 skrll cscan_put(cq, bp, sortby);
924 1.52.2.1 skrll }
925 1.52.2.1 skrll
926 1.52.2.1 skrll static struct buf *
927 1.52.2.1 skrll bufq_priocscan_get(struct bufq_state *bufq, int remove)
928 1.52.2.1 skrll {
929 1.52.2.1 skrll struct bufq_priocscan *q = bufq->bq_private;
930 1.52.2.1 skrll struct priocscan_queue *pq, *npq;
931 1.52.2.1 skrll struct priocscan_queue *first; /* first non-empty queue */
932 1.52.2.1 skrll const struct priocscan_queue *epq;
933 1.52.2.1 skrll const struct cscan_queue *cq;
934 1.52.2.1 skrll struct buf *bp;
935 1.52.2.1 skrll boolean_t single; /* true if there's only one non-empty queue */
936 1.52.2.1 skrll
937 1.52.2.1 skrll pq = &q->bq_queue[0];
938 1.52.2.1 skrll epq = pq + PRIOCSCAN_NQUEUE;
939 1.52.2.1 skrll for (; pq < epq; pq++) {
940 1.52.2.1 skrll cq = &pq->q_queue;
941 1.52.2.1 skrll if (!cscan_empty(cq))
942 1.52.2.1 skrll break;
943 1.52.2.1 skrll }
944 1.52.2.1 skrll if (pq == epq) {
945 1.52.2.1 skrll /* there's no requests */
946 1.52.2.1 skrll return NULL;
947 1.52.2.1 skrll }
948 1.52.2.1 skrll
949 1.52.2.1 skrll first = pq;
950 1.52.2.1 skrll single = TRUE;
951 1.52.2.1 skrll for (npq = first + 1; npq < epq; npq++) {
952 1.52.2.1 skrll cq = &npq->q_queue;
953 1.52.2.1 skrll if (!cscan_empty(cq)) {
954 1.52.2.1 skrll single = FALSE;
955 1.52.2.1 skrll if (pq->q_burst > 0)
956 1.52.2.1 skrll break;
957 1.52.2.1 skrll pq = npq;
958 1.52.2.1 skrll }
959 1.52.2.1 skrll }
960 1.52.2.1 skrll if (single) {
961 1.52.2.1 skrll /*
962 1.52.2.1 skrll * there's only a non-empty queue. just serve it.
963 1.52.2.1 skrll */
964 1.52.2.1 skrll pq = first;
965 1.52.2.1 skrll } else if (pq->q_burst > 0) {
966 1.52.2.1 skrll /*
967 1.52.2.1 skrll * XXX account only by number of requests. is it good enough?
968 1.52.2.1 skrll */
969 1.52.2.1 skrll pq->q_burst--;
970 1.52.2.1 skrll } else {
971 1.52.2.1 skrll /*
972 1.52.2.1 skrll * no queue was selected due to burst counts
973 1.52.2.1 skrll */
974 1.52.2.1 skrll int i;
975 1.52.2.1 skrll #ifdef DEBUG
976 1.52.2.1 skrll for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
977 1.52.2.1 skrll pq = &q->bq_queue[i];
978 1.52.2.1 skrll cq = &pq->q_queue;
979 1.52.2.1 skrll if (!cscan_empty(cq) && pq->q_burst)
980 1.52.2.1 skrll panic("%s: inconsist", __func__);
981 1.52.2.1 skrll }
982 1.52.2.1 skrll #endif /* DEBUG */
983 1.52.2.1 skrll
984 1.52.2.1 skrll /*
985 1.52.2.1 skrll * reset burst counts
986 1.52.2.1 skrll */
987 1.52.2.1 skrll for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
988 1.52.2.1 skrll pq = &q->bq_queue[i];
989 1.52.2.1 skrll pq->q_burst = priocscan_burst[i];
990 1.52.2.1 skrll }
991 1.52.2.1 skrll
992 1.52.2.1 skrll /*
993 1.52.2.1 skrll * serve first non-empty queue.
994 1.52.2.1 skrll */
995 1.52.2.1 skrll pq = first;
996 1.52.2.1 skrll }
997 1.52.2.1 skrll
998 1.52.2.1 skrll KDASSERT(!cscan_empty(&pq->q_queue));
999 1.52.2.1 skrll bp = cscan_get(&pq->q_queue, remove);
1000 1.52.2.1 skrll KDASSERT(bp != NULL);
1001 1.52.2.1 skrll KDASSERT(&pq->q_queue == bufq_priocscan_selectqueue(q, bp));
1002 1.52.2.1 skrll
1003 1.52.2.1 skrll return bp;
1004 1.52.2.1 skrll }
1005 1.52.2.1 skrll
1006 1.52.2.1 skrll static void
1007 1.52.2.1 skrll bufq_priocscan_init(struct bufq_state *bufq)
1008 1.52.2.1 skrll {
1009 1.52.2.1 skrll struct bufq_priocscan *q;
1010 1.52.2.1 skrll int i;
1011 1.52.2.1 skrll
1012 1.52.2.1 skrll bufq->bq_get = bufq_priocscan_get;
1013 1.52.2.1 skrll bufq->bq_put = bufq_priocscan_put;
1014 1.52.2.1 skrll bufq->bq_private = malloc(sizeof(struct bufq_priocscan),
1015 1.52.2.1 skrll M_DEVBUF, M_ZERO);
1016 1.52.2.1 skrll
1017 1.52.2.1 skrll q = bufq->bq_private;
1018 1.52.2.1 skrll for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
1019 1.52.2.1 skrll struct cscan_queue *cq = &q->bq_queue[i].q_queue;
1020 1.52.2.1 skrll
1021 1.52.2.1 skrll cscan_init(cq);
1022 1.52.2.1 skrll }
1023 1.52.2.1 skrll }
1024 1.52.2.1 skrll
1025 1.52.2.1 skrll
1026 1.40 hannken /*
1027 1.40 hannken * Create a device buffer queue.
1028 1.40 hannken */
1029 1.39 hannken void
1030 1.40 hannken bufq_alloc(struct bufq_state *bufq, int flags)
1031 1.39 hannken {
1032 1.39 hannken struct bufq_fcfs *fcfs;
1033 1.39 hannken struct bufq_disksort *disksort;
1034 1.39 hannken struct bufq_prio *prio;
1035 1.39 hannken
1036 1.39 hannken bufq->bq_flags = flags;
1037 1.39 hannken
1038 1.39 hannken switch (flags & BUFQ_SORT_MASK) {
1039 1.39 hannken case BUFQ_SORT_RAWBLOCK:
1040 1.39 hannken case BUFQ_SORT_CYLINDER:
1041 1.39 hannken break;
1042 1.39 hannken case 0:
1043 1.39 hannken if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
1044 1.39 hannken break;
1045 1.39 hannken /* FALLTHROUGH */
1046 1.39 hannken default:
1047 1.40 hannken panic("bufq_alloc: sort out of range");
1048 1.39 hannken }
1049 1.39 hannken
1050 1.39 hannken switch (flags & BUFQ_METHOD_MASK) {
1051 1.39 hannken case BUFQ_FCFS:
1052 1.39 hannken bufq->bq_get = bufq_fcfs_get;
1053 1.39 hannken bufq->bq_put = bufq_fcfs_put;
1054 1.40 hannken MALLOC(bufq->bq_private, struct bufq_fcfs *,
1055 1.40 hannken sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
1056 1.39 hannken fcfs = (struct bufq_fcfs *)bufq->bq_private;
1057 1.39 hannken TAILQ_INIT(&fcfs->bq_head);
1058 1.39 hannken break;
1059 1.39 hannken case BUFQ_DISKSORT:
1060 1.39 hannken bufq->bq_get = bufq_disksort_get;
1061 1.39 hannken bufq->bq_put = bufq_disksort_put;
1062 1.40 hannken MALLOC(bufq->bq_private, struct bufq_disksort *,
1063 1.40 hannken sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
1064 1.39 hannken disksort = (struct bufq_disksort *)bufq->bq_private;
1065 1.39 hannken TAILQ_INIT(&disksort->bq_head);
1066 1.39 hannken break;
1067 1.39 hannken case BUFQ_READ_PRIO:
1068 1.39 hannken bufq->bq_get = bufq_prio_get;
1069 1.39 hannken bufq->bq_put = bufq_prio_put;
1070 1.40 hannken MALLOC(bufq->bq_private, struct bufq_prio *,
1071 1.40 hannken sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
1072 1.39 hannken prio = (struct bufq_prio *)bufq->bq_private;
1073 1.39 hannken TAILQ_INIT(&prio->bq_read);
1074 1.39 hannken TAILQ_INIT(&prio->bq_write);
1075 1.39 hannken break;
1076 1.52.2.1 skrll case BUFQ_PRIOCSCAN:
1077 1.52.2.1 skrll bufq_priocscan_init(bufq);
1078 1.52.2.1 skrll break;
1079 1.39 hannken default:
1080 1.40 hannken panic("bufq_alloc: method out of range");
1081 1.39 hannken }
1082 1.40 hannken }
1083 1.40 hannken
1084 1.40 hannken /*
1085 1.40 hannken * Destroy a device buffer queue.
1086 1.40 hannken */
1087 1.40 hannken void
1088 1.40 hannken bufq_free(struct bufq_state *bufq)
1089 1.40 hannken {
1090 1.43 enami
1091 1.40 hannken KASSERT(bufq->bq_private != NULL);
1092 1.40 hannken KASSERT(BUFQ_PEEK(bufq) == NULL);
1093 1.40 hannken
1094 1.40 hannken FREE(bufq->bq_private, M_DEVBUF);
1095 1.40 hannken bufq->bq_get = NULL;
1096 1.40 hannken bufq->bq_put = NULL;
1097 1.50 fvdl }
1098 1.50 fvdl
1099 1.50 fvdl /*
1100 1.50 fvdl * Bounds checking against the media size, used for the raw partition.
1101 1.50 fvdl * The sector size passed in should currently always be DEV_BSIZE,
1102 1.50 fvdl * and the media size the size of the device in DEV_BSIZE sectors.
1103 1.50 fvdl */
1104 1.50 fvdl int
1105 1.50 fvdl bounds_check_with_mediasize(struct buf *bp, int secsize, u_int64_t mediasize)
1106 1.50 fvdl {
1107 1.50 fvdl int sz;
1108 1.50 fvdl
1109 1.50 fvdl sz = howmany(bp->b_bcount, secsize);
1110 1.50 fvdl
1111 1.50 fvdl if (bp->b_blkno + sz > mediasize) {
1112 1.50 fvdl sz = mediasize - bp->b_blkno;
1113 1.50 fvdl if (sz == 0) {
1114 1.50 fvdl /* If exactly at end of disk, return EOF. */
1115 1.50 fvdl bp->b_resid = bp->b_bcount;
1116 1.50 fvdl goto done;
1117 1.50 fvdl }
1118 1.50 fvdl if (sz < 0) {
1119 1.50 fvdl /* If past end of disk, return EINVAL. */
1120 1.50 fvdl bp->b_error = EINVAL;
1121 1.50 fvdl goto bad;
1122 1.50 fvdl }
1123 1.50 fvdl /* Otherwise, truncate request. */
1124 1.50 fvdl bp->b_bcount = sz << DEV_BSHIFT;
1125 1.50 fvdl }
1126 1.50 fvdl
1127 1.50 fvdl return 1;
1128 1.50 fvdl
1129 1.50 fvdl bad:
1130 1.50 fvdl bp->b_flags |= B_ERROR;
1131 1.50 fvdl done:
1132 1.50 fvdl return 0;
1133 1.11 mycroft }
1134