subr_disk.c revision 1.61 1 1.61 thorpej /* $NetBSD: subr_disk.c,v 1.61 2004/09/25 03:30:44 thorpej Exp $ */
2 1.22 thorpej
3 1.22 thorpej /*-
4 1.26 thorpej * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 1.22 thorpej * All rights reserved.
6 1.22 thorpej *
7 1.22 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.22 thorpej * NASA Ames Research Center.
10 1.22 thorpej *
11 1.22 thorpej * Redistribution and use in source and binary forms, with or without
12 1.22 thorpej * modification, are permitted provided that the following conditions
13 1.22 thorpej * are met:
14 1.22 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.22 thorpej * notice, this list of conditions and the following disclaimer.
16 1.22 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.22 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.22 thorpej * documentation and/or other materials provided with the distribution.
19 1.22 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.22 thorpej * must display the following acknowledgement:
21 1.22 thorpej * This product includes software developed by the NetBSD
22 1.22 thorpej * Foundation, Inc. and its contributors.
23 1.22 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.22 thorpej * contributors may be used to endorse or promote products derived
25 1.22 thorpej * from this software without specific prior written permission.
26 1.22 thorpej *
27 1.22 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.22 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.22 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.22 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.22 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.22 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.22 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.22 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.22 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.22 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.22 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.22 thorpej */
39 1.12 cgd
40 1.11 mycroft /*
41 1.11 mycroft * Copyright (c) 1982, 1986, 1988, 1993
42 1.11 mycroft * The Regents of the University of California. All rights reserved.
43 1.11 mycroft * (c) UNIX System Laboratories, Inc.
44 1.11 mycroft * All or some portions of this file are derived from material licensed
45 1.11 mycroft * to the University of California by American Telephone and Telegraph
46 1.11 mycroft * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.11 mycroft * the permission of UNIX System Laboratories, Inc.
48 1.11 mycroft *
49 1.11 mycroft * Redistribution and use in source and binary forms, with or without
50 1.11 mycroft * modification, are permitted provided that the following conditions
51 1.11 mycroft * are met:
52 1.11 mycroft * 1. Redistributions of source code must retain the above copyright
53 1.11 mycroft * notice, this list of conditions and the following disclaimer.
54 1.11 mycroft * 2. Redistributions in binary form must reproduce the above copyright
55 1.11 mycroft * notice, this list of conditions and the following disclaimer in the
56 1.11 mycroft * documentation and/or other materials provided with the distribution.
57 1.53 agc * 3. Neither the name of the University nor the names of its contributors
58 1.11 mycroft * may be used to endorse or promote products derived from this software
59 1.11 mycroft * without specific prior written permission.
60 1.11 mycroft *
61 1.11 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.11 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.11 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.11 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.11 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.11 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.11 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.11 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.11 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.11 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.11 mycroft * SUCH DAMAGE.
72 1.11 mycroft *
73 1.12 cgd * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
74 1.11 mycroft */
75 1.31 lukem
76 1.31 lukem #include <sys/cdefs.h>
77 1.61 thorpej __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.61 2004/09/25 03:30:44 thorpej Exp $");
78 1.48 mrg
79 1.48 mrg #include "opt_compat_netbsd.h"
80 1.59 yamt #include "opt_bufq.h"
81 1.11 mycroft
82 1.11 mycroft #include <sys/param.h>
83 1.15 thorpej #include <sys/kernel.h>
84 1.15 thorpej #include <sys/malloc.h>
85 1.11 mycroft #include <sys/buf.h>
86 1.15 thorpej #include <sys/syslog.h>
87 1.11 mycroft #include <sys/disklabel.h>
88 1.15 thorpej #include <sys/disk.h>
89 1.33 simonb #include <sys/sysctl.h>
90 1.47 mrg #include <lib/libkern/libkern.h>
91 1.14 thorpej
92 1.14 thorpej /*
93 1.15 thorpej * A global list of all disks attached to the system. May grow or
94 1.15 thorpej * shrink over time.
95 1.15 thorpej */
96 1.15 thorpej struct disklist_head disklist; /* TAILQ_HEAD */
97 1.15 thorpej int disk_count; /* number of drives in global disklist */
98 1.33 simonb struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
99 1.39 hannken
100 1.59 yamt #ifdef NEW_BUFQ_STRATEGY
101 1.59 yamt int bufq_disk_default_strat = BUFQ_READ_PRIO;
102 1.59 yamt #else /* NEW_BUFQ_STRATEGY */
103 1.59 yamt int bufq_disk_default_strat = BUFQ_DISKSORT;
104 1.59 yamt #endif /* NEW_BUFQ_STRATEGY */
105 1.59 yamt
106 1.39 hannken /*
107 1.11 mycroft * Compute checksum for disk label.
108 1.11 mycroft */
109 1.11 mycroft u_int
110 1.30 simonb dkcksum(struct disklabel *lp)
111 1.11 mycroft {
112 1.29 augustss u_short *start, *end;
113 1.29 augustss u_short sum = 0;
114 1.11 mycroft
115 1.11 mycroft start = (u_short *)lp;
116 1.11 mycroft end = (u_short *)&lp->d_partitions[lp->d_npartitions];
117 1.11 mycroft while (start < end)
118 1.11 mycroft sum ^= *start++;
119 1.11 mycroft return (sum);
120 1.11 mycroft }
121 1.11 mycroft
122 1.11 mycroft /*
123 1.11 mycroft * Disk error is the preface to plaintive error messages
124 1.11 mycroft * about failing disk transfers. It prints messages of the form
125 1.11 mycroft
126 1.11 mycroft hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
127 1.11 mycroft
128 1.11 mycroft * if the offset of the error in the transfer and a disk label
129 1.11 mycroft * are both available. blkdone should be -1 if the position of the error
130 1.11 mycroft * is unknown; the disklabel pointer may be null from drivers that have not
131 1.20 christos * been converted to use them. The message is printed with printf
132 1.11 mycroft * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
133 1.20 christos * The message should be completed (with at least a newline) with printf
134 1.11 mycroft * or addlog, respectively. There is no trailing space.
135 1.11 mycroft */
136 1.51 dsl #ifndef PRIdaddr
137 1.51 dsl #define PRIdaddr PRId64
138 1.51 dsl #endif
139 1.11 mycroft void
140 1.38 yamt diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
141 1.38 yamt int blkdone, const struct disklabel *lp)
142 1.11 mycroft {
143 1.25 drochner int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
144 1.30 simonb void (*pr)(const char *, ...);
145 1.11 mycroft char partname = 'a' + part;
146 1.51 dsl daddr_t sn;
147 1.51 dsl
148 1.52 dsl if (/*CONSTCOND*/0)
149 1.51 dsl /* Compiler will error this is the format is wrong... */
150 1.51 dsl printf("%" PRIdaddr, bp->b_blkno);
151 1.11 mycroft
152 1.11 mycroft if (pri != LOG_PRINTF) {
153 1.17 christos static const char fmt[] = "";
154 1.17 christos log(pri, fmt);
155 1.11 mycroft pr = addlog;
156 1.11 mycroft } else
157 1.20 christos pr = printf;
158 1.11 mycroft (*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
159 1.11 mycroft bp->b_flags & B_READ ? "read" : "writ");
160 1.11 mycroft sn = bp->b_blkno;
161 1.11 mycroft if (bp->b_bcount <= DEV_BSIZE)
162 1.51 dsl (*pr)("%" PRIdaddr, sn);
163 1.11 mycroft else {
164 1.11 mycroft if (blkdone >= 0) {
165 1.11 mycroft sn += blkdone;
166 1.51 dsl (*pr)("%" PRIdaddr " of ", sn);
167 1.11 mycroft }
168 1.51 dsl (*pr)("%" PRIdaddr "-%" PRIdaddr "", bp->b_blkno,
169 1.11 mycroft bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
170 1.11 mycroft }
171 1.11 mycroft if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
172 1.11 mycroft sn += lp->d_partitions[part].p_offset;
173 1.51 dsl (*pr)(" (%s%d bn %" PRIdaddr "; cn %" PRIdaddr "",
174 1.51 dsl dname, unit, sn, sn / lp->d_secpercyl);
175 1.11 mycroft sn %= lp->d_secpercyl;
176 1.51 dsl (*pr)(" tn %" PRIdaddr " sn %" PRIdaddr ")",
177 1.51 dsl sn / lp->d_nsectors, sn % lp->d_nsectors);
178 1.11 mycroft }
179 1.15 thorpej }
180 1.15 thorpej
181 1.15 thorpej /*
182 1.15 thorpej * Initialize the disklist. Called by main() before autoconfiguration.
183 1.15 thorpej */
184 1.15 thorpej void
185 1.30 simonb disk_init(void)
186 1.15 thorpej {
187 1.15 thorpej
188 1.15 thorpej TAILQ_INIT(&disklist);
189 1.15 thorpej disk_count = 0;
190 1.15 thorpej }
191 1.15 thorpej
192 1.15 thorpej /*
193 1.15 thorpej * Searches the disklist for the disk corresponding to the
194 1.15 thorpej * name provided.
195 1.15 thorpej */
196 1.15 thorpej struct disk *
197 1.30 simonb disk_find(char *name)
198 1.15 thorpej {
199 1.15 thorpej struct disk *diskp;
200 1.15 thorpej
201 1.15 thorpej if ((name == NULL) || (disk_count <= 0))
202 1.15 thorpej return (NULL);
203 1.15 thorpej
204 1.33 simonb simple_lock(&disklist_slock);
205 1.33 simonb for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
206 1.33 simonb diskp = TAILQ_NEXT(diskp, dk_link))
207 1.33 simonb if (strcmp(diskp->dk_name, name) == 0) {
208 1.33 simonb simple_unlock(&disklist_slock);
209 1.15 thorpej return (diskp);
210 1.33 simonb }
211 1.33 simonb simple_unlock(&disklist_slock);
212 1.15 thorpej
213 1.15 thorpej return (NULL);
214 1.15 thorpej }
215 1.15 thorpej
216 1.15 thorpej /*
217 1.15 thorpej * Attach a disk.
218 1.15 thorpej */
219 1.15 thorpej void
220 1.30 simonb disk_attach(struct disk *diskp)
221 1.15 thorpej {
222 1.15 thorpej int s;
223 1.15 thorpej
224 1.15 thorpej /*
225 1.15 thorpej * Allocate and initialize the disklabel structures. Note that
226 1.15 thorpej * it's not safe to sleep here, since we're probably going to be
227 1.15 thorpej * called during autoconfiguration.
228 1.15 thorpej */
229 1.15 thorpej diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
230 1.15 thorpej diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
231 1.15 thorpej M_NOWAIT);
232 1.15 thorpej if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
233 1.15 thorpej panic("disk_attach: can't allocate storage for disklabel");
234 1.15 thorpej
235 1.24 perry memset(diskp->dk_label, 0, sizeof(struct disklabel));
236 1.24 perry memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
237 1.15 thorpej
238 1.15 thorpej /*
239 1.61 thorpej * Initialize the wedge-related locks and other fields.
240 1.61 thorpej */
241 1.61 thorpej lockinit(&diskp->dk_rawlock, PRIBIO, "dkrawlk", 0, 0);
242 1.61 thorpej lockinit(&diskp->dk_openlock, PRIBIO, "dkoplk", 0, 0);
243 1.61 thorpej LIST_INIT(&diskp->dk_wedges);
244 1.61 thorpej diskp->dk_nwedges = 0;
245 1.61 thorpej
246 1.61 thorpej /*
247 1.15 thorpej * Set the attached timestamp.
248 1.15 thorpej */
249 1.15 thorpej s = splclock();
250 1.15 thorpej diskp->dk_attachtime = mono_time;
251 1.15 thorpej splx(s);
252 1.15 thorpej
253 1.15 thorpej /*
254 1.15 thorpej * Link into the disklist.
255 1.15 thorpej */
256 1.33 simonb simple_lock(&disklist_slock);
257 1.15 thorpej TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
258 1.33 simonb simple_unlock(&disklist_slock);
259 1.15 thorpej ++disk_count;
260 1.15 thorpej }
261 1.15 thorpej
262 1.15 thorpej /*
263 1.16 christos * Detach a disk.
264 1.15 thorpej */
265 1.15 thorpej void
266 1.30 simonb disk_detach(struct disk *diskp)
267 1.15 thorpej {
268 1.15 thorpej
269 1.61 thorpej (void) lockmgr(&diskp->dk_openlock, LK_DRAIN, NULL);
270 1.61 thorpej
271 1.15 thorpej /*
272 1.23 thorpej * Remove from the disklist.
273 1.23 thorpej */
274 1.23 thorpej if (--disk_count < 0)
275 1.23 thorpej panic("disk_detach: disk_count < 0");
276 1.33 simonb simple_lock(&disklist_slock);
277 1.23 thorpej TAILQ_REMOVE(&disklist, diskp, dk_link);
278 1.33 simonb simple_unlock(&disklist_slock);
279 1.23 thorpej
280 1.23 thorpej /*
281 1.15 thorpej * Free the space used by the disklabel structures.
282 1.15 thorpej */
283 1.15 thorpej free(diskp->dk_label, M_DEVBUF);
284 1.15 thorpej free(diskp->dk_cpulabel, M_DEVBUF);
285 1.15 thorpej }
286 1.15 thorpej
287 1.15 thorpej /*
288 1.15 thorpej * Increment a disk's busy counter. If the counter is going from
289 1.15 thorpej * 0 to 1, set the timestamp.
290 1.15 thorpej */
291 1.15 thorpej void
292 1.30 simonb disk_busy(struct disk *diskp)
293 1.15 thorpej {
294 1.15 thorpej int s;
295 1.15 thorpej
296 1.15 thorpej /*
297 1.15 thorpej * XXX We'd like to use something as accurate as microtime(),
298 1.15 thorpej * but that doesn't depend on the system TOD clock.
299 1.15 thorpej */
300 1.15 thorpej if (diskp->dk_busy++ == 0) {
301 1.15 thorpej s = splclock();
302 1.15 thorpej diskp->dk_timestamp = mono_time;
303 1.15 thorpej splx(s);
304 1.15 thorpej }
305 1.15 thorpej }
306 1.15 thorpej
307 1.15 thorpej /*
308 1.15 thorpej * Decrement a disk's busy counter, increment the byte count, total busy
309 1.15 thorpej * time, and reset the timestamp.
310 1.15 thorpej */
311 1.15 thorpej void
312 1.45 mrg disk_unbusy(struct disk *diskp, long bcount, int read)
313 1.15 thorpej {
314 1.15 thorpej int s;
315 1.15 thorpej struct timeval dv_time, diff_time;
316 1.15 thorpej
317 1.23 thorpej if (diskp->dk_busy-- == 0) {
318 1.23 thorpej printf("%s: dk_busy < 0\n", diskp->dk_name);
319 1.23 thorpej panic("disk_unbusy");
320 1.23 thorpej }
321 1.15 thorpej
322 1.15 thorpej s = splclock();
323 1.15 thorpej dv_time = mono_time;
324 1.15 thorpej splx(s);
325 1.15 thorpej
326 1.15 thorpej timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
327 1.15 thorpej timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
328 1.15 thorpej
329 1.15 thorpej diskp->dk_timestamp = dv_time;
330 1.15 thorpej if (bcount > 0) {
331 1.45 mrg if (read) {
332 1.45 mrg diskp->dk_rbytes += bcount;
333 1.45 mrg diskp->dk_rxfer++;
334 1.45 mrg } else {
335 1.45 mrg diskp->dk_wbytes += bcount;
336 1.45 mrg diskp->dk_wxfer++;
337 1.45 mrg }
338 1.15 thorpej }
339 1.15 thorpej }
340 1.15 thorpej
341 1.15 thorpej /*
342 1.15 thorpej * Reset the metrics counters on the given disk. Note that we cannot
343 1.15 thorpej * reset the busy counter, as it may case a panic in disk_unbusy().
344 1.15 thorpej * We also must avoid playing with the timestamp information, as it
345 1.15 thorpej * may skew any pending transfer results.
346 1.15 thorpej */
347 1.15 thorpej void
348 1.30 simonb disk_resetstat(struct disk *diskp)
349 1.15 thorpej {
350 1.15 thorpej int s = splbio(), t;
351 1.15 thorpej
352 1.45 mrg diskp->dk_rxfer = 0;
353 1.45 mrg diskp->dk_rbytes = 0;
354 1.45 mrg diskp->dk_wxfer = 0;
355 1.45 mrg diskp->dk_wbytes = 0;
356 1.15 thorpej
357 1.15 thorpej t = splclock();
358 1.15 thorpej diskp->dk_attachtime = mono_time;
359 1.15 thorpej splx(t);
360 1.15 thorpej
361 1.15 thorpej timerclear(&diskp->dk_time);
362 1.15 thorpej
363 1.15 thorpej splx(s);
364 1.33 simonb }
365 1.33 simonb
366 1.33 simonb int
367 1.54 atatat sysctl_hw_disknames(SYSCTLFN_ARGS)
368 1.33 simonb {
369 1.33 simonb char buf[DK_DISKNAMELEN + 1];
370 1.54 atatat char *where = oldp;
371 1.33 simonb struct disk *diskp;
372 1.33 simonb size_t needed, left, slen;
373 1.33 simonb int error, first;
374 1.33 simonb
375 1.54 atatat if (newp != NULL)
376 1.54 atatat return (EPERM);
377 1.54 atatat if (namelen != 0)
378 1.54 atatat return (EINVAL);
379 1.54 atatat
380 1.33 simonb first = 1;
381 1.33 simonb error = 0;
382 1.33 simonb needed = 0;
383 1.54 atatat left = *oldlenp;
384 1.35 simonb
385 1.33 simonb simple_lock(&disklist_slock);
386 1.33 simonb for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
387 1.33 simonb diskp = TAILQ_NEXT(diskp, dk_link)) {
388 1.33 simonb if (where == NULL)
389 1.33 simonb needed += strlen(diskp->dk_name) + 1;
390 1.33 simonb else {
391 1.33 simonb memset(buf, 0, sizeof(buf));
392 1.33 simonb if (first) {
393 1.33 simonb strncpy(buf, diskp->dk_name, sizeof(buf));
394 1.33 simonb first = 0;
395 1.33 simonb } else {
396 1.33 simonb buf[0] = ' ';
397 1.36 enami strncpy(buf + 1, diskp->dk_name,
398 1.37 enami sizeof(buf) - 1);
399 1.33 simonb }
400 1.33 simonb buf[DK_DISKNAMELEN] = '\0';
401 1.33 simonb slen = strlen(buf);
402 1.33 simonb if (left < slen + 1)
403 1.33 simonb break;
404 1.33 simonb /* +1 to copy out the trailing NUL byte */
405 1.33 simonb error = copyout(buf, where, slen + 1);
406 1.33 simonb if (error)
407 1.33 simonb break;
408 1.33 simonb where += slen;
409 1.33 simonb needed += slen;
410 1.33 simonb left -= slen;
411 1.33 simonb }
412 1.33 simonb }
413 1.33 simonb simple_unlock(&disklist_slock);
414 1.54 atatat *oldlenp = needed;
415 1.33 simonb return (error);
416 1.33 simonb }
417 1.33 simonb
418 1.33 simonb int
419 1.54 atatat sysctl_hw_diskstats(SYSCTLFN_ARGS)
420 1.33 simonb {
421 1.33 simonb struct disk_sysctl sdisk;
422 1.33 simonb struct disk *diskp;
423 1.54 atatat char *where = oldp;
424 1.33 simonb size_t tocopy, left;
425 1.33 simonb int error;
426 1.33 simonb
427 1.54 atatat if (newp != NULL)
428 1.54 atatat return (EPERM);
429 1.54 atatat
430 1.48 mrg /*
431 1.48 mrg * The original hw.diskstats call was broken and did not require
432 1.48 mrg * the userland to pass in it's size of struct disk_sysctl. This
433 1.48 mrg * was fixed after NetBSD 1.6 was released, and any applications
434 1.48 mrg * that do not pass in the size are given an error only, unless
435 1.48 mrg * we care about 1.6 compatibility.
436 1.48 mrg */
437 1.33 simonb if (namelen == 0)
438 1.47 mrg #ifdef COMPAT_16
439 1.49 enami tocopy = offsetof(struct disk_sysctl, dk_rxfer);
440 1.47 mrg #else
441 1.47 mrg return (EINVAL);
442 1.47 mrg #endif
443 1.33 simonb else
444 1.33 simonb tocopy = name[0];
445 1.49 enami
446 1.49 enami if (where == NULL) {
447 1.54 atatat *oldlenp = disk_count * tocopy;
448 1.49 enami return (0);
449 1.49 enami }
450 1.33 simonb
451 1.33 simonb error = 0;
452 1.54 atatat left = *oldlenp;
453 1.33 simonb memset(&sdisk, 0, sizeof(sdisk));
454 1.54 atatat *oldlenp = 0;
455 1.33 simonb
456 1.33 simonb simple_lock(&disklist_slock);
457 1.34 simonb TAILQ_FOREACH(diskp, &disklist, dk_link) {
458 1.46 simonb if (left < tocopy)
459 1.33 simonb break;
460 1.36 enami strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
461 1.45 mrg sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
462 1.45 mrg sdisk.dk_rxfer = diskp->dk_rxfer;
463 1.45 mrg sdisk.dk_wxfer = diskp->dk_wxfer;
464 1.33 simonb sdisk.dk_seek = diskp->dk_seek;
465 1.45 mrg sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
466 1.45 mrg sdisk.dk_rbytes = diskp->dk_rbytes;
467 1.45 mrg sdisk.dk_wbytes = diskp->dk_wbytes;
468 1.33 simonb sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
469 1.33 simonb sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
470 1.33 simonb sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
471 1.33 simonb sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
472 1.33 simonb sdisk.dk_time_sec = diskp->dk_time.tv_sec;
473 1.33 simonb sdisk.dk_time_usec = diskp->dk_time.tv_usec;
474 1.33 simonb sdisk.dk_busy = diskp->dk_busy;
475 1.35 simonb
476 1.33 simonb error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
477 1.33 simonb if (error)
478 1.33 simonb break;
479 1.33 simonb where += tocopy;
480 1.54 atatat *oldlenp += tocopy;
481 1.33 simonb left -= tocopy;
482 1.33 simonb }
483 1.33 simonb simple_unlock(&disklist_slock);
484 1.33 simonb return (error);
485 1.39 hannken }
486 1.39 hannken
487 1.39 hannken struct bufq_fcfs {
488 1.39 hannken TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
489 1.39 hannken };
490 1.39 hannken
491 1.39 hannken struct bufq_disksort {
492 1.39 hannken TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
493 1.39 hannken };
494 1.39 hannken
495 1.39 hannken #define PRIO_READ_BURST 48
496 1.39 hannken #define PRIO_WRITE_REQ 16
497 1.39 hannken
498 1.39 hannken struct bufq_prio {
499 1.39 hannken TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
500 1.39 hannken struct buf *bq_write_next; /* next request in bq_write */
501 1.41 hannken struct buf *bq_next; /* current request */
502 1.39 hannken int bq_read_burst; /* # of consecutive reads */
503 1.39 hannken };
504 1.39 hannken
505 1.39 hannken
506 1.60 yamt static __inline int buf_inorder(const struct buf *, const struct buf *, int);
507 1.60 yamt
508 1.39 hannken /*
509 1.39 hannken * Check if two buf's are in ascending order.
510 1.39 hannken */
511 1.39 hannken static __inline int
512 1.60 yamt buf_inorder(const struct buf *bp, const struct buf *bq, int sortby)
513 1.39 hannken {
514 1.39 hannken
515 1.39 hannken if (bp == NULL || bq == NULL)
516 1.43 enami return (bq == NULL);
517 1.39 hannken
518 1.57 yamt if (sortby == BUFQ_SORT_CYLINDER) {
519 1.57 yamt if (bp->b_cylinder != bq->b_cylinder)
520 1.57 yamt return bp->b_cylinder < bq->b_cylinder;
521 1.57 yamt else
522 1.57 yamt return bp->b_rawblkno < bq->b_rawblkno;
523 1.57 yamt } else
524 1.57 yamt return bp->b_rawblkno < bq->b_rawblkno;
525 1.39 hannken }
526 1.39 hannken
527 1.39 hannken
528 1.39 hannken /*
529 1.39 hannken * First-come first-served sort for disks.
530 1.39 hannken *
531 1.39 hannken * Requests are appended to the queue without any reordering.
532 1.39 hannken */
533 1.39 hannken static void
534 1.39 hannken bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
535 1.39 hannken {
536 1.39 hannken struct bufq_fcfs *fcfs = bufq->bq_private;
537 1.39 hannken
538 1.39 hannken TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
539 1.39 hannken }
540 1.39 hannken
541 1.39 hannken static struct buf *
542 1.39 hannken bufq_fcfs_get(struct bufq_state *bufq, int remove)
543 1.39 hannken {
544 1.39 hannken struct bufq_fcfs *fcfs = bufq->bq_private;
545 1.39 hannken struct buf *bp;
546 1.39 hannken
547 1.39 hannken bp = TAILQ_FIRST(&fcfs->bq_head);
548 1.39 hannken
549 1.39 hannken if (bp != NULL && remove)
550 1.39 hannken TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
551 1.39 hannken
552 1.43 enami return (bp);
553 1.39 hannken }
554 1.39 hannken
555 1.39 hannken
556 1.39 hannken /*
557 1.39 hannken * Seek sort for disks.
558 1.39 hannken *
559 1.39 hannken * There are actually two queues, sorted in ascendening order. The first
560 1.39 hannken * queue holds those requests which are positioned after the current block;
561 1.39 hannken * the second holds requests which came in after their position was passed.
562 1.39 hannken * Thus we implement a one-way scan, retracting after reaching the end of
563 1.39 hannken * the drive to the first request on the second queue, at which time it
564 1.39 hannken * becomes the first queue.
565 1.39 hannken *
566 1.39 hannken * A one-way scan is natural because of the way UNIX read-ahead blocks are
567 1.39 hannken * allocated.
568 1.39 hannken */
569 1.39 hannken static void
570 1.39 hannken bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
571 1.39 hannken {
572 1.39 hannken struct bufq_disksort *disksort = bufq->bq_private;
573 1.39 hannken struct buf *bq, *nbq;
574 1.39 hannken int sortby;
575 1.39 hannken
576 1.39 hannken sortby = bufq->bq_flags & BUFQ_SORT_MASK;
577 1.39 hannken
578 1.39 hannken bq = TAILQ_FIRST(&disksort->bq_head);
579 1.39 hannken
580 1.39 hannken /*
581 1.39 hannken * If the queue is empty it's easy; we just go on the end.
582 1.39 hannken */
583 1.39 hannken if (bq == NULL) {
584 1.39 hannken TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
585 1.39 hannken return;
586 1.39 hannken }
587 1.39 hannken
588 1.39 hannken /*
589 1.39 hannken * If we lie before the currently active request, then we
590 1.39 hannken * must locate the second request list and add ourselves to it.
591 1.39 hannken */
592 1.39 hannken if (buf_inorder(bp, bq, sortby)) {
593 1.39 hannken while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
594 1.39 hannken /*
595 1.39 hannken * Check for an ``inversion'' in the normally ascending
596 1.39 hannken * block numbers, indicating the start of the second
597 1.39 hannken * request list.
598 1.39 hannken */
599 1.39 hannken if (buf_inorder(nbq, bq, sortby)) {
600 1.39 hannken /*
601 1.39 hannken * Search the second request list for the first
602 1.39 hannken * request at a larger block number. We go
603 1.39 hannken * after that; if there is no such request, we
604 1.39 hannken * go at the end.
605 1.39 hannken */
606 1.39 hannken do {
607 1.39 hannken if (buf_inorder(bp, nbq, sortby))
608 1.39 hannken goto insert;
609 1.39 hannken bq = nbq;
610 1.43 enami } while ((nbq =
611 1.43 enami TAILQ_NEXT(bq, b_actq)) != NULL);
612 1.39 hannken goto insert; /* after last */
613 1.39 hannken }
614 1.39 hannken bq = nbq;
615 1.39 hannken }
616 1.39 hannken /*
617 1.39 hannken * No inversions... we will go after the last, and
618 1.39 hannken * be the first request in the second request list.
619 1.39 hannken */
620 1.39 hannken goto insert;
621 1.39 hannken }
622 1.39 hannken /*
623 1.39 hannken * Request is at/after the current request...
624 1.39 hannken * sort in the first request list.
625 1.39 hannken */
626 1.39 hannken while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
627 1.39 hannken /*
628 1.39 hannken * We want to go after the current request if there is an
629 1.39 hannken * inversion after it (i.e. it is the end of the first
630 1.39 hannken * request list), or if the next request is a larger cylinder
631 1.39 hannken * than our request.
632 1.39 hannken */
633 1.39 hannken if (buf_inorder(nbq, bq, sortby) ||
634 1.39 hannken buf_inorder(bp, nbq, sortby))
635 1.39 hannken goto insert;
636 1.39 hannken bq = nbq;
637 1.39 hannken }
638 1.39 hannken /*
639 1.39 hannken * Neither a second list nor a larger request... we go at the end of
640 1.39 hannken * the first list, which is the same as the end of the whole schebang.
641 1.39 hannken */
642 1.39 hannken insert: TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
643 1.39 hannken }
644 1.39 hannken
645 1.39 hannken static struct buf *
646 1.39 hannken bufq_disksort_get(struct bufq_state *bufq, int remove)
647 1.39 hannken {
648 1.39 hannken struct bufq_disksort *disksort = bufq->bq_private;
649 1.39 hannken struct buf *bp;
650 1.39 hannken
651 1.39 hannken bp = TAILQ_FIRST(&disksort->bq_head);
652 1.39 hannken
653 1.39 hannken if (bp != NULL && remove)
654 1.39 hannken TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
655 1.39 hannken
656 1.43 enami return (bp);
657 1.39 hannken }
658 1.39 hannken
659 1.39 hannken
660 1.39 hannken /*
661 1.39 hannken * Seek sort for disks.
662 1.39 hannken *
663 1.39 hannken * There are two queues. The first queue holds read requests; the second
664 1.39 hannken * holds write requests. The read queue is first-come first-served; the
665 1.39 hannken * write queue is sorted in ascendening block order.
666 1.39 hannken * The read queue is processed first. After PRIO_READ_BURST consecutive
667 1.39 hannken * read requests with non-empty write queue PRIO_WRITE_REQ requests from
668 1.39 hannken * the write queue will be processed.
669 1.39 hannken */
670 1.39 hannken static void
671 1.39 hannken bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
672 1.39 hannken {
673 1.39 hannken struct bufq_prio *prio = bufq->bq_private;
674 1.39 hannken struct buf *bq;
675 1.39 hannken int sortby;
676 1.39 hannken
677 1.39 hannken sortby = bufq->bq_flags & BUFQ_SORT_MASK;
678 1.39 hannken
679 1.39 hannken /*
680 1.39 hannken * If it's a read request append it to the list.
681 1.39 hannken */
682 1.39 hannken if ((bp->b_flags & B_READ) == B_READ) {
683 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
684 1.39 hannken return;
685 1.39 hannken }
686 1.39 hannken
687 1.39 hannken bq = TAILQ_FIRST(&prio->bq_write);
688 1.39 hannken
689 1.39 hannken /*
690 1.39 hannken * If the write list is empty, simply append it to the list.
691 1.39 hannken */
692 1.39 hannken if (bq == NULL) {
693 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
694 1.39 hannken prio->bq_write_next = bp;
695 1.39 hannken return;
696 1.39 hannken }
697 1.39 hannken
698 1.39 hannken /*
699 1.39 hannken * If we lie after the next request, insert after this request.
700 1.39 hannken */
701 1.39 hannken if (buf_inorder(prio->bq_write_next, bp, sortby))
702 1.39 hannken bq = prio->bq_write_next;
703 1.39 hannken
704 1.39 hannken /*
705 1.39 hannken * Search for the first request at a larger block number.
706 1.39 hannken * We go before this request if it exists.
707 1.39 hannken */
708 1.39 hannken while (bq != NULL && buf_inorder(bq, bp, sortby))
709 1.39 hannken bq = TAILQ_NEXT(bq, b_actq);
710 1.39 hannken
711 1.39 hannken if (bq != NULL)
712 1.39 hannken TAILQ_INSERT_BEFORE(bq, bp, b_actq);
713 1.39 hannken else
714 1.39 hannken TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
715 1.39 hannken }
716 1.39 hannken
717 1.39 hannken static struct buf *
718 1.39 hannken bufq_prio_get(struct bufq_state *bufq, int remove)
719 1.39 hannken {
720 1.39 hannken struct bufq_prio *prio = bufq->bq_private;
721 1.39 hannken struct buf *bp;
722 1.39 hannken
723 1.39 hannken /*
724 1.41 hannken * If no current request, get next from the lists.
725 1.39 hannken */
726 1.41 hannken if (prio->bq_next == NULL) {
727 1.39 hannken /*
728 1.41 hannken * If at least one list is empty, select the other.
729 1.39 hannken */
730 1.41 hannken if (TAILQ_FIRST(&prio->bq_read) == NULL) {
731 1.41 hannken prio->bq_next = prio->bq_write_next;
732 1.41 hannken prio->bq_read_burst = 0;
733 1.41 hannken } else if (prio->bq_write_next == NULL) {
734 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
735 1.39 hannken prio->bq_read_burst = 0;
736 1.41 hannken } else {
737 1.41 hannken /*
738 1.41 hannken * Both list have requests. Select the read list up
739 1.41 hannken * to PRIO_READ_BURST times, then select the write
740 1.41 hannken * list PRIO_WRITE_REQ times.
741 1.41 hannken */
742 1.41 hannken if (prio->bq_read_burst++ < PRIO_READ_BURST)
743 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
744 1.41 hannken else if (prio->bq_read_burst <
745 1.43 enami PRIO_READ_BURST + PRIO_WRITE_REQ)
746 1.41 hannken prio->bq_next = prio->bq_write_next;
747 1.41 hannken else {
748 1.41 hannken prio->bq_next = TAILQ_FIRST(&prio->bq_read);
749 1.41 hannken prio->bq_read_burst = 0;
750 1.41 hannken }
751 1.39 hannken }
752 1.39 hannken }
753 1.39 hannken
754 1.41 hannken bp = prio->bq_next;
755 1.41 hannken
756 1.44 enami if (bp != NULL && remove) {
757 1.44 enami if ((bp->b_flags & B_READ) == B_READ)
758 1.44 enami TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
759 1.39 hannken else {
760 1.39 hannken /*
761 1.44 enami * Advance the write pointer before removing
762 1.44 enami * bp since it is actually prio->bq_write_next.
763 1.39 hannken */
764 1.39 hannken prio->bq_write_next =
765 1.39 hannken TAILQ_NEXT(prio->bq_write_next, b_actq);
766 1.44 enami TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
767 1.39 hannken if (prio->bq_write_next == NULL)
768 1.39 hannken prio->bq_write_next =
769 1.39 hannken TAILQ_FIRST(&prio->bq_write);
770 1.39 hannken }
771 1.41 hannken
772 1.41 hannken prio->bq_next = NULL;
773 1.39 hannken }
774 1.39 hannken
775 1.43 enami return (bp);
776 1.39 hannken }
777 1.39 hannken
778 1.58 yamt
779 1.58 yamt /*
780 1.58 yamt * Cyclical scan (CSCAN)
781 1.58 yamt */
782 1.58 yamt TAILQ_HEAD(bqhead, buf);
783 1.58 yamt struct cscan_queue {
784 1.58 yamt struct bqhead cq_head[2]; /* actual lists of buffers */
785 1.58 yamt int cq_idx; /* current list index */
786 1.58 yamt int cq_lastcylinder; /* b_cylinder of the last request */
787 1.58 yamt daddr_t cq_lastrawblkno; /* b_rawblkno of the last request */
788 1.58 yamt };
789 1.58 yamt
790 1.58 yamt static int __inline cscan_empty(const struct cscan_queue *);
791 1.58 yamt static void cscan_put(struct cscan_queue *, struct buf *, int);
792 1.58 yamt static struct buf *cscan_get(struct cscan_queue *, int);
793 1.58 yamt static void cscan_init(struct cscan_queue *);
794 1.58 yamt
795 1.58 yamt static __inline int
796 1.58 yamt cscan_empty(const struct cscan_queue *q)
797 1.58 yamt {
798 1.58 yamt
799 1.58 yamt return TAILQ_EMPTY(&q->cq_head[0]) && TAILQ_EMPTY(&q->cq_head[1]);
800 1.58 yamt }
801 1.58 yamt
802 1.58 yamt static void
803 1.58 yamt cscan_put(struct cscan_queue *q, struct buf *bp, int sortby)
804 1.58 yamt {
805 1.58 yamt struct buf tmp;
806 1.58 yamt struct buf *it;
807 1.58 yamt struct bqhead *bqh;
808 1.58 yamt int idx;
809 1.58 yamt
810 1.58 yamt tmp.b_cylinder = q->cq_lastcylinder;
811 1.58 yamt tmp.b_rawblkno = q->cq_lastrawblkno;
812 1.58 yamt
813 1.58 yamt if (buf_inorder(bp, &tmp, sortby))
814 1.58 yamt idx = 1 - q->cq_idx;
815 1.58 yamt else
816 1.58 yamt idx = q->cq_idx;
817 1.58 yamt
818 1.58 yamt bqh = &q->cq_head[idx];
819 1.58 yamt
820 1.58 yamt TAILQ_FOREACH(it, bqh, b_actq)
821 1.58 yamt if (buf_inorder(bp, it, sortby))
822 1.58 yamt break;
823 1.58 yamt
824 1.58 yamt if (it != NULL)
825 1.58 yamt TAILQ_INSERT_BEFORE(it, bp, b_actq);
826 1.58 yamt else
827 1.58 yamt TAILQ_INSERT_TAIL(bqh, bp, b_actq);
828 1.58 yamt }
829 1.58 yamt
830 1.58 yamt static struct buf *
831 1.58 yamt cscan_get(struct cscan_queue *q, int remove)
832 1.58 yamt {
833 1.58 yamt int idx = q->cq_idx;
834 1.58 yamt struct bqhead *bqh;
835 1.58 yamt struct buf *bp;
836 1.58 yamt
837 1.58 yamt bqh = &q->cq_head[idx];
838 1.58 yamt bp = TAILQ_FIRST(bqh);
839 1.58 yamt
840 1.58 yamt if (bp == NULL) {
841 1.58 yamt /* switch queue */
842 1.58 yamt idx = 1 - idx;
843 1.58 yamt bqh = &q->cq_head[idx];
844 1.58 yamt bp = TAILQ_FIRST(bqh);
845 1.58 yamt }
846 1.58 yamt
847 1.58 yamt KDASSERT((bp != NULL && !cscan_empty(q)) ||
848 1.58 yamt (bp == NULL && cscan_empty(q)));
849 1.58 yamt
850 1.58 yamt if (bp != NULL && remove) {
851 1.58 yamt q->cq_idx = idx;
852 1.58 yamt TAILQ_REMOVE(bqh, bp, b_actq);
853 1.58 yamt
854 1.58 yamt q->cq_lastcylinder = bp->b_cylinder;
855 1.58 yamt q->cq_lastrawblkno =
856 1.58 yamt bp->b_rawblkno + (bp->b_bcount >> DEV_BSHIFT);
857 1.58 yamt }
858 1.58 yamt
859 1.58 yamt return (bp);
860 1.58 yamt }
861 1.58 yamt
862 1.58 yamt static void
863 1.58 yamt cscan_init(struct cscan_queue *q)
864 1.58 yamt {
865 1.58 yamt
866 1.58 yamt TAILQ_INIT(&q->cq_head[0]);
867 1.58 yamt TAILQ_INIT(&q->cq_head[1]);
868 1.58 yamt }
869 1.58 yamt
870 1.58 yamt
871 1.58 yamt /*
872 1.58 yamt * Per-prioritiy CSCAN.
873 1.58 yamt *
874 1.58 yamt * XXX probably we should have a way to raise
875 1.58 yamt * priority of the on-queue requests.
876 1.58 yamt */
877 1.58 yamt #define PRIOCSCAN_NQUEUE 3
878 1.58 yamt
879 1.58 yamt struct priocscan_queue {
880 1.58 yamt struct cscan_queue q_queue;
881 1.58 yamt int q_burst;
882 1.58 yamt };
883 1.58 yamt
884 1.58 yamt struct bufq_priocscan {
885 1.58 yamt struct priocscan_queue bq_queue[PRIOCSCAN_NQUEUE];
886 1.58 yamt
887 1.58 yamt #if 0
888 1.58 yamt /*
889 1.58 yamt * XXX using "global" head position can reduce positioning time
890 1.58 yamt * when switching between queues.
891 1.58 yamt * although it might affect against fairness.
892 1.58 yamt */
893 1.58 yamt daddr_t bq_lastrawblkno;
894 1.58 yamt int bq_lastcylinder;
895 1.58 yamt #endif
896 1.58 yamt };
897 1.58 yamt
898 1.58 yamt /*
899 1.58 yamt * how many requests to serve when having pending requests on other queues.
900 1.58 yamt *
901 1.58 yamt * XXX tune
902 1.58 yamt */
903 1.58 yamt const int priocscan_burst[] = {
904 1.58 yamt 64, 16, 4
905 1.58 yamt };
906 1.58 yamt
907 1.58 yamt static void bufq_priocscan_put(struct bufq_state *, struct buf *);
908 1.58 yamt static struct buf *bufq_priocscan_get(struct bufq_state *, int);
909 1.58 yamt static void bufq_priocscan_init(struct bufq_state *);
910 1.58 yamt static __inline struct cscan_queue *bufq_priocscan_selectqueue(
911 1.58 yamt struct bufq_priocscan *, const struct buf *);
912 1.58 yamt
913 1.58 yamt static __inline struct cscan_queue *
914 1.58 yamt bufq_priocscan_selectqueue(struct bufq_priocscan *q, const struct buf *bp)
915 1.58 yamt {
916 1.58 yamt static const int priocscan_priomap[] = {
917 1.58 yamt [BPRIO_TIMENONCRITICAL] = 2,
918 1.58 yamt [BPRIO_TIMELIMITED] = 1,
919 1.58 yamt [BPRIO_TIMECRITICAL] = 0
920 1.58 yamt };
921 1.58 yamt
922 1.58 yamt return &q->bq_queue[priocscan_priomap[BIO_GETPRIO(bp)]].q_queue;
923 1.58 yamt }
924 1.58 yamt
925 1.58 yamt static void
926 1.58 yamt bufq_priocscan_put(struct bufq_state *bufq, struct buf *bp)
927 1.58 yamt {
928 1.58 yamt struct bufq_priocscan *q = bufq->bq_private;
929 1.58 yamt struct cscan_queue *cq;
930 1.58 yamt const int sortby = bufq->bq_flags & BUFQ_SORT_MASK;
931 1.58 yamt
932 1.58 yamt cq = bufq_priocscan_selectqueue(q, bp);
933 1.58 yamt cscan_put(cq, bp, sortby);
934 1.58 yamt }
935 1.58 yamt
936 1.58 yamt static struct buf *
937 1.58 yamt bufq_priocscan_get(struct bufq_state *bufq, int remove)
938 1.58 yamt {
939 1.58 yamt struct bufq_priocscan *q = bufq->bq_private;
940 1.58 yamt struct priocscan_queue *pq, *npq;
941 1.58 yamt struct priocscan_queue *first; /* first non-empty queue */
942 1.58 yamt const struct priocscan_queue *epq;
943 1.58 yamt const struct cscan_queue *cq;
944 1.58 yamt struct buf *bp;
945 1.58 yamt boolean_t single; /* true if there's only one non-empty queue */
946 1.58 yamt
947 1.58 yamt pq = &q->bq_queue[0];
948 1.58 yamt epq = pq + PRIOCSCAN_NQUEUE;
949 1.58 yamt for (; pq < epq; pq++) {
950 1.58 yamt cq = &pq->q_queue;
951 1.58 yamt if (!cscan_empty(cq))
952 1.58 yamt break;
953 1.58 yamt }
954 1.58 yamt if (pq == epq) {
955 1.58 yamt /* there's no requests */
956 1.58 yamt return NULL;
957 1.58 yamt }
958 1.58 yamt
959 1.58 yamt first = pq;
960 1.58 yamt single = TRUE;
961 1.58 yamt for (npq = first + 1; npq < epq; npq++) {
962 1.58 yamt cq = &npq->q_queue;
963 1.58 yamt if (!cscan_empty(cq)) {
964 1.58 yamt single = FALSE;
965 1.58 yamt if (pq->q_burst > 0)
966 1.58 yamt break;
967 1.58 yamt pq = npq;
968 1.58 yamt }
969 1.58 yamt }
970 1.58 yamt if (single) {
971 1.58 yamt /*
972 1.58 yamt * there's only a non-empty queue. just serve it.
973 1.58 yamt */
974 1.58 yamt pq = first;
975 1.58 yamt } else if (pq->q_burst > 0) {
976 1.58 yamt /*
977 1.58 yamt * XXX account only by number of requests. is it good enough?
978 1.58 yamt */
979 1.58 yamt pq->q_burst--;
980 1.58 yamt } else {
981 1.58 yamt /*
982 1.58 yamt * no queue was selected due to burst counts
983 1.58 yamt */
984 1.58 yamt int i;
985 1.58 yamt #ifdef DEBUG
986 1.58 yamt for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
987 1.58 yamt pq = &q->bq_queue[i];
988 1.58 yamt cq = &pq->q_queue;
989 1.58 yamt if (!cscan_empty(cq) && pq->q_burst)
990 1.58 yamt panic("%s: inconsist", __func__);
991 1.58 yamt }
992 1.58 yamt #endif /* DEBUG */
993 1.58 yamt
994 1.58 yamt /*
995 1.58 yamt * reset burst counts
996 1.58 yamt */
997 1.58 yamt for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
998 1.58 yamt pq = &q->bq_queue[i];
999 1.58 yamt pq->q_burst = priocscan_burst[i];
1000 1.58 yamt }
1001 1.58 yamt
1002 1.58 yamt /*
1003 1.58 yamt * serve first non-empty queue.
1004 1.58 yamt */
1005 1.58 yamt pq = first;
1006 1.58 yamt }
1007 1.58 yamt
1008 1.58 yamt KDASSERT(!cscan_empty(&pq->q_queue));
1009 1.58 yamt bp = cscan_get(&pq->q_queue, remove);
1010 1.58 yamt KDASSERT(bp != NULL);
1011 1.58 yamt KDASSERT(&pq->q_queue == bufq_priocscan_selectqueue(q, bp));
1012 1.58 yamt
1013 1.58 yamt return bp;
1014 1.58 yamt }
1015 1.58 yamt
1016 1.58 yamt static void
1017 1.58 yamt bufq_priocscan_init(struct bufq_state *bufq)
1018 1.58 yamt {
1019 1.58 yamt struct bufq_priocscan *q;
1020 1.58 yamt int i;
1021 1.58 yamt
1022 1.58 yamt bufq->bq_get = bufq_priocscan_get;
1023 1.58 yamt bufq->bq_put = bufq_priocscan_put;
1024 1.58 yamt bufq->bq_private = malloc(sizeof(struct bufq_priocscan),
1025 1.58 yamt M_DEVBUF, M_ZERO);
1026 1.58 yamt
1027 1.58 yamt q = bufq->bq_private;
1028 1.58 yamt for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
1029 1.58 yamt struct cscan_queue *cq = &q->bq_queue[i].q_queue;
1030 1.58 yamt
1031 1.58 yamt cscan_init(cq);
1032 1.58 yamt }
1033 1.58 yamt }
1034 1.58 yamt
1035 1.58 yamt
1036 1.40 hannken /*
1037 1.40 hannken * Create a device buffer queue.
1038 1.40 hannken */
1039 1.39 hannken void
1040 1.40 hannken bufq_alloc(struct bufq_state *bufq, int flags)
1041 1.39 hannken {
1042 1.39 hannken struct bufq_fcfs *fcfs;
1043 1.39 hannken struct bufq_disksort *disksort;
1044 1.39 hannken struct bufq_prio *prio;
1045 1.39 hannken
1046 1.39 hannken bufq->bq_flags = flags;
1047 1.39 hannken
1048 1.39 hannken switch (flags & BUFQ_SORT_MASK) {
1049 1.39 hannken case BUFQ_SORT_RAWBLOCK:
1050 1.39 hannken case BUFQ_SORT_CYLINDER:
1051 1.39 hannken break;
1052 1.39 hannken case 0:
1053 1.39 hannken if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
1054 1.39 hannken break;
1055 1.39 hannken /* FALLTHROUGH */
1056 1.39 hannken default:
1057 1.40 hannken panic("bufq_alloc: sort out of range");
1058 1.39 hannken }
1059 1.39 hannken
1060 1.39 hannken switch (flags & BUFQ_METHOD_MASK) {
1061 1.39 hannken case BUFQ_FCFS:
1062 1.39 hannken bufq->bq_get = bufq_fcfs_get;
1063 1.39 hannken bufq->bq_put = bufq_fcfs_put;
1064 1.40 hannken MALLOC(bufq->bq_private, struct bufq_fcfs *,
1065 1.40 hannken sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
1066 1.39 hannken fcfs = (struct bufq_fcfs *)bufq->bq_private;
1067 1.39 hannken TAILQ_INIT(&fcfs->bq_head);
1068 1.39 hannken break;
1069 1.39 hannken case BUFQ_DISKSORT:
1070 1.39 hannken bufq->bq_get = bufq_disksort_get;
1071 1.39 hannken bufq->bq_put = bufq_disksort_put;
1072 1.40 hannken MALLOC(bufq->bq_private, struct bufq_disksort *,
1073 1.40 hannken sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
1074 1.39 hannken disksort = (struct bufq_disksort *)bufq->bq_private;
1075 1.39 hannken TAILQ_INIT(&disksort->bq_head);
1076 1.39 hannken break;
1077 1.39 hannken case BUFQ_READ_PRIO:
1078 1.39 hannken bufq->bq_get = bufq_prio_get;
1079 1.39 hannken bufq->bq_put = bufq_prio_put;
1080 1.40 hannken MALLOC(bufq->bq_private, struct bufq_prio *,
1081 1.40 hannken sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
1082 1.39 hannken prio = (struct bufq_prio *)bufq->bq_private;
1083 1.39 hannken TAILQ_INIT(&prio->bq_read);
1084 1.39 hannken TAILQ_INIT(&prio->bq_write);
1085 1.39 hannken break;
1086 1.58 yamt case BUFQ_PRIOCSCAN:
1087 1.58 yamt bufq_priocscan_init(bufq);
1088 1.58 yamt break;
1089 1.39 hannken default:
1090 1.40 hannken panic("bufq_alloc: method out of range");
1091 1.39 hannken }
1092 1.40 hannken }
1093 1.40 hannken
1094 1.40 hannken /*
1095 1.40 hannken * Destroy a device buffer queue.
1096 1.40 hannken */
1097 1.40 hannken void
1098 1.40 hannken bufq_free(struct bufq_state *bufq)
1099 1.40 hannken {
1100 1.43 enami
1101 1.40 hannken KASSERT(bufq->bq_private != NULL);
1102 1.40 hannken KASSERT(BUFQ_PEEK(bufq) == NULL);
1103 1.40 hannken
1104 1.40 hannken FREE(bufq->bq_private, M_DEVBUF);
1105 1.40 hannken bufq->bq_get = NULL;
1106 1.40 hannken bufq->bq_put = NULL;
1107 1.50 fvdl }
1108 1.50 fvdl
1109 1.50 fvdl /*
1110 1.50 fvdl * Bounds checking against the media size, used for the raw partition.
1111 1.50 fvdl * The sector size passed in should currently always be DEV_BSIZE,
1112 1.50 fvdl * and the media size the size of the device in DEV_BSIZE sectors.
1113 1.50 fvdl */
1114 1.50 fvdl int
1115 1.50 fvdl bounds_check_with_mediasize(struct buf *bp, int secsize, u_int64_t mediasize)
1116 1.50 fvdl {
1117 1.50 fvdl int sz;
1118 1.50 fvdl
1119 1.50 fvdl sz = howmany(bp->b_bcount, secsize);
1120 1.50 fvdl
1121 1.50 fvdl if (bp->b_blkno + sz > mediasize) {
1122 1.50 fvdl sz = mediasize - bp->b_blkno;
1123 1.50 fvdl if (sz == 0) {
1124 1.50 fvdl /* If exactly at end of disk, return EOF. */
1125 1.50 fvdl bp->b_resid = bp->b_bcount;
1126 1.50 fvdl goto done;
1127 1.50 fvdl }
1128 1.50 fvdl if (sz < 0) {
1129 1.50 fvdl /* If past end of disk, return EINVAL. */
1130 1.50 fvdl bp->b_error = EINVAL;
1131 1.50 fvdl goto bad;
1132 1.50 fvdl }
1133 1.50 fvdl /* Otherwise, truncate request. */
1134 1.50 fvdl bp->b_bcount = sz << DEV_BSHIFT;
1135 1.50 fvdl }
1136 1.50 fvdl
1137 1.50 fvdl return 1;
1138 1.50 fvdl
1139 1.50 fvdl bad:
1140 1.50 fvdl bp->b_flags |= B_ERROR;
1141 1.50 fvdl done:
1142 1.50 fvdl return 0;
1143 1.11 mycroft }
1144