Home | History | Annotate | Line # | Download | only in kern
subr_disk.c revision 1.21
      1 /*	$NetBSD: subr_disk.c,v 1.21 1996/10/17 16:31:56 perry Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Jason R. Thorpe.  All rights reserved.
      5  * Copyright (c) 1982, 1986, 1988, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  * (c) UNIX System Laboratories, Inc.
      8  * All or some portions of this file are derived from material licensed
      9  * to the University of California by American Telephone and Telegraph
     10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     11  * the permission of UNIX System Laboratories, Inc.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the University of
     24  *	California, Berkeley and its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
     42  */
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/buf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/time.h>
     51 #include <sys/disklabel.h>
     52 #include <sys/disk.h>
     53 
     54 /*
     55  * A global list of all disks attached to the system.  May grow or
     56  * shrink over time.
     57  */
     58 struct	disklist_head disklist;	/* TAILQ_HEAD */
     59 int	disk_count;		/* number of drives in global disklist */
     60 
     61 /*
     62  * Seek sort for disks.  We depend on the driver which calls us using b_resid
     63  * as the current cylinder number.
     64  *
     65  * The argument ap structure holds a b_actf activity chain pointer on which we
     66  * keep two queues, sorted in ascending cylinder order.  The first queue holds
     67  * those requests which are positioned after the current cylinder (in the first
     68  * request); the second holds requests which came in after their cylinder number
     69  * was passed.  Thus we implement a one way scan, retracting after reaching the
     70  * end of the drive to the first request on the second queue, at which time it
     71  * becomes the first queue.
     72  *
     73  * A one-way scan is natural because of the way UNIX read-ahead blocks are
     74  * allocated.
     75  */
     76 
     77 void
     78 disksort(ap, bp)
     79 	register struct buf *ap, *bp;
     80 {
     81 	register struct buf *bq;
     82 
     83 	/* If the queue is empty, then it's easy. */
     84 	if (ap->b_actf == NULL) {
     85 		bp->b_actf = NULL;
     86 		ap->b_actf = bp;
     87 		return;
     88 	}
     89 
     90 	/*
     91 	 * If we lie after the first (currently active) request, then we
     92 	 * must locate the second request list and add ourselves to it.
     93 	 */
     94 	bq = ap->b_actf;
     95 	if (bp->b_cylinder < bq->b_cylinder) {
     96 		while (bq->b_actf) {
     97 			/*
     98 			 * Check for an ``inversion'' in the normally ascending
     99 			 * cylinder numbers, indicating the start of the second
    100 			 * request list.
    101 			 */
    102 			if (bq->b_actf->b_cylinder < bq->b_cylinder) {
    103 				/*
    104 				 * Search the second request list for the first
    105 				 * request at a larger cylinder number.  We go
    106 				 * before that; if there is no such request, we
    107 				 * go at end.
    108 				 */
    109 				do {
    110 					if (bp->b_cylinder <
    111 					    bq->b_actf->b_cylinder)
    112 						goto insert;
    113 					if (bp->b_cylinder ==
    114 					    bq->b_actf->b_cylinder &&
    115 					    bp->b_blkno < bq->b_actf->b_blkno)
    116 						goto insert;
    117 					bq = bq->b_actf;
    118 				} while (bq->b_actf);
    119 				goto insert;		/* after last */
    120 			}
    121 			bq = bq->b_actf;
    122 		}
    123 		/*
    124 		 * No inversions... we will go after the last, and
    125 		 * be the first request in the second request list.
    126 		 */
    127 		goto insert;
    128 	}
    129 	/*
    130 	 * Request is at/after the current request...
    131 	 * sort in the first request list.
    132 	 */
    133 	while (bq->b_actf) {
    134 		/*
    135 		 * We want to go after the current request if there is an
    136 		 * inversion after it (i.e. it is the end of the first
    137 		 * request list), or if the next request is a larger cylinder
    138 		 * than our request.
    139 		 */
    140 		if (bq->b_actf->b_cylinder < bq->b_cylinder ||
    141 		    bp->b_cylinder < bq->b_actf->b_cylinder ||
    142 		    (bp->b_cylinder == bq->b_actf->b_cylinder &&
    143 		    bp->b_blkno < bq->b_actf->b_blkno))
    144 			goto insert;
    145 		bq = bq->b_actf;
    146 	}
    147 	/*
    148 	 * Neither a second list nor a larger request... we go at the end of
    149 	 * the first list, which is the same as the end of the whole schebang.
    150 	 */
    151 insert:	bp->b_actf = bq->b_actf;
    152 	bq->b_actf = bp;
    153 }
    154 
    155 /* encoding of disk minor numbers, should be elsewhere... */
    156 #define dkunit(dev)		(minor(dev) >> 3)
    157 #define dkpart(dev)		(minor(dev) & 07)
    158 #define dkminor(unit, part)	(((unit) << 3) | (part))
    159 
    160 /*
    161  * Compute checksum for disk label.
    162  */
    163 u_int
    164 dkcksum(lp)
    165 	register struct disklabel *lp;
    166 {
    167 	register u_short *start, *end;
    168 	register u_short sum = 0;
    169 
    170 	start = (u_short *)lp;
    171 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
    172 	while (start < end)
    173 		sum ^= *start++;
    174 	return (sum);
    175 }
    176 
    177 /*
    178  * Disk error is the preface to plaintive error messages
    179  * about failing disk transfers.  It prints messages of the form
    180 
    181 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
    182 
    183  * if the offset of the error in the transfer and a disk label
    184  * are both available.  blkdone should be -1 if the position of the error
    185  * is unknown; the disklabel pointer may be null from drivers that have not
    186  * been converted to use them.  The message is printed with printf
    187  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
    188  * The message should be completed (with at least a newline) with printf
    189  * or addlog, respectively.  There is no trailing space.
    190  */
    191 void
    192 diskerr(bp, dname, what, pri, blkdone, lp)
    193 	register struct buf *bp;
    194 	char *dname, *what;
    195 	int pri, blkdone;
    196 	register struct disklabel *lp;
    197 {
    198 	int unit = dkunit(bp->b_dev), part = dkpart(bp->b_dev);
    199 	register void (*pr) __P((const char *, ...));
    200 	char partname = 'a' + part;
    201 	int sn;
    202 
    203 	if (pri != LOG_PRINTF) {
    204 		static const char fmt[] = "";
    205 		log(pri, fmt);
    206 		pr = addlog;
    207 	} else
    208 		pr = printf;
    209 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
    210 	    bp->b_flags & B_READ ? "read" : "writ");
    211 	sn = bp->b_blkno;
    212 	if (bp->b_bcount <= DEV_BSIZE)
    213 		(*pr)("%d", sn);
    214 	else {
    215 		if (blkdone >= 0) {
    216 			sn += blkdone;
    217 			(*pr)("%d of ", sn);
    218 		}
    219 		(*pr)("%d-%d", bp->b_blkno,
    220 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
    221 	}
    222 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
    223 		sn += lp->d_partitions[part].p_offset;
    224 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
    225 		    sn / lp->d_secpercyl);
    226 		sn %= lp->d_secpercyl;
    227 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
    228 	}
    229 }
    230 
    231 /*
    232  * Initialize the disklist.  Called by main() before autoconfiguration.
    233  */
    234 void
    235 disk_init()
    236 {
    237 
    238 	TAILQ_INIT(&disklist);
    239 	disk_count = 0;
    240 }
    241 
    242 /*
    243  * Searches the disklist for the disk corresponding to the
    244  * name provided.
    245  */
    246 struct disk *
    247 disk_find(name)
    248 	char *name;
    249 {
    250 	struct disk *diskp;
    251 
    252 	if ((name == NULL) || (disk_count <= 0))
    253 		return (NULL);
    254 
    255 	for (diskp = disklist.tqh_first; diskp != NULL;
    256 	    diskp = diskp->dk_link.tqe_next)
    257 		if (strcmp(diskp->dk_name, name) == 0)
    258 			return (diskp);
    259 
    260 	return (NULL);
    261 }
    262 
    263 /*
    264  * Attach a disk.
    265  */
    266 void
    267 disk_attach(diskp)
    268 	struct disk *diskp;
    269 {
    270 	int s;
    271 
    272 	/*
    273 	 * Allocate and initialize the disklabel structures.  Note that
    274 	 * it's not safe to sleep here, since we're probably going to be
    275 	 * called during autoconfiguration.
    276 	 */
    277 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
    278 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
    279 	    M_NOWAIT);
    280 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
    281 		panic("disk_attach: can't allocate storage for disklabel");
    282 
    283 	bzero(diskp->dk_label, sizeof(struct disklabel));
    284 	bzero(diskp->dk_cpulabel, sizeof(struct cpu_disklabel));
    285 
    286 	/*
    287 	 * Set the attached timestamp.
    288 	 */
    289 	s = splclock();
    290 	diskp->dk_attachtime = mono_time;
    291 	splx(s);
    292 
    293 	/*
    294 	 * Link into the disklist.
    295 	 */
    296 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
    297 	++disk_count;
    298 }
    299 
    300 /*
    301  * Detach a disk.
    302  */
    303 void
    304 disk_detach(diskp)
    305 	struct disk *diskp;
    306 {
    307 
    308 	/*
    309 	 * Free the space used by the disklabel structures.
    310 	 */
    311 	free(diskp->dk_label, M_DEVBUF);
    312 	free(diskp->dk_cpulabel, M_DEVBUF);
    313 
    314 	/*
    315 	 * Remove from the disklist.
    316 	 */
    317 	TAILQ_REMOVE(&disklist, diskp, dk_link);
    318 	if (--disk_count < 0)
    319 		panic("disk_detach: disk_count < 0");
    320 }
    321 
    322 /*
    323  * Increment a disk's busy counter.  If the counter is going from
    324  * 0 to 1, set the timestamp.
    325  */
    326 void
    327 disk_busy(diskp)
    328 	struct disk *diskp;
    329 {
    330 	int s;
    331 
    332 	/*
    333 	 * XXX We'd like to use something as accurate as microtime(),
    334 	 * but that doesn't depend on the system TOD clock.
    335 	 */
    336 	if (diskp->dk_busy++ == 0) {
    337 		s = splclock();
    338 		diskp->dk_timestamp = mono_time;
    339 		splx(s);
    340 	}
    341 }
    342 
    343 /*
    344  * Decrement a disk's busy counter, increment the byte count, total busy
    345  * time, and reset the timestamp.
    346  */
    347 void
    348 disk_unbusy(diskp, bcount)
    349 	struct disk *diskp;
    350 	long bcount;
    351 {
    352 	int s;
    353 	struct timeval dv_time, diff_time;
    354 
    355 	if (diskp->dk_busy-- == 0)
    356 		panic("disk_unbusy: %s: dk_busy < 0", diskp->dk_name);
    357 
    358 	s = splclock();
    359 	dv_time = mono_time;
    360 	splx(s);
    361 
    362 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
    363 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
    364 
    365 	diskp->dk_timestamp = dv_time;
    366 	if (bcount > 0) {
    367 		diskp->dk_bytes += bcount;
    368 		diskp->dk_xfer++;
    369 	}
    370 }
    371 
    372 /*
    373  * Reset the metrics counters on the given disk.  Note that we cannot
    374  * reset the busy counter, as it may case a panic in disk_unbusy().
    375  * We also must avoid playing with the timestamp information, as it
    376  * may skew any pending transfer results.
    377  */
    378 void
    379 disk_resetstat(diskp)
    380 	struct disk *diskp;
    381 {
    382 	int s = splbio(), t;
    383 
    384 	diskp->dk_xfer = 0;
    385 	diskp->dk_bytes = 0;
    386 
    387 	t = splclock();
    388 	diskp->dk_attachtime = mono_time;
    389 	splx(t);
    390 
    391 	timerclear(&diskp->dk_time);
    392 
    393 	splx(s);
    394 }
    395