Home | History | Annotate | Line # | Download | only in kern
subr_disk.c revision 1.29.6.1
      1 /*	$NetBSD: subr_disk.c,v 1.29.6.1 2001/08/24 00:11:35 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/malloc.h>
     84 #include <sys/buf.h>
     85 #include <sys/syslog.h>
     86 #include <sys/time.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/disk.h>
     89 
     90 /*
     91  * A global list of all disks attached to the system.  May grow or
     92  * shrink over time.
     93  */
     94 struct	disklist_head disklist;	/* TAILQ_HEAD */
     95 int	disk_count;		/* number of drives in global disklist */
     96 
     97 /*
     98  * Seek sort for disks.  We depend on the driver which calls us using b_resid
     99  * as the current cylinder number.
    100  *
    101  * The argument bufq is an I/O queue for the device, on which there are
    102  * actually two queues, sorted in ascending cylinder order.  The first
    103  * queue holds those requests which are positioned after the current
    104  * cylinder (in the first request); the second holds requests which came
    105  * in after their cylinder number was passed.  Thus we implement a one-way
    106  * scan, retracting after reaching the end of the drive to the first request
    107  * on the second queue, at which time it becomes the first queue.
    108  *
    109  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    110  * allocated.
    111  *
    112  * This is further adjusted by any `barriers' which may exist in the queue.
    113  * The bufq points to the last such ordered request.
    114  */
    115 void
    116 disksort_cylinder(struct buf_queue *bufq, struct buf *bp)
    117 {
    118 	struct buf *bq, *nbq;
    119 
    120 	/*
    121 	 * If there are ordered requests on the queue, we must start
    122 	 * the elevator sort after the last of these.
    123 	 */
    124 	if ((bq = bufq->bq_barrier) == NULL)
    125 		bq = BUFQ_FIRST(bufq);
    126 
    127 	/*
    128 	 * If the queue is empty, of if it's an ordered request,
    129 	 * it's easy; we just go on the end.
    130 	 */
    131 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    132 		BUFQ_INSERT_TAIL(bufq, bp);
    133 		return;
    134 	}
    135 
    136 	/*
    137 	 * If we lie after the first (currently active) request, then we
    138 	 * must locate the second request list and add ourselves to it.
    139 	 */
    140 	if (bp->b_cylinder < bq->b_cylinder ||
    141 	    (bp->b_cylinder == bq->b_cylinder &&
    142 	     bp->b_rawblkno < bq->b_rawblkno)) {
    143 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    144 			/*
    145 			 * Check for an ``inversion'' in the normally ascending
    146 			 * cylinder numbers, indicating the start of the second
    147 			 * request list.
    148 			 */
    149 			if (nbq->b_cylinder < bq->b_cylinder) {
    150 				/*
    151 				 * Search the second request list for the first
    152 				 * request at a larger cylinder number.  We go
    153 				 * before that; if there is no such request, we
    154 				 * go at end.
    155 				 */
    156 				do {
    157 					if (bp->b_cylinder < nbq->b_cylinder)
    158 						goto insert;
    159 					if (bp->b_cylinder == nbq->b_cylinder &&
    160 					    bp->b_rawblkno < nbq->b_rawblkno)
    161 						goto insert;
    162 					bq = nbq;
    163 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    164 				goto insert;		/* after last */
    165 			}
    166 			bq = BUFQ_NEXT(bq);
    167 		}
    168 		/*
    169 		 * No inversions... we will go after the last, and
    170 		 * be the first request in the second request list.
    171 		 */
    172 		goto insert;
    173 	}
    174 	/*
    175 	 * Request is at/after the current request...
    176 	 * sort in the first request list.
    177 	 */
    178 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    179 		/*
    180 		 * We want to go after the current request if there is an
    181 		 * inversion after it (i.e. it is the end of the first
    182 		 * request list), or if the next request is a larger cylinder
    183 		 * than our request.
    184 		 */
    185 		if (nbq->b_cylinder < bq->b_cylinder ||
    186 		    bp->b_cylinder < nbq->b_cylinder ||
    187 		    (bp->b_cylinder == nbq->b_cylinder &&
    188 		     bp->b_rawblkno < nbq->b_rawblkno))
    189 			goto insert;
    190 		bq = nbq;
    191 	}
    192 	/*
    193 	 * Neither a second list nor a larger request... we go at the end of
    194 	 * the first list, which is the same as the end of the whole schebang.
    195 	 */
    196 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    197 }
    198 
    199 /*
    200  * Seek sort for disks.  This version sorts based on b_rawblkno, which
    201  * indicates the block number.
    202  *
    203  * As before, there are actually two queues, sorted in ascendening block
    204  * order.  The first queue holds those requests which are positioned after
    205  * the current block (in the first request); the second holds requests which
    206  * came in after their block number was passed.  Thus we implement a one-way
    207  * scan, retracting after reaching the end of the driver to the first request
    208  * on the second queue, at which time it becomes the first queue.
    209  *
    210  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    211  * allocated.
    212  *
    213  * This is further adjusted by any `barriers' which may exist in the queue.
    214  * The bufq points to the last such ordered request.
    215  */
    216 void
    217 disksort_blkno(struct buf_queue *bufq, struct buf *bp)
    218 {
    219 	struct buf *bq, *nbq;
    220 
    221 	/*
    222 	 * If there are ordered requests on the queue, we must start
    223 	 * the elevator sort after the last of these.
    224 	 */
    225 	if ((bq = bufq->bq_barrier) == NULL)
    226 		bq = BUFQ_FIRST(bufq);
    227 
    228 	/*
    229 	 * If the queue is empty, or if it's an ordered request,
    230 	 * it's easy; we just go on the end.
    231 	 */
    232 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    233 		BUFQ_INSERT_TAIL(bufq, bp);
    234 		return;
    235 	}
    236 
    237 	/*
    238 	 * If we lie after the first (currently active) request, then we
    239 	 * must locate the second request list and add ourselves to it.
    240 	 */
    241 	if (bp->b_rawblkno < bq->b_rawblkno) {
    242 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    243 			/*
    244 			 * Check for an ``inversion'' in the normally ascending
    245 			 * block numbers, indicating the start of the second
    246 			 * request list.
    247 			 */
    248 			if (nbq->b_rawblkno < bq->b_rawblkno) {
    249 				/*
    250 				 * Search the second request list for the first
    251 				 * request at a larger block number.  We go
    252 				 * after that; if there is no such request, we
    253 				 * go at the end.
    254 				 */
    255 				do {
    256 					if (bp->b_rawblkno < nbq->b_rawblkno)
    257 						goto insert;
    258 					bq = nbq;
    259 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    260 				goto insert;		/* after last */
    261 			}
    262 			bq = BUFQ_NEXT(bq);
    263 		}
    264 		/*
    265 		 * No inversions... we will go after the last, and
    266 		 * be the first request in the second request list.
    267 		 */
    268 		goto insert;
    269 	}
    270 	/*
    271 	 * Request is at/after the current request...
    272 	 * sort in the first request list.
    273 	 */
    274 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    275 		/*
    276 		 * We want to go after the current request if there is an
    277 		 * inversion after it (i.e. it is the end of the first
    278 		 * request list), or if the next request is a larger cylinder
    279 		 * than our request.
    280 		 */
    281 		if (nbq->b_rawblkno < bq->b_rawblkno ||
    282 		    bp->b_rawblkno < nbq->b_rawblkno)
    283 			goto insert;
    284 		bq = nbq;
    285 	}
    286 	/*
    287 	 * Neither a second list nor a larger request... we go at the end of
    288 	 * the first list, which is the same as the end of the whole schebang.
    289 	 */
    290 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    291 }
    292 
    293 /*
    294  * Seek non-sort for disks.  This version simply inserts requests at
    295  * the tail of the queue.
    296  */
    297 void
    298 disksort_tail(struct buf_queue *bufq, struct buf *bp)
    299 {
    300 
    301 	BUFQ_INSERT_TAIL(bufq, bp);
    302 }
    303 
    304 /*
    305  * Compute checksum for disk label.
    306  */
    307 u_int
    308 dkcksum(struct disklabel *lp)
    309 {
    310 	u_short *start, *end;
    311 	u_short sum = 0;
    312 
    313 	start = (u_short *)lp;
    314 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
    315 	while (start < end)
    316 		sum ^= *start++;
    317 	return (sum);
    318 }
    319 
    320 /*
    321  * Disk error is the preface to plaintive error messages
    322  * about failing disk transfers.  It prints messages of the form
    323 
    324 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
    325 
    326  * if the offset of the error in the transfer and a disk label
    327  * are both available.  blkdone should be -1 if the position of the error
    328  * is unknown; the disklabel pointer may be null from drivers that have not
    329  * been converted to use them.  The message is printed with printf
    330  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
    331  * The message should be completed (with at least a newline) with printf
    332  * or addlog, respectively.  There is no trailing space.
    333  */
    334 void
    335 diskerr(struct buf *bp, char *dname, char *what, int pri, int blkdone,
    336     struct disklabel *lp)
    337 {
    338 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
    339 	void (*pr)(const char *, ...);
    340 	char partname = 'a' + part;
    341 	int sn;
    342 
    343 	if (pri != LOG_PRINTF) {
    344 		static const char fmt[] = "";
    345 		log(pri, fmt);
    346 		pr = addlog;
    347 	} else
    348 		pr = printf;
    349 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
    350 	    bp->b_flags & B_READ ? "read" : "writ");
    351 	sn = bp->b_blkno;
    352 	if (bp->b_bcount <= DEV_BSIZE)
    353 		(*pr)("%d", sn);
    354 	else {
    355 		if (blkdone >= 0) {
    356 			sn += blkdone;
    357 			(*pr)("%d of ", sn);
    358 		}
    359 		(*pr)("%d-%d", bp->b_blkno,
    360 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
    361 	}
    362 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
    363 		sn += lp->d_partitions[part].p_offset;
    364 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
    365 		    sn / lp->d_secpercyl);
    366 		sn %= lp->d_secpercyl;
    367 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
    368 	}
    369 }
    370 
    371 /*
    372  * Initialize the disklist.  Called by main() before autoconfiguration.
    373  */
    374 void
    375 disk_init(void)
    376 {
    377 
    378 	TAILQ_INIT(&disklist);
    379 	disk_count = 0;
    380 }
    381 
    382 /*
    383  * Searches the disklist for the disk corresponding to the
    384  * name provided.
    385  */
    386 struct disk *
    387 disk_find(char *name)
    388 {
    389 	struct disk *diskp;
    390 
    391 	if ((name == NULL) || (disk_count <= 0))
    392 		return (NULL);
    393 
    394 	for (diskp = disklist.tqh_first; diskp != NULL;
    395 	    diskp = diskp->dk_link.tqe_next)
    396 		if (strcmp(diskp->dk_name, name) == 0)
    397 			return (diskp);
    398 
    399 	return (NULL);
    400 }
    401 
    402 /*
    403  * Attach a disk.
    404  */
    405 void
    406 disk_attach(struct disk *diskp)
    407 {
    408 	int s;
    409 
    410 	/*
    411 	 * Allocate and initialize the disklabel structures.  Note that
    412 	 * it's not safe to sleep here, since we're probably going to be
    413 	 * called during autoconfiguration.
    414 	 */
    415 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
    416 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
    417 	    M_NOWAIT);
    418 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
    419 		panic("disk_attach: can't allocate storage for disklabel");
    420 
    421 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
    422 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
    423 
    424 	/*
    425 	 * Set the attached timestamp.
    426 	 */
    427 	s = splclock();
    428 	diskp->dk_attachtime = mono_time;
    429 	splx(s);
    430 
    431 	/*
    432 	 * Link into the disklist.
    433 	 */
    434 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
    435 	++disk_count;
    436 }
    437 
    438 /*
    439  * Detach a disk.
    440  */
    441 void
    442 disk_detach(struct disk *diskp)
    443 {
    444 
    445 	/*
    446 	 * Remove from the disklist.
    447 	 */
    448 	if (--disk_count < 0)
    449 		panic("disk_detach: disk_count < 0");
    450 	TAILQ_REMOVE(&disklist, diskp, dk_link);
    451 
    452 	/*
    453 	 * Free the space used by the disklabel structures.
    454 	 */
    455 	free(diskp->dk_label, M_DEVBUF);
    456 	free(diskp->dk_cpulabel, M_DEVBUF);
    457 }
    458 
    459 /*
    460  * Increment a disk's busy counter.  If the counter is going from
    461  * 0 to 1, set the timestamp.
    462  */
    463 void
    464 disk_busy(struct disk *diskp)
    465 {
    466 	int s;
    467 
    468 	/*
    469 	 * XXX We'd like to use something as accurate as microtime(),
    470 	 * but that doesn't depend on the system TOD clock.
    471 	 */
    472 	if (diskp->dk_busy++ == 0) {
    473 		s = splclock();
    474 		diskp->dk_timestamp = mono_time;
    475 		splx(s);
    476 	}
    477 }
    478 
    479 /*
    480  * Decrement a disk's busy counter, increment the byte count, total busy
    481  * time, and reset the timestamp.
    482  */
    483 void
    484 disk_unbusy(struct disk *diskp, long bcount)
    485 {
    486 	int s;
    487 	struct timeval dv_time, diff_time;
    488 
    489 	if (diskp->dk_busy-- == 0) {
    490 		printf("%s: dk_busy < 0\n", diskp->dk_name);
    491 		panic("disk_unbusy");
    492 	}
    493 
    494 	s = splclock();
    495 	dv_time = mono_time;
    496 	splx(s);
    497 
    498 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
    499 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
    500 
    501 	diskp->dk_timestamp = dv_time;
    502 	if (bcount > 0) {
    503 		diskp->dk_bytes += bcount;
    504 		diskp->dk_xfer++;
    505 	}
    506 }
    507 
    508 /*
    509  * Reset the metrics counters on the given disk.  Note that we cannot
    510  * reset the busy counter, as it may case a panic in disk_unbusy().
    511  * We also must avoid playing with the timestamp information, as it
    512  * may skew any pending transfer results.
    513  */
    514 void
    515 disk_resetstat(struct disk *diskp)
    516 {
    517 	int s = splbio(), t;
    518 
    519 	diskp->dk_xfer = 0;
    520 	diskp->dk_bytes = 0;
    521 
    522 	t = splclock();
    523 	diskp->dk_attachtime = mono_time;
    524 	splx(t);
    525 
    526 	timerclear(&diskp->dk_time);
    527 
    528 	splx(s);
    529 }
    530