Home | History | Annotate | Line # | Download | only in kern
subr_disk.c revision 1.29.6.7
      1 /*	$NetBSD: subr_disk.c,v 1.29.6.7 2002/11/11 22:13:56 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.29.6.7 2002/11/11 22:13:56 nathanw Exp $");
     82 
     83 #include "opt_compat_netbsd.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/kernel.h>
     87 #include <sys/malloc.h>
     88 #include <sys/buf.h>
     89 #include <sys/syslog.h>
     90 #include <sys/disklabel.h>
     91 #include <sys/disk.h>
     92 #include <sys/sysctl.h>
     93 #include <lib/libkern/libkern.h>
     94 
     95 /*
     96  * A global list of all disks attached to the system.  May grow or
     97  * shrink over time.
     98  */
     99 struct	disklist_head disklist;	/* TAILQ_HEAD */
    100 int	disk_count;		/* number of drives in global disklist */
    101 struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
    102 
    103 /*
    104  * Compute checksum for disk label.
    105  */
    106 u_int
    107 dkcksum(struct disklabel *lp)
    108 {
    109 	u_short *start, *end;
    110 	u_short sum = 0;
    111 
    112 	start = (u_short *)lp;
    113 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
    114 	while (start < end)
    115 		sum ^= *start++;
    116 	return (sum);
    117 }
    118 
    119 /*
    120  * Disk error is the preface to plaintive error messages
    121  * about failing disk transfers.  It prints messages of the form
    122 
    123 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
    124 
    125  * if the offset of the error in the transfer and a disk label
    126  * are both available.  blkdone should be -1 if the position of the error
    127  * is unknown; the disklabel pointer may be null from drivers that have not
    128  * been converted to use them.  The message is printed with printf
    129  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
    130  * The message should be completed (with at least a newline) with printf
    131  * or addlog, respectively.  There is no trailing space.
    132  */
    133 void
    134 diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
    135     int blkdone, const struct disklabel *lp)
    136 {
    137 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
    138 	void (*pr)(const char *, ...);
    139 	char partname = 'a' + part;
    140 	int sn;
    141 
    142 	if (pri != LOG_PRINTF) {
    143 		static const char fmt[] = "";
    144 		log(pri, fmt);
    145 		pr = addlog;
    146 	} else
    147 		pr = printf;
    148 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
    149 	    bp->b_flags & B_READ ? "read" : "writ");
    150 	sn = bp->b_blkno;
    151 	if (bp->b_bcount <= DEV_BSIZE)
    152 		(*pr)("%d", sn);
    153 	else {
    154 		if (blkdone >= 0) {
    155 			sn += blkdone;
    156 			(*pr)("%d of ", sn);
    157 		}
    158 		(*pr)("%d-%d", bp->b_blkno,
    159 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
    160 	}
    161 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
    162 		sn += lp->d_partitions[part].p_offset;
    163 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
    164 		    sn / lp->d_secpercyl);
    165 		sn %= lp->d_secpercyl;
    166 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors,
    167 		    sn % lp->d_nsectors);
    168 	}
    169 }
    170 
    171 /*
    172  * Initialize the disklist.  Called by main() before autoconfiguration.
    173  */
    174 void
    175 disk_init(void)
    176 {
    177 
    178 	TAILQ_INIT(&disklist);
    179 	disk_count = 0;
    180 }
    181 
    182 /*
    183  * Searches the disklist for the disk corresponding to the
    184  * name provided.
    185  */
    186 struct disk *
    187 disk_find(char *name)
    188 {
    189 	struct disk *diskp;
    190 
    191 	if ((name == NULL) || (disk_count <= 0))
    192 		return (NULL);
    193 
    194 	simple_lock(&disklist_slock);
    195 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    196 	    diskp = TAILQ_NEXT(diskp, dk_link))
    197 		if (strcmp(diskp->dk_name, name) == 0) {
    198 			simple_unlock(&disklist_slock);
    199 			return (diskp);
    200 		}
    201 	simple_unlock(&disklist_slock);
    202 
    203 	return (NULL);
    204 }
    205 
    206 /*
    207  * Attach a disk.
    208  */
    209 void
    210 disk_attach(struct disk *diskp)
    211 {
    212 	int s;
    213 
    214 	/*
    215 	 * Allocate and initialize the disklabel structures.  Note that
    216 	 * it's not safe to sleep here, since we're probably going to be
    217 	 * called during autoconfiguration.
    218 	 */
    219 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
    220 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
    221 	    M_NOWAIT);
    222 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
    223 		panic("disk_attach: can't allocate storage for disklabel");
    224 
    225 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
    226 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
    227 
    228 	/*
    229 	 * Set the attached timestamp.
    230 	 */
    231 	s = splclock();
    232 	diskp->dk_attachtime = mono_time;
    233 	splx(s);
    234 
    235 	/*
    236 	 * Link into the disklist.
    237 	 */
    238 	simple_lock(&disklist_slock);
    239 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
    240 	simple_unlock(&disklist_slock);
    241 	++disk_count;
    242 }
    243 
    244 /*
    245  * Detach a disk.
    246  */
    247 void
    248 disk_detach(struct disk *diskp)
    249 {
    250 
    251 	/*
    252 	 * Remove from the disklist.
    253 	 */
    254 	if (--disk_count < 0)
    255 		panic("disk_detach: disk_count < 0");
    256 	simple_lock(&disklist_slock);
    257 	TAILQ_REMOVE(&disklist, diskp, dk_link);
    258 	simple_unlock(&disklist_slock);
    259 
    260 	/*
    261 	 * Free the space used by the disklabel structures.
    262 	 */
    263 	free(diskp->dk_label, M_DEVBUF);
    264 	free(diskp->dk_cpulabel, M_DEVBUF);
    265 }
    266 
    267 /*
    268  * Increment a disk's busy counter.  If the counter is going from
    269  * 0 to 1, set the timestamp.
    270  */
    271 void
    272 disk_busy(struct disk *diskp)
    273 {
    274 	int s;
    275 
    276 	/*
    277 	 * XXX We'd like to use something as accurate as microtime(),
    278 	 * but that doesn't depend on the system TOD clock.
    279 	 */
    280 	if (diskp->dk_busy++ == 0) {
    281 		s = splclock();
    282 		diskp->dk_timestamp = mono_time;
    283 		splx(s);
    284 	}
    285 }
    286 
    287 /*
    288  * Decrement a disk's busy counter, increment the byte count, total busy
    289  * time, and reset the timestamp.
    290  */
    291 void
    292 disk_unbusy(struct disk *diskp, long bcount, int read)
    293 {
    294 	int s;
    295 	struct timeval dv_time, diff_time;
    296 
    297 	if (diskp->dk_busy-- == 0) {
    298 		printf("%s: dk_busy < 0\n", diskp->dk_name);
    299 		panic("disk_unbusy");
    300 	}
    301 
    302 	s = splclock();
    303 	dv_time = mono_time;
    304 	splx(s);
    305 
    306 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
    307 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
    308 
    309 	diskp->dk_timestamp = dv_time;
    310 	if (bcount > 0) {
    311 		if (read) {
    312 			diskp->dk_rbytes += bcount;
    313 			diskp->dk_rxfer++;
    314 		} else {
    315 			diskp->dk_wbytes += bcount;
    316 			diskp->dk_wxfer++;
    317 		}
    318 	}
    319 }
    320 
    321 /*
    322  * Reset the metrics counters on the given disk.  Note that we cannot
    323  * reset the busy counter, as it may case a panic in disk_unbusy().
    324  * We also must avoid playing with the timestamp information, as it
    325  * may skew any pending transfer results.
    326  */
    327 void
    328 disk_resetstat(struct disk *diskp)
    329 {
    330 	int s = splbio(), t;
    331 
    332 	diskp->dk_rxfer = 0;
    333 	diskp->dk_rbytes = 0;
    334 	diskp->dk_wxfer = 0;
    335 	diskp->dk_wbytes = 0;
    336 
    337 	t = splclock();
    338 	diskp->dk_attachtime = mono_time;
    339 	splx(t);
    340 
    341 	timerclear(&diskp->dk_time);
    342 
    343 	splx(s);
    344 }
    345 
    346 int
    347 sysctl_disknames(void *vwhere, size_t *sizep)
    348 {
    349 	char buf[DK_DISKNAMELEN + 1];
    350 	char *where = vwhere;
    351 	struct disk *diskp;
    352 	size_t needed, left, slen;
    353 	int error, first;
    354 
    355 	first = 1;
    356 	error = 0;
    357 	needed = 0;
    358 	left = *sizep;
    359 
    360 	simple_lock(&disklist_slock);
    361 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    362 	    diskp = TAILQ_NEXT(diskp, dk_link)) {
    363 		if (where == NULL)
    364 			needed += strlen(diskp->dk_name) + 1;
    365 		else {
    366 			memset(buf, 0, sizeof(buf));
    367 			if (first) {
    368 				strncpy(buf, diskp->dk_name, sizeof(buf));
    369 				first = 0;
    370 			} else {
    371 				buf[0] = ' ';
    372 				strncpy(buf + 1, diskp->dk_name,
    373 				    sizeof(buf) - 1);
    374 			}
    375 			buf[DK_DISKNAMELEN] = '\0';
    376 			slen = strlen(buf);
    377 			if (left < slen + 1)
    378 				break;
    379 			/* +1 to copy out the trailing NUL byte */
    380 			error = copyout(buf, where, slen + 1);
    381 			if (error)
    382 				break;
    383 			where += slen;
    384 			needed += slen;
    385 			left -= slen;
    386 		}
    387 	}
    388 	simple_unlock(&disklist_slock);
    389 	*sizep = needed;
    390 	return (error);
    391 }
    392 
    393 int
    394 sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
    395 {
    396 	struct disk_sysctl sdisk;
    397 	struct disk *diskp;
    398 	char *where = vwhere;
    399 	size_t tocopy, left;
    400 	int error;
    401 
    402 	/*
    403 	 * The original hw.diskstats call was broken and did not require
    404 	 * the userland to pass in it's size of struct disk_sysctl.  This
    405 	 * was fixed after NetBSD 1.6 was released, and any applications
    406 	 * that do not pass in the size are given an error only, unless
    407 	 * we care about 1.6 compatibility.
    408 	 */
    409 	if (namelen == 0)
    410 #ifdef COMPAT_16
    411 		tocopy = offsetof(struct disk_sysctl, dk_rxfer);
    412 #else
    413 		return (EINVAL);
    414 #endif
    415 	else
    416 		tocopy = name[0];
    417 
    418 	if (where == NULL) {
    419 		*sizep = disk_count * tocopy;
    420 		return (0);
    421 	}
    422 
    423 	error = 0;
    424 	left = *sizep;
    425 	memset(&sdisk, 0, sizeof(sdisk));
    426 	*sizep = 0;
    427 
    428 	simple_lock(&disklist_slock);
    429 	TAILQ_FOREACH(diskp, &disklist, dk_link) {
    430 		if (left < tocopy)
    431 			break;
    432 		strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
    433 		sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
    434 		sdisk.dk_rxfer = diskp->dk_rxfer;
    435 		sdisk.dk_wxfer = diskp->dk_wxfer;
    436 		sdisk.dk_seek = diskp->dk_seek;
    437 		sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
    438 		sdisk.dk_rbytes = diskp->dk_rbytes;
    439 		sdisk.dk_wbytes = diskp->dk_wbytes;
    440 		sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
    441 		sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
    442 		sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
    443 		sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
    444 		sdisk.dk_time_sec = diskp->dk_time.tv_sec;
    445 		sdisk.dk_time_usec = diskp->dk_time.tv_usec;
    446 		sdisk.dk_busy = diskp->dk_busy;
    447 
    448 		error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
    449 		if (error)
    450 			break;
    451 		where += tocopy;
    452 		*sizep += tocopy;
    453 		left -= tocopy;
    454 	}
    455 	simple_unlock(&disklist_slock);
    456 	return (error);
    457 }
    458 
    459 struct bufq_fcfs {
    460 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
    461 };
    462 
    463 struct bufq_disksort {
    464 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
    465 };
    466 
    467 #define PRIO_READ_BURST		48
    468 #define PRIO_WRITE_REQ		16
    469 
    470 struct bufq_prio {
    471 	TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
    472 	struct buf *bq_write_next;	/* next request in bq_write */
    473 	struct buf *bq_next;		/* current request */
    474 	int bq_read_burst;		/* # of consecutive reads */
    475 };
    476 
    477 
    478 /*
    479  * Check if two buf's are in ascending order.
    480  */
    481 static __inline int
    482 buf_inorder(struct buf *bp, struct buf *bq, int sortby)
    483 {
    484 	int r;
    485 
    486 	if (bp == NULL || bq == NULL)
    487 		return (bq == NULL);
    488 
    489 	if (sortby == BUFQ_SORT_CYLINDER)
    490 		r = bp->b_cylinder - bq->b_cylinder;
    491 	else
    492 		r = 0;
    493 
    494 	if (r == 0)
    495 		r = bp->b_rawblkno - bq->b_rawblkno;
    496 
    497 	return (r <= 0);
    498 }
    499 
    500 
    501 /*
    502  * First-come first-served sort for disks.
    503  *
    504  * Requests are appended to the queue without any reordering.
    505  */
    506 static void
    507 bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
    508 {
    509 	struct bufq_fcfs *fcfs = bufq->bq_private;
    510 
    511 	TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
    512 }
    513 
    514 static struct buf *
    515 bufq_fcfs_get(struct bufq_state *bufq, int remove)
    516 {
    517 	struct bufq_fcfs *fcfs = bufq->bq_private;
    518 	struct buf *bp;
    519 
    520 	bp = TAILQ_FIRST(&fcfs->bq_head);
    521 
    522 	if (bp != NULL && remove)
    523 		TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
    524 
    525 	return (bp);
    526 }
    527 
    528 
    529 /*
    530  * Seek sort for disks.
    531  *
    532  * There are actually two queues, sorted in ascendening order.  The first
    533  * queue holds those requests which are positioned after the current block;
    534  * the second holds requests which came in after their position was passed.
    535  * Thus we implement a one-way scan, retracting after reaching the end of
    536  * the drive to the first request on the second queue, at which time it
    537  * becomes the first queue.
    538  *
    539  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    540  * allocated.
    541  */
    542 static void
    543 bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
    544 {
    545 	struct bufq_disksort *disksort = bufq->bq_private;
    546 	struct buf *bq, *nbq;
    547 	int sortby;
    548 
    549 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
    550 
    551 	bq = TAILQ_FIRST(&disksort->bq_head);
    552 
    553 	/*
    554 	 * If the queue is empty it's easy; we just go on the end.
    555 	 */
    556 	if (bq == NULL) {
    557 		TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
    558 		return;
    559 	}
    560 
    561 	/*
    562 	 * If we lie before the currently active request, then we
    563 	 * must locate the second request list and add ourselves to it.
    564 	 */
    565 	if (buf_inorder(bp, bq, sortby)) {
    566 		while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
    567 			/*
    568 			 * Check for an ``inversion'' in the normally ascending
    569 			 * block numbers, indicating the start of the second
    570 			 * request list.
    571 			 */
    572 			if (buf_inorder(nbq, bq, sortby)) {
    573 				/*
    574 				 * Search the second request list for the first
    575 				 * request at a larger block number.  We go
    576 				 * after that; if there is no such request, we
    577 				 * go at the end.
    578 				 */
    579 				do {
    580 					if (buf_inorder(bp, nbq, sortby))
    581 						goto insert;
    582 					bq = nbq;
    583 				} while ((nbq =
    584 				    TAILQ_NEXT(bq, b_actq)) != NULL);
    585 				goto insert;		/* after last */
    586 			}
    587 			bq = nbq;
    588 		}
    589 		/*
    590 		 * No inversions... we will go after the last, and
    591 		 * be the first request in the second request list.
    592 		 */
    593 		goto insert;
    594 	}
    595 	/*
    596 	 * Request is at/after the current request...
    597 	 * sort in the first request list.
    598 	 */
    599 	while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
    600 		/*
    601 		 * We want to go after the current request if there is an
    602 		 * inversion after it (i.e. it is the end of the first
    603 		 * request list), or if the next request is a larger cylinder
    604 		 * than our request.
    605 		 */
    606 		if (buf_inorder(nbq, bq, sortby) ||
    607 		    buf_inorder(bp, nbq, sortby))
    608 			goto insert;
    609 		bq = nbq;
    610 	}
    611 	/*
    612 	 * Neither a second list nor a larger request... we go at the end of
    613 	 * the first list, which is the same as the end of the whole schebang.
    614 	 */
    615 insert:	TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
    616 }
    617 
    618 static struct buf *
    619 bufq_disksort_get(struct bufq_state *bufq, int remove)
    620 {
    621 	struct bufq_disksort *disksort = bufq->bq_private;
    622 	struct buf *bp;
    623 
    624 	bp = TAILQ_FIRST(&disksort->bq_head);
    625 
    626 	if (bp != NULL && remove)
    627 		TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
    628 
    629 	return (bp);
    630 }
    631 
    632 
    633 /*
    634  * Seek sort for disks.
    635  *
    636  * There are two queues.  The first queue holds read requests; the second
    637  * holds write requests.  The read queue is first-come first-served; the
    638  * write queue is sorted in ascendening block order.
    639  * The read queue is processed first.  After PRIO_READ_BURST consecutive
    640  * read requests with non-empty write queue PRIO_WRITE_REQ requests from
    641  * the write queue will be processed.
    642  */
    643 static void
    644 bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
    645 {
    646 	struct bufq_prio *prio = bufq->bq_private;
    647 	struct buf *bq;
    648 	int sortby;
    649 
    650 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
    651 
    652 	/*
    653 	 * If it's a read request append it to the list.
    654 	 */
    655 	if ((bp->b_flags & B_READ) == B_READ) {
    656 		TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
    657 		return;
    658 	}
    659 
    660 	bq = TAILQ_FIRST(&prio->bq_write);
    661 
    662 	/*
    663 	 * If the write list is empty, simply append it to the list.
    664 	 */
    665 	if (bq == NULL) {
    666 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
    667 		prio->bq_write_next = bp;
    668 		return;
    669 	}
    670 
    671 	/*
    672 	 * If we lie after the next request, insert after this request.
    673 	 */
    674 	if (buf_inorder(prio->bq_write_next, bp, sortby))
    675 		bq = prio->bq_write_next;
    676 
    677 	/*
    678 	 * Search for the first request at a larger block number.
    679 	 * We go before this request if it exists.
    680 	 */
    681 	while (bq != NULL && buf_inorder(bq, bp, sortby))
    682 		bq = TAILQ_NEXT(bq, b_actq);
    683 
    684 	if (bq != NULL)
    685 		TAILQ_INSERT_BEFORE(bq, bp, b_actq);
    686 	else
    687 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
    688 }
    689 
    690 static struct buf *
    691 bufq_prio_get(struct bufq_state *bufq, int remove)
    692 {
    693 	struct bufq_prio *prio = bufq->bq_private;
    694 	struct buf *bp;
    695 
    696 	/*
    697 	 * If no current request, get next from the lists.
    698 	 */
    699 	if (prio->bq_next == NULL) {
    700 		/*
    701 		 * If at least one list is empty, select the other.
    702 		 */
    703 		if (TAILQ_FIRST(&prio->bq_read) == NULL) {
    704 			prio->bq_next = prio->bq_write_next;
    705 			prio->bq_read_burst = 0;
    706 		} else if (prio->bq_write_next == NULL) {
    707 			prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    708 			prio->bq_read_burst = 0;
    709 		} else {
    710 			/*
    711 			 * Both list have requests.  Select the read list up
    712 			 * to PRIO_READ_BURST times, then select the write
    713 			 * list PRIO_WRITE_REQ times.
    714 			 */
    715 			if (prio->bq_read_burst++ < PRIO_READ_BURST)
    716 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    717 			else if (prio->bq_read_burst <
    718 			    PRIO_READ_BURST + PRIO_WRITE_REQ)
    719 				prio->bq_next = prio->bq_write_next;
    720 			else {
    721 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
    722 				prio->bq_read_burst = 0;
    723 			}
    724 		}
    725 	}
    726 
    727 	bp = prio->bq_next;
    728 
    729 	if (bp != NULL && remove) {
    730 		if ((bp->b_flags & B_READ) == B_READ)
    731 			TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
    732 		else {
    733 			/*
    734 			 * Advance the write pointer before removing
    735 			 * bp since it is actually prio->bq_write_next.
    736 			 */
    737 			prio->bq_write_next =
    738 			    TAILQ_NEXT(prio->bq_write_next, b_actq);
    739 			TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
    740 			if (prio->bq_write_next == NULL)
    741 				prio->bq_write_next =
    742 				    TAILQ_FIRST(&prio->bq_write);
    743 		}
    744 
    745 		prio->bq_next = NULL;
    746 	}
    747 
    748 	return (bp);
    749 }
    750 
    751 /*
    752  * Create a device buffer queue.
    753  */
    754 void
    755 bufq_alloc(struct bufq_state *bufq, int flags)
    756 {
    757 	struct bufq_fcfs *fcfs;
    758 	struct bufq_disksort *disksort;
    759 	struct bufq_prio *prio;
    760 
    761 	bufq->bq_flags = flags;
    762 
    763 	switch (flags & BUFQ_SORT_MASK) {
    764 	case BUFQ_SORT_RAWBLOCK:
    765 	case BUFQ_SORT_CYLINDER:
    766 		break;
    767 	case 0:
    768 		if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
    769 			break;
    770 		/* FALLTHROUGH */
    771 	default:
    772 		panic("bufq_alloc: sort out of range");
    773 	}
    774 
    775 	switch (flags & BUFQ_METHOD_MASK) {
    776 	case BUFQ_FCFS:
    777 		bufq->bq_get = bufq_fcfs_get;
    778 		bufq->bq_put = bufq_fcfs_put;
    779 		MALLOC(bufq->bq_private, struct bufq_fcfs *,
    780 		    sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
    781 		fcfs = (struct bufq_fcfs *)bufq->bq_private;
    782 		TAILQ_INIT(&fcfs->bq_head);
    783 		break;
    784 	case BUFQ_DISKSORT:
    785 		bufq->bq_get = bufq_disksort_get;
    786 		bufq->bq_put = bufq_disksort_put;
    787 		MALLOC(bufq->bq_private, struct bufq_disksort *,
    788 		    sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
    789 		disksort = (struct bufq_disksort *)bufq->bq_private;
    790 		TAILQ_INIT(&disksort->bq_head);
    791 		break;
    792 	case BUFQ_READ_PRIO:
    793 		bufq->bq_get = bufq_prio_get;
    794 		bufq->bq_put = bufq_prio_put;
    795 		MALLOC(bufq->bq_private, struct bufq_prio *,
    796 		    sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
    797 		prio = (struct bufq_prio *)bufq->bq_private;
    798 		TAILQ_INIT(&prio->bq_read);
    799 		TAILQ_INIT(&prio->bq_write);
    800 		break;
    801 	default:
    802 		panic("bufq_alloc: method out of range");
    803 	}
    804 }
    805 
    806 /*
    807  * Destroy a device buffer queue.
    808  */
    809 void
    810 bufq_free(struct bufq_state *bufq)
    811 {
    812 
    813 	KASSERT(bufq->bq_private != NULL);
    814 	KASSERT(BUFQ_PEEK(bufq) == NULL);
    815 
    816 	FREE(bufq->bq_private, M_DEVBUF);
    817 	bufq->bq_get = NULL;
    818 	bufq->bq_put = NULL;
    819 }
    820