Home | History | Annotate | Line # | Download | only in kern
subr_disk.c revision 1.37
      1 /*	$NetBSD: subr_disk.c,v 1.37 2002/02/16 02:11:43 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.37 2002/02/16 02:11:43 enami Exp $");
     82 
     83 #include <sys/param.h>
     84 #include <sys/kernel.h>
     85 #include <sys/malloc.h>
     86 #include <sys/buf.h>
     87 #include <sys/syslog.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/disk.h>
     90 #include <sys/sysctl.h>
     91 
     92 /*
     93  * A global list of all disks attached to the system.  May grow or
     94  * shrink over time.
     95  */
     96 struct	disklist_head disklist;	/* TAILQ_HEAD */
     97 int	disk_count;		/* number of drives in global disklist */
     98 struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
     99 
    100 /*
    101  * Seek sort for disks.  We depend on the driver which calls us using b_resid
    102  * as the current cylinder number.
    103  *
    104  * The argument bufq is an I/O queue for the device, on which there are
    105  * actually two queues, sorted in ascending cylinder order.  The first
    106  * queue holds those requests which are positioned after the current
    107  * cylinder (in the first request); the second holds requests which came
    108  * in after their cylinder number was passed.  Thus we implement a one-way
    109  * scan, retracting after reaching the end of the drive to the first request
    110  * on the second queue, at which time it becomes the first queue.
    111  *
    112  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    113  * allocated.
    114  *
    115  * This is further adjusted by any `barriers' which may exist in the queue.
    116  * The bufq points to the last such ordered request.
    117  */
    118 void
    119 disksort_cylinder(struct buf_queue *bufq, struct buf *bp)
    120 {
    121 	struct buf *bq, *nbq;
    122 
    123 	/*
    124 	 * If there are ordered requests on the queue, we must start
    125 	 * the elevator sort after the last of these.
    126 	 */
    127 	if ((bq = bufq->bq_barrier) == NULL)
    128 		bq = BUFQ_FIRST(bufq);
    129 
    130 	/*
    131 	 * If the queue is empty, of if it's an ordered request,
    132 	 * it's easy; we just go on the end.
    133 	 */
    134 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    135 		BUFQ_INSERT_TAIL(bufq, bp);
    136 		return;
    137 	}
    138 
    139 	/*
    140 	 * If we lie after the first (currently active) request, then we
    141 	 * must locate the second request list and add ourselves to it.
    142 	 */
    143 	if (bp->b_cylinder < bq->b_cylinder ||
    144 	    (bp->b_cylinder == bq->b_cylinder &&
    145 	     bp->b_rawblkno < bq->b_rawblkno)) {
    146 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    147 			/*
    148 			 * Check for an ``inversion'' in the normally ascending
    149 			 * cylinder numbers, indicating the start of the second
    150 			 * request list.
    151 			 */
    152 			if (nbq->b_cylinder < bq->b_cylinder) {
    153 				/*
    154 				 * Search the second request list for the first
    155 				 * request at a larger cylinder number.  We go
    156 				 * before that; if there is no such request, we
    157 				 * go at end.
    158 				 */
    159 				do {
    160 					if (bp->b_cylinder < nbq->b_cylinder)
    161 						goto insert;
    162 					if (bp->b_cylinder == nbq->b_cylinder &&
    163 					    bp->b_rawblkno < nbq->b_rawblkno)
    164 						goto insert;
    165 					bq = nbq;
    166 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    167 				goto insert;		/* after last */
    168 			}
    169 			bq = nbq;
    170 		}
    171 		/*
    172 		 * No inversions... we will go after the last, and
    173 		 * be the first request in the second request list.
    174 		 */
    175 		goto insert;
    176 	}
    177 	/*
    178 	 * Request is at/after the current request...
    179 	 * sort in the first request list.
    180 	 */
    181 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    182 		/*
    183 		 * We want to go after the current request if there is an
    184 		 * inversion after it (i.e. it is the end of the first
    185 		 * request list), or if the next request is a larger cylinder
    186 		 * than our request.
    187 		 */
    188 		if (nbq->b_cylinder < bq->b_cylinder ||
    189 		    bp->b_cylinder < nbq->b_cylinder ||
    190 		    (bp->b_cylinder == nbq->b_cylinder &&
    191 		     bp->b_rawblkno < nbq->b_rawblkno))
    192 			goto insert;
    193 		bq = nbq;
    194 	}
    195 	/*
    196 	 * Neither a second list nor a larger request... we go at the end of
    197 	 * the first list, which is the same as the end of the whole schebang.
    198 	 */
    199 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    200 }
    201 
    202 /*
    203  * Seek sort for disks.  This version sorts based on b_rawblkno, which
    204  * indicates the block number.
    205  *
    206  * As before, there are actually two queues, sorted in ascendening block
    207  * order.  The first queue holds those requests which are positioned after
    208  * the current block (in the first request); the second holds requests which
    209  * came in after their block number was passed.  Thus we implement a one-way
    210  * scan, retracting after reaching the end of the driver to the first request
    211  * on the second queue, at which time it becomes the first queue.
    212  *
    213  * A one-way scan is natural because of the way UNIX read-ahead blocks are
    214  * allocated.
    215  *
    216  * This is further adjusted by any `barriers' which may exist in the queue.
    217  * The bufq points to the last such ordered request.
    218  */
    219 void
    220 disksort_blkno(struct buf_queue *bufq, struct buf *bp)
    221 {
    222 	struct buf *bq, *nbq;
    223 
    224 	/*
    225 	 * If there are ordered requests on the queue, we must start
    226 	 * the elevator sort after the last of these.
    227 	 */
    228 	if ((bq = bufq->bq_barrier) == NULL)
    229 		bq = BUFQ_FIRST(bufq);
    230 
    231 	/*
    232 	 * If the queue is empty, or if it's an ordered request,
    233 	 * it's easy; we just go on the end.
    234 	 */
    235 	if (bq == NULL || (bp->b_flags & B_ORDERED) != 0) {
    236 		BUFQ_INSERT_TAIL(bufq, bp);
    237 		return;
    238 	}
    239 
    240 	/*
    241 	 * If we lie after the first (currently active) request, then we
    242 	 * must locate the second request list and add ourselves to it.
    243 	 */
    244 	if (bp->b_rawblkno < bq->b_rawblkno) {
    245 		while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    246 			/*
    247 			 * Check for an ``inversion'' in the normally ascending
    248 			 * block numbers, indicating the start of the second
    249 			 * request list.
    250 			 */
    251 			if (nbq->b_rawblkno < bq->b_rawblkno) {
    252 				/*
    253 				 * Search the second request list for the first
    254 				 * request at a larger block number.  We go
    255 				 * after that; if there is no such request, we
    256 				 * go at the end.
    257 				 */
    258 				do {
    259 					if (bp->b_rawblkno < nbq->b_rawblkno)
    260 						goto insert;
    261 					bq = nbq;
    262 				} while ((nbq = BUFQ_NEXT(bq)) != NULL);
    263 				goto insert;		/* after last */
    264 			}
    265 			bq = nbq;
    266 		}
    267 		/*
    268 		 * No inversions... we will go after the last, and
    269 		 * be the first request in the second request list.
    270 		 */
    271 		goto insert;
    272 	}
    273 	/*
    274 	 * Request is at/after the current request...
    275 	 * sort in the first request list.
    276 	 */
    277 	while ((nbq = BUFQ_NEXT(bq)) != NULL) {
    278 		/*
    279 		 * We want to go after the current request if there is an
    280 		 * inversion after it (i.e. it is the end of the first
    281 		 * request list), or if the next request is a larger cylinder
    282 		 * than our request.
    283 		 */
    284 		if (nbq->b_rawblkno < bq->b_rawblkno ||
    285 		    bp->b_rawblkno < nbq->b_rawblkno)
    286 			goto insert;
    287 		bq = nbq;
    288 	}
    289 	/*
    290 	 * Neither a second list nor a larger request... we go at the end of
    291 	 * the first list, which is the same as the end of the whole schebang.
    292 	 */
    293 insert:	BUFQ_INSERT_AFTER(bufq, bq, bp);
    294 }
    295 
    296 /*
    297  * Seek non-sort for disks.  This version simply inserts requests at
    298  * the tail of the queue.
    299  */
    300 void
    301 disksort_tail(struct buf_queue *bufq, struct buf *bp)
    302 {
    303 
    304 	BUFQ_INSERT_TAIL(bufq, bp);
    305 }
    306 
    307 /*
    308  * Compute checksum for disk label.
    309  */
    310 u_int
    311 dkcksum(struct disklabel *lp)
    312 {
    313 	u_short *start, *end;
    314 	u_short sum = 0;
    315 
    316 	start = (u_short *)lp;
    317 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
    318 	while (start < end)
    319 		sum ^= *start++;
    320 	return (sum);
    321 }
    322 
    323 /*
    324  * Disk error is the preface to plaintive error messages
    325  * about failing disk transfers.  It prints messages of the form
    326 
    327 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
    328 
    329  * if the offset of the error in the transfer and a disk label
    330  * are both available.  blkdone should be -1 if the position of the error
    331  * is unknown; the disklabel pointer may be null from drivers that have not
    332  * been converted to use them.  The message is printed with printf
    333  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
    334  * The message should be completed (with at least a newline) with printf
    335  * or addlog, respectively.  There is no trailing space.
    336  */
    337 void
    338 diskerr(struct buf *bp, char *dname, char *what, int pri, int blkdone,
    339     struct disklabel *lp)
    340 {
    341 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
    342 	void (*pr)(const char *, ...);
    343 	char partname = 'a' + part;
    344 	int sn;
    345 
    346 	if (pri != LOG_PRINTF) {
    347 		static const char fmt[] = "";
    348 		log(pri, fmt);
    349 		pr = addlog;
    350 	} else
    351 		pr = printf;
    352 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
    353 	    bp->b_flags & B_READ ? "read" : "writ");
    354 	sn = bp->b_blkno;
    355 	if (bp->b_bcount <= DEV_BSIZE)
    356 		(*pr)("%d", sn);
    357 	else {
    358 		if (blkdone >= 0) {
    359 			sn += blkdone;
    360 			(*pr)("%d of ", sn);
    361 		}
    362 		(*pr)("%d-%d", bp->b_blkno,
    363 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
    364 	}
    365 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
    366 		sn += lp->d_partitions[part].p_offset;
    367 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
    368 		    sn / lp->d_secpercyl);
    369 		sn %= lp->d_secpercyl;
    370 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors,
    371 		    sn % lp->d_nsectors);
    372 	}
    373 }
    374 
    375 /*
    376  * Initialize the disklist.  Called by main() before autoconfiguration.
    377  */
    378 void
    379 disk_init(void)
    380 {
    381 
    382 	TAILQ_INIT(&disklist);
    383 	disk_count = 0;
    384 }
    385 
    386 /*
    387  * Searches the disklist for the disk corresponding to the
    388  * name provided.
    389  */
    390 struct disk *
    391 disk_find(char *name)
    392 {
    393 	struct disk *diskp;
    394 
    395 	if ((name == NULL) || (disk_count <= 0))
    396 		return (NULL);
    397 
    398 	simple_lock(&disklist_slock);
    399 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    400 	    diskp = TAILQ_NEXT(diskp, dk_link))
    401 		if (strcmp(diskp->dk_name, name) == 0) {
    402 			simple_unlock(&disklist_slock);
    403 			return (diskp);
    404 		}
    405 	simple_unlock(&disklist_slock);
    406 
    407 	return (NULL);
    408 }
    409 
    410 /*
    411  * Attach a disk.
    412  */
    413 void
    414 disk_attach(struct disk *diskp)
    415 {
    416 	int s;
    417 
    418 	/*
    419 	 * Allocate and initialize the disklabel structures.  Note that
    420 	 * it's not safe to sleep here, since we're probably going to be
    421 	 * called during autoconfiguration.
    422 	 */
    423 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
    424 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
    425 	    M_NOWAIT);
    426 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
    427 		panic("disk_attach: can't allocate storage for disklabel");
    428 
    429 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
    430 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
    431 
    432 	/*
    433 	 * Set the attached timestamp.
    434 	 */
    435 	s = splclock();
    436 	diskp->dk_attachtime = mono_time;
    437 	splx(s);
    438 
    439 	/*
    440 	 * Link into the disklist.
    441 	 */
    442 	simple_lock(&disklist_slock);
    443 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
    444 	simple_unlock(&disklist_slock);
    445 	++disk_count;
    446 }
    447 
    448 /*
    449  * Detach a disk.
    450  */
    451 void
    452 disk_detach(struct disk *diskp)
    453 {
    454 
    455 	/*
    456 	 * Remove from the disklist.
    457 	 */
    458 	if (--disk_count < 0)
    459 		panic("disk_detach: disk_count < 0");
    460 	simple_lock(&disklist_slock);
    461 	TAILQ_REMOVE(&disklist, diskp, dk_link);
    462 	simple_unlock(&disklist_slock);
    463 
    464 	/*
    465 	 * Free the space used by the disklabel structures.
    466 	 */
    467 	free(diskp->dk_label, M_DEVBUF);
    468 	free(diskp->dk_cpulabel, M_DEVBUF);
    469 }
    470 
    471 /*
    472  * Increment a disk's busy counter.  If the counter is going from
    473  * 0 to 1, set the timestamp.
    474  */
    475 void
    476 disk_busy(struct disk *diskp)
    477 {
    478 	int s;
    479 
    480 	/*
    481 	 * XXX We'd like to use something as accurate as microtime(),
    482 	 * but that doesn't depend on the system TOD clock.
    483 	 */
    484 	if (diskp->dk_busy++ == 0) {
    485 		s = splclock();
    486 		diskp->dk_timestamp = mono_time;
    487 		splx(s);
    488 	}
    489 }
    490 
    491 /*
    492  * Decrement a disk's busy counter, increment the byte count, total busy
    493  * time, and reset the timestamp.
    494  */
    495 void
    496 disk_unbusy(struct disk *diskp, long bcount)
    497 {
    498 	int s;
    499 	struct timeval dv_time, diff_time;
    500 
    501 	if (diskp->dk_busy-- == 0) {
    502 		printf("%s: dk_busy < 0\n", diskp->dk_name);
    503 		panic("disk_unbusy");
    504 	}
    505 
    506 	s = splclock();
    507 	dv_time = mono_time;
    508 	splx(s);
    509 
    510 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
    511 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
    512 
    513 	diskp->dk_timestamp = dv_time;
    514 	if (bcount > 0) {
    515 		diskp->dk_bytes += bcount;
    516 		diskp->dk_xfer++;
    517 	}
    518 }
    519 
    520 /*
    521  * Reset the metrics counters on the given disk.  Note that we cannot
    522  * reset the busy counter, as it may case a panic in disk_unbusy().
    523  * We also must avoid playing with the timestamp information, as it
    524  * may skew any pending transfer results.
    525  */
    526 void
    527 disk_resetstat(struct disk *diskp)
    528 {
    529 	int s = splbio(), t;
    530 
    531 	diskp->dk_xfer = 0;
    532 	diskp->dk_bytes = 0;
    533 
    534 	t = splclock();
    535 	diskp->dk_attachtime = mono_time;
    536 	splx(t);
    537 
    538 	timerclear(&diskp->dk_time);
    539 
    540 	splx(s);
    541 }
    542 
    543 int
    544 sysctl_disknames(void *vwhere, size_t *sizep)
    545 {
    546 	char buf[DK_DISKNAMELEN + 1];
    547 	char *where = vwhere;
    548 	struct disk *diskp;
    549 	size_t needed, left, slen;
    550 	int error, first;
    551 
    552 	first = 1;
    553 	error = 0;
    554 	needed = 0;
    555 	left = *sizep;
    556 
    557 	simple_lock(&disklist_slock);
    558 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
    559 	    diskp = TAILQ_NEXT(diskp, dk_link)) {
    560 		if (where == NULL)
    561 			needed += strlen(diskp->dk_name) + 1;
    562 		else {
    563 			memset(buf, 0, sizeof(buf));
    564 			if (first) {
    565 				strncpy(buf, diskp->dk_name, sizeof(buf));
    566 				first = 0;
    567 			} else {
    568 				buf[0] = ' ';
    569 				strncpy(buf + 1, diskp->dk_name,
    570 				    sizeof(buf) - 1);
    571 			}
    572 			buf[DK_DISKNAMELEN] = '\0';
    573 			slen = strlen(buf);
    574 			if (left < slen + 1)
    575 				break;
    576 			/* +1 to copy out the trailing NUL byte */
    577 			error = copyout(buf, where, slen + 1);
    578 			if (error)
    579 				break;
    580 			where += slen;
    581 			needed += slen;
    582 			left -= slen;
    583 		}
    584 	}
    585 	simple_unlock(&disklist_slock);
    586 	*sizep = needed;
    587 	return (error);
    588 }
    589 
    590 int
    591 sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
    592 {
    593 	struct disk_sysctl sdisk;
    594 	struct disk *diskp;
    595 	char *where = vwhere;
    596 	size_t tocopy, left;
    597 	int error;
    598 
    599 	if (where == NULL) {
    600 		*sizep = disk_count * sizeof(struct disk_sysctl);
    601 		return (0);
    602 	}
    603 
    604 	if (namelen == 0)
    605 		tocopy = sizeof(sdisk);
    606 	else
    607 		tocopy = name[0];
    608 
    609 	error = 0;
    610 	left = *sizep;
    611 	memset(&sdisk, 0, sizeof(sdisk));
    612 	*sizep = 0;
    613 
    614 	simple_lock(&disklist_slock);
    615 	TAILQ_FOREACH(diskp, &disklist, dk_link) {
    616 		if (left < sizeof(struct disk_sysctl))
    617 			break;
    618 		strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
    619 		sdisk.dk_xfer = diskp->dk_xfer;
    620 		sdisk.dk_seek = diskp->dk_seek;
    621 		sdisk.dk_bytes = diskp->dk_bytes;
    622 		sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
    623 		sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
    624 		sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
    625 		sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
    626 		sdisk.dk_time_sec = diskp->dk_time.tv_sec;
    627 		sdisk.dk_time_usec = diskp->dk_time.tv_usec;
    628 		sdisk.dk_busy = diskp->dk_busy;
    629 
    630 		error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
    631 		if (error)
    632 			break;
    633 		where += tocopy;
    634 		*sizep += tocopy;
    635 		left -= tocopy;
    636 	}
    637 	simple_unlock(&disklist_slock);
    638 	return (error);
    639 }
    640