subr_disk.c revision 1.48 1 /* $NetBSD: subr_disk.c,v 1.48 2002/11/05 13:22:32 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.48 2002/11/05 13:22:32 mrg Exp $");
82
83 #include "opt_compat_netbsd.h"
84
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/malloc.h>
88 #include <sys/buf.h>
89 #include <sys/syslog.h>
90 #include <sys/disklabel.h>
91 #include <sys/disk.h>
92 #include <sys/sysctl.h>
93 #include <lib/libkern/libkern.h>
94
95 /*
96 * A global list of all disks attached to the system. May grow or
97 * shrink over time.
98 */
99 struct disklist_head disklist; /* TAILQ_HEAD */
100 int disk_count; /* number of drives in global disklist */
101 struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
102
103 /*
104 * Compute checksum for disk label.
105 */
106 u_int
107 dkcksum(struct disklabel *lp)
108 {
109 u_short *start, *end;
110 u_short sum = 0;
111
112 start = (u_short *)lp;
113 end = (u_short *)&lp->d_partitions[lp->d_npartitions];
114 while (start < end)
115 sum ^= *start++;
116 return (sum);
117 }
118
119 /*
120 * Disk error is the preface to plaintive error messages
121 * about failing disk transfers. It prints messages of the form
122
123 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
124
125 * if the offset of the error in the transfer and a disk label
126 * are both available. blkdone should be -1 if the position of the error
127 * is unknown; the disklabel pointer may be null from drivers that have not
128 * been converted to use them. The message is printed with printf
129 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
130 * The message should be completed (with at least a newline) with printf
131 * or addlog, respectively. There is no trailing space.
132 */
133 void
134 diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
135 int blkdone, const struct disklabel *lp)
136 {
137 int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
138 void (*pr)(const char *, ...);
139 char partname = 'a' + part;
140 int sn;
141
142 if (pri != LOG_PRINTF) {
143 static const char fmt[] = "";
144 log(pri, fmt);
145 pr = addlog;
146 } else
147 pr = printf;
148 (*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
149 bp->b_flags & B_READ ? "read" : "writ");
150 sn = bp->b_blkno;
151 if (bp->b_bcount <= DEV_BSIZE)
152 (*pr)("%d", sn);
153 else {
154 if (blkdone >= 0) {
155 sn += blkdone;
156 (*pr)("%d of ", sn);
157 }
158 (*pr)("%d-%d", bp->b_blkno,
159 bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
160 }
161 if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
162 sn += lp->d_partitions[part].p_offset;
163 (*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
164 sn / lp->d_secpercyl);
165 sn %= lp->d_secpercyl;
166 (*pr)(" tn %d sn %d)", sn / lp->d_nsectors,
167 sn % lp->d_nsectors);
168 }
169 }
170
171 /*
172 * Initialize the disklist. Called by main() before autoconfiguration.
173 */
174 void
175 disk_init(void)
176 {
177
178 TAILQ_INIT(&disklist);
179 disk_count = 0;
180 }
181
182 /*
183 * Searches the disklist for the disk corresponding to the
184 * name provided.
185 */
186 struct disk *
187 disk_find(char *name)
188 {
189 struct disk *diskp;
190
191 if ((name == NULL) || (disk_count <= 0))
192 return (NULL);
193
194 simple_lock(&disklist_slock);
195 for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
196 diskp = TAILQ_NEXT(diskp, dk_link))
197 if (strcmp(diskp->dk_name, name) == 0) {
198 simple_unlock(&disklist_slock);
199 return (diskp);
200 }
201 simple_unlock(&disklist_slock);
202
203 return (NULL);
204 }
205
206 /*
207 * Attach a disk.
208 */
209 void
210 disk_attach(struct disk *diskp)
211 {
212 int s;
213
214 /*
215 * Allocate and initialize the disklabel structures. Note that
216 * it's not safe to sleep here, since we're probably going to be
217 * called during autoconfiguration.
218 */
219 diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
220 diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
221 M_NOWAIT);
222 if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
223 panic("disk_attach: can't allocate storage for disklabel");
224
225 memset(diskp->dk_label, 0, sizeof(struct disklabel));
226 memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
227
228 /*
229 * Set the attached timestamp.
230 */
231 s = splclock();
232 diskp->dk_attachtime = mono_time;
233 splx(s);
234
235 /*
236 * Link into the disklist.
237 */
238 simple_lock(&disklist_slock);
239 TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
240 simple_unlock(&disklist_slock);
241 ++disk_count;
242 }
243
244 /*
245 * Detach a disk.
246 */
247 void
248 disk_detach(struct disk *diskp)
249 {
250
251 /*
252 * Remove from the disklist.
253 */
254 if (--disk_count < 0)
255 panic("disk_detach: disk_count < 0");
256 simple_lock(&disklist_slock);
257 TAILQ_REMOVE(&disklist, diskp, dk_link);
258 simple_unlock(&disklist_slock);
259
260 /*
261 * Free the space used by the disklabel structures.
262 */
263 free(diskp->dk_label, M_DEVBUF);
264 free(diskp->dk_cpulabel, M_DEVBUF);
265 }
266
267 /*
268 * Increment a disk's busy counter. If the counter is going from
269 * 0 to 1, set the timestamp.
270 */
271 void
272 disk_busy(struct disk *diskp)
273 {
274 int s;
275
276 /*
277 * XXX We'd like to use something as accurate as microtime(),
278 * but that doesn't depend on the system TOD clock.
279 */
280 if (diskp->dk_busy++ == 0) {
281 s = splclock();
282 diskp->dk_timestamp = mono_time;
283 splx(s);
284 }
285 }
286
287 /*
288 * Decrement a disk's busy counter, increment the byte count, total busy
289 * time, and reset the timestamp.
290 */
291 void
292 disk_unbusy(struct disk *diskp, long bcount, int read)
293 {
294 int s;
295 struct timeval dv_time, diff_time;
296
297 if (diskp->dk_busy-- == 0) {
298 printf("%s: dk_busy < 0\n", diskp->dk_name);
299 panic("disk_unbusy");
300 }
301
302 s = splclock();
303 dv_time = mono_time;
304 splx(s);
305
306 timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
307 timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
308
309 diskp->dk_timestamp = dv_time;
310 if (bcount > 0) {
311 if (read) {
312 diskp->dk_rbytes += bcount;
313 diskp->dk_rxfer++;
314 } else {
315 diskp->dk_wbytes += bcount;
316 diskp->dk_wxfer++;
317 }
318 }
319 }
320
321 /*
322 * Reset the metrics counters on the given disk. Note that we cannot
323 * reset the busy counter, as it may case a panic in disk_unbusy().
324 * We also must avoid playing with the timestamp information, as it
325 * may skew any pending transfer results.
326 */
327 void
328 disk_resetstat(struct disk *diskp)
329 {
330 int s = splbio(), t;
331
332 diskp->dk_rxfer = 0;
333 diskp->dk_rbytes = 0;
334 diskp->dk_wxfer = 0;
335 diskp->dk_wbytes = 0;
336
337 t = splclock();
338 diskp->dk_attachtime = mono_time;
339 splx(t);
340
341 timerclear(&diskp->dk_time);
342
343 splx(s);
344 }
345
346 int
347 sysctl_disknames(void *vwhere, size_t *sizep)
348 {
349 char buf[DK_DISKNAMELEN + 1];
350 char *where = vwhere;
351 struct disk *diskp;
352 size_t needed, left, slen;
353 int error, first;
354
355 first = 1;
356 error = 0;
357 needed = 0;
358 left = *sizep;
359
360 simple_lock(&disklist_slock);
361 for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
362 diskp = TAILQ_NEXT(diskp, dk_link)) {
363 if (where == NULL)
364 needed += strlen(diskp->dk_name) + 1;
365 else {
366 memset(buf, 0, sizeof(buf));
367 if (first) {
368 strncpy(buf, diskp->dk_name, sizeof(buf));
369 first = 0;
370 } else {
371 buf[0] = ' ';
372 strncpy(buf + 1, diskp->dk_name,
373 sizeof(buf) - 1);
374 }
375 buf[DK_DISKNAMELEN] = '\0';
376 slen = strlen(buf);
377 if (left < slen + 1)
378 break;
379 /* +1 to copy out the trailing NUL byte */
380 error = copyout(buf, where, slen + 1);
381 if (error)
382 break;
383 where += slen;
384 needed += slen;
385 left -= slen;
386 }
387 }
388 simple_unlock(&disklist_slock);
389 *sizep = needed;
390 return (error);
391 }
392
393 int
394 sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
395 {
396 struct disk_sysctl sdisk;
397 struct disk *diskp;
398 char *where = vwhere;
399 size_t tocopy, left;
400 int error;
401
402 /*
403 * The original hw.diskstats call was broken and did not require
404 * the userland to pass in it's size of struct disk_sysctl. This
405 * was fixed after NetBSD 1.6 was released, and any applications
406 * that do not pass in the size are given an error only, unless
407 * we care about 1.6 compatibility.
408 */
409 #define SIZE_NETBSD16 offsetof(struct disk_sysctl, dk_rxfer)
410
411 if (where == NULL) {
412 if (namelen == 0)
413 #ifdef COMPAT_16
414 *sizep = disk_count * SIZE_NETBSD16;
415 #else
416 return (EINVAL);
417 #endif
418 else
419 *sizep = disk_count * name[0];
420 return (0);
421 }
422
423 if (namelen == 0)
424 #ifdef COMPAT_16
425 tocopy = SIZE_NETBSD16;
426 #else
427 return (EINVAL);
428 #endif
429 else
430 tocopy = name[0];
431
432 error = 0;
433 left = *sizep;
434 memset(&sdisk, 0, sizeof(sdisk));
435 *sizep = 0;
436
437 simple_lock(&disklist_slock);
438 TAILQ_FOREACH(diskp, &disklist, dk_link) {
439 if (left < tocopy)
440 break;
441 strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
442 sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
443 sdisk.dk_rxfer = diskp->dk_rxfer;
444 sdisk.dk_wxfer = diskp->dk_wxfer;
445 sdisk.dk_seek = diskp->dk_seek;
446 sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
447 sdisk.dk_rbytes = diskp->dk_rbytes;
448 sdisk.dk_wbytes = diskp->dk_wbytes;
449 sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
450 sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
451 sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
452 sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
453 sdisk.dk_time_sec = diskp->dk_time.tv_sec;
454 sdisk.dk_time_usec = diskp->dk_time.tv_usec;
455 sdisk.dk_busy = diskp->dk_busy;
456
457 error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
458 if (error)
459 break;
460 where += tocopy;
461 *sizep += tocopy;
462 left -= tocopy;
463 }
464 simple_unlock(&disklist_slock);
465 return (error);
466 }
467
468 struct bufq_fcfs {
469 TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
470 };
471
472 struct bufq_disksort {
473 TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
474 };
475
476 #define PRIO_READ_BURST 48
477 #define PRIO_WRITE_REQ 16
478
479 struct bufq_prio {
480 TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
481 struct buf *bq_write_next; /* next request in bq_write */
482 struct buf *bq_next; /* current request */
483 int bq_read_burst; /* # of consecutive reads */
484 };
485
486
487 /*
488 * Check if two buf's are in ascending order.
489 */
490 static __inline int
491 buf_inorder(struct buf *bp, struct buf *bq, int sortby)
492 {
493 int r;
494
495 if (bp == NULL || bq == NULL)
496 return (bq == NULL);
497
498 if (sortby == BUFQ_SORT_CYLINDER)
499 r = bp->b_cylinder - bq->b_cylinder;
500 else
501 r = 0;
502
503 if (r == 0)
504 r = bp->b_rawblkno - bq->b_rawblkno;
505
506 return (r <= 0);
507 }
508
509
510 /*
511 * First-come first-served sort for disks.
512 *
513 * Requests are appended to the queue without any reordering.
514 */
515 static void
516 bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
517 {
518 struct bufq_fcfs *fcfs = bufq->bq_private;
519
520 TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
521 }
522
523 static struct buf *
524 bufq_fcfs_get(struct bufq_state *bufq, int remove)
525 {
526 struct bufq_fcfs *fcfs = bufq->bq_private;
527 struct buf *bp;
528
529 bp = TAILQ_FIRST(&fcfs->bq_head);
530
531 if (bp != NULL && remove)
532 TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
533
534 return (bp);
535 }
536
537
538 /*
539 * Seek sort for disks.
540 *
541 * There are actually two queues, sorted in ascendening order. The first
542 * queue holds those requests which are positioned after the current block;
543 * the second holds requests which came in after their position was passed.
544 * Thus we implement a one-way scan, retracting after reaching the end of
545 * the drive to the first request on the second queue, at which time it
546 * becomes the first queue.
547 *
548 * A one-way scan is natural because of the way UNIX read-ahead blocks are
549 * allocated.
550 */
551 static void
552 bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
553 {
554 struct bufq_disksort *disksort = bufq->bq_private;
555 struct buf *bq, *nbq;
556 int sortby;
557
558 sortby = bufq->bq_flags & BUFQ_SORT_MASK;
559
560 bq = TAILQ_FIRST(&disksort->bq_head);
561
562 /*
563 * If the queue is empty it's easy; we just go on the end.
564 */
565 if (bq == NULL) {
566 TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
567 return;
568 }
569
570 /*
571 * If we lie before the currently active request, then we
572 * must locate the second request list and add ourselves to it.
573 */
574 if (buf_inorder(bp, bq, sortby)) {
575 while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
576 /*
577 * Check for an ``inversion'' in the normally ascending
578 * block numbers, indicating the start of the second
579 * request list.
580 */
581 if (buf_inorder(nbq, bq, sortby)) {
582 /*
583 * Search the second request list for the first
584 * request at a larger block number. We go
585 * after that; if there is no such request, we
586 * go at the end.
587 */
588 do {
589 if (buf_inorder(bp, nbq, sortby))
590 goto insert;
591 bq = nbq;
592 } while ((nbq =
593 TAILQ_NEXT(bq, b_actq)) != NULL);
594 goto insert; /* after last */
595 }
596 bq = nbq;
597 }
598 /*
599 * No inversions... we will go after the last, and
600 * be the first request in the second request list.
601 */
602 goto insert;
603 }
604 /*
605 * Request is at/after the current request...
606 * sort in the first request list.
607 */
608 while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
609 /*
610 * We want to go after the current request if there is an
611 * inversion after it (i.e. it is the end of the first
612 * request list), or if the next request is a larger cylinder
613 * than our request.
614 */
615 if (buf_inorder(nbq, bq, sortby) ||
616 buf_inorder(bp, nbq, sortby))
617 goto insert;
618 bq = nbq;
619 }
620 /*
621 * Neither a second list nor a larger request... we go at the end of
622 * the first list, which is the same as the end of the whole schebang.
623 */
624 insert: TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
625 }
626
627 static struct buf *
628 bufq_disksort_get(struct bufq_state *bufq, int remove)
629 {
630 struct bufq_disksort *disksort = bufq->bq_private;
631 struct buf *bp;
632
633 bp = TAILQ_FIRST(&disksort->bq_head);
634
635 if (bp != NULL && remove)
636 TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
637
638 return (bp);
639 }
640
641
642 /*
643 * Seek sort for disks.
644 *
645 * There are two queues. The first queue holds read requests; the second
646 * holds write requests. The read queue is first-come first-served; the
647 * write queue is sorted in ascendening block order.
648 * The read queue is processed first. After PRIO_READ_BURST consecutive
649 * read requests with non-empty write queue PRIO_WRITE_REQ requests from
650 * the write queue will be processed.
651 */
652 static void
653 bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
654 {
655 struct bufq_prio *prio = bufq->bq_private;
656 struct buf *bq;
657 int sortby;
658
659 sortby = bufq->bq_flags & BUFQ_SORT_MASK;
660
661 /*
662 * If it's a read request append it to the list.
663 */
664 if ((bp->b_flags & B_READ) == B_READ) {
665 TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
666 return;
667 }
668
669 bq = TAILQ_FIRST(&prio->bq_write);
670
671 /*
672 * If the write list is empty, simply append it to the list.
673 */
674 if (bq == NULL) {
675 TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
676 prio->bq_write_next = bp;
677 return;
678 }
679
680 /*
681 * If we lie after the next request, insert after this request.
682 */
683 if (buf_inorder(prio->bq_write_next, bp, sortby))
684 bq = prio->bq_write_next;
685
686 /*
687 * Search for the first request at a larger block number.
688 * We go before this request if it exists.
689 */
690 while (bq != NULL && buf_inorder(bq, bp, sortby))
691 bq = TAILQ_NEXT(bq, b_actq);
692
693 if (bq != NULL)
694 TAILQ_INSERT_BEFORE(bq, bp, b_actq);
695 else
696 TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
697 }
698
699 static struct buf *
700 bufq_prio_get(struct bufq_state *bufq, int remove)
701 {
702 struct bufq_prio *prio = bufq->bq_private;
703 struct buf *bp;
704
705 /*
706 * If no current request, get next from the lists.
707 */
708 if (prio->bq_next == NULL) {
709 /*
710 * If at least one list is empty, select the other.
711 */
712 if (TAILQ_FIRST(&prio->bq_read) == NULL) {
713 prio->bq_next = prio->bq_write_next;
714 prio->bq_read_burst = 0;
715 } else if (prio->bq_write_next == NULL) {
716 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
717 prio->bq_read_burst = 0;
718 } else {
719 /*
720 * Both list have requests. Select the read list up
721 * to PRIO_READ_BURST times, then select the write
722 * list PRIO_WRITE_REQ times.
723 */
724 if (prio->bq_read_burst++ < PRIO_READ_BURST)
725 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
726 else if (prio->bq_read_burst <
727 PRIO_READ_BURST + PRIO_WRITE_REQ)
728 prio->bq_next = prio->bq_write_next;
729 else {
730 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
731 prio->bq_read_burst = 0;
732 }
733 }
734 }
735
736 bp = prio->bq_next;
737
738 if (bp != NULL && remove) {
739 if ((bp->b_flags & B_READ) == B_READ)
740 TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
741 else {
742 /*
743 * Advance the write pointer before removing
744 * bp since it is actually prio->bq_write_next.
745 */
746 prio->bq_write_next =
747 TAILQ_NEXT(prio->bq_write_next, b_actq);
748 TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
749 if (prio->bq_write_next == NULL)
750 prio->bq_write_next =
751 TAILQ_FIRST(&prio->bq_write);
752 }
753
754 prio->bq_next = NULL;
755 }
756
757 return (bp);
758 }
759
760 /*
761 * Create a device buffer queue.
762 */
763 void
764 bufq_alloc(struct bufq_state *bufq, int flags)
765 {
766 struct bufq_fcfs *fcfs;
767 struct bufq_disksort *disksort;
768 struct bufq_prio *prio;
769
770 bufq->bq_flags = flags;
771
772 switch (flags & BUFQ_SORT_MASK) {
773 case BUFQ_SORT_RAWBLOCK:
774 case BUFQ_SORT_CYLINDER:
775 break;
776 case 0:
777 if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
778 break;
779 /* FALLTHROUGH */
780 default:
781 panic("bufq_alloc: sort out of range");
782 }
783
784 switch (flags & BUFQ_METHOD_MASK) {
785 case BUFQ_FCFS:
786 bufq->bq_get = bufq_fcfs_get;
787 bufq->bq_put = bufq_fcfs_put;
788 MALLOC(bufq->bq_private, struct bufq_fcfs *,
789 sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
790 fcfs = (struct bufq_fcfs *)bufq->bq_private;
791 TAILQ_INIT(&fcfs->bq_head);
792 break;
793 case BUFQ_DISKSORT:
794 bufq->bq_get = bufq_disksort_get;
795 bufq->bq_put = bufq_disksort_put;
796 MALLOC(bufq->bq_private, struct bufq_disksort *,
797 sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
798 disksort = (struct bufq_disksort *)bufq->bq_private;
799 TAILQ_INIT(&disksort->bq_head);
800 break;
801 case BUFQ_READ_PRIO:
802 bufq->bq_get = bufq_prio_get;
803 bufq->bq_put = bufq_prio_put;
804 MALLOC(bufq->bq_private, struct bufq_prio *,
805 sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
806 prio = (struct bufq_prio *)bufq->bq_private;
807 TAILQ_INIT(&prio->bq_read);
808 TAILQ_INIT(&prio->bq_write);
809 break;
810 default:
811 panic("bufq_alloc: method out of range");
812 }
813 }
814
815 /*
816 * Destroy a device buffer queue.
817 */
818 void
819 bufq_free(struct bufq_state *bufq)
820 {
821
822 KASSERT(bufq->bq_private != NULL);
823 KASSERT(BUFQ_PEEK(bufq) == NULL);
824
825 FREE(bufq->bq_private, M_DEVBUF);
826 bufq->bq_get = NULL;
827 bufq->bq_put = NULL;
828 }
829