subr_disk.c revision 1.53 1 /* $NetBSD: subr_disk.c,v 1.53 2003/08/07 16:31:52 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.53 2003/08/07 16:31:52 agc Exp $");
78
79 #include "opt_compat_netbsd.h"
80
81 #include <sys/param.h>
82 #include <sys/kernel.h>
83 #include <sys/malloc.h>
84 #include <sys/buf.h>
85 #include <sys/syslog.h>
86 #include <sys/disklabel.h>
87 #include <sys/disk.h>
88 #include <sys/sysctl.h>
89 #include <lib/libkern/libkern.h>
90
91 /*
92 * A global list of all disks attached to the system. May grow or
93 * shrink over time.
94 */
95 struct disklist_head disklist; /* TAILQ_HEAD */
96 int disk_count; /* number of drives in global disklist */
97 struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
98
99 /*
100 * Compute checksum for disk label.
101 */
102 u_int
103 dkcksum(struct disklabel *lp)
104 {
105 u_short *start, *end;
106 u_short sum = 0;
107
108 start = (u_short *)lp;
109 end = (u_short *)&lp->d_partitions[lp->d_npartitions];
110 while (start < end)
111 sum ^= *start++;
112 return (sum);
113 }
114
115 /*
116 * Disk error is the preface to plaintive error messages
117 * about failing disk transfers. It prints messages of the form
118
119 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
120
121 * if the offset of the error in the transfer and a disk label
122 * are both available. blkdone should be -1 if the position of the error
123 * is unknown; the disklabel pointer may be null from drivers that have not
124 * been converted to use them. The message is printed with printf
125 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
126 * The message should be completed (with at least a newline) with printf
127 * or addlog, respectively. There is no trailing space.
128 */
129 #ifndef PRIdaddr
130 #define PRIdaddr PRId64
131 #endif
132 void
133 diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
134 int blkdone, const struct disklabel *lp)
135 {
136 int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
137 void (*pr)(const char *, ...);
138 char partname = 'a' + part;
139 daddr_t sn;
140
141 if (/*CONSTCOND*/0)
142 /* Compiler will error this is the format is wrong... */
143 printf("%" PRIdaddr, bp->b_blkno);
144
145 if (pri != LOG_PRINTF) {
146 static const char fmt[] = "";
147 log(pri, fmt);
148 pr = addlog;
149 } else
150 pr = printf;
151 (*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
152 bp->b_flags & B_READ ? "read" : "writ");
153 sn = bp->b_blkno;
154 if (bp->b_bcount <= DEV_BSIZE)
155 (*pr)("%" PRIdaddr, sn);
156 else {
157 if (blkdone >= 0) {
158 sn += blkdone;
159 (*pr)("%" PRIdaddr " of ", sn);
160 }
161 (*pr)("%" PRIdaddr "-%" PRIdaddr "", bp->b_blkno,
162 bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
163 }
164 if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
165 sn += lp->d_partitions[part].p_offset;
166 (*pr)(" (%s%d bn %" PRIdaddr "; cn %" PRIdaddr "",
167 dname, unit, sn, sn / lp->d_secpercyl);
168 sn %= lp->d_secpercyl;
169 (*pr)(" tn %" PRIdaddr " sn %" PRIdaddr ")",
170 sn / lp->d_nsectors, sn % lp->d_nsectors);
171 }
172 }
173
174 /*
175 * Initialize the disklist. Called by main() before autoconfiguration.
176 */
177 void
178 disk_init(void)
179 {
180
181 TAILQ_INIT(&disklist);
182 disk_count = 0;
183 }
184
185 /*
186 * Searches the disklist for the disk corresponding to the
187 * name provided.
188 */
189 struct disk *
190 disk_find(char *name)
191 {
192 struct disk *diskp;
193
194 if ((name == NULL) || (disk_count <= 0))
195 return (NULL);
196
197 simple_lock(&disklist_slock);
198 for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
199 diskp = TAILQ_NEXT(diskp, dk_link))
200 if (strcmp(diskp->dk_name, name) == 0) {
201 simple_unlock(&disklist_slock);
202 return (diskp);
203 }
204 simple_unlock(&disklist_slock);
205
206 return (NULL);
207 }
208
209 /*
210 * Attach a disk.
211 */
212 void
213 disk_attach(struct disk *diskp)
214 {
215 int s;
216
217 /*
218 * Allocate and initialize the disklabel structures. Note that
219 * it's not safe to sleep here, since we're probably going to be
220 * called during autoconfiguration.
221 */
222 diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
223 diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
224 M_NOWAIT);
225 if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
226 panic("disk_attach: can't allocate storage for disklabel");
227
228 memset(diskp->dk_label, 0, sizeof(struct disklabel));
229 memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
230
231 /*
232 * Set the attached timestamp.
233 */
234 s = splclock();
235 diskp->dk_attachtime = mono_time;
236 splx(s);
237
238 /*
239 * Link into the disklist.
240 */
241 simple_lock(&disklist_slock);
242 TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
243 simple_unlock(&disklist_slock);
244 ++disk_count;
245 }
246
247 /*
248 * Detach a disk.
249 */
250 void
251 disk_detach(struct disk *diskp)
252 {
253
254 /*
255 * Remove from the disklist.
256 */
257 if (--disk_count < 0)
258 panic("disk_detach: disk_count < 0");
259 simple_lock(&disklist_slock);
260 TAILQ_REMOVE(&disklist, diskp, dk_link);
261 simple_unlock(&disklist_slock);
262
263 /*
264 * Free the space used by the disklabel structures.
265 */
266 free(diskp->dk_label, M_DEVBUF);
267 free(diskp->dk_cpulabel, M_DEVBUF);
268 }
269
270 /*
271 * Increment a disk's busy counter. If the counter is going from
272 * 0 to 1, set the timestamp.
273 */
274 void
275 disk_busy(struct disk *diskp)
276 {
277 int s;
278
279 /*
280 * XXX We'd like to use something as accurate as microtime(),
281 * but that doesn't depend on the system TOD clock.
282 */
283 if (diskp->dk_busy++ == 0) {
284 s = splclock();
285 diskp->dk_timestamp = mono_time;
286 splx(s);
287 }
288 }
289
290 /*
291 * Decrement a disk's busy counter, increment the byte count, total busy
292 * time, and reset the timestamp.
293 */
294 void
295 disk_unbusy(struct disk *diskp, long bcount, int read)
296 {
297 int s;
298 struct timeval dv_time, diff_time;
299
300 if (diskp->dk_busy-- == 0) {
301 printf("%s: dk_busy < 0\n", diskp->dk_name);
302 panic("disk_unbusy");
303 }
304
305 s = splclock();
306 dv_time = mono_time;
307 splx(s);
308
309 timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
310 timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
311
312 diskp->dk_timestamp = dv_time;
313 if (bcount > 0) {
314 if (read) {
315 diskp->dk_rbytes += bcount;
316 diskp->dk_rxfer++;
317 } else {
318 diskp->dk_wbytes += bcount;
319 diskp->dk_wxfer++;
320 }
321 }
322 }
323
324 /*
325 * Reset the metrics counters on the given disk. Note that we cannot
326 * reset the busy counter, as it may case a panic in disk_unbusy().
327 * We also must avoid playing with the timestamp information, as it
328 * may skew any pending transfer results.
329 */
330 void
331 disk_resetstat(struct disk *diskp)
332 {
333 int s = splbio(), t;
334
335 diskp->dk_rxfer = 0;
336 diskp->dk_rbytes = 0;
337 diskp->dk_wxfer = 0;
338 diskp->dk_wbytes = 0;
339
340 t = splclock();
341 diskp->dk_attachtime = mono_time;
342 splx(t);
343
344 timerclear(&diskp->dk_time);
345
346 splx(s);
347 }
348
349 int
350 sysctl_disknames(void *vwhere, size_t *sizep)
351 {
352 char buf[DK_DISKNAMELEN + 1];
353 char *where = vwhere;
354 struct disk *diskp;
355 size_t needed, left, slen;
356 int error, first;
357
358 first = 1;
359 error = 0;
360 needed = 0;
361 left = *sizep;
362
363 simple_lock(&disklist_slock);
364 for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
365 diskp = TAILQ_NEXT(diskp, dk_link)) {
366 if (where == NULL)
367 needed += strlen(diskp->dk_name) + 1;
368 else {
369 memset(buf, 0, sizeof(buf));
370 if (first) {
371 strncpy(buf, diskp->dk_name, sizeof(buf));
372 first = 0;
373 } else {
374 buf[0] = ' ';
375 strncpy(buf + 1, diskp->dk_name,
376 sizeof(buf) - 1);
377 }
378 buf[DK_DISKNAMELEN] = '\0';
379 slen = strlen(buf);
380 if (left < slen + 1)
381 break;
382 /* +1 to copy out the trailing NUL byte */
383 error = copyout(buf, where, slen + 1);
384 if (error)
385 break;
386 where += slen;
387 needed += slen;
388 left -= slen;
389 }
390 }
391 simple_unlock(&disklist_slock);
392 *sizep = needed;
393 return (error);
394 }
395
396 int
397 sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
398 {
399 struct disk_sysctl sdisk;
400 struct disk *diskp;
401 char *where = vwhere;
402 size_t tocopy, left;
403 int error;
404
405 /*
406 * The original hw.diskstats call was broken and did not require
407 * the userland to pass in it's size of struct disk_sysctl. This
408 * was fixed after NetBSD 1.6 was released, and any applications
409 * that do not pass in the size are given an error only, unless
410 * we care about 1.6 compatibility.
411 */
412 if (namelen == 0)
413 #ifdef COMPAT_16
414 tocopy = offsetof(struct disk_sysctl, dk_rxfer);
415 #else
416 return (EINVAL);
417 #endif
418 else
419 tocopy = name[0];
420
421 if (where == NULL) {
422 *sizep = disk_count * tocopy;
423 return (0);
424 }
425
426 error = 0;
427 left = *sizep;
428 memset(&sdisk, 0, sizeof(sdisk));
429 *sizep = 0;
430
431 simple_lock(&disklist_slock);
432 TAILQ_FOREACH(diskp, &disklist, dk_link) {
433 if (left < tocopy)
434 break;
435 strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
436 sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
437 sdisk.dk_rxfer = diskp->dk_rxfer;
438 sdisk.dk_wxfer = diskp->dk_wxfer;
439 sdisk.dk_seek = diskp->dk_seek;
440 sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
441 sdisk.dk_rbytes = diskp->dk_rbytes;
442 sdisk.dk_wbytes = diskp->dk_wbytes;
443 sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
444 sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
445 sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
446 sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
447 sdisk.dk_time_sec = diskp->dk_time.tv_sec;
448 sdisk.dk_time_usec = diskp->dk_time.tv_usec;
449 sdisk.dk_busy = diskp->dk_busy;
450
451 error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
452 if (error)
453 break;
454 where += tocopy;
455 *sizep += tocopy;
456 left -= tocopy;
457 }
458 simple_unlock(&disklist_slock);
459 return (error);
460 }
461
462 struct bufq_fcfs {
463 TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
464 };
465
466 struct bufq_disksort {
467 TAILQ_HEAD(, buf) bq_head; /* actual list of buffers */
468 };
469
470 #define PRIO_READ_BURST 48
471 #define PRIO_WRITE_REQ 16
472
473 struct bufq_prio {
474 TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
475 struct buf *bq_write_next; /* next request in bq_write */
476 struct buf *bq_next; /* current request */
477 int bq_read_burst; /* # of consecutive reads */
478 };
479
480
481 /*
482 * Check if two buf's are in ascending order.
483 */
484 static __inline int
485 buf_inorder(struct buf *bp, struct buf *bq, int sortby)
486 {
487 int r;
488
489 if (bp == NULL || bq == NULL)
490 return (bq == NULL);
491
492 if (sortby == BUFQ_SORT_CYLINDER)
493 r = bp->b_cylinder - bq->b_cylinder;
494 else
495 r = 0;
496
497 if (r == 0)
498 r = bp->b_rawblkno - bq->b_rawblkno;
499
500 return (r <= 0);
501 }
502
503
504 /*
505 * First-come first-served sort for disks.
506 *
507 * Requests are appended to the queue without any reordering.
508 */
509 static void
510 bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
511 {
512 struct bufq_fcfs *fcfs = bufq->bq_private;
513
514 TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
515 }
516
517 static struct buf *
518 bufq_fcfs_get(struct bufq_state *bufq, int remove)
519 {
520 struct bufq_fcfs *fcfs = bufq->bq_private;
521 struct buf *bp;
522
523 bp = TAILQ_FIRST(&fcfs->bq_head);
524
525 if (bp != NULL && remove)
526 TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
527
528 return (bp);
529 }
530
531
532 /*
533 * Seek sort for disks.
534 *
535 * There are actually two queues, sorted in ascendening order. The first
536 * queue holds those requests which are positioned after the current block;
537 * the second holds requests which came in after their position was passed.
538 * Thus we implement a one-way scan, retracting after reaching the end of
539 * the drive to the first request on the second queue, at which time it
540 * becomes the first queue.
541 *
542 * A one-way scan is natural because of the way UNIX read-ahead blocks are
543 * allocated.
544 */
545 static void
546 bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
547 {
548 struct bufq_disksort *disksort = bufq->bq_private;
549 struct buf *bq, *nbq;
550 int sortby;
551
552 sortby = bufq->bq_flags & BUFQ_SORT_MASK;
553
554 bq = TAILQ_FIRST(&disksort->bq_head);
555
556 /*
557 * If the queue is empty it's easy; we just go on the end.
558 */
559 if (bq == NULL) {
560 TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
561 return;
562 }
563
564 /*
565 * If we lie before the currently active request, then we
566 * must locate the second request list and add ourselves to it.
567 */
568 if (buf_inorder(bp, bq, sortby)) {
569 while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
570 /*
571 * Check for an ``inversion'' in the normally ascending
572 * block numbers, indicating the start of the second
573 * request list.
574 */
575 if (buf_inorder(nbq, bq, sortby)) {
576 /*
577 * Search the second request list for the first
578 * request at a larger block number. We go
579 * after that; if there is no such request, we
580 * go at the end.
581 */
582 do {
583 if (buf_inorder(bp, nbq, sortby))
584 goto insert;
585 bq = nbq;
586 } while ((nbq =
587 TAILQ_NEXT(bq, b_actq)) != NULL);
588 goto insert; /* after last */
589 }
590 bq = nbq;
591 }
592 /*
593 * No inversions... we will go after the last, and
594 * be the first request in the second request list.
595 */
596 goto insert;
597 }
598 /*
599 * Request is at/after the current request...
600 * sort in the first request list.
601 */
602 while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
603 /*
604 * We want to go after the current request if there is an
605 * inversion after it (i.e. it is the end of the first
606 * request list), or if the next request is a larger cylinder
607 * than our request.
608 */
609 if (buf_inorder(nbq, bq, sortby) ||
610 buf_inorder(bp, nbq, sortby))
611 goto insert;
612 bq = nbq;
613 }
614 /*
615 * Neither a second list nor a larger request... we go at the end of
616 * the first list, which is the same as the end of the whole schebang.
617 */
618 insert: TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
619 }
620
621 static struct buf *
622 bufq_disksort_get(struct bufq_state *bufq, int remove)
623 {
624 struct bufq_disksort *disksort = bufq->bq_private;
625 struct buf *bp;
626
627 bp = TAILQ_FIRST(&disksort->bq_head);
628
629 if (bp != NULL && remove)
630 TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
631
632 return (bp);
633 }
634
635
636 /*
637 * Seek sort for disks.
638 *
639 * There are two queues. The first queue holds read requests; the second
640 * holds write requests. The read queue is first-come first-served; the
641 * write queue is sorted in ascendening block order.
642 * The read queue is processed first. After PRIO_READ_BURST consecutive
643 * read requests with non-empty write queue PRIO_WRITE_REQ requests from
644 * the write queue will be processed.
645 */
646 static void
647 bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
648 {
649 struct bufq_prio *prio = bufq->bq_private;
650 struct buf *bq;
651 int sortby;
652
653 sortby = bufq->bq_flags & BUFQ_SORT_MASK;
654
655 /*
656 * If it's a read request append it to the list.
657 */
658 if ((bp->b_flags & B_READ) == B_READ) {
659 TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
660 return;
661 }
662
663 bq = TAILQ_FIRST(&prio->bq_write);
664
665 /*
666 * If the write list is empty, simply append it to the list.
667 */
668 if (bq == NULL) {
669 TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
670 prio->bq_write_next = bp;
671 return;
672 }
673
674 /*
675 * If we lie after the next request, insert after this request.
676 */
677 if (buf_inorder(prio->bq_write_next, bp, sortby))
678 bq = prio->bq_write_next;
679
680 /*
681 * Search for the first request at a larger block number.
682 * We go before this request if it exists.
683 */
684 while (bq != NULL && buf_inorder(bq, bp, sortby))
685 bq = TAILQ_NEXT(bq, b_actq);
686
687 if (bq != NULL)
688 TAILQ_INSERT_BEFORE(bq, bp, b_actq);
689 else
690 TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
691 }
692
693 static struct buf *
694 bufq_prio_get(struct bufq_state *bufq, int remove)
695 {
696 struct bufq_prio *prio = bufq->bq_private;
697 struct buf *bp;
698
699 /*
700 * If no current request, get next from the lists.
701 */
702 if (prio->bq_next == NULL) {
703 /*
704 * If at least one list is empty, select the other.
705 */
706 if (TAILQ_FIRST(&prio->bq_read) == NULL) {
707 prio->bq_next = prio->bq_write_next;
708 prio->bq_read_burst = 0;
709 } else if (prio->bq_write_next == NULL) {
710 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
711 prio->bq_read_burst = 0;
712 } else {
713 /*
714 * Both list have requests. Select the read list up
715 * to PRIO_READ_BURST times, then select the write
716 * list PRIO_WRITE_REQ times.
717 */
718 if (prio->bq_read_burst++ < PRIO_READ_BURST)
719 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
720 else if (prio->bq_read_burst <
721 PRIO_READ_BURST + PRIO_WRITE_REQ)
722 prio->bq_next = prio->bq_write_next;
723 else {
724 prio->bq_next = TAILQ_FIRST(&prio->bq_read);
725 prio->bq_read_burst = 0;
726 }
727 }
728 }
729
730 bp = prio->bq_next;
731
732 if (bp != NULL && remove) {
733 if ((bp->b_flags & B_READ) == B_READ)
734 TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
735 else {
736 /*
737 * Advance the write pointer before removing
738 * bp since it is actually prio->bq_write_next.
739 */
740 prio->bq_write_next =
741 TAILQ_NEXT(prio->bq_write_next, b_actq);
742 TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
743 if (prio->bq_write_next == NULL)
744 prio->bq_write_next =
745 TAILQ_FIRST(&prio->bq_write);
746 }
747
748 prio->bq_next = NULL;
749 }
750
751 return (bp);
752 }
753
754 /*
755 * Create a device buffer queue.
756 */
757 void
758 bufq_alloc(struct bufq_state *bufq, int flags)
759 {
760 struct bufq_fcfs *fcfs;
761 struct bufq_disksort *disksort;
762 struct bufq_prio *prio;
763
764 bufq->bq_flags = flags;
765
766 switch (flags & BUFQ_SORT_MASK) {
767 case BUFQ_SORT_RAWBLOCK:
768 case BUFQ_SORT_CYLINDER:
769 break;
770 case 0:
771 if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
772 break;
773 /* FALLTHROUGH */
774 default:
775 panic("bufq_alloc: sort out of range");
776 }
777
778 switch (flags & BUFQ_METHOD_MASK) {
779 case BUFQ_FCFS:
780 bufq->bq_get = bufq_fcfs_get;
781 bufq->bq_put = bufq_fcfs_put;
782 MALLOC(bufq->bq_private, struct bufq_fcfs *,
783 sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
784 fcfs = (struct bufq_fcfs *)bufq->bq_private;
785 TAILQ_INIT(&fcfs->bq_head);
786 break;
787 case BUFQ_DISKSORT:
788 bufq->bq_get = bufq_disksort_get;
789 bufq->bq_put = bufq_disksort_put;
790 MALLOC(bufq->bq_private, struct bufq_disksort *,
791 sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
792 disksort = (struct bufq_disksort *)bufq->bq_private;
793 TAILQ_INIT(&disksort->bq_head);
794 break;
795 case BUFQ_READ_PRIO:
796 bufq->bq_get = bufq_prio_get;
797 bufq->bq_put = bufq_prio_put;
798 MALLOC(bufq->bq_private, struct bufq_prio *,
799 sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
800 prio = (struct bufq_prio *)bufq->bq_private;
801 TAILQ_INIT(&prio->bq_read);
802 TAILQ_INIT(&prio->bq_write);
803 break;
804 default:
805 panic("bufq_alloc: method out of range");
806 }
807 }
808
809 /*
810 * Destroy a device buffer queue.
811 */
812 void
813 bufq_free(struct bufq_state *bufq)
814 {
815
816 KASSERT(bufq->bq_private != NULL);
817 KASSERT(BUFQ_PEEK(bufq) == NULL);
818
819 FREE(bufq->bq_private, M_DEVBUF);
820 bufq->bq_get = NULL;
821 bufq->bq_put = NULL;
822 }
823
824 /*
825 * Bounds checking against the media size, used for the raw partition.
826 * The sector size passed in should currently always be DEV_BSIZE,
827 * and the media size the size of the device in DEV_BSIZE sectors.
828 */
829 int
830 bounds_check_with_mediasize(struct buf *bp, int secsize, u_int64_t mediasize)
831 {
832 int sz;
833
834 sz = howmany(bp->b_bcount, secsize);
835
836 if (bp->b_blkno + sz > mediasize) {
837 sz = mediasize - bp->b_blkno;
838 if (sz == 0) {
839 /* If exactly at end of disk, return EOF. */
840 bp->b_resid = bp->b_bcount;
841 goto done;
842 }
843 if (sz < 0) {
844 /* If past end of disk, return EINVAL. */
845 bp->b_error = EINVAL;
846 goto bad;
847 }
848 /* Otherwise, truncate request. */
849 bp->b_bcount = sz << DEV_BSHIFT;
850 }
851
852 return 1;
853
854 bad:
855 bp->b_flags |= B_ERROR;
856 done:
857 return 0;
858 }
859