1 1.11 riastrad /* $NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $ */ 2 1.1 rmind 3 1.1 rmind /*- 4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc. 5 1.1 rmind * All rights reserved. 6 1.1 rmind * 7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation 8 1.1 rmind * by Mindaugas Rasiukevicius. 9 1.1 rmind * 10 1.1 rmind * Redistribution and use in source and binary forms, with or without 11 1.1 rmind * modification, are permitted provided that the following conditions 12 1.1 rmind * are met: 13 1.1 rmind * 1. Redistributions of source code must retain the above copyright 14 1.1 rmind * notice, this list of conditions and the following disclaimer. 15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 rmind * notice, this list of conditions and the following disclaimer in the 17 1.1 rmind * documentation and/or other materials provided with the distribution. 18 1.1 rmind * 19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE. 30 1.1 rmind */ 31 1.1 rmind 32 1.1 rmind /* 33 1.2 rmind * Inter-processor interrupt (IPI) interface: asynchronous IPIs to 34 1.2 rmind * invoke functions with a constant argument and synchronous IPIs 35 1.2 rmind * with the cross-call support. 36 1.1 rmind */ 37 1.1 rmind 38 1.1 rmind #include <sys/cdefs.h> 39 1.11 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $"); 40 1.1 rmind 41 1.1 rmind #include <sys/param.h> 42 1.1 rmind #include <sys/types.h> 43 1.1 rmind 44 1.1 rmind #include <sys/atomic.h> 45 1.1 rmind #include <sys/evcnt.h> 46 1.1 rmind #include <sys/cpu.h> 47 1.1 rmind #include <sys/ipi.h> 48 1.3 rmind #include <sys/intr.h> 49 1.1 rmind #include <sys/kcpuset.h> 50 1.1 rmind #include <sys/kmem.h> 51 1.1 rmind #include <sys/lock.h> 52 1.2 rmind #include <sys/mutex.h> 53 1.2 rmind 54 1.2 rmind /* 55 1.2 rmind * An array of the IPI handlers used for asynchronous invocation. 56 1.2 rmind * The lock protects the slot allocation. 57 1.2 rmind */ 58 1.2 rmind 59 1.2 rmind typedef struct { 60 1.2 rmind ipi_func_t func; 61 1.2 rmind void * arg; 62 1.2 rmind } ipi_intr_t; 63 1.2 rmind 64 1.2 rmind static kmutex_t ipi_mngmt_lock; 65 1.2 rmind static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned; 66 1.1 rmind 67 1.1 rmind /* 68 1.1 rmind * Per-CPU mailbox for IPI messages: it is a single cache line storing 69 1.2 rmind * up to IPI_MSG_MAX messages. This interface is built on top of the 70 1.2 rmind * synchronous IPIs. 71 1.1 rmind */ 72 1.1 rmind 73 1.1 rmind #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *)) 74 1.1 rmind #define IPI_MSG_MAX IPI_MSG_SLOTS 75 1.1 rmind 76 1.1 rmind typedef struct { 77 1.1 rmind ipi_msg_t * msg[IPI_MSG_SLOTS]; 78 1.1 rmind } ipi_mbox_t; 79 1.1 rmind 80 1.2 rmind 81 1.2 rmind /* Mailboxes for the synchronous IPIs. */ 82 1.1 rmind static ipi_mbox_t * ipi_mboxes __read_mostly; 83 1.1 rmind static struct evcnt ipi_mboxfull_ev __cacheline_aligned; 84 1.2 rmind static void ipi_msg_cpu_handler(void *); 85 1.2 rmind 86 1.2 rmind /* Handler for the synchronous IPIs - it must be zero. */ 87 1.2 rmind #define IPI_SYNCH_ID 0 88 1.1 rmind 89 1.1 rmind #ifndef MULTIPROCESSOR 90 1.1 rmind #define cpu_ipi(ci) KASSERT(ci == NULL) 91 1.1 rmind #endif 92 1.1 rmind 93 1.1 rmind void 94 1.1 rmind ipi_sysinit(void) 95 1.1 rmind { 96 1.1 rmind 97 1.2 rmind mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE); 98 1.2 rmind memset(ipi_intrs, 0, sizeof(ipi_intrs)); 99 1.2 rmind 100 1.2 rmind /* 101 1.2 rmind * Register the handler for synchronous IPIs. This mechanism 102 1.2 rmind * is built on top of the asynchronous interface. Slot zero is 103 1.2 rmind * reserved permanently; it is also handy to use zero as a failure 104 1.2 rmind * for other registers (as it is potentially less error-prone). 105 1.2 rmind */ 106 1.2 rmind ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler; 107 1.2 rmind 108 1.1 rmind evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL, 109 1.1 rmind "ipi", "full"); 110 1.1 rmind } 111 1.1 rmind 112 1.8 riastrad void 113 1.8 riastrad ipi_percpu_init(void) 114 1.8 riastrad { 115 1.8 riastrad const size_t len = ncpu * sizeof(ipi_mbox_t); 116 1.8 riastrad 117 1.8 riastrad /* Initialise the per-CPU bit fields. */ 118 1.8 riastrad for (u_int i = 0; i < ncpu; i++) { 119 1.8 riastrad struct cpu_info *ci = cpu_lookup(i); 120 1.8 riastrad memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend)); 121 1.8 riastrad } 122 1.8 riastrad 123 1.8 riastrad /* Allocate per-CPU IPI mailboxes. */ 124 1.8 riastrad ipi_mboxes = kmem_zalloc(len, KM_SLEEP); 125 1.8 riastrad KASSERT(ipi_mboxes != NULL); 126 1.8 riastrad } 127 1.8 riastrad 128 1.1 rmind /* 129 1.2 rmind * ipi_register: register an asynchronous IPI handler. 130 1.2 rmind * 131 1.2 rmind * => Returns IPI ID which is greater than zero; on failure - zero. 132 1.2 rmind */ 133 1.2 rmind u_int 134 1.2 rmind ipi_register(ipi_func_t func, void *arg) 135 1.2 rmind { 136 1.2 rmind mutex_enter(&ipi_mngmt_lock); 137 1.2 rmind for (u_int i = 0; i < IPI_MAXREG; i++) { 138 1.2 rmind if (ipi_intrs[i].func == NULL) { 139 1.2 rmind /* Register the function. */ 140 1.2 rmind ipi_intrs[i].func = func; 141 1.2 rmind ipi_intrs[i].arg = arg; 142 1.2 rmind mutex_exit(&ipi_mngmt_lock); 143 1.2 rmind 144 1.2 rmind KASSERT(i != IPI_SYNCH_ID); 145 1.2 rmind return i; 146 1.2 rmind } 147 1.2 rmind } 148 1.2 rmind mutex_exit(&ipi_mngmt_lock); 149 1.2 rmind printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n"); 150 1.2 rmind return 0; 151 1.2 rmind } 152 1.2 rmind 153 1.2 rmind /* 154 1.2 rmind * ipi_unregister: release the IPI handler given the ID. 155 1.2 rmind */ 156 1.2 rmind void 157 1.2 rmind ipi_unregister(u_int ipi_id) 158 1.2 rmind { 159 1.7 christos ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) }; 160 1.2 rmind 161 1.2 rmind KASSERT(ipi_id != IPI_SYNCH_ID); 162 1.2 rmind KASSERT(ipi_id < IPI_MAXREG); 163 1.2 rmind 164 1.2 rmind /* Release the slot. */ 165 1.2 rmind mutex_enter(&ipi_mngmt_lock); 166 1.2 rmind KASSERT(ipi_intrs[ipi_id].func != NULL); 167 1.2 rmind ipi_intrs[ipi_id].func = NULL; 168 1.2 rmind 169 1.2 rmind /* Ensure that there are no IPIs in flight. */ 170 1.2 rmind kpreempt_disable(); 171 1.4 thorpej ipi_broadcast(&ipimsg, false); 172 1.2 rmind ipi_wait(&ipimsg); 173 1.2 rmind kpreempt_enable(); 174 1.2 rmind mutex_exit(&ipi_mngmt_lock); 175 1.2 rmind } 176 1.2 rmind 177 1.2 rmind /* 178 1.4 thorpej * ipi_mark_pending: internal routine to mark an IPI pending on the 179 1.4 thorpej * specified CPU (which might be curcpu()). 180 1.2 rmind */ 181 1.4 thorpej static bool 182 1.4 thorpej ipi_mark_pending(u_int ipi_id, struct cpu_info *ci) 183 1.2 rmind { 184 1.2 rmind const u_int i = ipi_id >> IPI_BITW_SHIFT; 185 1.2 rmind const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK); 186 1.2 rmind 187 1.2 rmind KASSERT(ipi_id < IPI_MAXREG); 188 1.2 rmind KASSERT(kpreempt_disabled()); 189 1.2 rmind 190 1.9 riastrad /* Mark as pending and return true if not previously marked. */ 191 1.9 riastrad if ((atomic_load_acquire(&ci->ci_ipipend[i]) & bitm) == 0) { 192 1.10 riastrad membar_release(); 193 1.2 rmind atomic_or_32(&ci->ci_ipipend[i], bitm); 194 1.4 thorpej return true; 195 1.4 thorpej } 196 1.4 thorpej return false; 197 1.4 thorpej } 198 1.4 thorpej 199 1.4 thorpej /* 200 1.4 thorpej * ipi_trigger: asynchronously send an IPI to the specified CPU. 201 1.4 thorpej */ 202 1.4 thorpej void 203 1.4 thorpej ipi_trigger(u_int ipi_id, struct cpu_info *ci) 204 1.4 thorpej { 205 1.4 thorpej 206 1.4 thorpej KASSERT(curcpu() != ci); 207 1.4 thorpej if (ipi_mark_pending(ipi_id, ci)) { 208 1.2 rmind cpu_ipi(ci); 209 1.2 rmind } 210 1.2 rmind } 211 1.2 rmind 212 1.2 rmind /* 213 1.4 thorpej * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and 214 1.4 thorpej * ipi_trigger_broadcast(). 215 1.3 rmind */ 216 1.4 thorpej static void 217 1.4 thorpej ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target, 218 1.4 thorpej bool skip_self) 219 1.3 rmind { 220 1.3 rmind const cpuid_t selfid = cpu_index(curcpu()); 221 1.3 rmind CPU_INFO_ITERATOR cii; 222 1.3 rmind struct cpu_info *ci; 223 1.3 rmind 224 1.3 rmind KASSERT(kpreempt_disabled()); 225 1.3 rmind KASSERT(target != NULL); 226 1.3 rmind 227 1.3 rmind for (CPU_INFO_FOREACH(cii, ci)) { 228 1.3 rmind const cpuid_t cpuid = cpu_index(ci); 229 1.3 rmind 230 1.3 rmind if (!kcpuset_isset(target, cpuid) || cpuid == selfid) { 231 1.3 rmind continue; 232 1.3 rmind } 233 1.3 rmind ipi_trigger(ipi_id, ci); 234 1.3 rmind } 235 1.4 thorpej if (!skip_self && kcpuset_isset(target, selfid)) { 236 1.4 thorpej ipi_mark_pending(ipi_id, curcpu()); 237 1.3 rmind int s = splhigh(); 238 1.3 rmind ipi_cpu_handler(); 239 1.3 rmind splx(s); 240 1.3 rmind } 241 1.3 rmind } 242 1.3 rmind 243 1.3 rmind /* 244 1.4 thorpej * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple 245 1.4 thorpej * CPUs given the target CPU set. 246 1.4 thorpej */ 247 1.4 thorpej void 248 1.4 thorpej ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target) 249 1.4 thorpej { 250 1.4 thorpej ipi_trigger_multi_internal(ipi_id, target, false); 251 1.4 thorpej } 252 1.4 thorpej 253 1.4 thorpej /* 254 1.4 thorpej * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached, 255 1.4 thorpej * optionally skipping the sending CPU. 256 1.4 thorpej */ 257 1.4 thorpej void 258 1.4 thorpej ipi_trigger_broadcast(u_int ipi_id, bool skip_self) 259 1.4 thorpej { 260 1.4 thorpej ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self); 261 1.4 thorpej } 262 1.4 thorpej 263 1.4 thorpej /* 264 1.1 rmind * put_msg: insert message into the mailbox. 265 1.9 riastrad * 266 1.10 riastrad * Caller is responsible for issuing membar_release first. 267 1.1 rmind */ 268 1.1 rmind static inline void 269 1.1 rmind put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg) 270 1.1 rmind { 271 1.1 rmind int count = SPINLOCK_BACKOFF_MIN; 272 1.1 rmind again: 273 1.1 rmind for (u_int i = 0; i < IPI_MSG_MAX; i++) { 274 1.9 riastrad if (atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) { 275 1.1 rmind return; 276 1.1 rmind } 277 1.1 rmind } 278 1.1 rmind 279 1.1 rmind /* All slots are full: we have to spin-wait. */ 280 1.1 rmind ipi_mboxfull_ev.ev_count++; 281 1.1 rmind SPINLOCK_BACKOFF(count); 282 1.1 rmind goto again; 283 1.1 rmind } 284 1.1 rmind 285 1.1 rmind /* 286 1.1 rmind * ipi_cpu_handler: the IPI handler. 287 1.1 rmind */ 288 1.1 rmind void 289 1.1 rmind ipi_cpu_handler(void) 290 1.1 rmind { 291 1.2 rmind struct cpu_info * const ci = curcpu(); 292 1.2 rmind 293 1.2 rmind /* 294 1.2 rmind * Handle asynchronous IPIs: inspect per-CPU bit field, extract 295 1.2 rmind * IPI ID numbers and execute functions in those slots. 296 1.2 rmind */ 297 1.2 rmind for (u_int i = 0; i < IPI_BITWORDS; i++) { 298 1.2 rmind uint32_t pending, bit; 299 1.2 rmind 300 1.9 riastrad if (atomic_load_relaxed(&ci->ci_ipipend[i]) == 0) { 301 1.2 rmind continue; 302 1.2 rmind } 303 1.2 rmind pending = atomic_swap_32(&ci->ci_ipipend[i], 0); 304 1.10 riastrad membar_acquire(); 305 1.2 rmind while ((bit = ffs(pending)) != 0) { 306 1.2 rmind const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit; 307 1.2 rmind ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id]; 308 1.2 rmind 309 1.2 rmind pending &= ~(1U << bit); 310 1.2 rmind KASSERT(ipi_hdl->func != NULL); 311 1.2 rmind ipi_hdl->func(ipi_hdl->arg); 312 1.2 rmind } 313 1.2 rmind } 314 1.2 rmind } 315 1.2 rmind 316 1.2 rmind /* 317 1.2 rmind * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox, 318 1.2 rmind * execute the passed functions and acknowledge the messages. 319 1.2 rmind */ 320 1.2 rmind static void 321 1.2 rmind ipi_msg_cpu_handler(void *arg __unused) 322 1.2 rmind { 323 1.1 rmind const struct cpu_info * const ci = curcpu(); 324 1.1 rmind ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)]; 325 1.1 rmind 326 1.1 rmind for (u_int i = 0; i < IPI_MSG_MAX; i++) { 327 1.1 rmind ipi_msg_t *msg; 328 1.1 rmind 329 1.1 rmind /* Get the message. */ 330 1.9 riastrad if ((msg = atomic_load_acquire(&mbox->msg[i])) == NULL) { 331 1.1 rmind continue; 332 1.1 rmind } 333 1.9 riastrad atomic_store_relaxed(&mbox->msg[i], NULL); 334 1.1 rmind 335 1.1 rmind /* Execute the handler. */ 336 1.1 rmind KASSERT(msg->func); 337 1.1 rmind msg->func(msg->arg); 338 1.1 rmind 339 1.1 rmind /* Ack the request. */ 340 1.10 riastrad membar_release(); 341 1.1 rmind atomic_dec_uint(&msg->_pending); 342 1.1 rmind } 343 1.1 rmind } 344 1.1 rmind 345 1.1 rmind /* 346 1.1 rmind * ipi_unicast: send an IPI to a single CPU. 347 1.1 rmind * 348 1.1 rmind * => The CPU must be remote; must not be local. 349 1.1 rmind * => The caller must ipi_wait() on the message for completion. 350 1.1 rmind */ 351 1.1 rmind void 352 1.1 rmind ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci) 353 1.1 rmind { 354 1.1 rmind const cpuid_t id = cpu_index(ci); 355 1.1 rmind 356 1.1 rmind KASSERT(msg->func != NULL); 357 1.1 rmind KASSERT(kpreempt_disabled()); 358 1.1 rmind KASSERT(curcpu() != ci); 359 1.1 rmind 360 1.1 rmind msg->_pending = 1; 361 1.10 riastrad membar_release(); 362 1.1 rmind 363 1.1 rmind put_msg(&ipi_mboxes[id], msg); 364 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci); 365 1.1 rmind } 366 1.1 rmind 367 1.1 rmind /* 368 1.1 rmind * ipi_multicast: send an IPI to each CPU in the specified set. 369 1.1 rmind * 370 1.1 rmind * => The caller must ipi_wait() on the message for completion. 371 1.1 rmind */ 372 1.1 rmind void 373 1.1 rmind ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target) 374 1.1 rmind { 375 1.1 rmind const struct cpu_info * const self = curcpu(); 376 1.1 rmind CPU_INFO_ITERATOR cii; 377 1.1 rmind struct cpu_info *ci; 378 1.1 rmind u_int local; 379 1.1 rmind 380 1.1 rmind KASSERT(msg->func != NULL); 381 1.1 rmind KASSERT(kpreempt_disabled()); 382 1.1 rmind 383 1.1 rmind local = !!kcpuset_isset(target, cpu_index(self)); 384 1.1 rmind msg->_pending = kcpuset_countset(target) - local; 385 1.10 riastrad membar_release(); 386 1.1 rmind 387 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) { 388 1.1 rmind cpuid_t id; 389 1.1 rmind 390 1.1 rmind if (__predict_false(ci == self)) { 391 1.1 rmind continue; 392 1.1 rmind } 393 1.1 rmind id = cpu_index(ci); 394 1.1 rmind if (!kcpuset_isset(target, id)) { 395 1.1 rmind continue; 396 1.1 rmind } 397 1.1 rmind put_msg(&ipi_mboxes[id], msg); 398 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci); 399 1.1 rmind } 400 1.1 rmind if (local) { 401 1.1 rmind msg->func(msg->arg); 402 1.1 rmind } 403 1.1 rmind } 404 1.1 rmind 405 1.1 rmind /* 406 1.1 rmind * ipi_broadcast: send an IPI to all CPUs. 407 1.1 rmind * 408 1.1 rmind * => The caller must ipi_wait() on the message for completion. 409 1.1 rmind */ 410 1.1 rmind void 411 1.4 thorpej ipi_broadcast(ipi_msg_t *msg, bool skip_self) 412 1.1 rmind { 413 1.1 rmind const struct cpu_info * const self = curcpu(); 414 1.1 rmind CPU_INFO_ITERATOR cii; 415 1.1 rmind struct cpu_info *ci; 416 1.1 rmind 417 1.1 rmind KASSERT(msg->func != NULL); 418 1.1 rmind KASSERT(kpreempt_disabled()); 419 1.1 rmind 420 1.1 rmind msg->_pending = ncpu - 1; 421 1.10 riastrad membar_release(); 422 1.1 rmind 423 1.1 rmind /* Broadcast IPIs for remote CPUs. */ 424 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) { 425 1.1 rmind cpuid_t id; 426 1.1 rmind 427 1.1 rmind if (__predict_false(ci == self)) { 428 1.1 rmind continue; 429 1.1 rmind } 430 1.1 rmind id = cpu_index(ci); 431 1.1 rmind put_msg(&ipi_mboxes[id], msg); 432 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci); 433 1.1 rmind } 434 1.1 rmind 435 1.4 thorpej if (!skip_self) { 436 1.4 thorpej /* Finally, execute locally. */ 437 1.4 thorpej msg->func(msg->arg); 438 1.4 thorpej } 439 1.1 rmind } 440 1.1 rmind 441 1.1 rmind /* 442 1.1 rmind * ipi_wait: spin-wait until the message is processed. 443 1.1 rmind */ 444 1.1 rmind void 445 1.1 rmind ipi_wait(ipi_msg_t *msg) 446 1.1 rmind { 447 1.1 rmind int count = SPINLOCK_BACKOFF_MIN; 448 1.1 rmind 449 1.9 riastrad while (atomic_load_acquire(&msg->_pending)) { 450 1.9 riastrad KASSERT(atomic_load_relaxed(&msg->_pending) < ncpu); 451 1.1 rmind SPINLOCK_BACKOFF(count); 452 1.1 rmind } 453 1.1 rmind } 454