Home | History | Annotate | Line # | Download | only in kern
      1  1.11  riastrad /*	$NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $	*/
      2   1.1     rmind 
      3   1.1     rmind /*-
      4   1.1     rmind  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5   1.1     rmind  * All rights reserved.
      6   1.1     rmind  *
      7   1.1     rmind  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1     rmind  * by Mindaugas Rasiukevicius.
      9   1.1     rmind  *
     10   1.1     rmind  * Redistribution and use in source and binary forms, with or without
     11   1.1     rmind  * modification, are permitted provided that the following conditions
     12   1.1     rmind  * are met:
     13   1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     14   1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     15   1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     17   1.1     rmind  *    documentation and/or other materials provided with the distribution.
     18   1.1     rmind  *
     19   1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1     rmind  */
     31   1.1     rmind 
     32   1.1     rmind /*
     33   1.2     rmind  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
     34   1.2     rmind  * invoke functions with a constant argument and synchronous IPIs
     35   1.2     rmind  * with the cross-call support.
     36   1.1     rmind  */
     37   1.1     rmind 
     38   1.1     rmind #include <sys/cdefs.h>
     39  1.11  riastrad __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $");
     40   1.1     rmind 
     41   1.1     rmind #include <sys/param.h>
     42   1.1     rmind #include <sys/types.h>
     43   1.1     rmind 
     44   1.1     rmind #include <sys/atomic.h>
     45   1.1     rmind #include <sys/evcnt.h>
     46   1.1     rmind #include <sys/cpu.h>
     47   1.1     rmind #include <sys/ipi.h>
     48   1.3     rmind #include <sys/intr.h>
     49   1.1     rmind #include <sys/kcpuset.h>
     50   1.1     rmind #include <sys/kmem.h>
     51   1.1     rmind #include <sys/lock.h>
     52   1.2     rmind #include <sys/mutex.h>
     53   1.2     rmind 
     54   1.2     rmind /*
     55   1.2     rmind  * An array of the IPI handlers used for asynchronous invocation.
     56   1.2     rmind  * The lock protects the slot allocation.
     57   1.2     rmind  */
     58   1.2     rmind 
     59   1.2     rmind typedef struct {
     60   1.2     rmind 	ipi_func_t	func;
     61   1.2     rmind 	void *		arg;
     62   1.2     rmind } ipi_intr_t;
     63   1.2     rmind 
     64   1.2     rmind static kmutex_t		ipi_mngmt_lock;
     65   1.2     rmind static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
     66   1.1     rmind 
     67   1.1     rmind /*
     68   1.1     rmind  * Per-CPU mailbox for IPI messages: it is a single cache line storing
     69   1.2     rmind  * up to IPI_MSG_MAX messages.  This interface is built on top of the
     70   1.2     rmind  * synchronous IPIs.
     71   1.1     rmind  */
     72   1.1     rmind 
     73   1.1     rmind #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
     74   1.1     rmind #define	IPI_MSG_MAX	IPI_MSG_SLOTS
     75   1.1     rmind 
     76   1.1     rmind typedef struct {
     77   1.1     rmind 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
     78   1.1     rmind } ipi_mbox_t;
     79   1.1     rmind 
     80   1.2     rmind 
     81   1.2     rmind /* Mailboxes for the synchronous IPIs. */
     82   1.1     rmind static ipi_mbox_t *	ipi_mboxes	__read_mostly;
     83   1.1     rmind static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
     84   1.2     rmind static void		ipi_msg_cpu_handler(void *);
     85   1.2     rmind 
     86   1.2     rmind /* Handler for the synchronous IPIs - it must be zero. */
     87   1.2     rmind #define	IPI_SYNCH_ID	0
     88   1.1     rmind 
     89   1.1     rmind #ifndef MULTIPROCESSOR
     90   1.1     rmind #define	cpu_ipi(ci)	KASSERT(ci == NULL)
     91   1.1     rmind #endif
     92   1.1     rmind 
     93   1.1     rmind void
     94   1.1     rmind ipi_sysinit(void)
     95   1.1     rmind {
     96   1.1     rmind 
     97   1.2     rmind 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
     98   1.2     rmind 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
     99   1.2     rmind 
    100   1.2     rmind 	/*
    101   1.2     rmind 	 * Register the handler for synchronous IPIs.  This mechanism
    102   1.2     rmind 	 * is built on top of the asynchronous interface.  Slot zero is
    103   1.2     rmind 	 * reserved permanently; it is also handy to use zero as a failure
    104   1.2     rmind 	 * for other registers (as it is potentially less error-prone).
    105   1.2     rmind 	 */
    106   1.2     rmind 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
    107   1.2     rmind 
    108   1.1     rmind 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
    109   1.1     rmind 	   "ipi", "full");
    110   1.1     rmind }
    111   1.1     rmind 
    112   1.8  riastrad void
    113   1.8  riastrad ipi_percpu_init(void)
    114   1.8  riastrad {
    115   1.8  riastrad 	const size_t len = ncpu * sizeof(ipi_mbox_t);
    116   1.8  riastrad 
    117   1.8  riastrad 	/* Initialise the per-CPU bit fields. */
    118   1.8  riastrad 	for (u_int i = 0; i < ncpu; i++) {
    119   1.8  riastrad 		struct cpu_info *ci = cpu_lookup(i);
    120   1.8  riastrad 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
    121   1.8  riastrad 	}
    122   1.8  riastrad 
    123   1.8  riastrad 	/* Allocate per-CPU IPI mailboxes. */
    124   1.8  riastrad 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
    125   1.8  riastrad 	KASSERT(ipi_mboxes != NULL);
    126   1.8  riastrad }
    127   1.8  riastrad 
    128   1.1     rmind /*
    129   1.2     rmind  * ipi_register: register an asynchronous IPI handler.
    130   1.2     rmind  *
    131   1.2     rmind  * => Returns IPI ID which is greater than zero; on failure - zero.
    132   1.2     rmind  */
    133   1.2     rmind u_int
    134   1.2     rmind ipi_register(ipi_func_t func, void *arg)
    135   1.2     rmind {
    136   1.2     rmind 	mutex_enter(&ipi_mngmt_lock);
    137   1.2     rmind 	for (u_int i = 0; i < IPI_MAXREG; i++) {
    138   1.2     rmind 		if (ipi_intrs[i].func == NULL) {
    139   1.2     rmind 			/* Register the function. */
    140   1.2     rmind 			ipi_intrs[i].func = func;
    141   1.2     rmind 			ipi_intrs[i].arg = arg;
    142   1.2     rmind 			mutex_exit(&ipi_mngmt_lock);
    143   1.2     rmind 
    144   1.2     rmind 			KASSERT(i != IPI_SYNCH_ID);
    145   1.2     rmind 			return i;
    146   1.2     rmind 		}
    147   1.2     rmind 	}
    148   1.2     rmind 	mutex_exit(&ipi_mngmt_lock);
    149   1.2     rmind 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
    150   1.2     rmind 	return 0;
    151   1.2     rmind }
    152   1.2     rmind 
    153   1.2     rmind /*
    154   1.2     rmind  * ipi_unregister: release the IPI handler given the ID.
    155   1.2     rmind  */
    156   1.2     rmind void
    157   1.2     rmind ipi_unregister(u_int ipi_id)
    158   1.2     rmind {
    159   1.7  christos 	ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
    160   1.2     rmind 
    161   1.2     rmind 	KASSERT(ipi_id != IPI_SYNCH_ID);
    162   1.2     rmind 	KASSERT(ipi_id < IPI_MAXREG);
    163   1.2     rmind 
    164   1.2     rmind 	/* Release the slot. */
    165   1.2     rmind 	mutex_enter(&ipi_mngmt_lock);
    166   1.2     rmind 	KASSERT(ipi_intrs[ipi_id].func != NULL);
    167   1.2     rmind 	ipi_intrs[ipi_id].func = NULL;
    168   1.2     rmind 
    169   1.2     rmind 	/* Ensure that there are no IPIs in flight. */
    170   1.2     rmind 	kpreempt_disable();
    171   1.4   thorpej 	ipi_broadcast(&ipimsg, false);
    172   1.2     rmind 	ipi_wait(&ipimsg);
    173   1.2     rmind 	kpreempt_enable();
    174   1.2     rmind 	mutex_exit(&ipi_mngmt_lock);
    175   1.2     rmind }
    176   1.2     rmind 
    177   1.2     rmind /*
    178   1.4   thorpej  * ipi_mark_pending: internal routine to mark an IPI pending on the
    179   1.4   thorpej  * specified CPU (which might be curcpu()).
    180   1.2     rmind  */
    181   1.4   thorpej static bool
    182   1.4   thorpej ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
    183   1.2     rmind {
    184   1.2     rmind 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
    185   1.2     rmind 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
    186   1.2     rmind 
    187   1.2     rmind 	KASSERT(ipi_id < IPI_MAXREG);
    188   1.2     rmind 	KASSERT(kpreempt_disabled());
    189   1.2     rmind 
    190   1.9  riastrad 	/* Mark as pending and return true if not previously marked. */
    191   1.9  riastrad 	if ((atomic_load_acquire(&ci->ci_ipipend[i]) & bitm) == 0) {
    192  1.10  riastrad 		membar_release();
    193   1.2     rmind 		atomic_or_32(&ci->ci_ipipend[i], bitm);
    194   1.4   thorpej 		return true;
    195   1.4   thorpej 	}
    196   1.4   thorpej 	return false;
    197   1.4   thorpej }
    198   1.4   thorpej 
    199   1.4   thorpej /*
    200   1.4   thorpej  * ipi_trigger: asynchronously send an IPI to the specified CPU.
    201   1.4   thorpej  */
    202   1.4   thorpej void
    203   1.4   thorpej ipi_trigger(u_int ipi_id, struct cpu_info *ci)
    204   1.4   thorpej {
    205   1.4   thorpej 
    206   1.4   thorpej 	KASSERT(curcpu() != ci);
    207   1.4   thorpej 	if (ipi_mark_pending(ipi_id, ci)) {
    208   1.2     rmind 		cpu_ipi(ci);
    209   1.2     rmind 	}
    210   1.2     rmind }
    211   1.2     rmind 
    212   1.2     rmind /*
    213   1.4   thorpej  * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
    214   1.4   thorpej  * ipi_trigger_broadcast().
    215   1.3     rmind  */
    216   1.4   thorpej static void
    217   1.4   thorpej ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
    218   1.4   thorpej     bool skip_self)
    219   1.3     rmind {
    220   1.3     rmind 	const cpuid_t selfid = cpu_index(curcpu());
    221   1.3     rmind 	CPU_INFO_ITERATOR cii;
    222   1.3     rmind 	struct cpu_info *ci;
    223   1.3     rmind 
    224   1.3     rmind 	KASSERT(kpreempt_disabled());
    225   1.3     rmind 	KASSERT(target != NULL);
    226   1.3     rmind 
    227   1.3     rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    228   1.3     rmind 		const cpuid_t cpuid = cpu_index(ci);
    229   1.3     rmind 
    230   1.3     rmind 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
    231   1.3     rmind 			continue;
    232   1.3     rmind 		}
    233   1.3     rmind 		ipi_trigger(ipi_id, ci);
    234   1.3     rmind 	}
    235   1.4   thorpej 	if (!skip_self && kcpuset_isset(target, selfid)) {
    236   1.4   thorpej 		ipi_mark_pending(ipi_id, curcpu());
    237   1.3     rmind 		int s = splhigh();
    238   1.3     rmind 		ipi_cpu_handler();
    239   1.3     rmind 		splx(s);
    240   1.3     rmind 	}
    241   1.3     rmind }
    242   1.3     rmind 
    243   1.3     rmind /*
    244   1.4   thorpej  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
    245   1.4   thorpej  * CPUs given the target CPU set.
    246   1.4   thorpej  */
    247   1.4   thorpej void
    248   1.4   thorpej ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
    249   1.4   thorpej {
    250   1.4   thorpej 	ipi_trigger_multi_internal(ipi_id, target, false);
    251   1.4   thorpej }
    252   1.4   thorpej 
    253   1.4   thorpej /*
    254   1.4   thorpej  * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
    255   1.4   thorpej  * optionally skipping the sending CPU.
    256   1.4   thorpej  */
    257   1.4   thorpej void
    258   1.4   thorpej ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
    259   1.4   thorpej {
    260   1.4   thorpej 	ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
    261   1.4   thorpej }
    262   1.4   thorpej 
    263   1.4   thorpej /*
    264   1.1     rmind  * put_msg: insert message into the mailbox.
    265   1.9  riastrad  *
    266  1.10  riastrad  * Caller is responsible for issuing membar_release first.
    267   1.1     rmind  */
    268   1.1     rmind static inline void
    269   1.1     rmind put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
    270   1.1     rmind {
    271   1.1     rmind 	int count = SPINLOCK_BACKOFF_MIN;
    272   1.1     rmind again:
    273   1.1     rmind 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    274   1.9  riastrad 		if (atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
    275   1.1     rmind 			return;
    276   1.1     rmind 		}
    277   1.1     rmind 	}
    278   1.1     rmind 
    279   1.1     rmind 	/* All slots are full: we have to spin-wait. */
    280   1.1     rmind 	ipi_mboxfull_ev.ev_count++;
    281   1.1     rmind 	SPINLOCK_BACKOFF(count);
    282   1.1     rmind 	goto again;
    283   1.1     rmind }
    284   1.1     rmind 
    285   1.1     rmind /*
    286   1.1     rmind  * ipi_cpu_handler: the IPI handler.
    287   1.1     rmind  */
    288   1.1     rmind void
    289   1.1     rmind ipi_cpu_handler(void)
    290   1.1     rmind {
    291   1.2     rmind 	struct cpu_info * const ci = curcpu();
    292   1.2     rmind 
    293   1.2     rmind 	/*
    294   1.2     rmind 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
    295   1.2     rmind 	 * IPI ID numbers and execute functions in those slots.
    296   1.2     rmind 	 */
    297   1.2     rmind 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
    298   1.2     rmind 		uint32_t pending, bit;
    299   1.2     rmind 
    300   1.9  riastrad 		if (atomic_load_relaxed(&ci->ci_ipipend[i]) == 0) {
    301   1.2     rmind 			continue;
    302   1.2     rmind 		}
    303   1.2     rmind 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
    304  1.10  riastrad 		membar_acquire();
    305   1.2     rmind 		while ((bit = ffs(pending)) != 0) {
    306   1.2     rmind 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
    307   1.2     rmind 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
    308   1.2     rmind 
    309   1.2     rmind 			pending &= ~(1U << bit);
    310   1.2     rmind 			KASSERT(ipi_hdl->func != NULL);
    311   1.2     rmind 			ipi_hdl->func(ipi_hdl->arg);
    312   1.2     rmind 		}
    313   1.2     rmind 	}
    314   1.2     rmind }
    315   1.2     rmind 
    316   1.2     rmind /*
    317   1.2     rmind  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
    318   1.2     rmind  * execute the passed functions and acknowledge the messages.
    319   1.2     rmind  */
    320   1.2     rmind static void
    321   1.2     rmind ipi_msg_cpu_handler(void *arg __unused)
    322   1.2     rmind {
    323   1.1     rmind 	const struct cpu_info * const ci = curcpu();
    324   1.1     rmind 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
    325   1.1     rmind 
    326   1.1     rmind 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
    327   1.1     rmind 		ipi_msg_t *msg;
    328   1.1     rmind 
    329   1.1     rmind 		/* Get the message. */
    330   1.9  riastrad 		if ((msg = atomic_load_acquire(&mbox->msg[i])) == NULL) {
    331   1.1     rmind 			continue;
    332   1.1     rmind 		}
    333   1.9  riastrad 		atomic_store_relaxed(&mbox->msg[i], NULL);
    334   1.1     rmind 
    335   1.1     rmind 		/* Execute the handler. */
    336   1.1     rmind 		KASSERT(msg->func);
    337   1.1     rmind 		msg->func(msg->arg);
    338   1.1     rmind 
    339   1.1     rmind 		/* Ack the request. */
    340  1.10  riastrad 		membar_release();
    341   1.1     rmind 		atomic_dec_uint(&msg->_pending);
    342   1.1     rmind 	}
    343   1.1     rmind }
    344   1.1     rmind 
    345   1.1     rmind /*
    346   1.1     rmind  * ipi_unicast: send an IPI to a single CPU.
    347   1.1     rmind  *
    348   1.1     rmind  * => The CPU must be remote; must not be local.
    349   1.1     rmind  * => The caller must ipi_wait() on the message for completion.
    350   1.1     rmind  */
    351   1.1     rmind void
    352   1.1     rmind ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
    353   1.1     rmind {
    354   1.1     rmind 	const cpuid_t id = cpu_index(ci);
    355   1.1     rmind 
    356   1.1     rmind 	KASSERT(msg->func != NULL);
    357   1.1     rmind 	KASSERT(kpreempt_disabled());
    358   1.1     rmind 	KASSERT(curcpu() != ci);
    359   1.1     rmind 
    360   1.1     rmind 	msg->_pending = 1;
    361  1.10  riastrad 	membar_release();
    362   1.1     rmind 
    363   1.1     rmind 	put_msg(&ipi_mboxes[id], msg);
    364   1.2     rmind 	ipi_trigger(IPI_SYNCH_ID, ci);
    365   1.1     rmind }
    366   1.1     rmind 
    367   1.1     rmind /*
    368   1.1     rmind  * ipi_multicast: send an IPI to each CPU in the specified set.
    369   1.1     rmind  *
    370   1.1     rmind  * => The caller must ipi_wait() on the message for completion.
    371   1.1     rmind  */
    372   1.1     rmind void
    373   1.1     rmind ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
    374   1.1     rmind {
    375   1.1     rmind 	const struct cpu_info * const self = curcpu();
    376   1.1     rmind 	CPU_INFO_ITERATOR cii;
    377   1.1     rmind 	struct cpu_info *ci;
    378   1.1     rmind 	u_int local;
    379   1.1     rmind 
    380   1.1     rmind 	KASSERT(msg->func != NULL);
    381   1.1     rmind 	KASSERT(kpreempt_disabled());
    382   1.1     rmind 
    383   1.1     rmind 	local = !!kcpuset_isset(target, cpu_index(self));
    384   1.1     rmind 	msg->_pending = kcpuset_countset(target) - local;
    385  1.10  riastrad 	membar_release();
    386   1.1     rmind 
    387   1.1     rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    388   1.1     rmind 		cpuid_t id;
    389   1.1     rmind 
    390   1.1     rmind 		if (__predict_false(ci == self)) {
    391   1.1     rmind 			continue;
    392   1.1     rmind 		}
    393   1.1     rmind 		id = cpu_index(ci);
    394   1.1     rmind 		if (!kcpuset_isset(target, id)) {
    395   1.1     rmind 			continue;
    396   1.1     rmind 		}
    397   1.1     rmind 		put_msg(&ipi_mboxes[id], msg);
    398   1.2     rmind 		ipi_trigger(IPI_SYNCH_ID, ci);
    399   1.1     rmind 	}
    400   1.1     rmind 	if (local) {
    401   1.1     rmind 		msg->func(msg->arg);
    402   1.1     rmind 	}
    403   1.1     rmind }
    404   1.1     rmind 
    405   1.1     rmind /*
    406   1.1     rmind  * ipi_broadcast: send an IPI to all CPUs.
    407   1.1     rmind  *
    408   1.1     rmind  * => The caller must ipi_wait() on the message for completion.
    409   1.1     rmind  */
    410   1.1     rmind void
    411   1.4   thorpej ipi_broadcast(ipi_msg_t *msg, bool skip_self)
    412   1.1     rmind {
    413   1.1     rmind 	const struct cpu_info * const self = curcpu();
    414   1.1     rmind 	CPU_INFO_ITERATOR cii;
    415   1.1     rmind 	struct cpu_info *ci;
    416   1.1     rmind 
    417   1.1     rmind 	KASSERT(msg->func != NULL);
    418   1.1     rmind 	KASSERT(kpreempt_disabled());
    419   1.1     rmind 
    420   1.1     rmind 	msg->_pending = ncpu - 1;
    421  1.10  riastrad 	membar_release();
    422   1.1     rmind 
    423   1.1     rmind 	/* Broadcast IPIs for remote CPUs. */
    424   1.1     rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    425   1.1     rmind 		cpuid_t id;
    426   1.1     rmind 
    427   1.1     rmind 		if (__predict_false(ci == self)) {
    428   1.1     rmind 			continue;
    429   1.1     rmind 		}
    430   1.1     rmind 		id = cpu_index(ci);
    431   1.1     rmind 		put_msg(&ipi_mboxes[id], msg);
    432   1.2     rmind 		ipi_trigger(IPI_SYNCH_ID, ci);
    433   1.1     rmind 	}
    434   1.1     rmind 
    435   1.4   thorpej 	if (!skip_self) {
    436   1.4   thorpej 		/* Finally, execute locally. */
    437   1.4   thorpej 		msg->func(msg->arg);
    438   1.4   thorpej 	}
    439   1.1     rmind }
    440   1.1     rmind 
    441   1.1     rmind /*
    442   1.1     rmind  * ipi_wait: spin-wait until the message is processed.
    443   1.1     rmind  */
    444   1.1     rmind void
    445   1.1     rmind ipi_wait(ipi_msg_t *msg)
    446   1.1     rmind {
    447   1.1     rmind 	int count = SPINLOCK_BACKOFF_MIN;
    448   1.1     rmind 
    449   1.9  riastrad 	while (atomic_load_acquire(&msg->_pending)) {
    450   1.9  riastrad 		KASSERT(atomic_load_relaxed(&msg->_pending) < ncpu);
    451   1.1     rmind 		SPINLOCK_BACKOFF(count);
    452   1.1     rmind 	}
    453   1.1     rmind }
    454