subr_ipi.c revision 1.2 1 1.2 rmind /* $NetBSD: subr_ipi.c,v 1.2 2014/05/25 15:34:19 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.2 rmind * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34 1.2 rmind * invoke functions with a constant argument and synchronous IPIs
35 1.2 rmind * with the cross-call support.
36 1.1 rmind */
37 1.1 rmind
38 1.1 rmind #include <sys/cdefs.h>
39 1.2 rmind __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.2 2014/05/25 15:34:19 rmind Exp $");
40 1.1 rmind
41 1.1 rmind #include <sys/param.h>
42 1.1 rmind #include <sys/types.h>
43 1.1 rmind
44 1.1 rmind #include <sys/atomic.h>
45 1.1 rmind #include <sys/evcnt.h>
46 1.1 rmind #include <sys/cpu.h>
47 1.1 rmind #include <sys/ipi.h>
48 1.1 rmind #include <sys/kcpuset.h>
49 1.1 rmind #include <sys/kmem.h>
50 1.1 rmind #include <sys/lock.h>
51 1.2 rmind #include <sys/mutex.h>
52 1.2 rmind
53 1.2 rmind /*
54 1.2 rmind * An array of the IPI handlers used for asynchronous invocation.
55 1.2 rmind * The lock protects the slot allocation.
56 1.2 rmind */
57 1.2 rmind
58 1.2 rmind typedef struct {
59 1.2 rmind ipi_func_t func;
60 1.2 rmind void * arg;
61 1.2 rmind } ipi_intr_t;
62 1.2 rmind
63 1.2 rmind static kmutex_t ipi_mngmt_lock;
64 1.2 rmind static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
65 1.1 rmind
66 1.1 rmind /*
67 1.1 rmind * Per-CPU mailbox for IPI messages: it is a single cache line storing
68 1.2 rmind * up to IPI_MSG_MAX messages. This interface is built on top of the
69 1.2 rmind * synchronous IPIs.
70 1.1 rmind */
71 1.1 rmind
72 1.1 rmind #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
73 1.1 rmind #define IPI_MSG_MAX IPI_MSG_SLOTS
74 1.1 rmind
75 1.1 rmind typedef struct {
76 1.1 rmind ipi_msg_t * msg[IPI_MSG_SLOTS];
77 1.1 rmind } ipi_mbox_t;
78 1.1 rmind
79 1.2 rmind
80 1.2 rmind /* Mailboxes for the synchronous IPIs. */
81 1.1 rmind static ipi_mbox_t * ipi_mboxes __read_mostly;
82 1.1 rmind static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
83 1.2 rmind static void ipi_msg_cpu_handler(void *);
84 1.2 rmind
85 1.2 rmind /* Handler for the synchronous IPIs - it must be zero. */
86 1.2 rmind #define IPI_SYNCH_ID 0
87 1.1 rmind
88 1.1 rmind #ifndef MULTIPROCESSOR
89 1.1 rmind #define cpu_ipi(ci) KASSERT(ci == NULL)
90 1.1 rmind #endif
91 1.1 rmind
92 1.1 rmind void
93 1.1 rmind ipi_sysinit(void)
94 1.1 rmind {
95 1.1 rmind const size_t len = ncpu * sizeof(ipi_mbox_t);
96 1.1 rmind
97 1.2 rmind /* Initialise the per-CPU bit fields. */
98 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
99 1.2 rmind struct cpu_info *ci = cpu_lookup(i);
100 1.2 rmind memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
101 1.2 rmind }
102 1.2 rmind mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
103 1.2 rmind memset(ipi_intrs, 0, sizeof(ipi_intrs));
104 1.2 rmind
105 1.1 rmind /* Allocate per-CPU IPI mailboxes. */
106 1.1 rmind ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
107 1.1 rmind KASSERT(ipi_mboxes != NULL);
108 1.1 rmind
109 1.2 rmind /*
110 1.2 rmind * Register the handler for synchronous IPIs. This mechanism
111 1.2 rmind * is built on top of the asynchronous interface. Slot zero is
112 1.2 rmind * reserved permanently; it is also handy to use zero as a failure
113 1.2 rmind * for other registers (as it is potentially less error-prone).
114 1.2 rmind */
115 1.2 rmind ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
116 1.2 rmind
117 1.1 rmind evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
118 1.1 rmind "ipi", "full");
119 1.1 rmind }
120 1.1 rmind
121 1.1 rmind /*
122 1.2 rmind * ipi_register: register an asynchronous IPI handler.
123 1.2 rmind *
124 1.2 rmind * => Returns IPI ID which is greater than zero; on failure - zero.
125 1.2 rmind */
126 1.2 rmind u_int
127 1.2 rmind ipi_register(ipi_func_t func, void *arg)
128 1.2 rmind {
129 1.2 rmind mutex_enter(&ipi_mngmt_lock);
130 1.2 rmind for (u_int i = 0; i < IPI_MAXREG; i++) {
131 1.2 rmind if (ipi_intrs[i].func == NULL) {
132 1.2 rmind /* Register the function. */
133 1.2 rmind ipi_intrs[i].func = func;
134 1.2 rmind ipi_intrs[i].arg = arg;
135 1.2 rmind mutex_exit(&ipi_mngmt_lock);
136 1.2 rmind
137 1.2 rmind KASSERT(i != IPI_SYNCH_ID);
138 1.2 rmind return i;
139 1.2 rmind }
140 1.2 rmind }
141 1.2 rmind mutex_exit(&ipi_mngmt_lock);
142 1.2 rmind printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
143 1.2 rmind return 0;
144 1.2 rmind }
145 1.2 rmind
146 1.2 rmind /*
147 1.2 rmind * ipi_unregister: release the IPI handler given the ID.
148 1.2 rmind */
149 1.2 rmind void
150 1.2 rmind ipi_unregister(u_int ipi_id)
151 1.2 rmind {
152 1.2 rmind ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
153 1.2 rmind
154 1.2 rmind KASSERT(ipi_id != IPI_SYNCH_ID);
155 1.2 rmind KASSERT(ipi_id < IPI_MAXREG);
156 1.2 rmind
157 1.2 rmind /* Release the slot. */
158 1.2 rmind mutex_enter(&ipi_mngmt_lock);
159 1.2 rmind KASSERT(ipi_intrs[ipi_id].func != NULL);
160 1.2 rmind ipi_intrs[ipi_id].func = NULL;
161 1.2 rmind
162 1.2 rmind /* Ensure that there are no IPIs in flight. */
163 1.2 rmind kpreempt_disable();
164 1.2 rmind ipi_broadcast(&ipimsg);
165 1.2 rmind ipi_wait(&ipimsg);
166 1.2 rmind kpreempt_enable();
167 1.2 rmind mutex_exit(&ipi_mngmt_lock);
168 1.2 rmind }
169 1.2 rmind
170 1.2 rmind /*
171 1.2 rmind * ipi_trigger: asynchronously send an IPI to the specified CPU.
172 1.2 rmind */
173 1.2 rmind void
174 1.2 rmind ipi_trigger(u_int ipi_id, struct cpu_info *ci)
175 1.2 rmind {
176 1.2 rmind const u_int i = ipi_id >> IPI_BITW_SHIFT;
177 1.2 rmind const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
178 1.2 rmind
179 1.2 rmind KASSERT(ipi_id < IPI_MAXREG);
180 1.2 rmind KASSERT(kpreempt_disabled());
181 1.2 rmind KASSERT(curcpu() != ci);
182 1.2 rmind
183 1.2 rmind /* Mark as pending and send an IPI. */
184 1.2 rmind if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
185 1.2 rmind atomic_or_32(&ci->ci_ipipend[i], bitm);
186 1.2 rmind cpu_ipi(ci);
187 1.2 rmind }
188 1.2 rmind }
189 1.2 rmind
190 1.2 rmind /*
191 1.1 rmind * put_msg: insert message into the mailbox.
192 1.1 rmind */
193 1.1 rmind static inline void
194 1.1 rmind put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
195 1.1 rmind {
196 1.1 rmind int count = SPINLOCK_BACKOFF_MIN;
197 1.1 rmind again:
198 1.1 rmind for (u_int i = 0; i < IPI_MSG_MAX; i++) {
199 1.1 rmind if (__predict_true(mbox->msg[i] == NULL) &&
200 1.1 rmind atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
201 1.1 rmind return;
202 1.1 rmind }
203 1.1 rmind }
204 1.1 rmind
205 1.1 rmind /* All slots are full: we have to spin-wait. */
206 1.1 rmind ipi_mboxfull_ev.ev_count++;
207 1.1 rmind SPINLOCK_BACKOFF(count);
208 1.1 rmind goto again;
209 1.1 rmind }
210 1.1 rmind
211 1.1 rmind /*
212 1.1 rmind * ipi_cpu_handler: the IPI handler.
213 1.1 rmind */
214 1.1 rmind void
215 1.1 rmind ipi_cpu_handler(void)
216 1.1 rmind {
217 1.2 rmind struct cpu_info * const ci = curcpu();
218 1.2 rmind
219 1.2 rmind /*
220 1.2 rmind * Handle asynchronous IPIs: inspect per-CPU bit field, extract
221 1.2 rmind * IPI ID numbers and execute functions in those slots.
222 1.2 rmind */
223 1.2 rmind for (u_int i = 0; i < IPI_BITWORDS; i++) {
224 1.2 rmind uint32_t pending, bit;
225 1.2 rmind
226 1.2 rmind if (ci->ci_ipipend[i] == 0) {
227 1.2 rmind continue;
228 1.2 rmind }
229 1.2 rmind pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
230 1.2 rmind #ifndef __HAVE_ATOMIC_AS_MEMBAR
231 1.2 rmind membar_producer();
232 1.2 rmind #endif
233 1.2 rmind while ((bit = ffs(pending)) != 0) {
234 1.2 rmind const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
235 1.2 rmind ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
236 1.2 rmind
237 1.2 rmind pending &= ~(1U << bit);
238 1.2 rmind KASSERT(ipi_hdl->func != NULL);
239 1.2 rmind ipi_hdl->func(ipi_hdl->arg);
240 1.2 rmind }
241 1.2 rmind }
242 1.2 rmind }
243 1.2 rmind
244 1.2 rmind /*
245 1.2 rmind * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
246 1.2 rmind * execute the passed functions and acknowledge the messages.
247 1.2 rmind */
248 1.2 rmind static void
249 1.2 rmind ipi_msg_cpu_handler(void *arg __unused)
250 1.2 rmind {
251 1.1 rmind const struct cpu_info * const ci = curcpu();
252 1.1 rmind ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
253 1.1 rmind
254 1.1 rmind for (u_int i = 0; i < IPI_MSG_MAX; i++) {
255 1.1 rmind ipi_msg_t *msg;
256 1.1 rmind
257 1.1 rmind /* Get the message. */
258 1.1 rmind if ((msg = mbox->msg[i]) == NULL) {
259 1.1 rmind continue;
260 1.1 rmind }
261 1.1 rmind mbox->msg[i] = NULL;
262 1.1 rmind
263 1.1 rmind /* Execute the handler. */
264 1.1 rmind KASSERT(msg->func);
265 1.1 rmind msg->func(msg->arg);
266 1.1 rmind
267 1.1 rmind /* Ack the request. */
268 1.1 rmind atomic_dec_uint(&msg->_pending);
269 1.1 rmind }
270 1.1 rmind }
271 1.1 rmind
272 1.1 rmind /*
273 1.1 rmind * ipi_unicast: send an IPI to a single CPU.
274 1.1 rmind *
275 1.1 rmind * => The CPU must be remote; must not be local.
276 1.1 rmind * => The caller must ipi_wait() on the message for completion.
277 1.1 rmind */
278 1.1 rmind void
279 1.1 rmind ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
280 1.1 rmind {
281 1.1 rmind const cpuid_t id = cpu_index(ci);
282 1.1 rmind
283 1.1 rmind KASSERT(msg->func != NULL);
284 1.1 rmind KASSERT(kpreempt_disabled());
285 1.1 rmind KASSERT(curcpu() != ci);
286 1.1 rmind
287 1.1 rmind msg->_pending = 1;
288 1.1 rmind membar_producer();
289 1.1 rmind
290 1.1 rmind put_msg(&ipi_mboxes[id], msg);
291 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci);
292 1.1 rmind }
293 1.1 rmind
294 1.1 rmind /*
295 1.1 rmind * ipi_multicast: send an IPI to each CPU in the specified set.
296 1.1 rmind *
297 1.1 rmind * => The caller must ipi_wait() on the message for completion.
298 1.1 rmind */
299 1.1 rmind void
300 1.1 rmind ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
301 1.1 rmind {
302 1.1 rmind const struct cpu_info * const self = curcpu();
303 1.1 rmind CPU_INFO_ITERATOR cii;
304 1.1 rmind struct cpu_info *ci;
305 1.1 rmind u_int local;
306 1.1 rmind
307 1.1 rmind KASSERT(msg->func != NULL);
308 1.1 rmind KASSERT(kpreempt_disabled());
309 1.1 rmind
310 1.1 rmind local = !!kcpuset_isset(target, cpu_index(self));
311 1.1 rmind msg->_pending = kcpuset_countset(target) - local;
312 1.1 rmind membar_producer();
313 1.1 rmind
314 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
315 1.1 rmind cpuid_t id;
316 1.1 rmind
317 1.1 rmind if (__predict_false(ci == self)) {
318 1.1 rmind continue;
319 1.1 rmind }
320 1.1 rmind id = cpu_index(ci);
321 1.1 rmind if (!kcpuset_isset(target, id)) {
322 1.1 rmind continue;
323 1.1 rmind }
324 1.1 rmind put_msg(&ipi_mboxes[id], msg);
325 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci);
326 1.1 rmind }
327 1.1 rmind if (local) {
328 1.1 rmind msg->func(msg->arg);
329 1.1 rmind }
330 1.1 rmind }
331 1.1 rmind
332 1.1 rmind /*
333 1.1 rmind * ipi_broadcast: send an IPI to all CPUs.
334 1.1 rmind *
335 1.1 rmind * => The caller must ipi_wait() on the message for completion.
336 1.1 rmind */
337 1.1 rmind void
338 1.1 rmind ipi_broadcast(ipi_msg_t *msg)
339 1.1 rmind {
340 1.1 rmind const struct cpu_info * const self = curcpu();
341 1.1 rmind CPU_INFO_ITERATOR cii;
342 1.1 rmind struct cpu_info *ci;
343 1.1 rmind
344 1.1 rmind KASSERT(msg->func != NULL);
345 1.1 rmind KASSERT(kpreempt_disabled());
346 1.1 rmind
347 1.1 rmind msg->_pending = ncpu - 1;
348 1.1 rmind membar_producer();
349 1.1 rmind
350 1.1 rmind /* Broadcast IPIs for remote CPUs. */
351 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
352 1.1 rmind cpuid_t id;
353 1.1 rmind
354 1.1 rmind if (__predict_false(ci == self)) {
355 1.1 rmind continue;
356 1.1 rmind }
357 1.1 rmind id = cpu_index(ci);
358 1.1 rmind put_msg(&ipi_mboxes[id], msg);
359 1.2 rmind ipi_trigger(IPI_SYNCH_ID, ci);
360 1.1 rmind }
361 1.1 rmind
362 1.1 rmind /* Finally, execute locally. */
363 1.1 rmind msg->func(msg->arg);
364 1.1 rmind }
365 1.1 rmind
366 1.1 rmind /*
367 1.1 rmind * ipi_wait: spin-wait until the message is processed.
368 1.1 rmind */
369 1.1 rmind void
370 1.1 rmind ipi_wait(ipi_msg_t *msg)
371 1.1 rmind {
372 1.1 rmind int count = SPINLOCK_BACKOFF_MIN;
373 1.1 rmind
374 1.1 rmind while (msg->_pending) {
375 1.1 rmind KASSERT(msg->_pending < ncpu);
376 1.1 rmind SPINLOCK_BACKOFF(count);
377 1.1 rmind }
378 1.1 rmind }
379