subr_ipi.c revision 1.2.6.3 1 1.2.6.2 tls /* $NetBSD: subr_ipi.c,v 1.2.6.3 2017/12/03 11:38:45 jdolecek Exp $ */
2 1.2.6.2 tls
3 1.2.6.2 tls /*-
4 1.2.6.2 tls * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 1.2.6.2 tls * All rights reserved.
6 1.2.6.2 tls *
7 1.2.6.2 tls * This code is derived from software contributed to The NetBSD Foundation
8 1.2.6.2 tls * by Mindaugas Rasiukevicius.
9 1.2.6.2 tls *
10 1.2.6.2 tls * Redistribution and use in source and binary forms, with or without
11 1.2.6.2 tls * modification, are permitted provided that the following conditions
12 1.2.6.2 tls * are met:
13 1.2.6.2 tls * 1. Redistributions of source code must retain the above copyright
14 1.2.6.2 tls * notice, this list of conditions and the following disclaimer.
15 1.2.6.2 tls * 2. Redistributions in binary form must reproduce the above copyright
16 1.2.6.2 tls * notice, this list of conditions and the following disclaimer in the
17 1.2.6.2 tls * documentation and/or other materials provided with the distribution.
18 1.2.6.2 tls *
19 1.2.6.2 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2.6.2 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2.6.2 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2.6.2 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2.6.2 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2.6.2 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2.6.2 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2.6.2 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2.6.2 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2.6.2 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2.6.2 tls * POSSIBILITY OF SUCH DAMAGE.
30 1.2.6.2 tls */
31 1.2.6.2 tls
32 1.2.6.2 tls /*
33 1.2.6.2 tls * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34 1.2.6.2 tls * invoke functions with a constant argument and synchronous IPIs
35 1.2.6.2 tls * with the cross-call support.
36 1.2.6.2 tls */
37 1.2.6.2 tls
38 1.2.6.2 tls #include <sys/cdefs.h>
39 1.2.6.2 tls __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.2.6.3 2017/12/03 11:38:45 jdolecek Exp $");
40 1.2.6.2 tls
41 1.2.6.2 tls #include <sys/param.h>
42 1.2.6.2 tls #include <sys/types.h>
43 1.2.6.2 tls
44 1.2.6.2 tls #include <sys/atomic.h>
45 1.2.6.2 tls #include <sys/evcnt.h>
46 1.2.6.2 tls #include <sys/cpu.h>
47 1.2.6.2 tls #include <sys/ipi.h>
48 1.2.6.3 jdolecek #include <sys/intr.h>
49 1.2.6.2 tls #include <sys/kcpuset.h>
50 1.2.6.2 tls #include <sys/kmem.h>
51 1.2.6.2 tls #include <sys/lock.h>
52 1.2.6.2 tls #include <sys/mutex.h>
53 1.2.6.2 tls
54 1.2.6.2 tls /*
55 1.2.6.2 tls * An array of the IPI handlers used for asynchronous invocation.
56 1.2.6.2 tls * The lock protects the slot allocation.
57 1.2.6.2 tls */
58 1.2.6.2 tls
59 1.2.6.2 tls typedef struct {
60 1.2.6.2 tls ipi_func_t func;
61 1.2.6.2 tls void * arg;
62 1.2.6.2 tls } ipi_intr_t;
63 1.2.6.2 tls
64 1.2.6.2 tls static kmutex_t ipi_mngmt_lock;
65 1.2.6.2 tls static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
66 1.2.6.2 tls
67 1.2.6.2 tls /*
68 1.2.6.2 tls * Per-CPU mailbox for IPI messages: it is a single cache line storing
69 1.2.6.2 tls * up to IPI_MSG_MAX messages. This interface is built on top of the
70 1.2.6.2 tls * synchronous IPIs.
71 1.2.6.2 tls */
72 1.2.6.2 tls
73 1.2.6.2 tls #define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
74 1.2.6.2 tls #define IPI_MSG_MAX IPI_MSG_SLOTS
75 1.2.6.2 tls
76 1.2.6.2 tls typedef struct {
77 1.2.6.2 tls ipi_msg_t * msg[IPI_MSG_SLOTS];
78 1.2.6.2 tls } ipi_mbox_t;
79 1.2.6.2 tls
80 1.2.6.2 tls
81 1.2.6.2 tls /* Mailboxes for the synchronous IPIs. */
82 1.2.6.2 tls static ipi_mbox_t * ipi_mboxes __read_mostly;
83 1.2.6.2 tls static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
84 1.2.6.2 tls static void ipi_msg_cpu_handler(void *);
85 1.2.6.2 tls
86 1.2.6.2 tls /* Handler for the synchronous IPIs - it must be zero. */
87 1.2.6.2 tls #define IPI_SYNCH_ID 0
88 1.2.6.2 tls
89 1.2.6.2 tls #ifndef MULTIPROCESSOR
90 1.2.6.2 tls #define cpu_ipi(ci) KASSERT(ci == NULL)
91 1.2.6.2 tls #endif
92 1.2.6.2 tls
93 1.2.6.2 tls void
94 1.2.6.2 tls ipi_sysinit(void)
95 1.2.6.2 tls {
96 1.2.6.2 tls const size_t len = ncpu * sizeof(ipi_mbox_t);
97 1.2.6.2 tls
98 1.2.6.2 tls /* Initialise the per-CPU bit fields. */
99 1.2.6.2 tls for (u_int i = 0; i < ncpu; i++) {
100 1.2.6.2 tls struct cpu_info *ci = cpu_lookup(i);
101 1.2.6.2 tls memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
102 1.2.6.2 tls }
103 1.2.6.2 tls mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
104 1.2.6.2 tls memset(ipi_intrs, 0, sizeof(ipi_intrs));
105 1.2.6.2 tls
106 1.2.6.2 tls /* Allocate per-CPU IPI mailboxes. */
107 1.2.6.2 tls ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
108 1.2.6.2 tls KASSERT(ipi_mboxes != NULL);
109 1.2.6.2 tls
110 1.2.6.2 tls /*
111 1.2.6.2 tls * Register the handler for synchronous IPIs. This mechanism
112 1.2.6.2 tls * is built on top of the asynchronous interface. Slot zero is
113 1.2.6.2 tls * reserved permanently; it is also handy to use zero as a failure
114 1.2.6.2 tls * for other registers (as it is potentially less error-prone).
115 1.2.6.2 tls */
116 1.2.6.2 tls ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
117 1.2.6.2 tls
118 1.2.6.2 tls evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
119 1.2.6.2 tls "ipi", "full");
120 1.2.6.2 tls }
121 1.2.6.2 tls
122 1.2.6.2 tls /*
123 1.2.6.2 tls * ipi_register: register an asynchronous IPI handler.
124 1.2.6.2 tls *
125 1.2.6.2 tls * => Returns IPI ID which is greater than zero; on failure - zero.
126 1.2.6.2 tls */
127 1.2.6.2 tls u_int
128 1.2.6.2 tls ipi_register(ipi_func_t func, void *arg)
129 1.2.6.2 tls {
130 1.2.6.2 tls mutex_enter(&ipi_mngmt_lock);
131 1.2.6.2 tls for (u_int i = 0; i < IPI_MAXREG; i++) {
132 1.2.6.2 tls if (ipi_intrs[i].func == NULL) {
133 1.2.6.2 tls /* Register the function. */
134 1.2.6.2 tls ipi_intrs[i].func = func;
135 1.2.6.2 tls ipi_intrs[i].arg = arg;
136 1.2.6.2 tls mutex_exit(&ipi_mngmt_lock);
137 1.2.6.2 tls
138 1.2.6.2 tls KASSERT(i != IPI_SYNCH_ID);
139 1.2.6.2 tls return i;
140 1.2.6.2 tls }
141 1.2.6.2 tls }
142 1.2.6.2 tls mutex_exit(&ipi_mngmt_lock);
143 1.2.6.2 tls printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
144 1.2.6.2 tls return 0;
145 1.2.6.2 tls }
146 1.2.6.2 tls
147 1.2.6.2 tls /*
148 1.2.6.2 tls * ipi_unregister: release the IPI handler given the ID.
149 1.2.6.2 tls */
150 1.2.6.2 tls void
151 1.2.6.2 tls ipi_unregister(u_int ipi_id)
152 1.2.6.2 tls {
153 1.2.6.2 tls ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
154 1.2.6.2 tls
155 1.2.6.2 tls KASSERT(ipi_id != IPI_SYNCH_ID);
156 1.2.6.2 tls KASSERT(ipi_id < IPI_MAXREG);
157 1.2.6.2 tls
158 1.2.6.2 tls /* Release the slot. */
159 1.2.6.2 tls mutex_enter(&ipi_mngmt_lock);
160 1.2.6.2 tls KASSERT(ipi_intrs[ipi_id].func != NULL);
161 1.2.6.2 tls ipi_intrs[ipi_id].func = NULL;
162 1.2.6.2 tls
163 1.2.6.2 tls /* Ensure that there are no IPIs in flight. */
164 1.2.6.2 tls kpreempt_disable();
165 1.2.6.2 tls ipi_broadcast(&ipimsg);
166 1.2.6.2 tls ipi_wait(&ipimsg);
167 1.2.6.2 tls kpreempt_enable();
168 1.2.6.2 tls mutex_exit(&ipi_mngmt_lock);
169 1.2.6.2 tls }
170 1.2.6.2 tls
171 1.2.6.2 tls /*
172 1.2.6.2 tls * ipi_trigger: asynchronously send an IPI to the specified CPU.
173 1.2.6.2 tls */
174 1.2.6.2 tls void
175 1.2.6.2 tls ipi_trigger(u_int ipi_id, struct cpu_info *ci)
176 1.2.6.2 tls {
177 1.2.6.2 tls const u_int i = ipi_id >> IPI_BITW_SHIFT;
178 1.2.6.2 tls const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
179 1.2.6.2 tls
180 1.2.6.2 tls KASSERT(ipi_id < IPI_MAXREG);
181 1.2.6.2 tls KASSERT(kpreempt_disabled());
182 1.2.6.2 tls KASSERT(curcpu() != ci);
183 1.2.6.2 tls
184 1.2.6.2 tls /* Mark as pending and send an IPI. */
185 1.2.6.2 tls if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
186 1.2.6.2 tls atomic_or_32(&ci->ci_ipipend[i], bitm);
187 1.2.6.2 tls cpu_ipi(ci);
188 1.2.6.2 tls }
189 1.2.6.2 tls }
190 1.2.6.2 tls
191 1.2.6.2 tls /*
192 1.2.6.3 jdolecek * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
193 1.2.6.3 jdolecek * CPUs given the target CPU set.
194 1.2.6.3 jdolecek */
195 1.2.6.3 jdolecek void
196 1.2.6.3 jdolecek ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
197 1.2.6.3 jdolecek {
198 1.2.6.3 jdolecek const cpuid_t selfid = cpu_index(curcpu());
199 1.2.6.3 jdolecek CPU_INFO_ITERATOR cii;
200 1.2.6.3 jdolecek struct cpu_info *ci;
201 1.2.6.3 jdolecek
202 1.2.6.3 jdolecek KASSERT(kpreempt_disabled());
203 1.2.6.3 jdolecek KASSERT(target != NULL);
204 1.2.6.3 jdolecek
205 1.2.6.3 jdolecek for (CPU_INFO_FOREACH(cii, ci)) {
206 1.2.6.3 jdolecek const cpuid_t cpuid = cpu_index(ci);
207 1.2.6.3 jdolecek
208 1.2.6.3 jdolecek if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
209 1.2.6.3 jdolecek continue;
210 1.2.6.3 jdolecek }
211 1.2.6.3 jdolecek ipi_trigger(ipi_id, ci);
212 1.2.6.3 jdolecek }
213 1.2.6.3 jdolecek if (kcpuset_isset(target, selfid)) {
214 1.2.6.3 jdolecek int s = splhigh();
215 1.2.6.3 jdolecek ipi_cpu_handler();
216 1.2.6.3 jdolecek splx(s);
217 1.2.6.3 jdolecek }
218 1.2.6.3 jdolecek }
219 1.2.6.3 jdolecek
220 1.2.6.3 jdolecek /*
221 1.2.6.2 tls * put_msg: insert message into the mailbox.
222 1.2.6.2 tls */
223 1.2.6.2 tls static inline void
224 1.2.6.2 tls put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
225 1.2.6.2 tls {
226 1.2.6.2 tls int count = SPINLOCK_BACKOFF_MIN;
227 1.2.6.2 tls again:
228 1.2.6.2 tls for (u_int i = 0; i < IPI_MSG_MAX; i++) {
229 1.2.6.2 tls if (__predict_true(mbox->msg[i] == NULL) &&
230 1.2.6.2 tls atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
231 1.2.6.2 tls return;
232 1.2.6.2 tls }
233 1.2.6.2 tls }
234 1.2.6.2 tls
235 1.2.6.2 tls /* All slots are full: we have to spin-wait. */
236 1.2.6.2 tls ipi_mboxfull_ev.ev_count++;
237 1.2.6.2 tls SPINLOCK_BACKOFF(count);
238 1.2.6.2 tls goto again;
239 1.2.6.2 tls }
240 1.2.6.2 tls
241 1.2.6.2 tls /*
242 1.2.6.2 tls * ipi_cpu_handler: the IPI handler.
243 1.2.6.2 tls */
244 1.2.6.2 tls void
245 1.2.6.2 tls ipi_cpu_handler(void)
246 1.2.6.2 tls {
247 1.2.6.2 tls struct cpu_info * const ci = curcpu();
248 1.2.6.2 tls
249 1.2.6.2 tls /*
250 1.2.6.2 tls * Handle asynchronous IPIs: inspect per-CPU bit field, extract
251 1.2.6.2 tls * IPI ID numbers and execute functions in those slots.
252 1.2.6.2 tls */
253 1.2.6.2 tls for (u_int i = 0; i < IPI_BITWORDS; i++) {
254 1.2.6.2 tls uint32_t pending, bit;
255 1.2.6.2 tls
256 1.2.6.2 tls if (ci->ci_ipipend[i] == 0) {
257 1.2.6.2 tls continue;
258 1.2.6.2 tls }
259 1.2.6.2 tls pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
260 1.2.6.2 tls #ifndef __HAVE_ATOMIC_AS_MEMBAR
261 1.2.6.2 tls membar_producer();
262 1.2.6.2 tls #endif
263 1.2.6.2 tls while ((bit = ffs(pending)) != 0) {
264 1.2.6.2 tls const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
265 1.2.6.2 tls ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
266 1.2.6.2 tls
267 1.2.6.2 tls pending &= ~(1U << bit);
268 1.2.6.2 tls KASSERT(ipi_hdl->func != NULL);
269 1.2.6.2 tls ipi_hdl->func(ipi_hdl->arg);
270 1.2.6.2 tls }
271 1.2.6.2 tls }
272 1.2.6.2 tls }
273 1.2.6.2 tls
274 1.2.6.2 tls /*
275 1.2.6.2 tls * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
276 1.2.6.2 tls * execute the passed functions and acknowledge the messages.
277 1.2.6.2 tls */
278 1.2.6.2 tls static void
279 1.2.6.2 tls ipi_msg_cpu_handler(void *arg __unused)
280 1.2.6.2 tls {
281 1.2.6.2 tls const struct cpu_info * const ci = curcpu();
282 1.2.6.2 tls ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
283 1.2.6.2 tls
284 1.2.6.2 tls for (u_int i = 0; i < IPI_MSG_MAX; i++) {
285 1.2.6.2 tls ipi_msg_t *msg;
286 1.2.6.2 tls
287 1.2.6.2 tls /* Get the message. */
288 1.2.6.2 tls if ((msg = mbox->msg[i]) == NULL) {
289 1.2.6.2 tls continue;
290 1.2.6.2 tls }
291 1.2.6.2 tls mbox->msg[i] = NULL;
292 1.2.6.2 tls
293 1.2.6.2 tls /* Execute the handler. */
294 1.2.6.2 tls KASSERT(msg->func);
295 1.2.6.2 tls msg->func(msg->arg);
296 1.2.6.2 tls
297 1.2.6.2 tls /* Ack the request. */
298 1.2.6.2 tls atomic_dec_uint(&msg->_pending);
299 1.2.6.2 tls }
300 1.2.6.2 tls }
301 1.2.6.2 tls
302 1.2.6.2 tls /*
303 1.2.6.2 tls * ipi_unicast: send an IPI to a single CPU.
304 1.2.6.2 tls *
305 1.2.6.2 tls * => The CPU must be remote; must not be local.
306 1.2.6.2 tls * => The caller must ipi_wait() on the message for completion.
307 1.2.6.2 tls */
308 1.2.6.2 tls void
309 1.2.6.2 tls ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
310 1.2.6.2 tls {
311 1.2.6.2 tls const cpuid_t id = cpu_index(ci);
312 1.2.6.2 tls
313 1.2.6.2 tls KASSERT(msg->func != NULL);
314 1.2.6.2 tls KASSERT(kpreempt_disabled());
315 1.2.6.2 tls KASSERT(curcpu() != ci);
316 1.2.6.2 tls
317 1.2.6.2 tls msg->_pending = 1;
318 1.2.6.2 tls membar_producer();
319 1.2.6.2 tls
320 1.2.6.2 tls put_msg(&ipi_mboxes[id], msg);
321 1.2.6.2 tls ipi_trigger(IPI_SYNCH_ID, ci);
322 1.2.6.2 tls }
323 1.2.6.2 tls
324 1.2.6.2 tls /*
325 1.2.6.2 tls * ipi_multicast: send an IPI to each CPU in the specified set.
326 1.2.6.2 tls *
327 1.2.6.2 tls * => The caller must ipi_wait() on the message for completion.
328 1.2.6.2 tls */
329 1.2.6.2 tls void
330 1.2.6.2 tls ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
331 1.2.6.2 tls {
332 1.2.6.2 tls const struct cpu_info * const self = curcpu();
333 1.2.6.2 tls CPU_INFO_ITERATOR cii;
334 1.2.6.2 tls struct cpu_info *ci;
335 1.2.6.2 tls u_int local;
336 1.2.6.2 tls
337 1.2.6.2 tls KASSERT(msg->func != NULL);
338 1.2.6.2 tls KASSERT(kpreempt_disabled());
339 1.2.6.2 tls
340 1.2.6.2 tls local = !!kcpuset_isset(target, cpu_index(self));
341 1.2.6.2 tls msg->_pending = kcpuset_countset(target) - local;
342 1.2.6.2 tls membar_producer();
343 1.2.6.2 tls
344 1.2.6.2 tls for (CPU_INFO_FOREACH(cii, ci)) {
345 1.2.6.2 tls cpuid_t id;
346 1.2.6.2 tls
347 1.2.6.2 tls if (__predict_false(ci == self)) {
348 1.2.6.2 tls continue;
349 1.2.6.2 tls }
350 1.2.6.2 tls id = cpu_index(ci);
351 1.2.6.2 tls if (!kcpuset_isset(target, id)) {
352 1.2.6.2 tls continue;
353 1.2.6.2 tls }
354 1.2.6.2 tls put_msg(&ipi_mboxes[id], msg);
355 1.2.6.2 tls ipi_trigger(IPI_SYNCH_ID, ci);
356 1.2.6.2 tls }
357 1.2.6.2 tls if (local) {
358 1.2.6.2 tls msg->func(msg->arg);
359 1.2.6.2 tls }
360 1.2.6.2 tls }
361 1.2.6.2 tls
362 1.2.6.2 tls /*
363 1.2.6.2 tls * ipi_broadcast: send an IPI to all CPUs.
364 1.2.6.2 tls *
365 1.2.6.2 tls * => The caller must ipi_wait() on the message for completion.
366 1.2.6.2 tls */
367 1.2.6.2 tls void
368 1.2.6.2 tls ipi_broadcast(ipi_msg_t *msg)
369 1.2.6.2 tls {
370 1.2.6.2 tls const struct cpu_info * const self = curcpu();
371 1.2.6.2 tls CPU_INFO_ITERATOR cii;
372 1.2.6.2 tls struct cpu_info *ci;
373 1.2.6.2 tls
374 1.2.6.2 tls KASSERT(msg->func != NULL);
375 1.2.6.2 tls KASSERT(kpreempt_disabled());
376 1.2.6.2 tls
377 1.2.6.2 tls msg->_pending = ncpu - 1;
378 1.2.6.2 tls membar_producer();
379 1.2.6.2 tls
380 1.2.6.2 tls /* Broadcast IPIs for remote CPUs. */
381 1.2.6.2 tls for (CPU_INFO_FOREACH(cii, ci)) {
382 1.2.6.2 tls cpuid_t id;
383 1.2.6.2 tls
384 1.2.6.2 tls if (__predict_false(ci == self)) {
385 1.2.6.2 tls continue;
386 1.2.6.2 tls }
387 1.2.6.2 tls id = cpu_index(ci);
388 1.2.6.2 tls put_msg(&ipi_mboxes[id], msg);
389 1.2.6.2 tls ipi_trigger(IPI_SYNCH_ID, ci);
390 1.2.6.2 tls }
391 1.2.6.2 tls
392 1.2.6.2 tls /* Finally, execute locally. */
393 1.2.6.2 tls msg->func(msg->arg);
394 1.2.6.2 tls }
395 1.2.6.2 tls
396 1.2.6.2 tls /*
397 1.2.6.2 tls * ipi_wait: spin-wait until the message is processed.
398 1.2.6.2 tls */
399 1.2.6.2 tls void
400 1.2.6.2 tls ipi_wait(ipi_msg_t *msg)
401 1.2.6.2 tls {
402 1.2.6.2 tls int count = SPINLOCK_BACKOFF_MIN;
403 1.2.6.2 tls
404 1.2.6.2 tls while (msg->_pending) {
405 1.2.6.2 tls KASSERT(msg->_pending < ncpu);
406 1.2.6.2 tls SPINLOCK_BACKOFF(count);
407 1.2.6.2 tls }
408 1.2.6.2 tls }
409